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We study the transverse momentum dependent (TMD) evolution of the Collins azimuthal asym-
metries in e+e− annihilations and semi-inclusive hadron production in deep inelastic scattering
(SIDIS) processes. All the relevant coefficients are calculated up to the next-to-leading logarith-
mic (NLL) order accuracy. By applying the TMD evolution at the approximate NLL order in the
Collins-Soper-Sterman (CSS) formalism, we extract transversity distributions for u and d quarks and
Collins fragmentation functions from current experimental data by a global analysis of the Collins
asymmetries in back-to-back di-hadron productions in e+e− annihilations measured by BELLE and
BABAR Collaborations and SIDIS data from HERMES, COMPASS, and JLab HALL A experi-
ments. The impact of the evolution effects and the relevant theoretical uncertainties are discussed.
We further discuss the TMD interpretation for our results, and illustrate the unpolarized quark
distribution, transversity distribution, unpolarized quark fragmentation and Collins fragmentation
functions depending on the transverse momentum and the hard momentum scale. We make detailed
predictions for future experiments and discuss their impact.

I. INTRODUCTION

The transversity distribution function is one of the three leading-twist quark distributions of nucleon that describe
completely spin-1/2 nucleon [1–4]. Different from the other two, unpolarized and helicity distributions, the quark
transversity is difficult to measure in experiment because of its chiral-odd nature [2]. In order to study it in a physical
process, one has to couple it to another chiral-odd function. The first moments (integral over the longitudinal
momentum fraction) of the quark transversity distributions lead to the quark contributions to the nucleon tensor
charge, which is a fundamental property of the nucleon.
An important channel to investigate the quark transversity distribution is to measure the Collins azimuthal spin

asymmetries in semi-inclusive hadron production in deep inelastic scattering (SIDIS) [5]. Measurements have been
made by the HERMES Collaboration [6, 7], the COMPASS Colaboration [8], and JLab HALL A [9] experiments.
However, the extraction of the quark transversity distributions requires the knowledge of the Collins fragmentation
functions, which are different from the usual unpolarized fragmentation functions. It was further suggested to measure
the Collins fragmentation functions from the azimuthal angular asymmetries of two back-to-back hadron productions
in e+e− annihilations [10]. Recently both BELLE and BABAR Collaborations have studied these asymmetries at
the B-factories at center of mass energy around

√
s ≃ 10.6 GeV [11–13]. Thanks to the universality of the Collins

fragmentation functions [14], we will be able to combine the analysis of these two processes to constrain the quark
transversity distributions. The effort to extract the transversity distributions and Collins fragmentation functions has
been carried out by the Torino-Cagliari-JLab group extensively in the last few years [15–17]. Transversity coupled to
the so-called dihadron interference fragmentation functions is employed to study transversity in its collinear version
in Ref. [18]. These results have demonstrated the powerful capability of the Collins asymmetry measurements in
constraining the quark transversity distributions and hence the nucleon tensor charge in high energy scattering exper-
iments. In this study we will implement, for the first time, the appropriate QCD evolution for the phenomenological
studies of Refs. [15–17] and thus improve significantly our understanding of transversity distribution and Collins frag-
mentation functions. We will also show the consistency with previous phenomenological results. A brief summary of
our results has been published in Ref. [19].
The appropriate QCD evolution for these low transverse momentum hard processes is the so-called transverse

momentum dependent (TMD) evolution, which follows from factorization theorems and has been well developed in
recent years, following the pioneering works by Collins-Soper-Sterman (CSS) [20, 21]. In particular, the Collins 2011
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formalism of Ref. [22] constructs a well defined universal TMDs that “absorb” effects of soft gluon radiation which
was traditionally signed out in a separate factor in Refs. [20, 21], and defines a hard part function that contains the
process dependence. This allows for an explicit universality of the TMDs in the phenomenological applications of the
hard scattering processes mentioned above.

The TMD evolution effects in the Collins asymmetries in the above processes have been estimated in Refs. [23].
The TMD factorization is an important step to derive the results for the physical observables we are interested in,
and has been shown to be valid for processes with two separate measured momentum scales QT ≪ Q, such as SIDIS,
Drell-Yan and e+e− annihilation into back-to-back hadrons. Here the small scale QT corresponds to the measured
transverse momentum of, for instance, produced hadron in SIDIS, lepton pair in Drell-Yan. TMD factorization is
formulated in such a way that one can calculate cross sections up to the values QT ∼ ΛQCD and thus incorporates
non-perturbative information on the hadron structure. Schematically the TMD factorization expresses the transverse-
momentum-dependent differential cross section as a convolution of a so-called hard part H , which is specific for the
process and thus process dependent, and universal TMD parton distributions and/or TMD parton fragmentation
functions, collectively called TMDs. These TMDs are universal (for the “naively time reversal odd” functions such as
Sivers function [24, 25] and Boer-Mulders function [26] the universality is generalized [27, 28]) and can be associated
with properties of specific hadrons. In this sense TMDs represent the three-dimensional partonic structure of the
incoming nucleons as well as outgoing hadrons. Evolution equations are used to calculate the dependence of TMDs
on the hard scale Q. Since the definition of TMDs contains the so-called light-cone singularity [20], the detailed
calculations depend on the scheme to regulate this singularity [20–22, 29–35], which leads to the scheme dependence
in the TMD factorization. Although there are different ways to formulate the TMD factorization and to define
the TMD distribution and fragmentation functions, the energy evolution (historically called “resummation”) for the
physical observables (including the transverse momentum dependent differential cross sections and spin asymmetries)
will take the same form in all schemes. In particular, after solving the evolution equations, the final results are
identical to each other in all TMD factorization schemes, where the TMDs are expressed in terms of their collinear
counterparts with perturbatively calculable coefficients, and the evolution effects are included in the exponential factor
– the so-called Sudakov-like form factors [36]. Therefore, in terms of a phenomenological study, all TMD factorization
and evolution calculations will be identical to that originally proven in the form of CSS [21]. Interpretation of results
and individual functions depends of course on the scheme and one should be very careful when giving interpretations.

TMD evolution is performed in coordinate b-space, where b is conjugate to the k⊥ in momentum space through the
Fourier transformation and corresponds to the transverse distance separating the quark/gluon fields. The usage of
b-space highly simplifies the expressions for the cross sections which become simple products of b dependent TMDs
in contrast to convolutions in k⊥ space. In order to calculate the measured cross-sections (and individual TMDs) one
performs a two dimensional Fourier transform to the physical QT (or k⊥) space. A very unique feature of TMD/CSS
formalism is the fact that the evolution kernel becomes non-perturbative at large separation distances b; while at
small b ≪ 1/ΛQCD it is perturbative and can be calculated order by order in strong coupling constant αs(1/b).
Over short transverse distance scales, 1/b becomes a legitimate hard scale, and the b dependence of TMDs can be
calculated in perturbation theory and related to their collinear counterparts, such as collinear parton distribution
(PDFs), fragmentation functions (FFs) or multiparton correlation functions. The important non-perturabrive part of
the so-called Soft factor that corresponds to vacuum expectation value of Wilson loops is predicted [22] to be process
independent, it is also independent of the fact that the individual TMDs is distribution or fragmentation function
and independent of the particular value of momentum fractions xB or zh measured. It may depend on the parton
type, quark or a gluon, in this paper we are going to consider only quark distribution and fragmentation TMDs. The
information on intrinsic non-perturbative motion of patrons associated with the hadron wave function is encoded in
non-perturbative inputs for TMD PDFs and FFs and in turn universal in different processes but in principle dependent
on the parton/hadron type and on value of xB or zh.

The implementation of the TMD formalism requires parametrization of the non-perturbative inputs [37–43] for
the TMDs. The growth of αs(1/b) at large values of b can be tamed by the so-called b∗-prescription (which we
will follow in this paper) originally introduced in the CSS formalism [21] that allows one to avoid Landau pole in
strong coupling constant and provides a smooth transition from perturbative to non-perturbative regimes. Fits of
experimental data utilizing b∗ prescription have been well developed in the literature, in particular, in the publications
of the BLNY-type of parameterizations [37, 44]. Other choices have been made in the literature, see, for example,
Refs. [38, 45–48]. However, in all these implementations of the TMDs in the CSS formalism, an important step is
to verify that they provide a robust method of treating non-perturbative physics and can well describe the existing
experimental data [39, 41].

For the Collins asymmetries studied in this paper, we extend the CSS formalism to the azimuthal angular asym-
metries and in the relevant hard processes. This involves the Collins-Soper (CS) evolution equation for the k⊥-odd
distribution and fragmentation functions, which were derived in Refs. [40, 49–54]. In our calculations, we apply the
TMD evolution at the approximate next-to-leading-logarithmic order (NLL’) as specified below. The formalism fol-
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lows the CSS procedure for the unpolarized cross section, and is similar to that of Sivers asymmetries in SIDIS and
Drell-Yan processes [40–42, 55]. We will derive the perturbative coefficients at one-loop order as well.
There exists a freedom (scheme-dependence) to separate out the so-called hard factor from the splitting function

contribution in the CSS formalism [46]. This provides a useful way of interpretation for the final results in terms of
the TMDs [22, 56, 57]. It allows to interpret a part of the splitting functions in CSS as a universal TMDs splitting
functions, and the difference in the coefficients can be regarded as part of hard factors. Once rigorously defined, we
shall have a unique interpretation of the CSS formalism in terms of TMDs. We will elaborate this interpretation in
details in our paper.
In applying the CSS evolution at the NLL order, we relate transversity TMD and Collins FF to the collinear quark

transversity distribution and the collinear twist-3 fragmentation function and include the DGLAP-type scale evolution
of the latter two collinear distributions. The evolution of transversity distribution is very well known [58–61] while
the evolution of the twist-3 fragmentation function involves multiparton correlation functions [52, 62], as a common
feature of higher-twist correlation functions. In the following calculations, we will only keep the homogenous terms in
the splitting kernel, which is an approximation to the complete evolution equation. To differentiate from the complete
NLL computation, we denote it as NLL′ (an approximate NLL). To achieve this precision we include the most recent
developments from both theory and phenomenology sides [22, 40–42, 44, 52, 54, 62–64].
The quark transversity distributions are important ingredients for several other spin related asymmetries. For

example, they contribute to the azimuthal asymmetries of two-hadron fragmentation processes in SIDIS and e+e−

annihilations [65], and single inclusive hadron production at large transverse momentum in pp collisions [66–68].
Future RHIC measurements [69] are going to explore more phenomena related to transverse spin and ultimately to
the partonic three-dimensional structure of the nucleon. Our results will provide important cross checks and a step
further toward a global analysis to all these spin asymmetries associated with the quark transversity distributions.
The rest of the paper is organized as follows. In Section II, we review the theoretical framework for the Collins

azimuthal asymmetries in SIDIS and e+e− annihilations and derive the associated TMD evolution results and the
relevant perturbative coefficients. We also reformulate the resummation formalism in an appropriate way to better
connect to the recently developed TMD formalism in Section III F. In Section III, we perform the phenomenological
studies and focus on the global fit of the quark transversity distribution and Collins fragmentation functions from
the existing experimental data. We make predictions for future experiments and compare our results with previous
analyses. Finally, we conclude our paper in Section IV.

II. THE COLLINS AZIMUTHAL ASYMMETRIES IN SIDIS AND e+e− ANNIHILATION

In this section, we discuss the asymmetries generated by transversity and Collins fragmentation functions in SIDIS
and e+e− annihilation. We apply TMD evolution and represent the differential cross sections, spin-dependent and
spin-independent ones, in a compact form.

A. Collins Azimuthal Asymmetries in SIDIS

In the SIDIS, see Fig. 1, a lepton scatters on the nucleon target, and produces a hadron in the final state,

e(ℓ) + p(P ) → e(ℓ′) + h(Ph) +X , (1)

by exchanging a virtual photon qµ = ℓµ − ℓ′µ with invariant mass Q2 = −q2. We adopt the usual SIDIS variables [70]:

Sep = (P + ℓ)2, xB =
Q2

2P · q , y =
P · q
P · ℓ =

Q2

xBSep
, zh =

P · Ph

P · q , (2)

with Sep = (ℓ + P )2 the center of mass energy square. The differential SIDIS cross section that includes the Collins
effect, the sin (φh + φs) modulation, can be written as [71, 72],

d5σ(S⊥)

dxBdydzhd2Ph⊥
= σ0(xB , y, Q

2)

[
FUU + sin(φh + φs)

2(1− y)

1 + (1− y)2
F

sin(φh+φs)
UT + ...

]
, (3)

where σ0 =
2πα2

em

Q2

1+(1−y)2

y , and φs and φh are the azimuthal angles for the nucleon spin and the transverse momentum

of the outgoing hadron, respectively. FUU and F
sin(φh+φs)
UT are the spin-averaged and transverse spin-dependent
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FIG. 1. Semi Inclusive Deep Inelastic Scattering process (SIDIS) in γ∗P center of mass frame.

structure functions. The latter is related to convolution of transversity distribution and Collins fragmentation function.
Ellipsis in Eq.(3) denote other structure functions that we do not consider in this paper.
The Collins asymmetry measured experimetnally are related to the structure functions as follows:

A
sin(φh+φs)
UT ≡ 2〈sin (φh + φs)〉 =

σ0(xB , y, Q
2)

σ0(xB , y, Q2)

2(1− y)

1 + (1− y)2
F

sin(φh+φs)
UT

FUU
. (4)

Note that sometimes experimental results (for instance for COMPASS collaboration) are presented by factoring out
the so-called depolarization factor DNN :

DNN =
2(1− y)

1 + (1− y)2
. (5)

Both structure functions, i.e. FUT and F
sin(φh+φs)
UT , depend on kinematical variables and on the hard scale Q2 in the

reaction. It is important to realize that in order to have reliable calculations of corresponding structure functions one
needs to take into account appropriate scale dependence which is generated by QCD evolution of TMD distribution
and fragmentation functions.

Historically the solution of TMD evolution equations [21] is presented in the b-space, where in SIDIS ~b is Fourier

conjugate variable to ~Ph⊥/zh. The Ph⊥-dependent structure functions can be formulated in terms of the TMD
factorization, and they can be (omitting xB, z dependencies) written as,

FUU (Q;Ph⊥) =
1

z2h

∫
d2b

(2π)2
ei

~Ph⊥·~b/zhF̃UU (Q; b) + YUU (Q;Ph⊥) , (6)

Fα
collins(Q;Ph⊥) =

1

z2h

∫
d2b

(2π)2
ei

~Ph⊥·~b/zhF̃α
collins(Q; b) + Y α

collins(Q;Ph⊥) , (7)

where Fα
collins is related to the spin-dependent structure function F

sin(φh+φs)
UT as follows:

sin(φh + φs)F
sin(φh+φs)
UT = ǫαβSα

⊥

[
gβρ⊥ − 2êβx ê

ρ
x

]
F ρ
collins , (8)

with the unit vector êx defined in Fig. 1. In Eqs. (6) and (7), the first TMD term dominates in Ph⊥ ≪ Q region, and
the second so-called Y-factor term dominates in the region of Ph⊥

>∼ Q and assures accuracy of the formula in the

wide region of Ph⊥. We will neglect the corresponding Y factors as we will consider only the region of low ~Ph⊥/z,
and thus for spin-averaged and transverse spin-dependent structure functions one has

FUU (Q;Ph⊥) =
1

z2h

∫
d2b

(2π)2
ei

~Ph⊥·~b/zhF̃UU (Q; b) , (9)

F
sin(φh+φs)
UT (Q;Ph⊥) =

1

z2h

∫
d2b

(2π)2
ei

~Ph⊥·~b/zhP̂α
h⊥F̃

α
collins(Q; b) , (10)

one notices that while spin independent structure function is a scalar quantity, the spin dependent structure function
depends on the transverse direction α = 1, 2; see Eqs. (8,10).
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1. Unpolarized structure function with evolution

The factorization formula for unpolarized structure function FUU (Q;Ph⊥) is well known and has the following
interpretation (we choose Ji-Ma-Yuan [29, 73] scheme for the moment) in terms of unpolarized distribution and
fragmentation functions in the b space [49]:

F̃UU (Q; b) =
∑

q

e2q f̃
q
1 (xB , b; ρ, ζ, µ)D̃h/q(zh, b; ρ, ζ̂, µ)H(Q/µ, ρ)S(b, ρ;µ) , (11)

where f̃ q
1 is the unpolarized TMD distribution, D̃h/q is the unpolarized TMD fragmentation function, ζ2 = 2(v ·

PA)
2/v2, ζ̂2 = (2ṽ · Ph)

2/ṽ2, and ρ2 = (2v · ṽ)2/v2ṽ2 represent the light-cone singularity regulation parameters. H
is the hard factor associated with hard scattering and S is the so-called soft function associated with emission of
soft gluons. Renormalisation group scale µ is arbitrary in full QCD, however in truncated perturbative series it is
chosen to optimize the convergence in such a way that H does not have large logarithmic contributions, log(Q/µ), and
generically µ = C1Q with C1 a parameter of order of 1. We will utilize C1 = 1 and thus µ = Q in our calculations.
Depending on different schemes; such as Ji-Ma-Yuan [29, 73], CSS [20, 21], or Collins-11 [22], the dependence on these
parameters will be different. However, the final results for the structure functions are independent of the schemes, as
the actual cross-sections do not depend on the auxiliary parameters. Note that historically H factor is absorbed in
CSS formulation into the definition of Wilson coefficient functions that relate TMDs to the corresponding collinear
distributions. The final results for the cross-sections are the same in all schemes. However, a slight difference stems
from the fact that H functions contain αs(µ) with renormalization group scale µ while coefficient functions, as will
be explained below, contain αs(µb) with a dynamical scale µb. At each order of perturbation series, these differences
are of a higher order in αs. We will dedicate a separate Section III F where we will discuss TMD interpretation of our
results and give explicit TMD formulas in TMD Collins-11 [22] formulation for all functions and structure functions
considered in this paper.
Let us review the definition and the need of different factors. The TMD quark distributions in SIDIS is defined

through the following matrix:

Mαβ = P+

∫
dξ−

2π
e−ixξ

−P+

∫
d2b

(2π)2
ei
~b·~k⊥

〈
PS

∣∣∣ψβ
(ξ−, 0,~b)L†v(∞; ξ)Lv(∞; 0)ψα(0)

∣∣∣PS
〉
, (12)

with the gauge link

Lv(∞; ξ) ≡ exp

(
−ig

∫ ∞

0

dλ v · A(λv + ξ)

)
. (13)

This gauge link goes to +∞, indicating that we adopt the definition for the TMD quark distributions for the SIDIS
process. The unpolarized quark distribution is projected out from the above matrix as,

M =
1

2
[f q

1 (x, k⊥)γµP
µ + . . .] , (14)

f q
1 (x, k⊥) =

1

4P+
Tr[γ+M] . (15)

However, the above definition of the quark distribution contains soft gluon contribution, which has to be subtracted
from the naive definition. In addition, there is light-cone singularity if we take the gauge link along the light-front
direction v with v2 = 0. The way to regularize this singularity and subtract soft gluon contribution defines the scheme
for the TMD factorization.
In the Ji-Ma-Yuan scheme, the gauge link in the TMD definition is chosen to be slightly off-light-cone, n =

(1−, 0+, 0⊥) → v = (v−, v+, 0⊥) with v− ≫ v+. Similarly, for the TMD fragmentation function, ṽ was introduced,
ṽ = (ṽ−, ṽ+, 0⊥) with ṽ+ ≫ ṽ−. Because of the additional directions v and ṽ, there are additional invariants:

ζ2 = (2v · P )2/v2, ζ̂2 = (2ṽ · Ph)
2/ṽ2, and ρ2 = (2v · ṽ)2/v2ṽ2. Accordingly, the soft factor is defined as,

Sv,v̄(b) = 〈0|L†ṽcb′(b)L
†
vb′a(b)Lvab(0)Lṽbc(0)|0〉 . (16)

With soft factor subtraction, the TMD factorization for the unpolarized structure function can be rewritten as

FUU (Q; b) =
∑

q

e2q f̃
q (sub)
1JMY (xB , b; ρ, ζ, µ)D̃

(sub)
qJMY(zh, b; ρ, ζ̂, µ)H

JMY
UU (Q/µ, ρ) , (17)
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where the subtracted quark distribution and fragmentation functions are defined as

f̃
q (sub)
1JMY (xB , b; ρ, ζ, µ) =

f̃ q
1 (zh, b; ρ, ζ, µ)√

S(b, ρ;µ)
, (18)

D̃
(sub)
qJMY(zh, b; ρ, ζ̂, µ) =

D̃q(zh, b; ρ, ζ̂, µ)√
S(b, ρ;µ)

, (19)

with the soft factor S subtracted from the original TMDs. After solving the evolution equations and expressing
the TMDs in terms of the integrated parton distributions, the final expressions for TMDs are obtained by setting

ζ2 = ζ̂2 = ρQ2. Note that in Eqs. (18,19) we understand the square root in the perturbative sense, i.e. for any

quantity A = 1 + a1 αs + ... one has 1/
√
A = 1− 1/2 a1αs − ... .

On the other hand, as explained in Introduction the new Collins-11 approach [22] is an important improvement of
the original CSS formalism and includes now operator definition of TMDs, and the soft factor subtraction is taken
to ensure the absence of light-cone singularities in the TMDs and the self-energy divergencies of the soft factors.
According to this new scheme, the TMD distribution is defined as

f̃ q JCC
1 (x, b; ζF , µ) = f̃ q

1 (x, b; ζF , µ)

√
Sn̄,v(b)

Sn,n̄(b)Sn,v(b)
, (20)

where ζ2F = x2(2v · PA)
2/v2 = 2(xP+

A )2e−2yn with yn the rapidity cut-off in Collins-11 scheme. Fragmentation
functions are defined analogously. The unpolarized structure function takes the form

FUU (Q; b) =
∑

q

e2q f̃
q JCC
1 (xB , b; ζF , µ)D̃

JCC
q (zh, b, ζD;µ)HJCC

UU (Q/µ) . (21)

One can see from Eqs. (17,21) the formal expression for structure functions take a very simple “parton model”-like
form. The underlying TMDs, however, unlike the parton model expression are computed with an appropriate QCD
evolution procedure. In spite of differences in the schemes to define TMDs in Eqs. (17,21) the final result for the
structure functions and the cross-sections is scheme independent and reduces to that of the original CSS. One of
the advantages of the TMD schemes, such as Collins-11 approach [22] or Ji-Ma-Yuan [29, 73], is a possibility to
define process-independent unpolarized TMDs or account for process dependence in k⊥-odd TMDs directly and study
individual TMD functions. An important process-independent universal non-perturbative contributions [43] can be
also studied and global TMD fits that include different processes are possible.
The corresponding TMDs depend on two scales ζF (or ζD) and µ, with their dependence encoded in the TMD

evolution equations. The rapidity evolution with respect to ζ is given by the Collins-Soper (CS) equation [20]:

∂ ln f̃q(xB , b; ζ, µ)

∂ ln
√
ζF

=
∂ ln D̃q(zh, b, ζD;µ)

∂ ln
√
ζD

= K̃(b, µ) , (22)

where K̃(b, µ) is the so-called CS kernel [20]. It can be computed perturbatively for small values of b. The dependence

on the scale µ arises from renormalization group equations for f̃q, D̃q, and K̃:

dK̃(b, µ)

d lnµ
= −γK(αs(µ)) , (23)

d ln f̃(xB , b; ζ, µ)

d lnµ
= γF (αs(µ), ζF /µ

2) , (24)

d ln D̃q(zh, b, ζD;µ)

d lnµ
= γD(αs(µ), ζD/µ

2) , (25)

where functions γK , γF , and γD are anomalous dimensions of K̃, f̃q, and D̃q, respectively. Note that the solution of
these evolution equations does not depend on the scheme to define TMDs.
The equations and solutions are discussed at length in Refs. [20–22, 29, 43, 73]. Here we will present and discuss the

final solution. At low values of b ≪ 1/ΛQCD, 1/b becomes a legitimate hard scale. One introduces [20] an auxiliary
scale µb = c0/b, with c0 = 2e−γE and γE ≈ 0.577 the Euler’s constant. The b dependence of TMDs can be computed
in the perturbative 1/Q ≪ b ≪ 1/ΛQCD region in terms of the collinear parton distribution and fragmentation
functions. This region corresponds to the transverse momentum which is large compared to hadronic scale, but still
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small compared to the hard scale (i.e ΛQCD ≪ k⊥ ≪ Q). That is TMDs in this region are expressed in terms of
collinear distributions. This sort of relation will be explained later in the paper. Let us mention that usage of such a
relation helps to obtain a reliable description of the experimental data.
The energy evolution of TMDs from the scale µb to the scale Q is encoded in the exponential factor, exp[−S], with

the so-called Sudakov-like form factor, the perturbative part of which can be written as

Spert(Q, b) =

∫ Q2

µ2
b

dµ̄2

µ̄2

[
A(αs(µ̄)) ln

Q2

µ̄2
+B(αs(µ̄))

]
, (26)

where A and B coefficients can be expanded as perturbative series A =
∑∞

n=1A
(n) (αs/π)

n
, B =

∑∞
n=1B

(n) (αs/π)
n
.

In our calculations, we will take A(1), A(2) and B(1) for the NLL accuracy. Because this part is spin-independent
as explained in Introduction, these coefficients are the same as those in unpolarized cross sections [21] and are given
by [21, 37, 38, 40, 56, 74]:

A(1) = CF , A
(2) =

CF

2

[
CA

(
67

18
− π2

6

)
− 10

9
TR nf

]
, B(1) = −3

2
CF . (27)

One can see from Eqs. (9,10) that in order to reconstruct the measured cross-section one needs to perform the
Fourier transform over all values of b. The accuracy of the perturbative solution will deteriorate for large values of
b. In fact αs(µb) will hit the so-called Landau pole which is a good indication of presence of the non-perturbative
physics. Thus one needs to take into account the non-perturbative behavior of TMDs. The original CSS approach [21]
proposed the so-called b∗-prescription that introduces a cut-off value bmax and allows for a smooth transition from
perturbative to non-perturbative region and avoids the Landau pole singularity in αs(µb),

b⇒ b∗ = b/
√
1 + b2/b2max , bmax < 1/ΛQCD , (28)

where bmax is a parameter in the prescription. From the above definition, b∗ is always in the perturbative region
where bmax is normally chosen to be around 1 GeV−1. With the introduction of b∗ in the Sudakov form factor,
the total Sudakov-like form factor can be written as the sum of perturbatively calculable part and non-perturbative
contribution

Ssud(Q; b) ⇒ Spert(Q; b∗) + SNP(Q; b) , (29)

where SNP(Q; b) is defined as the difference from the original form factor and the perturbative one. This difference
should vanish as b→ 0, i.e. in the perturbative region, and thus SNP(Q; b) has the following generic form

SNP(Q; b) = g2(b) lnQ/Q0 + g1(b) . (30)

The non-perturbative generic functions g2 and g1 have very unique interpretations. In particular g2 includes the
information on large b behavior of the evolution kernel K̃. This function does not depend on the particular process,
it does not depend on the scale and has no dependence on momentum fractions xB , z. This contribution should be
parametrized phenomenologically and an often-used parametrization is

g2(b) = g2b
2 , (31)

which proved to be very reliable to describe Drell-Yan data and W±, Z boson production in the BLNY-type of
parameterizations [37]. This gaussian-type parametrization suggests that large b region is strongly suppressed [39]
and in principle can be unreliable to describe data from lower energies which are more sensitive to moderate-to-high
values of b. Other parametrizations were proposed in Refs. [39] and [44]. For instance that of Ref. [44] has the form:

g2(b) = g2 ln

(
b

b∗

)
, (32)

and allows to describe simultaneously unpolarized multiplicities from SIDIS measurements by HERMES, low energy
Drell-Yan as well as Z boson production up to LHC energies. In this paper we will follow the parametrization of
Ref. [44] for g2(b).
The function g1(b) contains information on intrinsic non-perturbative transverse motion of bound partons, in case

of distribution TMD it depends on the type of hadron and quark flavor as well as potentially on xB . In case of
fragmentation TMD it can depend on zh and type of the hadron produced, and quark flavor. In other words,
g1(b) is tied to the particular TMD. Parameters in functions g2(b) and g1(b) depend on the cut-off value bmax in
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case b∗-prescription is used. The non-perturbative factors could be also defined using different prescriptions; such
as, for example, matching to perturbative form factors of Ref. [75] or using complex b plane integration method of
Ref. [76]. In this paper we use the standard CSS b∗-prescription method that allows us to compare easily with existing
phenomenology.
Therefore with the TMD evolution, TMDs can be expressed as [22, 56, 57],

f̃
q (sub)
1 (xB , b;Q

2, Q) = e−
1
2
Spert(Q,b∗)−S

f1
NP

(Q,b)F̃q(αs(Q))Cq←i ⊗ f i
1(xB , µb), (33)

D̃(sub)
q (zh, b;Q

2, Q) = e−
1
2
Spert(Q,b∗)−S

D1
NP

(Q,b)D̃q(αs(Q))Ĉj←q ⊗Dh/j(zh, µb) , (34)

where we explicitly embed the scheme dependence of TMDs from Eqs. (18,19) in the coefficients F̃q and D̃q. Details
on these functions are given in Ref. [57]. In Ji-Ma-Yuan scheme,

F̃q = 1 +
αs

2π
CF

[
ln ρ− 1

2
ln2 ρ− π2

2
− 2

]
, (35)

D̃q = 1 +
αs

2π
CF

[
ln ρ− 1

2
ln2 ρ− π2

2
− 2

]
, (36)

while in Collins-11 scheme F̃q = 1+O(α2
s) and D̃q = 1+O(α2

s). The final result for structure function is ρ independent
for Ji-Ma-Yuan scheme, so we set ρ = 1. In Eqs. (33,34), ⊗ represents the convolution in the momentum fraction of
x or z,

Cq←i ⊗ f i
1(xB , µb) ≡

∑

i

∫ 1

xB

dx

x
Cq←i

(xB
x
, µb

)
f i
1(x, µb), (37)

Ĉj←q ⊗Dh/j(zh, µb) ≡
∑

j

∫ 1

zh

dz

z
Ĉj←q

(zh
z
, µb

)
Dh/j(z, µb). (38)

The same convolutions will be used for transversity and Collins fragmentation functions with appropriate coefficient
functions later in the paper. The above coefficient functions are

Cq←q′ (x, µb) = δq′q

[
δ(1 − x) +

αs

π

(
CF

2
(1− x)

)]
, (39)

Cq←g(x, µb) =
αs

π
TR x(1 − x) , (40)

Ĉq′←q(z, µb) = δq′q

[
δ(1 − z) +

αs

π

(
CF

2
(1− z) + Pq←q(z) ln z

)]
, (41)

Ĉg←q(z, µb) =
αs

π

(
CF

2
z + Pg←q(z) ln z

)
, (42)

with the usual splitting functions Pq←q and Pg←q given by

Pq←q(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]
, (43)

Pg←q(z) = CF
1 + (1 − z)2

z
. (44)

The C-functions are chosen to be universal among different TMD schemes, whereas the functions F̃q and D̃q depend on
the schemes. In Collins-11 schemes, both factors are equal to 1 up to one-loop order. In the Ji-Ma-Yuan scheme, they
will depend on ρ. Again, this ρ dependence in individual TMDs will be cancelled out by the associated ρ dependence
in the hard factor H in Eq. (17) when we calculate the structure function FUU (b,Q).
Substituting the results of Eqs. (33,34) into the factorization formula Eq. (17), we can write down the structure

function F̃UU in the b-space as

F̃UU (Q; b) = e−Spert(Q,b∗)−S
SIDIS
NP (Q,b)F̃UU (b∗) , (45)

with non-perturbative form factor decomposed into the distribution and fragmentation contributions,

SSIDIS
NP (Q, b) = Sf1

NP(Q, b) + SD1

NP(Q, b) , (46)
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which should be determined from the global fit to the SIDIS, e+e−, and Drell-Yan data. In the standard CSS
resummaton which we will follow in this paper, together with the hard factor in the TMD factorization of Eq. (17),

the functions F̃q and D̃q are absorbed into the C-functions by applying the renormalization group equation for the

running coupling constant in these two factors [46]. With that, we can write down F̃UU (b∗) as,

F̃UU (b∗) =
∑

q

e2q

(
C

(SIDIS)
q←i ⊗ f i

1(xB , µb)
) (

Ĉ
(SIDIS)
j←q ⊗Dh/j(zh, µb)

)
, (47)

where
∑

q runs over both quark and anti-quark flavors, f i
1(xB , µb) and Dh/j(zh, µb) are the usual unpolarized collinear

parton distribution function and fragmentation function at the scale µb = c0/b∗. We emphasize that the above C-

coefficients are the same for all TMD schemes if hard factor H and F̃q, and D̃q are absorbed in their definition.

In particular, in the Ji-Ma-Yuan scheme, the ρ dependence in H of Eq. (17), F̃q in Eq. (33), and D̃q in Eq. (34)
are cancelled out. In the Collins-11 scheme when the hard factor H is absorbed in the definition of C functions, C
functions become process dependent and equal to those of the standard CSS scheme. The final expressions for CSIDIS

and ĈSIDIS do not depend on ρ, and they are the same in the Collins-11 scheme, which are also the same as those
used in the CSS literature [77–79],

C
(SIDIS)
q←q′ (x, µb) = δq′q

[
δ(1 − x) +

αs

π

(
CF

2
(1− x)− 2CF δ(1 − x)

)]
, (48)

C(SIDIS)
q←g (x, µb) =

αs

π
TR x(1 − x) , (49)

Ĉ
(SIDIS)
q′←q (z, µb) = δq′q

[
δ(1 − z) +

αs

π

(
CF

2
(1− z)− 2CF δ(1− z) + Pq←q(z) ln z

)]
, (50)

Ĉ(SIDIS)
g←q (z, µb) =

αs

π

(
CF

2
z + Pg←q(z) ln z

)
. (51)

Of course, there is a freedom to have a separate hard factor in Eq. (45), so that the above C-coefficients will be modified
accordingly, compare to Eqs. (39,40,41,42). This is referred to as scheme dependence [46] in the CSS resummation.
For the non-perturbative form factors, we will follow the parameterization of [44],

SSIDIS
NP (Q, b) = g2 ln

(
b

b∗

)
ln

(
Q

Q0

)
+

(
gq +

gh
z2h

)
b2 , (52)

where Q2
0 = 2.4 GeV2, for the spin-averaged contribution. In the above parameterization, the parameters gq = g1/2 =

0.106, g2 = 0.84, gh = 0.042 (GeV2) have been determined from the analysis of SIDIS and Drell-Yan processes in
Ref. [44]. In the fit of Ref. [44], it was found that the non-perturbative form factors do not depend on x. We will use
the non-perturbative factor of Eq. (52) in this paper.

2. Collins structure function with evolution

Now, we turn to the Collins effects contribution to the single transverse spin asymmetry in SIDIS. We start again
from the factorized TMD expression in the b space [49, 80]:

F̃α
collins(Q; b) =

∑

q

e2q h̃
q (sub)
1 (xB , b; ρ, ζ, µ) H̃

⊥α (sub)
1h/q (zh, b; ρ, ζ̂, µ)H(ρ,Q/µ) , (53)

where h̃q1 is the TMD quark transversity distribution, H̃⊥1 h/q is the Collins fragmentation function in the b space and

is defined (omitting scale dependence) as,

H̃⊥α1h/q(zh, b) =

∫
d2p⊥e

−ip⊥·bpα⊥H
⊥
1h/q(zh, p⊥) . (54)

Here H⊥1h/q(zh, p⊥) is the quark Collins function as defined in [52], which differs by a factor of (−1/zh) from the

so-called “Trento convention” [81],

H⊥1h/j(zh, p⊥) = − 1

zh
H⊥1h/j(zh, p⊥)|Trento, (55)
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with p⊥ the transverse component of the hadron with respect to the fragmenting quark momentum.
The following model independent relation of Collins fragmentation function H⊥1h/q(zh, p⊥) and a twist-3 fragmen-

tation function of quark flavor q to hadron h, Ĥ
(3)
h/q(zh), can be obtained [52] :

Ĥ
(3)
h/j(zh) =

∫
d2p⊥

|p2⊥|
Mh

H⊥1 h/j(zh, p⊥) . (56)

One often defines the following so-called first moment of Collins fragmentation function

H
⊥(1)
1h/j(zh)|Trento ≡

∫
d2p⊥

|p⊥|2
2z2hM

2
h

H⊥1 h/j(zh, p⊥)|Trento . (57)

We thus find that

Ĥ
(3)
h/j(zh) = −2zMhH

⊥(1)
1 h/j(zh)|Trento . (58)

It is straightforward to show that Ĥ
(3)
h/j(zh) can be written as

Ĥ
(3)
h/j(zh) = n+z2h

∫
dξ−

2π
eik

+ξ− 1

2

{
Trσα+〈0|

[
iDα
⊥ +

∫ +∞

ξ−
dζ−gFα+(ζ−)

]
ψ(ξ)|PhX〉

× 〈PhX |ψ̄(0)|0〉+ h.c.
}
, (59)

where we have chosen the gauge link in Eq. (59) going to +∞, and Fµν is the gluon field strength tensor and we have
suppressed the gauge links between different fields and other indices for simplicity. Since the Collins function is the
same under different gauge links [14, 82, 83], we shall obtain the same result if we replace +∞ by −∞ in the above
equation.
The TMD evolution for the quark transversity and Collins fragmentation functions have been derived in the litera-

ture [21, 29, 40, 49, 54]. When expressed in terms of the collinear transversity distribution hq1(xB) and the twist-three

fragmentation function Ĥ
(3)
h/q(zh), they can be written as

h̃
q (sub)
1 (xB, b, ρ;Q

2, Q) = e−
1
2
Spert(Q,b∗)−S

h1
NP

(Q,b) H̃1q(αs(Q)) δCq←q′ ⊗ hq
′

1 (xB , µb), (60)

H̃
(sub)⊥α
1h/q (zh, b, ρ;Q

2, Q) =

(−ibα
2zh

)
e−

1
2
Spert(Q,b∗)−S

D1
NP

(Q,b) H̃c(αs(Q)) δĈq′←q ⊗ Ĥ
(3)
h/q′(zh, µb) , (61)

where again, the scheme dependence are in the functions H̃1q(αs(Q)) and H̃c(αs(Q)). They equal to 1 up to one-loop
order in Collins-11 scheme. The C-coefficient functions are found to be

δCq←q′ (x, µb) = δq′q
[
δ(1− x) +O(α2

s)
]
, (62)

δĈ
(SIDIS)
q′←q (z, µb) = δq′q

[
δ(1− z) +

αs

π

(
P̂ c
q←q(z) ln z

)]
, (63)

where the function P̂ c
q←q(z) has the following form, see Eq. (A6),

P̂ c
q←q(z) = CF

[
2z

(1− z)+
+

3

2
δ(1− z)

]
. (64)

Substituting the above results into the factorization formula, we obtain the final result for F̃α
collins as [21, 29, 40, 49, 54]

F̃α
collins(Q; b) =

(−ibα
2zh

)
e−Spert(Q,b∗)−S

SIDIS
NPcollins(Q,b) F̃collins(b∗) , (65)

with F̃collins(b∗) given by

F̃collins(b∗) =
∑

q

e2q
(
δCq←i ⊗ hi1(xB , µb)

) (
δĈ

(SIDIS)
j←q ⊗ Ĥ

(3)
h/j(zh, µb)

)
. (66)
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The convolutions are defined in Eqs. (37,38) and the relevant coefficient functions up to the first order in αs (compare
to Eq. (63) to determine relation to hard factor H) are given by [52, 54, 64, 79]:

δC
(SIDIS)
q←q′ (z, µb)(x, µb) = δq′q

[
δ(1 − x) +

αs

π
(−2CF δ(1− x))

]
, (67)

δĈ
(SIDIS)
q′←q (z, µb) = δq′q

[
δ(1 − z) +

αs

π

(
P̂ c
q←q(z) ln z − 2CF δ(1− z)

)]
, (68)

where again, the above C-coefficients contain the contributions from the hard factors in the TMD factorization. The
hard factor is given in Eq. (A19) for Ji-Ma-Yuan scheme and in Eq. (A20) for Collins-11 scheme.
To achieve the evolution at the NLL order, we have to evaluate both transversity hq1(xB , µb) and twist-3 fragmenta-

tion function H
(3)
h/q(z, µb) up to the scale µb = c0/b∗. The evolution for the quark transversity is well-known [84–87],

and we will use the leading order result

∂

∂ lnµ2
hq1(xB , µ) =

αs

2π

∫ 1

xB

dx̂

x̂
P h1

q→q (x̂)h
q
1(xB/x̂, µ) , (69)

where the splitting kernel

P h1

q→q(x̂) = CF

[
2x̂

(1 − x̂)+
+

3

2
δ(1 − x̂)

]
. (70)

Note that since gluon transversity distribution for nucleons does not exist [3], the quark transversity hq1 does not mix
with gluons in its evolution and it evolves as a non-singlet quantity. On the other hand, the evolution equation for

Ĥ
(3)
h/j was derived in [52, 62] and has a more complicated form. However, if we keep only the homogenous term, we

can write down the evolution equation as [52, 62],

∂

∂ lnµ2
Ĥ

(3)
h/q(zh, µ) =

αs

2π

∫ 1

zh

dẑ

ẑ
P̂ c
q←q(ẑ) Ĥ

(3)
h/q(zh/ẑ, µ) , (71)

where the splitting kernel P̂ c
q←q of the homogenous term is given in Eqs. (A6,64), and is the same as that for the

evolution of the quark transversity function, as pointed out in [62]. We will take this approximation in our numerical
studies below. In order to differentiate from the complete NLL accuracy we will call it NLL′ or approximate NLL.
For the non-perturbative form factors, we follow the parameterizations of [44],

SSIDIS
NP collins(Q, b) = g2 ln

(
b

b∗

)
ln

(
Q

Q0

)
+

(
gq +

gh − gc
z2h

)
b2 , (72)

where we assume that the quark transversity follows the same parameterization as unpolarized TMD, but introduce
an additional parameter to constrain the p⊥-dependence in the Collins fragmentation. Therefore, gc will be a free
parameter in the fit. It is also worthwhile to emphasize that the lnQ/Q0-dependent part (i.e. g2 ln (b/b∗) in our
formalism above) is universal for all processes in the initial CSS formalism [20, 21] as well as in the recent TMD
formalism of [22]. The other contributions in non-perturbative Sudakov form factor are Q-independent and can be
associated with corresponding TMD distribution and fragmentation functions at an initial scale, see e.g. Ref. [22, 42].
Finally performing Fourier transforms in Eqs. (9) and (10), we obtain the expressions for both spin-averaged and

spin-dependent structure functions in the transverse momentum space as

FUU (Q;Ph⊥) =
1

z2h

∫ ∞

0

db b

(2π)
J0(Ph⊥b/zh) e

−Spert(Q,b∗)−S
SIDIS
NP (Q,b)F̃UU (b∗) , (73)

F
sin(φh+φs)
UT (Q;Ph⊥) =

1

z2h

(
− 1

2zh

)∫ ∞

0

db b2

(2π)
J1(Ph⊥b/zh) e

−Spert(Q,b∗)−S
SIDIS
NP collins(Q,b)F̃collins(b∗) , (74)

with J0,1 the usual Bessel functions.

Let us comment at this point about the usage of relations to collinear distributions in the structure functions F̃ in
Eqs. (47,66). One could in principle solve evolution equations starting at a particular scale Q0 instead of introducing
dynamical scale µb ∝ 1/b and try to extract unknown functions, such as Collins fragmentation function or transversity,
directly from the data without relying on collinear or twist-3 functions. However such a method has certain difficulties,
both theoretically and phenomenologically. Theoretical difficulty consists in the fact that if one starts from a fixed
scale Q0 then the F̃ function will have potentially large logarithms of the type ln(bQ0) which are obviously not present
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in µb method due to the choice of µb ∼ 1/b. Phenomenologically it might also be difficult to model the unique x, z
and b dependence as contained in the collinear function f(x, µb), which further builds in some dependence on the
collision energy [38]. Presently there are no successful descriptions of experimental observables simultaneously at
both low and high energies that use the method with fixed starting scale Q0. The method with the fixed starting
scale can be applied for processes where the measured scale Q is similar to Q0, namely for processes where the most
important contribution in cross section comes from b ∼ 1/Q ∼ 1/Q0. An example of such a description is a fit of
Sivers functions in Ref. [41, 88]. In our case, the characteristic scales of SIDIS, Q2 ∼ 2.4 GeV2, and e+e−, Q2 ∼ 110
GeV2, are substantially different. It means that the regions of b explored are different and one needs to accurately
take into account correct b dependence of TMDs. That is why in this extraction we will use relations to collinear
distributions, fragmentation functions, and twist-3 functions.
By applying the CSS formalism, we utilize the well-established framework of the collinear parton distribution and

fragmentation functions to parameterize the TMDs at the input scale. For the unpolarized case, this is an obvious
advantage because of the existing global fits for the integrated PDFs. For the Collins fragmentation function case, it
is also easier to parameterize TMDs in terms of collinear twist-three function, for which the usual DGLAP evolution
can be applied. Another important point we want to emphasize is that there are DGLAP-type logarithms in the TMD
formalism when b is small. The CSS formalism is the best way to resum these logarithms, by applying the relevant
scales (µb) in the associated integrated parton distribution and fragmentation functions. This is an important step to
help the theory convergence in the perturbative calculations.

B. Collins Azimuthal Asymmetries in e+e−

In this section we present the formulas for the Collins azimuthal asymmetries in back-to-back di-hadron productions
in e+e− annihilations,

e+ + e− → h1 + h2 +X , (75)

with center of mass energy S = Q2 = (Pe+ + Pe−)
2, and the final state two hadrons with momenta Ph1 and Ph2,

respectively. We further identify the longitudinal momentum fractions: zhi = 2|Phi|/Q. Therefore, zhi represent the
momentum fractions in the fragmentation functions which describe the fragmentation processes. Ideally, at leading
order these two hadrons are produced in a back-to-back configuration. However, the gluon radiation and transverse
momentum dependence in the fragmentation processes will generate non-zero imbalance between the two hadrons.
To describe the near-back-to-back imbalance between the two hadrons in e+e− annihilations, the TMD factorization

can be used to calculate the differential cross sections. In particular, the Collins fragmentation function will lead
to a cos 2φ azimuthal angular asymmetries between these two hadrons. In the literature, there are two proposed
experimental methods to investigate the Collins effects in this process: (1) one is to define a thrust axis in e+e−

annihilation and measure the relative azimuthal angular correlation between the two hadrons in the back-to-back
two jets, which is referred as A12 asymmetries; (2) one is to use one hadron as reference to define the azimuthal
angle of another hadron (in the back-to-back configuration), which is referred as A0 asymmetries. In the former case,
we will have to measure two azimuthal angles φ1 and φ2, and the Collins effects lead to an azimuthal asymmetry
proportional to cos(φ1 + φ2), whereas in the latter case only one azimuthal angle φ0 is measured and the Collins
asymmetry appears as cos(2φ0). In the naive TMD factorization (Born level), both asymmetries can be formulated in
terms of the Collins fragmentation functions for the hadrons. However, only for the second case, we can immediately
generalize a QCD factorization in terms of the TMDs. For the first case, a certain modification has to be made to have
a QCD factorization formula. The reason of this complication is that, in order to describe the case of (1), one has to
define the jet direction, which is beyond the usual situation of the TMD factorization such as the TMD factorization
in SIDIS and Drell-Yan lepton pair production.
In this paper, as a first step, we only consider the second case for the Collins asymmetries in e+e− annihilations. In

this measurement, see Fig. 2, the transverse momentum dependence is measured for the hadron (h1) relative to the
direction of hadron (h2). The total transverse momentum dependence comes from the TMD fragmentation functions
for hadron h1 and hadron h2, plus the soft factor generated from the soft gluon radiation. Again, we focus on the low
transverse momentum region, where TMD factorization is appropriate and reads [89, 90]

d5σe+e−→h1h2+X

dzh1dzh2d2Ph⊥d cos θ
=
Ncπα

2
em

2Q2

[(
1 + cos2 θ

)
Zh1h2
uu + sin2 θ cos(2φ0)Z

h1h2

collins

]
, (76)

where θ is the polar angle between the hadron h2 and the beam of e+e−, φ0 is defined as the azimuthal angle of
hadron h1 relative to that of hadron h2, i.e. of the plane containing hadrons h1 and h2 relative to the plane containing
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hadron plane

lepton plane

Ph⊥

θ
Ph1Ph2

φ0

z
x

FIG. 2. e+ + e− → h1 + h2 +X process in the frame of method (2).

hadron h2 and the lepton pair (see Fig. 2), and Ph⊥ is the transverse momentum of hadron h1 in this frame. We can

rewrite the contribution corresponding to Zh1h2

collins in Eq. (76) in the following form:

sin2 θ cos(2φ0)Z
h1h2

collins = sin2 θ
(
2êαx ê

β
x − gαβ⊥

)
Zh1h2 αβ
collins , (77)

where the unit vector êx represents the transverse direction of the hadron in the hadron frame and is defined in Fig. 2.
The tensor structure of this term leads to a cos 2φ0 azimuthal asymmetries between the two hadrons.
The structure functions Zh1h2

uu and Zh1h2

collins have the following form ,

Zh1h2

uu (Q;Ph⊥) =
1

z2h1

∫
d2b

(2π)2
ei

~Ph⊥·~b/zh1 Z̃h1h2

UU (Q; b) + Yuu(Q;Ph⊥) , (78)

Zh1h2 αβ
collins (Q;Ph⊥) =

1

z2h1

∫
d2b

(2π)2
ei

~Ph⊥·~b/zh1 Z̃h1h2 αβ
collins (Q; b) + Y αβ

collins(Q;Ph⊥) , (79)

where the first term depends on the TMD fragmentation functions for the two hadrons and dominates in Ph⊥/zh1 ≪ Q
region, and the second term dominates in the region of Ph⊥/zh1 >∼ Q. For cos 2φ0 asymmetries, we have an additional
contribution from gluon radiation [89] associated with spin-averaged fragmentation functions. This contribution does
not depend on the Collins fragmentation function, and is proportional to P 2

h⊥/Q
2. It will become important at

relatively large transverse momentum, and should be included in the above Y terms. However, in the following,
we only consider the low transverse momentum region Ph⊥ ≪ Q, where this contribution is power suppressed as
compared to the Collins contributions. In addition, in the experimental measurements, the double ratio of the cos 2φ
asymmetries are reported for di-hadron correlations in e+e− annihilations, where this contribution is cancelled out.
Therefore, in the following analysis, we will not include neither the contribution from gluon radiation independent of
Collins FF nor the Y term.

1. Experimentally measured Collins azimuthal asymmetries in e+e−

Let us now discuss the definitions of the asymmetries associated with Collins fragmentation functions in the actual
experimental measurements. Collins function generates cos 2φ0 modulation in the e+e− cross-section, let us rewrite
Eq. (76) as follows:

d5σe+e−→h1h2+X

dzh1dzh2d2Ph⊥d cos θ
=
πNcα

2
em

2Q2
(1 + cos2 θ)Zh1h2

uu · Rh1h2(zh1, zh2, θ, Ph⊥) , (80)

Rh1h2(zh1, zh2, θ, Ph⊥) ≡ 1 + cos(2φ0)
sin2 θ

1 + cos2 θ

Zh1h2

collins

Zh1h2
uu

. (81)

One could also define analogously the Ph⊥-integrated modulation

Rh1h2(zh1, zh2, θ) ≡ 1 + cos(2φ0)
sin2 θ

1 + cos2 θ

∫
dPh⊥Ph⊥ Z

h1h2

collins∫
dPh⊥Ph⊥ Z

h1h2
uu

. (82)
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In order to eliminate false asymmetries BELLE and BABAR consider the ratios of unlike-sign “U” (π+π− + π−π+)
over like-sign “L” (π+π+ + π−π−) or charged “C” (π+π+ + π−π− + π+π− + π−π+) pion pairs. In our formalism,
they can be written as follows:

RU (zh1, zh2, θ, Ph⊥)

RL(zh1, zh2, θ, Ph⊥)
≃ 1 + cos(2φ0)

〈sin2 θ〉
〈1 + cos2 θ〉

(
ZU
collins

ZU
uu

− ZL
collins

ZL
uu

)
, (83)

RU (zh1, zh2, θ, Ph⊥)

RC(zh1, zh2, θ, Ph⊥)
≃ 1 + cos(2φ0)

〈sin2 θ〉
〈1 + cos2 θ〉

(
ZU
collins

ZU
uu

− ZC
collins

ZC
uu

)
, (84)

and likewise for the Ph⊥-integrated modula:

RU (zh1, zh2, θ)

RL(zh1, zh2, θ)
≃ 1 + cos(2φ0)

〈sin2 θ〉
〈1 + cos2 θ〉

(∫
dPh⊥Ph⊥ Z

U
collins∫

dPh⊥Ph⊥ ZU
uu

−
∫
dPh⊥Ph⊥ Z

L
collins∫

dPh⊥Ph⊥ ZL
uu

)
, (85)

RU (zh1, zh2, θ)

RC(zh1, zh2, θ)
≃ 1 + cos(2φ0)

〈sin2 θ〉
〈1 + cos2 θ〉

(∫
dPh⊥Ph⊥ Z

U
collins∫

dPh⊥Ph⊥ ZU
uu

−
∫
dPh⊥Ph⊥ Z

C
collins∫

dPh⊥Ph⊥ ZC
uu

)
, (86)

where the relevant functions are given by

ZU
uu ≡ Zπ+π−

uu + Zπ−π+

uu , ZL
uu ≡ Zπ+π+

uu + Zπ−π−

uu , ZC
uu ≡ ZU

uu + ZL
uu , (87)

ZU
collins ≡ Zπ+π−

collins + Zπ−π+

collins , ZL
collins ≡ Zπ+π+

collins + Zπ−π−

collins , ZC
collins ≡ ZU

collins + ZL
collins . (88)

Experimentally measured asymmetries AUL
0 and AUC

0 are then given by

AUL
0 (zh1, zh2, θ, Ph⊥) ≡

〈sin2 θ〉
〈1 + cos2 θ〉

(
ZU
collins

ZU
uu

− ZL
collins

ZL
uu

)
, (89)

AUC
0 (zh1, zh2, θ, Ph⊥) ≡

〈sin2 θ〉
〈1 + cos2 θ〉

(
ZU
collins

ZU
uu

− ZC
collins

ZC
uu

)
, (90)

AUL
0 (zh1, zh2, θ) ≡

〈sin2 θ〉
〈1 + cos2 θ〉

(∫
dPh⊥Ph⊥ Z

U
collins∫

dPh⊥Ph⊥ ZU
uu

−
∫
dPh⊥Ph⊥ Z

L
collins∫

dPh⊥Ph⊥ ZL
uu

)
, (91)

AUC
0 (zh1, zh2, θ) ≡

〈sin2 θ〉
〈1 + cos2 θ〉

(∫
dPh⊥Ph⊥ Z

U
collins∫

dPh⊥Ph⊥ ZU
uu

−
∫
dPh⊥Ph⊥ Z

C
collins∫

dPh⊥Ph⊥ ZC
uu

)
. (92)

2. Structure functions in e+e− with QCD evolution

Corresponding structure functions Zh1h2
uu and Zh1h2

collins are defined as Fourier transforms of structure functions in
b-space,

Zh1h2

uu (Q;Ph⊥) =
1

z2h1

∫
d2b

(2π)2
ei

~Ph⊥·~b/zh1 Z̃h1h2

uu (Q; b) , (93)

Zh1h2

collins(Q;Ph⊥) =
1

z2h1

∫
d2b

(2π)2
ei

~Ph⊥·~b/zh1

(
2P̂α

h⊥P̂
β
h⊥ − gαβ⊥

)
Z̃h1h2 αβ
collins (Q; b) , (94)

where we only keep the term dominant in the low transverse momentum region. According to the TMD factorization,
we can write down

Z̃h1h2

uu (Q; b) =
∑

q

e2q D
(sub)
h1/q

(zh1, b, ζ1;µ)D
(sub)
h2/q̄

(zh2, b, ζ2;µ)H
e+e−

uu (Q;µ) , (95)

Z̃h1h2 αβ
collins (Q; b) =

∑

q

e2q H̃
⊥α (sub)
1h1/q

(zh1, b, ζ1;µ) H̃
⊥β (sub)
1 h2/q̄

(zh2, b, ζ2;µ)H
e+e−

collins(Q;µ) , (96)

where again ζi and ρ are parameters to regulate the light-cone singularities in the TMD fragmentation functions:
ζ2i = (2vi · Phi)

2/v2i and ρ2 = (2v1 · v2)2/v21v22 . One-loop calculations can be performed for the above observables,
and the relevant hard factors shall follow those in SIDIS calculations. In particular, for the Zuu term, the hard factor
is the same as that for Drell-Yan lepton pair production, which differs from SIDIS. This happens because in e+e−
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annihilation, the virtual photon is time-like q2 > 0, the same as that in Drell-Yan process, whereas in SIDIS, the
virtual photon is space-like q2 < 0. Because of spin-independence of hard interaction in perturbative QCD, the hard
factor Zcollins will be the same as Zuu,

H
e+e−(JMY )
collins (Q;µ) = He+e−(JMY )

uu (Q;µ) = 1 +
αs(µ)

2π
CF

[
ln
Q2

µ2
+ ln ρ2 ln

Q2

µ2
− ln ρ2 + ln2 ρ+ 2π2 − 4

]
, (97)

in Ji-Ma-Yuan scheme. For Collins-11 scheme, we will obtain similar results,

H
e+e−(JCC)
collins (Q;µ) = He+e−(JCC)

uu (Q;µ) = 1 +
αs(µ)

2π
CF

[
3 ln

Q2

µ2
− ln2

(
Q2

µ2

)
+ π2 − 8

]
. (98)

Following the previous section, we first derive the evolution results for the TMD unpolarized and Collins fragmentation
functions and substituting the results into the above factorization formulas of Eqs. (95,96) and obtain,

Z̃h1h2

uu (Q; b) = e−Spert(Q,b∗)−S
e+e−

NP (Q,b) Z̃h1h2

uu (b∗) , (99)

Z̃h1h2 αβ
collins (Q; b) =

(−ibα
2zh1

)(−ibβ
2zh2

)
e−Spert(Q,b∗)−S

e+e−

NPcollins(Q,b) Z̃h1h2

collins(b∗) . (100)

Again, the energy evolution effects are explicit in exponential factors, and

Z̃h1h2

uu (b∗) =
∑

q

e2q

(
Ĉ

(e+e−)
i←q ⊗Dh1/i(zh1, µb)

) (
Ĉ

(e+e−)
j←q̄ ⊗Dh2/j(zh2, µb)

)
, (101)

Z̃h1h2

collins(b∗) =
∑

q

e2q

(
δĈ

(e+e−)
i←q ⊗ Ĥ

(3)
h1/i

(zh1, µb)
) (

δĈ
(e+e−)
j←q̄ ⊗ Ĥ

(3)
h2/j

(zh2, µb)
)
, (102)

where the convolution is defined in Eq. (38) and the coefficient functions read:

Ĉ
(e+e−)
q′←q (z, µb) = δq′q

[
δ(1 − z) +

αs

π

(
CF

2
(1− z) + Pq←q(z) ln z +

CF

4

(
π2 − 8

)
δ(1 − z)

)]
, (103)

Ĉ(e+e−)
g←q (z, µb) =

αs

π

(
CF

2
z + Pg←q(z) ln z

)
, (104)

δĈ
(e+e−)
q′←q (z, µb) = δq′q

[
δ(1 − z) +

αs

π

(
P̂ c
q←q(z) ln z +

CF

4

(
π2 − 8

)
δ(1− z)

)]
, (105)

with the functions Pq←q, Pg←q, and P̂
c
q←q given in Eqs. (43), (44), and (64), respectively. Again, the aboveC-coefficient

functions contain the contributions from the associated hard factors in the TMD factorization, similar to the case of
SIDIS in the last section (see Appendix A for detailed derivations). On the other hand, the non-perturbative form
factors are parameterized as

Se+e−

NP (Q, b) = g2 ln

(
b

b∗

)
ln

(
Q

Q0

)
+

(
gh
z2h1

+
gh
z2h2

)
b2 , (106)

Se+e−

NPcollins(Q, b) = g2 ln

(
b

b∗

)
ln

(
Q

Q0

)
+

(
gh − gc
z2h1

+
gh − gc
z2h2

)
b2 , (107)

where we have utilized the universality arguments for these parameters. Performing Fourier transforms in Eqs. (93)
and (94), we have

Zh1h2

uu (Q;Ph⊥) =
1

z2h1

∫ ∞

0

db b

(2π)
J0(Ph⊥b/zh1) e

−Spert(Q,b∗)−S
e+e−

NP (Q,b)Z̃h1h2

uu (b∗) , (108)

Zh1h2

collins(Q;Ph⊥) =
1

z2h1

1

4zh1zh2

∫ ∞

0

db b3

(2π)
J2(Ph⊥b/zh1) e

−Spert(Q,b∗)−S
e+e−

NPcollins(Q,b)Z̃h1h2

collins(b∗) , (109)

with J2 the associated Bessel function.
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III. GLOBAL FIT WITH TMD EVOLUTION

A. Parametrizations

As we have seen in previous sections, we have two unknown functions to be extracted from experimental data:

collinear transversity distribution hq1 and collinear twist-3 fragmentation function Ĥ
(3)
h/q. The QCD evolution of both

functions is known, x-dependence of hq1 and z-dependence of Ĥ
(3)
h/q at the initial scale Q0 should be parametrized.

In the global fit, we parameterize the quark transversity distributions as

hq1(x,Q0) = Nh
q x

aq (1− x)bq
(aq + bq)

aq+bq

a
aq
q b

bq
q

1

2
(f q

1 (x,Q0) + gq1(x,Q0)) , (110)

at the initial scale Q0, for up and down quarks q = u, d, respectively, where f q
1 are the unpolarized CT10 NLO quark

distributions [91] and gq1 are the NLO DSSV quark helicity distributions [92]. In our parametrization we enforce
the so-called Soffer positivity bound [93] of transversity distribution at the initial scale. This bound is known to be
valid [60, 61] up to NLO order in perturbative QCD. A possible violation of Soffer bound was predicted in Ref. [94] so
it is very interesting to determine phenomenologically if there are signs of such violation in experimental data. Many
extractions of transversity, for instance those of Refs. [17, 18], indeed show saturation of Soffer bound for d-quark
transversity. These possible violations happen in the region of large-x and thus future Jefferson Lab 12 data will allow
to shed light on validity of Soffer bound.
In this study, we assume that all the sea quark transversity distributions are negligible. With more data available

in the future, we hope we can constrain the sea quark as well, in particular, with the Electron-Ion Collider. We leave
estimates on possible non-zero sea quarks transversity distributions for future publications.
Similarly, we parameterize the twist-3 Collins fragmentation functions in terms of the unpolarized fragmentation

functions,

Ĥ
(3)
fav(z,Q0) = N c

uz
αu(1 − z)βuDπ+/u(z,Q0) , (111)

Ĥ
(3)
unf (z,Q0) = N c

dz
αd(1 − z)βdDπ+/d(z,Q0) , (112)

which correspond to the favored and unfavored Collins fragmentation functions, respectively. We also utilize the newest
NLO extraction of fragmentation functions [95]. The new DSS FF set is capable of describing pion multiplicities
measured by COMPASS and HEMRES collaborations. In fact it is the only set of fragmentation functions that
accurately describes COMPASS and HERMES data. The quality of the global fit improved from χ2/d.o.f. ≃ 2.2 for
previous DSS NLO [96] to χ2/d.o.f. ≃ 1.2 for the new NLO fit [95]. Extractions of LO FFs [96] have yielded a much
less satisfactory description of the available pion data thus NLO sets ought to be used in extractions of TMDs. NLL
accuracy allows to utilize this set at NLO. We have verified that results presented here are in complete agreement
with previously published extraction of Ref. [19].
The rest can be obtained by applying the isospin relations. We also neglect possible difference of favoured/unfavoured

fragmentation function of ū, d̄ and u, d:

Ĥ
(3)
π+/ū(z,Q0) = Ĥ

(3)
π−/u(z,Q0) = Ĥ

(3)

π−/d̄
(z,Q0) = Ĥunf (z,Q0) , (113)

Ĥ
(3)

π+/d̄
(z,Q0) = Ĥ

(3)
π−/d(z,Q0) = Ĥ

(3)
π−/ū(z,Q0) = Ĥfav(z,Q0) . (114)

Strange quark fragmentation deserves an additional attention. Fragmentation of strange quarks to hadrons is different
from just “unfavored” fragmentation functions, such asDπ+/ū and in order to take this into account we will parametrize
strange quark “unfavored” Collins fragmenation function as

Ĥ
(3)
unfs(z,Q0) ≡ Ĥ

(3)
π±/s,s̄(z,Q0) = N c

dz
αd(1− z)βdDπ+/s,s̄(z,Q0) . (115)

We would like to emphasize that in the fit, we will solve the DGLAP evolution equations for both transversity
and Collins FF to the scale µb = c0/b∗, in order to be complete at the NLL′ order. Numerical solution of DGLAP
equations is performed in x-space by HOPPET evolution package [97]. Original code of HOPPET is modified by us so that
transversity splitting functions are included, the initial scale for the evolution is chosen to be Q2

0 = 2.4 GeV2. and the
HOPPET code is executed using αs(Q0) = 0.327. In our numerical calculations we consistently use 2-loop order result
for αs(µ) with nf = 5 effective quark flavors and ΛQCD = 0.225 GeV such that αs(MZ) = 0.118.
For the non-perturbative form factors, we use the following parameters from Ref. [44]: gq = g1/2 = 0.106, g2 = 0.84,

gh = 0.042 (GeV2). The NLL formula has a large negative contribution coming from C(1) ∝ −2CF δ(1−x), see Eq. (48),
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and H(1) ∝ −8CF , see Eq. (139), this makes the need for potentially large K factors in description of the data. We
assume that K factors will be largest in lowest Q2 region where αs is relatively large. In fact the fit of SIDIS and
Drell-Yan data of Ref. [44] revealed KSIDIS ∼ 2 for COMPASS and HERMES and KDY ∼ 1 for Drell-Yan data. In
asymmetry K factors cancel, so we will not use them in present analysis.
The existing experimental data does not allow to determine precisely shapes of all polarised distributions in coor-

dinate space, we make a simplifying assumption and allow for the Collins fragmentation function to modify its shape
with respect to unpolarised fragmentation distributions and have gc as a free parameter in the fit.
Therefore, we have total of 13 parameters in our global fit: Nh

u , N
h
d , au, ad, bu, bd, N

c
u, N

c
d , αu, αd, βd, βu, gc

(GeV2).

B. Experimental data

Let us also discuss available experimental data. In this paper we extract Collins fragmentation functions for pions
and transversity distributions for u, d and favoured/unfavoured Collins fragmentation functions for pions. Thus we
will select the data involving pion production only.
The HERMES Collaboration measured Collins asymmetries in electron proton scattering at the laboratory electron

beam energy 27.5 GeV in production of π+, π−, and π0 [98]. The data are presented in bins of xB, zh, and Ph⊥

respectively. Clear non-zero asymmetries were found for both π+ and π−. Large negative asymmetry for π− suggest
that unfavoured Collins fragmentation function is big and not suppressed with respect to the favoured one.
The COMPASS Collaboration uses muon beam of energy 160 GeV and have measured Collins asymmetries on both

NH3 (proton) [99] and LiD (deuterium) [100] targets. The data are presented as function of xB , zh, and Ph⊥. Results
on the proton target are compatible with HERMES findings and asymmetries are found to be compatible with zero
on the deuteron target. The beam energy of COMPASS is higher than the energy of HERMES and thus COMPASS
reaches lower values of xB ∼ 10−3. For each point in xB the scale Q2 is higher at COMPASS as one has Q2 = sxy.
Both experiments consider Q2 > 1 GeV2 in order to be in the perturbative region and the energy of γ∗p, W 2 > 10
GeV2 for HERMES andW 2 > 25 GeV2 for COMPASS in order to be outside of the resonance region. The COMPASS
Collaboration considers zh > 0.2 region and the HERMES Collaboration uses 0.2 < zh < 0.7 in order to minimize
both target fragmentation effects and exclusive reaction contribution. All other experimental cuts are described in
Refs. [98–100].
Jefferson Lab’s HALL A published data of π± pion production in 5.9 GeV electron scattering on 3He (effective

neutron) target [9]. Jefferson Lab operates at relatively low energy and reaches higher values of xB ∼ 0.35.
Information on Collins fragmentation functions is contained in e+e− at the energy

√
s ≃ 10.6 GeV data of the

BELLE [12] and the BABAR [101] Collaborations. Note that usual feature of TMD evolution is widening of distribu-
tions with increase of the hard scale. Thus it is very important to check our knowledge against available data on Ph⊥

distributions and corresponting Ph⊥ dependencies of asymmetries. For this reason, we include BABAR [101] data on
Ph⊥ dependence in our fit. We will also present predictions of Ph⊥ dependence of the unpolarised cross section that
will be the ultimate test of the model. As we mentioned in Sec. II B we will use A0 data on Collins asymmetries in
e+e− in our fit. Both BELLE and BABAR Collaborations require the momentum of the virtual photon Ph⊥/zh1 < 3.5
GeV in order to remove contributions from hadrons assigned to the wrong hemisphere and it also helps to remove
contribution from gluon radiation. The analysis of BELLE is performed in (zh1,zh2) bins with boundaries at zhi =
0.2, 0.3, 0.5, 0.7 and 1.0. The BABAR Collaboration chooses 6 zhi-bins: [0.15− 0.2], [0.2− 0.3], [0.3− 0.4], [0.4− 0.5],
[0.5 − 0.7], [0.7 − 0.9]. A characteristic feature of the asymmetry is growth with zhi which is compatible with zhi
dependence of theoretical formula, and the asymmetry should vanish in the limit zhi → 0.

C. Fitting procedure

We proceed with a global fit of SIDIS and e+e− data using MINUIT package [102, 103] by minimizing the total χ2:

χ2({a}) =
N∑

i=1

Ni∑

j=1

(Tj({a})− Ej)
2

∆E2
j

, (116)

for i = 1, ..., N data sets each containing Ni data points. Experimental measurement of each point is Ej , experimental
uncertainty is ∆Ej and theoretical estimate, Tj , is calculated for a given set of parameters {a}={Nh

u , N
h
d , au, ad, bu,

bd, N
c
u, N

c
d , αu, αd, βd, βu, gc}. We include both statistical and systematical experimental uncertainty in quadrature.

Normalization uncertainties are not included in this fit. We have in total N = 26 sets of which NSIDIS = 20 sets
for SIDIS and Ne+e− = 6 sets in e+e−. The formalism is valid for low values of Ph⊥/z ≪ Q, so we include only
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SIDIS data for Ph⊥-dependence using a conservative choice Ph⊥ < 0.8 GeV. We also limit Ph⊥/zh1 < 3.5 GeV
from BELLE [12] and BABAR [101] data following the experimental cuts. The number of points is NSIDIS

total = 140

and Ne+e−

total = 122. The number of fitted parameters, 13, is adequate for fitting the total number of data points,
Ntotal = 262. More flexible parametrizations will be explored in future publications. In the fit we use the average
values of 〈xB〉,〈zh〉,〈y〉,〈Ph⊥〉 for each bin in SIDIS and 〈zh1〉,〈zh2〉,〈Ph⊥〉, 〈sin2 θ〉/〈1 + cos2θ〉 for each bin in e+e−.
We present an estimate at 90% confidence level (C.L.) interval for the nucleon tensor charge contributions and

estimate errors on our results using the strategy outlined in Refs. [104, 105]. The method consists of exploring the
parameter space {ai} by exploring possible values of χ2 so that

χ2({ai}) ≤ χ2
min +∆χ2 , (117)

where ∆χ2 corresponds to the so-called fit tolerance T ≡
√
∆χ2. In the ideal case of uncorrelated measurements

without unknown sources of error and gaussian errors of the measured observables, the 68% C.L. corresponds to
∆χ2 = 1 and 90% C.L to ∆χ2 = 2.71. In typical measurement of asymmetries or other observables one encounters
either correlated measurements or some inconsistent data sets due to uncontrolled experimental and/or theoretical
errors. In order to deal with those issues the tolerance is changed with respect to the standard values.
A very rough idea of a good fit of the data set that contains N points is the resulting χ2 being in the range of

N±
√
2N . A more precise quantification of the allowed tolerance or ∆χ2 can be estimated by assuming that calculated

χ2 follows the χ2-distribution for N degrees of freedom with the probability density function

1

2Γ(N/2)

(
χ2

2

)N/2−1

exp

[
−χ

2

2

]
(118)

The most probable value is the 50% percentile ξ50 (compare to the goodness of fit):

∫ ξ50

0

dχ2 1

2Γ(N/2)

(
χ2

2

)N/2−1

exp

[
−χ

2

2

]
= 0.5 . (119)

This percentile is of order of N . The 90% percentile, ξ90, is accordingly

∫ ξ90

0

dχ2 1

2Γ(N/2)

(
χ2

2

)N/2−1

exp

[
−χ

2

2

]
= 0.9 . (120)

The ∆χ2 is defined then as

∆χ2 ≡ ξ90 − ξ50 . (121)

Analogously we can define

∆χ2
68 ≡ ξ68 − ξ50 , (122)

for 68% C.L. In our particular case with 13 fitting parameters we have N = Ntotal − 13 = 249, ξ50 = 248.3, and
ξ90 = 278.0, and thus ∆χ2 = 29.7. It is comparable to

√
2N = 22.3. We also have ∆χ2

68 = 10.6.
For each set of experimental data i, the 90% C.L. is defined as in Ref. [105]

χ2
i ≤

(
χ2
imin

ξ50

)
ξ90 , (123)

note that the value of ξ90 is renormalized by χ2
imin/ξ50 due to the fact that in the total global minimum χ2

min =∑
i χ

2
imin the value of χ2

imin may be away from possible minimal value.
In order to estimate errors on parameters and on calculation of asymmetries we will utilize a Monte Carlo sampling

method explained in Ref. [72]. We are going to generate samples of parameters {ai} in the vicinity of the minimum
found by MINUIT {a0} that defines the minimal value of total χ2

min. In order to account for correlations in parameters
and improve numerical performance we will generate correlated parameter samples using CERNLIB’s1 Monte Carlo

1 http://cernlib.web.cern.ch/cernlib/
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generators CORSET and CORGEN utilizing correlation matrix found by MINUIT. We generate 135 sets of parameters
{ai} that satisfy

χ2({ai}) ≤ χ2
min +∆χ2 , (124)

with ∆χ2 from Eq. (121). By definition these sets correspond to the hyper volume in parameter space that defines
90% C.L. region. Any observable then will be calculated using these sets and the maximum and minimal value found
will define our 90% C.L. estimate. This Monte Carlo method underestimates the errors due to the limited number of
generated parameter sets (135). The errors on asymmetries and functions that we quote are thus estimates and we
will use a more robust method to estimate the errors on tensor charge. Errors on the tensor charge will be calculated
using the evaluation of the χ2-profile by varying parameters of the model and careful analysis of the possible values.

D. Results

The resulting parameters after minimization procedure are presented in Table I. Only relative sign of transversity
can be determined and we present here a solution with positive u quark transversity as in Refs. [15–17, 65, 106].
Indeed transversity and helicity distributions can be related via boost and rotation of correspondding operators,
however boost and rotation do not commute in quantum theory, thus these two distributions are independent and in
principle different. It is unlikely that they differ by sign, thus we choose the same sign for u-quark transversity and
u-quark helicity distribution [92] which is positive. Transversity of d quark is negative. Favored and unfavored Collins
FFs are of opposite signs, indeed N c

u < 0, N c
d > 0 and of approximately the same magnitudes. It means that favored

Collins fragmentation function is positive and unfavored Collins fragmentation function is negative, see Eq. (58). The
corresponding sum rule [107, 108] for Collins fragmentation functions read:

∑

h

∑

Sh

∫ 1

0

dzhzhH
⊥(1)
1 h/j(zh)|Trento = 0 , (125)

which suggests the compensation of favored and unfavored Collins fragmentation functions.
We observe that parameters that define z dependence of Collins FF αu and αd are different, thus the z-shapes of

favorite and unfavorite Collins FFs are different. The same is true for transversity distributions, both large-x region
controlled by bu and bd and low-x region controlled by au and ad indicates that the x-shape of transversity for u and
d quarks is different. It might be well possible that k⊥-shape of transversity and Collins fragmentation functions is
also flavor dependent, however the current experimental data does not allow to determine whether it is true or not.

Nh
u = 0.85 ± 0.09 au = 0.69 ± 0.04 bu = 0.05± 0.04

Nh
d = −1.0± 0.13 ad = 1.79 ± 0.32 bd = 7.00± 2.65

Nc
u = −0.262 ± 0.025 αu = 1.69 ± 0.01 βu = 0.00± 0.54

Nc
d = 0.195 ± 0.007 αd = 0.32 ± 0.04 βd = 0.00± 0.79

gc = 0.0236 ± 0.0007 (GeV2)

χ2
min = 218.407 χ2

min/n.d.o.f = 0.88

TABLE I. Fitted parameters of the transversity quark distributions for u and d and Collins fragmentation functions. The fit
is performed by using MINUIT minimization package. Quoted errors correspond to MINUIT estimate.

The total χ2
min = 218.407 and χ2/nd.o.f. = 218.407/249 = 0.88. We calculate the goodness of fit using the well

known formula [109]:

P (χ2
min, nd.o.f.) = 1−

∫ χ2
min

0

dχ2 1

2Γ(nd.o.f./2)

(
χ2

2

)nd.o.f./2−1

exp

[
−χ

2

2

]
. (126)

The goodness of fit describes how well it fits a set of observables. In principle if the model adequately describes the
data then one would expect χ2/nd.o.f. ≃ 1. In case χ2/nd.o.f. ≫ 1 the model fails to describe the data, χ2/nd.o.f. ≪ 1
means that the model starts fitting the statistical noise in the data. Notice that in our fit we obtained χ2/nd.o.f. = 0.88
which means that the number of parameters is adequately chosen. An attempt to extract more information from the
data, such as flavor dependence etc, would lead to χ2/nd.o.f. ≪ 1. One of course can estimate a number of different
hypothesis and we leave those estimates for further publications.
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We obtain that the probability that the fit indeed is the underlying mechanism for the measured asymmetries is
P (218.407, 249) = 92%. This gives us full confidence in presented results. It is very important to note that we have
used the data from two different processes implementing appropriate factorization and evolution. Thus we have also
presented a phenomenological proof that these processes, SIDIS and e+e−, are consistent with TMD factorization.

The results of the fit including partial values of χ2 are presented in Table II for SIDIS experiments and in Ta-
ble III for e+e− experiments. One observes that χ2 values are quite satisfactory and homogeneous for both SIDIS,

χ2
SIDIS/N

SIDIS
total = 0.93, and e+e−, χ2

e+e−/N
e+e−

total = 0.72. TMD factorization approach is describing data of both
SIDIS and e+e− adequately.

Description of SIDIS data is very good. The data span the energy range starting from P JLAB
lab = 5.9 to PHERMES

lab =
27.5, and to PCOMPASS

lab = 160 GeV. The resolution scale changes also in a relatively wide region 1 <∼ 〈Q2〉 <∼ 6 (GeV2)
for HERMES and 1 <∼ 〈Q2〉 <∼ 21 (GeV2) for COMPASS. One can see from Table II that description of the individual
subsets is also very satisfactory.

As we mentioned in Sec. I, it is very important to include appropriate QCD evolution in order to be able to have
a controlled accuracy and adequate description of e+e− data that is measured at Q2 ≃ 110 GeV2. One can see
from Table III that both BELLE [12] and BABAR [101] data sets on A0 are described well. Both methods UC and
UL from BELLE [12] and BABAR [101] appear to be consistent with our description and also Ph⊥ dependence of
asymmetry is well described. We will give predictions for Ph⊥ dependent unpolarized cross sections in e+e− in the
following section.

Experiment hadron Target dependence # ndata χ2 χ2/ndata
COMPASS [100] π+ LiD x 9 11.16 1.24
COMPASS [100] π− LiD x 9 9.08 1.01
COMPASS [100] π+ LiD z 8 3.26 0.41
COMPASS [100] π− LiD z 8 7.29 0.91
COMPASS [100] π+ LiD Ph⊥ 6 4.19 0.70
COMPASS [100] π− LiD Ph⊥ 6 4.50 0.75
COMPASS [99] π+ NH3 x 9 21.46 2.38
COMPASS [99] π− NH3 x 9 6.23 0.69
COMPASS [99] π+ NH3 z 8 7.80 0.98
COMPASS [99] π− NH3 z 8 10.29 1.29
COMPASS [99] π+ NH3 Ph⊥ 6 3.82 0.64
COMPASS [99] π− NH3 Ph⊥ 6 3.85 0.64
HERMES [98] π+ H x 7 5.37 0.77
HERMES [98] π− H x 7 12.61 1.80
HERMES [98] π+ H z 7 3.04 0.43
HERMES [98] π− H z 7 3.23 0.46
HERMES [98] π+ H Ph⊥ 6 1.60 0.27
HERMES [98] π− H Ph⊥ 6 4.82 0.80
JLAB [9] π+ 3He x 4 3.90 0.98
JLAB [9] π− 3He x 4 3.11 0.78

140 130.65 0.93

TABLE II. Partial χ2 values of the global best fit for SIDIS experiments.

Experiment Observable dependence # ndata χ2 χ2/ndata

BELLE [12] AUL
0 z 16 13.02 0.81

BELLE [12] AUC
0 z 16 11.54 0.72

BABAR[101] AUL
0 z 36 34.61 0.96

BABAR[101] AUC
0 z 36 15.17 0.42

BABAR[101] AUL
0 Ph⊥ 9 9.09 1.01

BABAR[101] AUC
0 Ph⊥ 9 4.33 0.48

122 87.76 0.72

TABLE III. Partial χ2 values of the global best fit for e+e− experiments.
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FIG. 3. Extracted transversity distribution (a) and Collins regimentation function (b) at three different scales Q2 = 2.4 (dotted
lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2. The shaded region corresponds to our estimate of 90% C.L.
error band at Q2 = 10 GeV2.
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FIG. 4. χ2 profiles for up and down quark contributions to the tensor charge. The errors of points correspond to 90% C.L.
interval at Q2 = 10 GeV2.

E. Transversity, Collins fragmentation functions and tensor charge

We plot transversity and the Collins fragmentation function in Fig. 3 at two different scales Q2 = 10 and 1000
GeV2. In order to evaluate functions we solve appropriate DGLAP equations for transversity Eq. (69) and twist-3
collins functions Eq. (71). Due to the fact that neither of the functions mixes with gluons, these distributions do not
change drastically in low-x region due to DGLAP evolution.
Transversity enters directly in SIDIS asymmetry and we find that the main constraints come from SIDIS data only,

its correlations with errors of Collins FF turn out to be numerically negligible. We thus vary only χ2
SIDIS and use

∆χ2
SIDIS = 22.2 for 90% C.L. and ∆χ2

SIDIS = 6.4 for 68% C.L. calculated using Eq. (123). Since the experimental
data has only probed the limited region 0.0065 < xB < 0.35, we define the following partial contribution to the tensor
charge

δq[xmin,xmax]
(
Q2
)
≡
∫ xmax

xmin

dxhq1(x,Q
2) . (127)

In Fig. 4, we plot the χ2 Monte Carlo scanning of SIDIS data for the contribution to the tensor charge from such a



22

2 χ
[0.0065,0.35]

 uδ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

130

140

2 χ

[0.0065,0.35]
 dδ

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

130

140

FIG. 5. χ2 profiles for up and down quark contributions to the tensor charge. The errors of points correspond to 68% C.L.
interval at Q2 = 10 GeV2.

region, and find [19]

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (128)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (129)

at 90% C.L. at Q2 = 10 GeV2. Analogously in Fig. 5, we plot the χ2 Monte Carlo scanning of SIDIS data at 68%
C.L. at Q2 = 10 GeV2 and find

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (130)

δd[0.0065,0.35] = −0.20+0.12
−0.07 . (131)

We notice that this result is comparable with previous TMD extractions without evolution [15–17] and di-hadron
method [65, 106].

Existing experimental data covers a limited kinematic region, thus a simple extension of our fitted parametrization
to the whole range of 0 < xB < 1 will significantly underestimate the uncertainties, in particular, in the dominant
large-xB regime. It is extremely important to extend the experimental study of the quark transversity distribution
to both large and small xB to constrain the total tensor charge contributions. This requires future experiments to
provide measurements at the Jefferson Lab 12 GeV upgrade [110] and the planned Electron Ion Collider [4, 111, 112].
Nevertheless for completeness let us present our results on the tensor charge calculated over the whole kinematical
region δq[0,1]:

δu[0,1] = +0.39+0.16
−0.20 , (132)

δd[0,1] = −0.22+0.31
−0.10 , (133)

at 90% C.L. and

δu[0,1] = +0.39+0.07
−0.11 , (134)

δd[0,1] = −0.22+0.14
−0.08 , (135)

at 68% C.L. both at Q2 = 10 GeV2, as shown in Figs. 6 and 7. The tensor charge for u-quark can have a bigger
contribution with respect to d-quark from unexplored region of x according to our estimates.

F. TMD Interpretations of Our Results

As we mentioned in the Introduction and elaborated in Sec. II, there exists TMD interpretation of CSS results. In
particular the equations of the previous section that represent the solution of evolution equations are quite complicated.
One might formulate the solutions of TMD evolution equations for TMD functions directly, in such a way that
expressions will look very much like extension of a simple parton-like model, for instance used in Ref. [113].



23

2 χ
[0,1]

 uδ
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

140

160

2 χ

[0,1]
 dδ

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2

140

160

FIG. 6. χ2 profiles for up and down quark contributions to the tensor charge in the whole kinematical region. The errors of
points correspond to 90% C.L. interval.
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FIG. 7. χ2 profiles for up and down quark contributions to the tensor charge in the whole kinematical region. The errors of
points correspond to 68% C.L. interval.

Let us start with writing the cross sections in terms of the individual TMDs:

FUU (Q;Ph⊥) = HSIDIS(Q,µ = Q)
∑

q

e2q

∫

k⊥,p⊥

f q
1 (xB , k

2
⊥;Q)Dh/q(zh, p

2
⊥;Q),

F
sin(φh+φs)
UT (Q;Ph⊥) = −HSIDIS(Q,µ = Q)

∑

q

e2q

∫

k⊥,p⊥

hq1(xB, k
2
⊥;Q)

P̂h⊥ · p⊥
Mh

H⊥1h/q(zh, p
2
⊥;Q),

Zh1h2
uu (Q;Ph⊥) = He+e−(Q,µ = Q)

∑

q

e2q

∫

p1⊥,p2⊥

Dh/q(zh1, p
2
1⊥;Q)Dh/q̄(zh2, p

2
2⊥;Q),

Zh1h2

collins(Q;Ph⊥) = He+e−(Q,µ = Q)
∑

q

e2q

∫

p1⊥,p2⊥

(
2P̂α

h⊥P̂
β
h⊥ − gαβ⊥

) pα1⊥
Mh1

H⊥1 h/q(zh1, p
2
1⊥;Q)

× pα2⊥
Mh2

H⊥1h/q̄(zh2, p
2
2⊥;Q), (136)

where we have set the factorization scale µ = Q, and the evolution effects have been fully taken into account in the
TMDs, f q

1 (xB , k
2
⊥;Q), hq1(xB, k

2
⊥;Q), Dh/q(z, p

2
⊥;Q), and H⊥1h/q̄(z, p

2
⊥;Q) are the transverse momentum dependent

unpolarized parton distribution function, quark transversity, unpolarized fragmentation function, and the Collins
function at the scale µ = Q and ζ = Q2, respectively. These TMDs are also understood as the soft factor subtracted
TMDs.
The short-hand notations for the integrations have the following explicit forms:

∫

k⊥,p⊥

≡
∫
d2k⊥d

2p⊥δ
2
(
zh~k⊥ + ~p⊥ − ~Ph⊥

)
, (137)

∫

p1⊥,p2⊥

≡
∫
d2p1⊥d

2p2⊥δ
2

(
~Ph⊥ − ~p1⊥ − ~p2⊥

zh1
zh2

)
. (138)

As discussed in Sec. II, the TMDs and the associated hard factors depend on the scheme to regulate the light-cone
singularities. However, in the final results for the structure functions, this scheme dependence cancels out between
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the TMDs and the hard factors. In the following, we present the results in the Collins-11 scheme [22]. The functions

that encode scheme dependence from Eqs. (33,34,60,61) are F̃q(αs(Q)) = 1, D̃q(αs(Q)) = 1, H̃1q(αs(Q)) = 1,

H̃c(αs(Q)) = 1 at one loop. For all other schemes, the results can be obtained accordingly.
In the Collins-11 scheme, the associated hard factors can be written using Eqs. (A20,98) as

HSIDIS(Q,µ = Q) = 1 +
αs(Q)

2π
CF (−8) ,

He+e−(Q,µ = Q) = 1 +
αs(Q)

2π
CF

(
π2 − 8

)
. (139)

The TMDs are Fourier transformations of the relevant expressions in b space in Sec. II, Eqs. (33,34,60,61),

f q
1 (x, k

2
⊥;Q) =

∫ ∞

0

db b

(2π)
J0(k⊥b)C

f1
q←i ⊗ f i

1(x, µb) e
− 1

2
Spert(Q,b∗)−S

f1
NP

(Q,b), (140)

hq1(x, k
2
⊥;Q) =

∫ ∞

0

db b

(2π)
J0(k⊥b) δCq←i ⊗ hi1(x, µb) e

− 1
2
Spert(Q,b∗)−S

h1
NP

(Q,b), (141)

Dh/q(z, p
2
⊥;Q) =

1

z2

∫ ∞

0

db b

(2π)
J0(p⊥b/z) Ĉ

D1

i←q ⊗Dh/i(z, µb) e
− 1

2
Spert(Q,b∗)−S

D1
NP

(Q,b), (142)

p⊥
Mh

H⊥1 h/q(z, p
2
⊥;Q) =

1

z2

∫ ∞

0

db b2

(4πz)
J1(p⊥b/z) δĈ

collins
i←q ⊗ Ĥ

(3)
h/i(z, µb) e

− 1
2
Spert(Q,b∗)−S

collins
NP (Q,b) , (143)

where the TMD evolution has been taken into account, and one-loop results of F̃q, D̃q, H̃1q, and H̃c equal to one
in the Collins-11 scheme have been applied, and C-functions are given in Eqs. (39,40,41,42,62,63). Using relation to
Trento conventions of Eq. (58) we can write

p⊥
Mh

H⊥1h/q(z, p
2
⊥;Q) = − 1

z2

∫ ∞

0

db b2

(2π)
J1(p⊥b/z) δĈ

collins
i←q ⊗ Ĥ

⊥(1)
1h/j(z)|Trento(z, µb) e

− 1
2
Spert(Q,b∗)−S

collins
NP (Q,b) ,

(144)

p⊥
zMh

H⊥1 h/q(z, p
2
⊥;Q)|Trento =

1

z2

∫ ∞

0

db b2

(2π)
J1(p⊥b/z) δĈ

collins
i←q ⊗ Ĥ

⊥(1)
1 h/j(z)|Trento(z, µb) e

− 1
2
Spert(Q,b∗)−S

collins
NP (Q,b) .

(145)

We can also write explicitly the non-perturbative Sudakov form factor SNP(Q, b) for all the TMDs discussed in our
paper:

Sf1
NP(Q, b) = Sh1

NP(Q, b) =
g2
2
ln

(
b

b∗

)
ln

(
Q

Q0

)
+ gq b

2 , (146)

SD1

NP(Q, b) =
g2
2
ln

(
b

b∗

)
ln

(
Q

Q0

)
+
gh
z2
b2 , (147)

Scollins
NP (Q, b) =

g2
2
ln

(
b

b∗

)
ln

(
Q

Q0

)
+
gh − gc
z2

b2 , (148)

where we have assumed that the non-perturbative Sudakov form factors are the same for f q
1 and hq1 as a first study

following [17]. With the expressions for individual TMDs given in Eqs. (140, 141, 142, 145), and the fitted parameters
in this section, we are now ready to present all these TMDs as a function of both longitudinal momentum fraction (x
or z) and the transverse component (k⊥ or p⊥).
In Fig. 8 we present unpolarized u-quark distribution f1 at x = 0.1 as a function of b (left) and k⊥ (right). We plot

f q
1 (x, b;Q) ≡ b

(2π)
Cf1

q←i ⊗ f i
1(x, µb) e

− 1
2
Spert(Q,b∗)−S

f1
NP

(Q,b), (149)

while k⊥-dependence is defined in Eq. (140). The distribution is calculated at three different scales: Q2 = 2.4 (dotted
lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2. As one can see, at large scale Q2 = 1000 GeV2, the
distribution is highly dominated by perturbative region of b < bmax while at lower scales Q2 = 2.4 and 10 GeV2 the
distribution is shifted towards large values of b ∼ 2÷ 3 GeV−1, in this region of b one needs to carefully account for
non-perturbative effects of TMD evolution and intrinsic motion of quarks. The distribution in k⊥ space is becoming
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FIG. 8. Unpolarised u-quark distribution as function of b (a) and as function of k⊥ (b) at three different scales Q2 = 2.4
(dotted lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2.

wider with growth of Q2 and has developed perturbative tail, while at low values of Q2 it resembles gaussian-type
parametrization used in tree level extractions, for instance that of Refs. [17, 113].
The same observation is true for transversity distribution. We present transversity u-quark distribution h1 at

x = 0.1 as function of b and k⊥ in Fig. 9. We plot

hq1(x, b;Q) ≡ b

(2π)
δCq←i ⊗ hi1(x, µb) e

− 1
2
Spert(Q,b∗)−S

h1
NP

(Q,b), (150)

while k⊥ distribution is defined in Eq. (141). Note that coefficient functions for transversity distribution δCq←i are
different from those of unpolarized distribution. This difference affects the shape of distributions in b and k⊥ space.
Moreover the width of transversity can be different from that of unpolarized distribution as well, however features of
TMD evolution are very similar in both cases. Generic results on transversity TMD evolution were also presented in
Ref. [64].
Unpolarized fragmentation TMD as function of b is defined as

Dh/q(z, b;Q) ≡ 1

z2
b

(2π)
ĈD1

i←q ⊗Dh/i(z, µb) e
− 1

2
Spert(Q,b∗)−S

D1
NP

(Q,b), (151)

and as function of p⊥ it can be calculated using Eq. (142). In Fig. 10 we present unpolarized TMD FF at z = 0.4
and at three different scales Q2 = 2.4 (dotted lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2. Again
as in case of other TMDs above one observes widening of distributions in p⊥ and shift towards lower values b of the
maximum of the distribution with increase of Q2 . In relatively low Q2 region the effects of TMD evolution are quite
moderate.
Collins fragmentation function with evolution is presented for the first time in this paper. The b dependent function

can be defined as

H⊥1h/q(z, b;Q)|Trento ≡
1

z2
b2

(2π)
δĈcollins

i←q ⊗ Ĥ
⊥(1)
1h/j(z)|Trento(z, µb) e

− 1
2
Spert(Q,b∗)−S

collins
NP (Q,b) , (152)

and p⊥ dependent function is in Eq. (145). In Fig. 11 we present TMD Collins FF at z = 0.4 and at three different
scales Q2 = 2.4 (dotted lines), Q2 = 10 (solid lines) and Q2 = 1000 (dashed lines) GeV2. One observes widening of
distributions in p⊥ and shift towards lower values b of the maximum of the distribution with increase of Q2 . Note
that TMD Collins FF has a kinematical zero due to the pre-factor p⊥/zMh.
It is very important to make results of global fits available for usage in various applications, some progress is made,

for example, by TMDlib project, see Ref. [114]. The results of this analysis will be available in a form of a computer
package.

G. Description of the experimental data

The description of the HERMES data [98] is shown in Fig. 12. One can see that the description is good for all
xB , z, and Ph⊥ dependencies. The formalism that we use is appropriate in the region of low Ph⊥ and we limit our



26

(x
, b

)
1

 h

)-1b (GeV
0 1 2 3 4

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

(a)

)
  

(x
, k

1
  h

T

 (GeV)  k T

0 1 2 3 4

-310

-210

-110

(b)
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description by Ph⊥ < 0.8 GeV. The data is in the region of 1 <∼ 〈Q2〉 <∼ 6 (GeV2). The estimate of the error band is
presented as the shaded region.

One can see from Fig. 12 that both data and the model obey kinematical suppression of asymmetries at low
zh, and Ph⊥. Additionally the data indicates that asymmetry becomes smaller in the region of small-xB and thus
transversity becomes small in the small-xB region as well as can be seen in Fig. 3 (a). Positive asymmetry of π+

production implies that the product of u-quark transversity and the favored Collins fragmentation function is positive.
We choose the solution with positive u-quark transversity (the same sign as u-quark helicity distribution) and obtain
favored Collins fragmentation function is positive, see Fig. 3 (b). Large negative asymmetry of π− production indicates
that the so-called unfavored Collins fragmentation function is large and negative and indeed it is the case, see Fig. 3
(b). Measurements on proton targets are dominated by u-quark functions as far as e2u/e

2
d = 4, thus we have better

precision for the extraction of u-quark transversity and tensor charge δu.

The COMPASS data [99, 100] extend the region of resolution scale by a factor of three, 〈Q2〉 <∼ 21 (GeV2).
We present results of our description in Fig. 13. Again we exclude the region of Ph⊥ > 0.8 GeV where relation
Ph⊥/〈z〉 < Q is not satisfied. The COMPASS data extends the region of xB up to xB ∼ 10−2 and the measured
asymmetry indicates that transversity is rather small in the small-x region. Indeed the extracted transversity shown
in Fig. 3 (a) becomes small in the small-x region. The COMPASS data on effective deuterium target Fig. 13 (b)
indicate that the sum of u-quark and d-quark transversities is small, and thus both functions are approximately of
the same size, it can be seen in Fig. 3 (a).

Description of JLab’s HALL A data [9] is shown in Fig. 14. The data extend the region of xB toward large-x
and one can see that our fit is compatible with the data. The measurement on effective neutron target (3He) is
sensitive to d-quark functions, however the current experimental errors are too big to allow better extraction of
d-quark transversity.
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Both BELLE [12] and BABAR [101] collaborations measured the Collins asymmetries in e+e− at
√
s ≃ 10.6 GeV.

Comparison of BELLE data [12] on A0 asymmetries for both UL and UC methods is presented in Fig. 15. The data
are measured in four different bins of zh1, zh2 and one can see that the description of the data is very good. The
asymmetry becomes small when zh1, zh2 become small due to kinematical suppression and one can see from Fig. 15
that our calculations are compatible with this behavior.
In Fig. 16 we present description of BABAR data [101] on A0 asymmetries for both UL and UC methods. The

data are in six bins of zh1, zh2 with six points in each bin. This allows for better extraction of the shape of Collins
fragmentation functions. One can see that also in this case the description is very good. The large-z region deserve
a special comment. One expects that the formalism will become unreliable when zh1 → 1 and/or zh2 → 1 due to the
influence of exclusive pion production. Indeed one can see from Figs. 15 and 16 that in large-z bins the quality of
description deteriorates. Nevertheless both magnitude and the shape of the data are reproduced perfectly in the plot.
It is achieved by allowing parameters that describe shape of favored and unfavored Collins fragmentation functions
be different and independent of each other. Additionally the correct Q2 evolution reproduces the shape much better
compared to the case of absence of the evolution. Note that we have not attempted to fit the data without TMD
evolution, thus our conclusion is valid only for comparison of results with and without evolution using parameters of
NLL fit.
Even though a priori it is very difficult to expect perfect description of the data in the whole z region, our fit indeed

is capable of reproducing the data very well. Both AUL
0 and AUC

0 are described very well, we observe no tension
between the measurements and it indicates the robustness of the method. AUL

0 and AUC
0 have slightly different

sensitivity to different combinations of Collins fragmentation functions as can be seen from Eq. (8) and the usage of
both measurements helps to constrain the functions better. We believe that favored Collins fragmentation functions
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are well determined and future experimental data could test our findings.
Finally we present comparison of our calculations with Ph⊥ dependence of e+e− asymmetries in Fig. 17. Both AUL

0

and AUC
0 are described very well.

From the comparisons of the data and theoretical computations we can deduce that the TMD evolution at NLL′

can describe both e+e− and SIDIS data adequately well. The highest resolution scale in our analysis is quite big
Q2 = s ≃ 110 GeV2 and we found that using appropriate QCD evolution was essential in order to describe the data.
It allows us to have a controlled theoretical precision of our computations. Let us study sensitivity of our results to
the theoretical precision of computations. We will fix the parameters to the NLL′ fit results presented in Table. I
and calculate asymmetries in different kinematical configurations using tree level approximation, i.e. without TMD
evolution, Leading Logarithmic accuracy (LL), and Next-to-Leading Logarithmic accuracy NLL′. As far as parameters
are defined by fitting at NLL′ we expect that NLL′ will describe the data better than LL or tree approximation. We
will not attempt to fit data at either tree approximation or LL, even though such fits can be well performed and may
give reasonable descriptions of the data. By computing results with three different precisions with fixed parameters
we will be able to answer two different questions:

1. How big are the effects of inclusion of higher orders in calculation of a particular asymmetry in a particular
kinematical region?

2. How sensitive are experimental data to the inclusion of higher orders in perturbative expansion?

We show NLL′, LL, and no TMD evolution results for asymmetry as function of xB , z, Ph⊥ for HERMES in
Fig. 18. The computation at Leading Logarithmic accuracy (LL) is done by using only A(1) in the perturbative
Sudakov form factor and C(0) coefficient function. No TMD evolution implies that the perturbative Sudakov form
factor and parameter g2 are set to zero, accordingly we use DSS LO for fragmentation functions and CTEQ6LO for
distribution functions and set the scale to Q2

0 = 2.4 GeV2. The dotted line in Fig. 18 shows result without TMD
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FIG. 16. Collins asymmetries in e+e− at
√
s = 10.6 GeV measured by BABAR Collaboration [101] as a function of zh2

in different bins of zh1 (a) UL and (b) UC. Calculations are performed with parameters from Table I. The shaded region
corresponds to our estimate of 90% C.L. error band.

evolution. One can see that at low energy, the results are quite similar for all three calculations. This happens
due to the fact that in ratios most of the numerical effects of evolution cancel out. The precision of existing SIDIS
experimental data is such that it does not allow to distinguish among different theoretical accuracies used to calculate
TMDs. It happens due to the fact that both energy and Q2 are quite low for SIDIS. The difference grows as we
consider COMPASS data in Fig 19, and the data becomes sensitive to the choice of accuracy. One can also see from
Fig. 18 that the difference in different precisions (no evolution, LL, NLL’) is comparable with the error band of the
NLL’ extraction. One can conclude that results of phenomenological extraction using different precisions will be very
similar if low energy experiments are used. In fact low energy experimental data are dominated by non-perturbative
physics and even tree level approximation (no TMD evolution) grasps well the features of the underlying physics. We
will in fact see that our results compare very well to the results of Torino-Cagliari-JLab group [17].

In Fig. 20 we show theoretical computations for e+e− without TMD evolution (dotted line), LL accuracy (dashed
line), and the complete NLL′ accuracy (solid line). The difference between these computations diminishes when we
include higher orders, it means that the theoretical uncertainty improves. We conjecture that the difference between
NLL′ and NNLL will be smaller than difference between NLL′ and LL and thus be comparable to experimental errors.
One can also observe that asymmetry at Q2 = 110 GeV2 is suppressed by factor 2 – 3 with respect to tree-level
calculations due to the Sudakov form factor. One can also conclude that NLL accuracy is essential for e+e− data.
Notice that we present calculations with fixed parameters determined by the NLL′ fit. The difference between different
curves shows sensitivity to the theoretical accuracy and to inclusion of higher order. The observation that calculation
without TMD evolution or LL cannot describe the data with these parameters does not mean that a fit of the data
without TMD evolution or LL is impossible. In fact such fits are most probably possible and could yield results of
similar quality of description of the data. There is no doubt however that higher order computations such as NLL have
an advantage of having better control of theoretical uncertainty. The fact that we utilize NLO collinear distributions



30

)
h 

 
(P

U
L

0
A

T

 (GeV)h  P T

0 0.2 0.4 0.6 0.8 1 1.2
-0.01

0

0.01

0.02

0.03

0.04

(a)

)
h 

 
(P

U
C

0
A

T

 (GeV)h  P T

0 0.2 0.4 0.6 0.8 1 1.2
-0.005

0

0.005

0.01

0.015

0.02

(b)

FIG. 17. Collins asymmetries in e+e− at
√
s = 10.6 GeV measured by BABAR collaboration [101] as a function of Ph⊥ (a) UL

and (b) UC. Calculations are performed with parameters from Table I. The shaded region corresponds to our estimate of 90%
C.L. error band.

) hφ
+

 
Sφ

si
n 

(

U
T

A

Bx
0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.01

0

0.01

0.02

0.03

0.04

+π

) hφ
+

 
Sφ

si
n 

(

U
T

A

z
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.01

0

0.01

0.02

0.03

+π

) hφ
+

 
Sφ

si
n 

(

U
T

A

 (GeV)h  P T

0 0.2 0.4 0.6 0.8

-0.01

0

0.01

0.02

0.03

+π

) hφ
+

 
Sφ

si
n 

(

U
T

A

Bx
0.05 0.1 0.15 0.2 0.25 0.3 0.35

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02 -π

) hφ
+

 
Sφ

si
n 

(

U
T

A

z
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

-π
) hφ

+
 

Sφ
si

n 
(

U
T

A

 (GeV)h  P T

0 0.2 0.4 0.6 0.8

-0.03

-0.02

-0.01

0

0.01

-π

FIG. 18. Collins asymmetries measured by HERMES Collaboration [98] as a function of xB, z, Ph⊥ in production of π+ (left
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and the dotted to the calculation without TMD evolution. Calculations are performed with parameters from Table I. The
shaded region corresponds to our estimate of 90% C.L. error band.

is very encouraging, these distributions describe inclusive data sets much better than LO distributions. We also
observe that e+e− experiments are very sensitive to the inclusion of higher order corrections. This can be clearly seen
from Fig. 21 where we compute Collins asymmetries measured by BABAR [101] Collaboration as a function of zh2 in
different bins of zh1. One can see that importance of higher orders increases with increasing value of zh.

H. Predictions for unpolarized multiplicities in SIDIS and e+e−

We predict unpolarized cross section of charged pion production to be measured by BELLE, BABAR and BESIII
Collaborations and given by the formula

dσC
0

dP 2
h⊥

≡ 1

〈1 + cos2 θ〉
d3σe+e−→h1h2+X

dzh1dzh2dP 2
h⊥

=
Ncπ

2α2
em

2Q2
Zh1h2
uu , (153)

where h1, h2 can be any charged pion, z1 = z2 = 0.3. The prediction is given in Fig. 22. As one can see we predict that
measured cross-section will be wider for BELLE and BABAR Collaborations Q2 = 110 GeV2 with respect to BESIII
Collaboration Q2 = 13 GeV2. At the same time BESIII Collaboration Q2 = 13 GeV2 cross section will be larger
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FIG. 20. Collins asymmetries measured by BABAR [101] collaboration as a function of Ph⊥ in production of unlike sign “U”
over like sign “L” (a) and charged “C” (b) pion pairs at Q2 = 110 GeV2. The solid line corresponds to the full NLL′ calculation,
the dashed line to the LL calculation, and the dotted to the calculation without TMD evolution. Calculations are performed
with fixed parameters using the NLL′ fit from Table I, note that parameters are fixed and were not fitted neither with LL nor
without TMD evolution calculations. Fits of the data with LL or no TMD evolution approximation maybe well possible.

than that measured by BELLE and BABAR Collaborations at Q2 = 110 GeV2. In Fig. 22 we divide the predicted
cross-section for BESIII Collaboration by a factor 110 in order to compare widths with expected cross section at
BELLE and BABAR Collaborations. Effective widening of the cross-section with growth of Q2 is a sign of TMD
evolution and the future data from BELLE and BABAR Collaborations will be crucial for our understanding of the
evolution.
Similar behavior is shown in Fig. 23 of the unpolarized cross-section predicted for EIC at

√
s = 70 GeV and at

Q2 = 10 GeV2 and Q2 = 100 GeV2, choosing 〈zh〉 = 0.36 and 〈y〉 = 0.53. We plot

d4σ

dxBdydzhd2Ph⊥
= πσ0(xB, y, Q

2)FUU . (154)

The ultimate test of the TMD evolution will be in measurements of unpolarized cross-sections. We highly encour-
age BELLE, BABAR and BESIII Collaborations to perform the analysis of the data on unpolarized cross-sections.
Such measurements will allow us to test predictions of TMD evolution and will allow for a better understanding of
unpolarized TMD fragmentation functions that can be measured directly only at e+e− facilities.
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LL calculation, and the dotted to the calculation without TMD evolution. Calculations are performed with parameters from
Table I. The shaded region corresponds to our estimate of 90% C.L. error band.
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FIG. 22. Prediction for unpolarized cross-section in e+e− at Q2 = 110 GeV2 to be measured by BELLE and BABAR

Collaborations (solid line) and BESIII Collaboration at Q2 = 13 GeV2 (divided by a factor 110, dashed line) as a function of
P 2
h⊥.

The universality of TMD evolution will be further tested in future measurements at Electron Ion Collider. EIC
can easily span several decades in Q2 and allow for a much better understanding of the nucleon 3D structure. The
data of EIC combined with that of Jefferson Lab 12 will cover a very wide region of x and provide a multi-binning
data needed for future phenomenological analysis. We plan to study the impact of EIC and Jefferson Lab 12 data in
future publications.

I. Predictions for future experiments in SIDIS and e+e−

BESIII is collecting data [115] in e+e− at Q2 ≃ 13 GeV2. The preliminary reults are compatible with bigger
asymmetries predicted by two of us in Ref. [41]. Here we present updated predictions assuming the same binning as
BABAR and the following values of 〈sin2 θ〉/〈1 + cos2 θ〉 = 0.65 at each bin, we also integrate the result in the region
of Ph⊥ < 1.5 GeV. Actual values of asymmetry will depend on details of binning and kinematics. The predictions are
presented in Fig. 24. We give predictions for AUL

0 asymmetries, we predict enhancement of the asymmetry by factor
2− 3, compare to Fig. 16 (a). Note that our predictions from Fig. 24 will have to be scaled with actual experimental
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FIG. 24. Predictions for UL Collins asymmetries in e+e− at Q2 = 13 GeV2 to be measured by BESIII [115] as a function of
zh2 in different bins of zh1.

values of 〈sin2 θ〉/〈1 + cos2 θ〉exp from BESIII. The predictions for the BESIII measurements are compared to BESIII
data in Ref. [116], one can see from Figs. 3 and 4 of Ref. [116] that predictions match the data perfectly well.

Measurements of Collins asymmetries are going to be performed at Jefferson Lab 12 GeV upgrade [110] and the
planned Electron Ion Collider [4, 111, 112]. The high precision of Jefferson Lab 12 measurements will eventually allow
for better determination of transversity distributions in high-x region and low-x region along with higher span in Q2

will be covered by EIC.

Electron Ion Collider is going to allow studies of evolution in Q2 and energy
√
s od single spin asymmetries. It is

going to provide a big leverage arm in Q2 and will have variable center of mass energy
√
s. We present here predictions

of Collins asymmetry as function of xB for two different values of Q2 = 10 GeV2 and Q2 = 100 GeV2 in Fig. 25 (left
panel). Note that xB and Q2 are correlated via Q2 = sxBy, we also fix average values of zh and Ph⊥, 〈zh〉 = 0.36
and 〈Ph⊥〉 = 0.4 GeV. One can see from Fig. 25 that we predict a moderate decrease of the asymmetry with Q2.
Measurements in low-x region are going to provide information on sea quark transversity. Our current extraction
neglects sea quarks, so the asymmetry becomes very small in low-x region.

Suppression of asymmetries with growth ofQ2 due to TMD evolution has been a subject of investigation of numerous
papers, see for instance Refs. [23, 41, 42, 88, 117]. The choice of the non-perturbative Sudakov factor is essential for
the accurate description of the data and the reliable prediction of Q2 dependence of the asymmetries. We present our
predictions for the Q2 dependence of the Collins asymmetry to be measured at EIC in Fig. 25 (right panel). Note
that Q2 suppression is to be studied at fixed values of xB . The asymmetry itself depends strongly on the value of
xB . In Fig. 25 (right panel) we show our predictions for 〈xB〉 = 0.3 and 〈xB〉 = 0.1, in both cases the future data
will constrain parameters that define non-perturbative input for the TMD evolution. One can see that our choice of
non-perturbative Sudakov factor results in a moderate Q2 dependence: the asymmetry is suppressed only by a factor
of ∼ 2 at fixed xB in a wide region of Q2 from 2.4 up to 50 GeV2. This behavior is consistent with results of Ref. [41].
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FIG. 26. Predictions for Collins asymmetry as a function of xB for π+ production at Jefferson Lab 12 GeV on proton target
(solid line and vertical-line hashed region) and effective neutron target (dashed line and shaded region).

The Jefferson Lab 12 GeV program is going to extend our knowledge of the underlying distributions in the large-x
region. Both proton and neutron (3He) targets will provide information of distributions of u and d-quarks. We present
predictions for JLab 12 at 11 GeV incident electron beam on proton and 3He (effective neutron) targets in Fig. 26.
One can see that we predict sizable asymmetries of order of 10%, future data is going to highly improve the knowledge
of transversity in large-x region, currently the error band is very big, see Fig. 26. In order to give predictions in Fig. 26
we fixed the average kinematical variables, 〈y〉 = 0.57, 〈zh〉 = 0.5, and 〈Ph⊥〉 = 0.38 GeV.

J. Comparison to other extractions

Tree level extraction of transversity and Collins fragmentation functions was performed by Torino-Cagliari-JLab
group in papers [15–17]. In Fig. 27 (a) we present comparison of extracted transversity at NLL and result of Ref. [17].
We also compare to extraction of transversity via dihadron fragmentation method [18] Fig. 27 (b). One can see that
all three extractions give consistent results in the explored region of xB . Within error bands of each extraction results
are compatible with each other. One can see that the experimental data indeed show some tension, saturation of
Soffer bound, for d-quark in high-x region as predicted in Ref. [94]. This saturation happens in the region not explored
by the current experimental data, so future data from Jefferson Lab 12 will be very important to test the Soffer bound
and to constrain the transversity and tensor charge.
The functions themselves are slightly different as can be seen by comparing solid and dashes lines in Fig. 27

(a). In fact Ref. [17] uses tree level TMD expression (no TMD evolution) for extraction and we use NLL TMD
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formalism. Results should be different even though in asymmetries, as we saw, at low energies results with NLL
TMD are comparable with tree level. At higher energies and Q2 situation changes and extracted functions must be
different. At the same time one should remember TMD evolution does not act as a universal Q2 suppression factor. A
complicated Fourier transform should be performed that mixes Q2 and b dependence and thus the resulting functions
are different in shape, but comparable in magnitude. It is also very encouraging that tree level TMD extractions
yielded results very similar to our NLL extraction. This makes the previous phenomenological results valid even
though the appropriate TMD evolution was not taken into account. It also means that we need to have experimental
data on unpolarized cross sections differential in Ph⊥. As we have seen the effects of evolution should be evident in
the data and those measurements will help to establish validity of the modern formulation of TMD evolution.
We compare extracted Collins fragmentation functions −zH(3)(z) in Fig. 28 at Q2 = 2.4 GeV2 with extraction

of Torino-Cagliari-JLab 2013 [17]. The resulting Collins FF have the same signs but shapes and sizes are slightly
different. Indeed one could expect it as far as Q2 of e+e− is different and evolution effect must be more evident. At
the same time those functions for both tree level and NLL TMD give the same (or similar) theoretical asymmetries
that are well compared to the experimental data of SIDIS and e+e−. The favored Collins fragmentation function is
much better determined by the existing data, as one can see from Fig. 28 that the functions at Q2 = 2.4 GeV2 are
compatible within error bands. The unfavored fragmentation functions are different, however those functions are not
very well determined by existing experimental data.
We also compare the tensor change from our and other extractions in Fig. 29. The contribution to tensor charge

of Ref. [18] is found by extraction using the so-called dihadron fragmentation function that couples to collinear
transversity distribution. The corresponding functions have DGLAP type evolution known at LO and were used in
Ref. [18]. The results plotted in Fig. 29 corresponds to our estimates of the contribution to u-quark and d-quark in
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FIG. 29. Comparison of tensor charge δq[0.0065,0.35] for u-quark and d-quark from this paper at 68% C.L. (Kang et al 2015)
and result from Ref. [18] (Radici et al 2015) at 68% C.L. Both results are at Q2 = 10 GeV2.

the region of x [0.065, 0.35] at Q2 = 10 GeV2 at 68% C.L. (label 1) and the contribution to u-quark and d-quark in
the same region of x and the same Q2 using the so-called flexible scenario, αs(M

2
Z) = 0.125, of Ref. [18]. One can

see that our extraction has an excellent precision for both u-quark and d-quark. The fact that the central values and
errors of extracted tensor charges are in a good agreement in both methods, ours and Ref. [18], is very positive and
allows for future investigations of transversity including all available data in a global fit.
Our results compare well with extractions from Ref. [17]. Even though correct TMD evolution was not used in

Ref. [17] the effects of DGLAP evolution of collinear distributions were taken into account and the resulting fit is of
good quality, χ2/d.o.f. = 0.8 for the so-called standard parametrization of Collins fragmentation functions. In fact
the probability that the model of Ref. [17] correctly describes the data is P (0.8 · 249, 249) = 99%. The tensor charge
was estimated at 95% C.L. using two different parametrizations for Collins fragmentation functions, the so-called
standard parametrization that utilized similar to our parametrization and the polynomial parametrization. In Fig. 30
we compare our results with calculations from Ref. [17] at 95% C.L. at Q2 = 0.8 GeV2 and calculations at 68 % at
Q2 = 1 GeV2 of Ref. [18]. Even though we compare tensor charge at different values of Q2 its evolution is quite slow,
so the good agreement of all three methods is a good sign. We conclude that tensor charge perhaps is very stable with
respect to evolution effects that are included in phenomenological extractions. It also means that phenomenological
results of Ref. [17] and other extractions without TMD evolution are valid phenomenologically. One should remember,
of course, that TMD evolution is more complicated if compared to DGLAP evolution (even though formal solutions
are simpler in TMD case). The usage of non-perturbative kernels make it very important to actually demonstrate
that the proper evolution is indeed exhibited by the experimental data. Once correct evolution and non-perturbative
Sudakov factor are established the results of Ref. [17] should be improved by utilizing the appropriate TMD evolution
that we have formulated in this paper.
In Fig. 31 we compare tensor charge δq[0,1] for u and d-quarks from this paper at 90% C.L. at Q2 = 10 GeV2

and results from various model estimates of Refs. [118–122]. One can see that our results are close to results of
Ref. [119] that actually used the approximate mass degeneracy of the light axial vector mesons (a1(1260), b1(1235)
and h1(1170)) and pole dominance to calculate the tensor charge. DSE calculations of tensor charge of Ref. [118] are
also close to our results.
Finally we present our estimates for the isovector nucleon tensor charge gT = δu − δd:

gT = +0.61+0.26
−0.51 , (155)

at 90% C.L. and

gT = +0.61+0.15
−0.25 , (156)

at 68% C.L.at Q2 = 10 GeV2. This result can be compared to lattice QCD calculations.
In Fig. 32 we compare our result with extraction of Radici et al Ref. [18] at Q2 = 4 GeV2, Anselmino et al Ref. [17]

standard and polynomial at Q2 = 0.8 GeV2, and a series of lattice computations. Bali et al Ref. [123] estimate gT
at mπ ≃ 150 MeV using RQCD with 2 flavor NPI Wilson-clover fermions, Gupta et al Ref. [124] use 2 + 1 + 1 flavor
HISQ lattices generated by the MILC collaboration with lowest mπ = 130 MeV, Green et al Ref. [125] use 2+1 flavor
BMW clover-improved Wilson action with pion masses between 149 and 356 MeV, Aoki et al use gauge configurations
generated by the RBC and UKQCD Collaborations with (2 + 1)-flavor QCD with domain wall fermions, PNDME
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FIG. 31. Comparison of tensor charge δq[0,1] for u-quark and d-quark in the whole region of x from this paper at 90% C.L.
(Kang et al 2015) at Q2 = 10 GeV2 and results from Refs. [118–122].

Collaboration Bhattacharya at al [126] use wo ensembles of highly improved staggered quarks lattices generated by
the MILC collaboration with 2 + 1 + 1 dynamical flavors at a lattice spacing of 0.12 fm and with light- quark masses
corresponding to pions with masses 310 and 220 MeV. references to other calculations of gT on lattice can be found
for instance in Ref. [126]. Ref. [127] uses nf = 2 lattice QCD, based on clover-improved Wilson fermions. One can
see from Fig. 32 that all phenomenological extractions indicate small values for the isovector nucleon tensor charge
compared to lattice QCD. DSE computations of gT at Q2 = 4 GeV2 were performed in Ref. [118] and the result is
different from most of lattice computations and closer to phenomenological extraction from the data. Earlier DSE
calculations of tensor charge were performed in Ref. [128] in the QCD-like theory with the Landau gauge and the
quark tensor charge in nucleon was estimated as δu ≃ 0.8 and δd ≃ −0.2 at Q = 2 GeV.

The value of gT extracted from the data may influence searches of BSM physics that depend on gT [129–131]. In
particular the precision of determination of the elementary BSM tensor coupling ǫT ∝ m2

W /Λ2
T allows to determine

the lower limit for possible BSM physics scale ΛT . The most recent limit [131] is |ǫT gT | < 6.4 × 10−4 at 90% CL.
An analysis of the precision of ǫT as a function of precision of extraction of tensor charge, the central value of gT
and relative error ∆gT /gT , was presented in Ref. [131]. Presently lattice QCD calculations have the best precision,
however the tensor charge computed must be confirmed by the extraction from the experimental data.

One can see that our determination of gT is the most precise existing extraction from experimental data, it turns out
to be different from lattice QCD computations. Future experimental data will allow both to improve our extractions
and test the reliability of lattice QCD calculations.

The isoscalar nucleon tensor charge g0T = δu+ δd can be readily computed using our results. We present result for
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Pitschmann et al is DSE calculation at Q2 = 4 GeV2 Ref. [118].

g0T for completeness

g0T = +0.17+0.47
−0.30 , (157)

at 90% C.L. at Q2 = 10 GeV2.
Refs. [132–134] explores large-Nc behavior of parton distributions in QCD and predicts that

|hu1 (x)− hd1(x)| ≫ |hu1 (x) + hd1(x)| , (158)

we indeed observe that transversity for u and d-quarks are of similar magnitude and opposite signs and gT > g0T and
thus our results are compatible with large-Nc predictions.

IV. SUMMARY

In this paper, we have performed a global analysis of the Collins azimuthal asymmetries in e+e− annihilation and
SIDIS processes, for the first time, with full QCD dynamics taken into account, including the appropriate TMD
evolution effects at the NLL′ order and perturbative QCD corrections at the NLO. The valence quark contributions
to the nucleon tensor charge were estimated based on our analysis. Let us summarize the major results of this
comprehensive study.
First, the full QCD evolution effects are crucial to describe the Collins asymmetries in the back-to-back di-hadron

productions in e+e− annihilations, where current data come from the B-factories at the center of mass energy around
10.6 GeV. At this energy range, the TMD evolution has significant effect on the asymmetry distributions as functions
of the transverse momentum, and the longitudinal momentum fractions carried by the hadrons in the fragmentation
processes. These features have been clearly demonstrated in Figs. 20-21. In particular, the transverse momentum
dependence illustrates the effects coming from the Sudakov resummation form factors where the perturbative part
plays an important role due to large value of the resolution scale Q ≃ 10.6 (GeV). The associated scale evolution

effects in the Ĥ(3)(z) is another important aspect in the calculations. The evolution kernel is different from that of
the unpolarized fragmentation function, and it changes the functional form dependence of zh1 and zh2. In addition,
there is cancellation between favored and unfavored Collins fragmentation functions, not only the shape but also the
size are modified with the full evolution effects taken into account.
Second, because of relative narrow Q2 range in the current SIDIS data, the evolution effects are not so evident as

compared to that in e+e− annihilation processes. This was shown in Figs. 18 and 19. However, we would like to
emphasize that, in order to precisely constrain the quark transversity distributions, we need to perform the complete
QCD evolution in the theoretical calculations of the asymmetries to compare to the experimental data. This will
become more important with high precision data from future experiments at the Jefferson Lab 12 GeV upgrade [110]
and the planned Electron Ion Collider [4, 111, 112].
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Third, the quark transversity distributions from our analysis are comparable to previous determinations, including
the leading order analysis of the same Collins asymmetries in SIDIS and e+e− annihilation processes, and the di-
hadron fragmentation channel in DIS and e+e− processes, see Fig. 27. In particular, the consistency between the
Collins asymmetry analysis and the di-hadron fragmentation analysis is a strong encouragement toward a future global
fit to include all experimental data to constrain the quark transversity distributions.
We observe, however, the Collins fragmentation functions from our analysis are quite different from those determined

from the leading order analysis in Ref. [17], although they are in the same order of magnitude. To further test the
evolution effects, we emphasize the importance of future experiment measurements, in particular, in the energy range
different from B-factories, such as those from the BEPC II at the experiment BESIII. We have made predictions for
these experiments in Figs. 22 and 24. The recent measurement of BESIII [116] has shown a rather good agreement
with our calculations. We encourage BELLE, BABAR and BESIII Collaborations to perform the analysis of the data
on unpolarized cross-sections as such data are curtail for our understanding of TMD fragmentation functions.
Finally, we summarize the nucleon tensor charge contribution from our analysis,

δu[0.0065,0.35] = +0.30+0.08
−0.12 , (159)

δd[0.0065,0.35] = −0.20+0.28
−0.11 , (160)

at 90% C.L. at Q2 = 10 GeV2, in the kinematic range covered by the current experiments.

δu[0.0065,0.35] = +0.30+0.04
−0.07 , (161)

δd[0.0065,0.35] = −0.20+0.12
−0.07 , (162)

at 68% C.L. at Q2 = 10 GeV2.
If we extend to the complete x range by assuming the model dependence in our fit, we would obtain

δu[0,1] = +0.39+0.16
−0.20 , (163)

δd[0,1] = −0.22+0.31
−0.10 , (164)

at 90% C.L. at Q2 = 10 GeV2 and

δu[0,1] = +0.39+0.07
−0.11 , (165)

δd[0,1] = −0.22+0.14
−0.08 , (166)

at 68% C.L. at Q2 = 10 GeV2. We emphasize that the above constraints depend on the functional form in our
analysis, and the numbers quoted here should be taken cautiously. It is, nevertheless, interesting to compare to
previous determinations. In Fig. 27 we show the comparisons of the nucleon tensor charges between our results and
other determinations, together with some model calculations and the lattice computations.
Much of improvements can be made in the future. First, more experimental data are in horizon from the 12 GeV

upgrade of Jefferson Lab experiments, which actually will cover large-x region and is of crucial importance to constrain
the quark transversity distribution in that region. Since the nucleon tensor charge contribution is an integral of the
quark transversity distribution, future Jefferson Lab data will be very important to reduce the uncertainties quoted
above, and the uncertainties we can not address at the moment, such as the kinematic extension to obtain δq[0,1].
The TMD evolution and the procedure to perform the global analysis will be an important part in the future

analysis for other observables, for example, the Sivers asymmetries in SIDIS. We plan to carry out this analysis in a
future publication.
A number of improvements can be pursued in the theoretical part of the formalism. In this paper, we have taken

the approximate evolution kernel for the twist-three quark-gluon-quark correlation contribution to the fragmentation
function Ĥ(3)(z). For a complete analysis, we should include other terms in this evolution equation. Although it

may not be possible to have a closed evolution equations for both Ĥ(3)(z) and the related twist-three fragmentation
functions HD(z1, z2), one should be able to estimate the contributions from these additional terms. Second, with
more experimental data available, we shall include the flavor dependence in the non-perturbative form factors in the
Collins fragmentation function in the CSS resummation formalism. In this paper, we have assumed that they are
flavor independent. The flavor dependence of distribution and fragmentation functions will be explored in the future
analysis with more data available, in particular, the data on the transverse momentum dependence of the asymmetries
in e+e− annihilation processes.
As a final remark, we would like to emphasize that our results and the methodology in the analysis will play

an important role in phenomenological applications of perturbative QCD to the vast experimental data on SIDIS,
Drell-Yan and e+e− and in extraction of the relevant TMD parton distributions of the nucleon.
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Appendix A: One-loop Calculation of the Collins Asymmetry in SIDIS

To study the perturbative corrections and extract the hard factor in the Eq. (53), we need to carry out a calculation

for F̃collins at one-loop order. The leading order expression and the virtual diagram contributions follow that in the
previous calculations for, e.g., the Sivers single spin asymmetry in SIDIS [40, 53]. For the real gluon radiation, we use
the results in Ref. [52]

F β
collins

∣∣∣∣∣
Ph⊥≪Q

=
zhP

β
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(~P 2
h⊥)

2
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2π2
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z
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q
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(3)
h/q(z)
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



+2δ(ξ̂ − 1)δ(ξ − 1)Ĥ
(3)
h/q(z) ln

z2hQ
2

~P 2
h⊥

}
, (A1)

where ξ = xB/x, ξ̂ = zh/z and we only keep the most important diagonal contributions from Ĥ
(3)
h/q(z), and the

contributions from ĤD(z1, z2) can be found from Ref. [52]. By applying the Fourier transform (some of the useful
integrals are listed in the Appendix of Ref. [40] and Eq. (42) of Ref. [136]), we obtain the following result for

F̃ β
collins(Q, b),
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, (A2)

where we have partial integrated out the derivative terms in the previous equation to simplify the above expression.
Clearly, the real diagrams contributions contain soft divergence (1/ǫ2), which will be cancelled by the virtual diagrams
contributions. The virtual diagram contributes to a factor,
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− 8

]
. (A3)

After canceling out these divergences, we have the total contribution at one-loop order,

F̃ β
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(3)
h/q(z)

(
ibα

2

){(
−1

ǫ
+ ln

c20ξ̂
2

b2µ2

)

×
(
P̂ c
q→q(ξ̂)δ(1− ξ) + P h1

q→q(ξ)δ(1 − ξ̂)
)

+δ(1− ξ)δ(1− ξ̂)CF

[
3 ln

Q2b2

c20
−
(
ln
Q2b2

c20

)2

− 8

]}
, (A4)
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where P represents the associated splitting kernels. They can be derived from the above results,

P h1

q→q(ξ) = CF

[
2ξ

(1− ξ)+
+

3

2
δ(1 − ξ)

]
, (A5)

P̂ c
q→q(ξ̂) = CF

[
2ξ̂

(1− ξ̂)+
+

3

2
δ(1− ξ̂) + · · ·

]
, (A6)

where we only list the part we have shown in the above from the contribution from Ĥ(3)(z) term. In general, the
evolution of twist-three correlation functions involves multiple parton correlation contributions, for which there is no
homogenous form.
To demonstrate the TMD factorization and calculate the hard factor in the TMD factorization, we have to calculate

the transverse momentum dependence in the quark transversity distribution and the Collins fragmentation function
at one-loop order. For the transversity distribution, we have

h1(xB , k⊥)
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, (A7)

for the un-subtracted distribution in the JMY scheme. Adding the virtual contribution,

h1(xB , k⊥)
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we obtain the total contribution for the un-subtracted quark transversity TMD at the one-loop order,

hunsub1 (xB , b; ζ, µ)
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in the JMY scheme. Therefore, the subtracted TMD quark transversity distribution can be written as

h
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where we have also applied the renormalization for the integrated transversity distribution. By setting x2Bζ
2 = ρµ2

b
and µ = µb as the initial scales for the TMD evolutions, we obtain the C-coefficient and the hard function H1q of
Eq. (60) as
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. (A11)

Similarly, we can carry out the calculations in the JCC scheme, for which we have the TMD quark transversity at
one-loop order,
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Applying the above result into Eq. (60) and setting ζc = µ = µb as the initial scales for the TMD evolutions, we have

H̃(JCC)
1q = 1 +O(α2

s), δCq→q(ξ, µb) = δ(1− ξ)
(
1 +O(α2

s)
)
. (A13)
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The above calculations can be extended to the Collins fragmentation function. The transverse momentum dependence
can be calculated from perturbative QCD, and written in terms of the twist-three fragmentation function,
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Fourier transforming into b-space and adding the virtual diagram contribution (similar to that in Eq.(A8)), we obtain
the un-subtracted Collins fragmentation function at one-loop order,
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Ĥ

(3)
h/q(z)

{(
−1

ǫ
+ ln

c20ξ̂
2

b2µ̄2

)
P̂ c
q→q(ξ̂)− CF δ(1− ξ̂) ln

c20
b2µ2

+CF δ(1− ξ̂)

[
3

2
ln
b2µ2

c20
+ ln

ζ̂2

µ2
− 1

2
ln2

(
ζ̂2b2

c20

)
− 2− π2

2

]}
, (A15)

in the JMY scheme. For the subtracted Collins fragmentation function, we have,
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Similarly, we obtain the subtracted Collins fragmentation function in the JCC scheme,
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From the above results, we derive the associated C-functions,
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Finally, we can obtain the hard factors in both schemes. For example, in the Ji-Ma-Yuan scheme,

H
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. (A19)

Note that the hard part is the same for FUU and FUT that is why we used the same notation H in Eqs. (17,53)
Similarly, for the Collins-11 TMD scheme, we have

H
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These hard factors can be calculated from the factorization of F̃α
collins, or from simply the virtual graphs for both the

cross sections and the parton distribution and fragmentation functions. We will get the consistent results.
In the end, the C-functions in Eq. (53) can be calculated from the above results,

δC(SIDIS)(ξ) = δC(ξ)× H̃1q ×
√
H

(SIDIS)
collins (µ = Q) , (A21)

δĈ(SIDIS)(ξ̂) = δĈ(ξ̂)× H̃c ×
√
H

(SIDIS)
collins (µ = Q) , (A22)
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where the scheme dependence is cancelled out between H1q and H
(SIDIS)
collins . In particular, the ρ dependence disappear

in the JMY scheme when applying the above formulas to calculate the C-functions in the standard CSS resummation.
Similarly, we can calculate the C-functions for the e+e− annihilation processes,

Ĉ(e+e−)(ξ̂) = Ĉ(ξ̂)× D̃q ×
√
H

(e+e−)
uu (µ = Q) , (A23)

δĈ(e+e−)(ξ̂) = δĈ(ξ̂)× H̃c ×
√
H

(e+e−)
collins (µ = Q) . (A24)

Again, the scheme dependence is cancelled out between the last two factors in the above equations. Comparing the
SIDIS and e+e− processes, we also find out that the difference comes from the hard factors.
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