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Abstract

Naively applying holographic duality to gapped gravity on Anti de Sitter (AdS) space seems to suggest
that the stress tensor of the field theory dual cannot be conserved. On the other hand, by symmetry
arguments, it seems that the dual should not violate Poincare symmetry. To clarify this apparent
contradiction, we study a holographic dual of massive gravity where both the physical background
metric and the fiducial metric are AdS. Using the anomalous scaling of the energy momentum tensor as
our guide, we conclude that the dual theory is nonlocal. We find that the dual is similar to conformal
invariant “unparticle” theories. We show that such theories can be viewed as dimensional reductions of
flat-space field theories with inhomogeneous scaling properties.

1 Introduction

While the proposal that gravity is holographic in its nature is profound and mysterious [1, 2], it does
have a concrete realization: the AdS/CFT correspondence [3–5]. How would this correspondence man-
ifest itself if conventional General Relativity (GR) were continuously deformed into a different theory?
Massive gravity on AdS space represents a playground in which we can explore this question.

The nonlinear theory of a massive graviton – referred to here as mGR – was constructed in [6, 7].
The theory guarantees that in (d + 1)-dimensional spacetimes, the graviton mode has (d + 2)(d − 1)/2
physical polarizations (instead of GR’s (d+ 1)(d− 2)/2) on any sensible background [6–16] (e.g. AdS).
Furthermore, the m → 0 limit of a linearized massive gravity on AdS space is continuous [17]. Thus,
assuming that mGR has a stable asymptotically AdS solution for the metric — as we show is the case
— it is interesting to wonder what kind of holographic correspondence could exist between mGR on
AdSd+1 spacetime and some d-dimensional field theory.

The solution to the mGR equations of motion generically involves background values for the Stückelberg
fields, which carry the additional degrees of freedom that appear due to the graviton mass. Such so-
lutions in general map to field theory vacua with non-trivial vacuum expectation values (vevs) or even
explicit sources. Since such vevs would break Poincare symmetry, the field theory’s energy-momentum
tensor (EMT) should not be conserved. Such a construction has already appeared in the AdS/CMT
literature. [18,19] for example, break translational invariance in the dual theory by turning on an inho-
mogeneous reference metric, which corresponds to adding a lattice of ions in the otherwise homogeneous
field theory.

This statement is not surprising if we follow standard AdS/CFT lore. Gauged symmetries on AdS
correspond to global symmetries in field theory, and AdS gauge fields are dual to conserved currents.
Giving the gauge field a mass in AdS breaks the corresponding global symmetry in the field theory,
generating a nozero divergence for the field theory current. Since the massless graviton is dual to the
EMT, turning on a mass for the graviton should ruin EMT conservation. While this is indeed the case
for [18–20] and others in theories that explicitly break some of the conformal invariance, there exists a
very simple example for which the interpretation is not so clear.
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The covariant formulation of mGR necessitates a “reference metric” fab, which defines the geometry
of the target space parametrized by Stückelberg fields Φa. It is the choice of fab which defines – in
part – which of a large set of possible mGR theories we are studying. Say we choose the reference
metric fab to be AdS, and work in a vacuum where Φa = δaMxM . (Uppercase indices denote spacetime
indices, lowercase target space indices.) In that case, a pure AdS metric gMN with no Stückelbergs
exactly solves the nonlinear mGR equations of motion. AdSd+1 with massive graviton represents a
valid vacuum state. Since the solution maintains the symmetries of AdS, the dual field theory should
still enjoy unbroken conformal invariance. Yet the graviton is massive: its dual operator now displays
unusual scaling properties, which naively implies a violation of Poincare symmetry.

Addressing this puzzle is the focus of the present note. First, we describe the holographic inter-
pretation of mGR in general terms. We then focus on the operator content of its dual conformal field
theory (CFT), using the the m → 0 limit as a guide. We then analyze two-point functions in the m 6= 0
theory, concluding eventually that the dual theory must be nonlocal. We furnish an example of such a
theory: the “unparticle stuff” of [21]. We illustrate how such nonlocal conformal theories could arise
as dimensional reductions of flat space theories. Finally, we conclude and suggest some directions for
future work.

2 Massive gravity and duality

Let us begin by outlining the general structure of mGR theories, and how to interpret it in the context
of holography.

In (d + 1) dimensions, mGR possesses (d + 2)(d − 1)/2 physical degrees of freedom (DOF). We can
package all of these DOF into fluctuations of the massive metric gMN , but it is often more convenient to
introduce a gauge redundancy that restores diffeomorphism invariance. We can thus define mGR in terms
of the bulk metric gMN and (d+1) Stückelberg fields Φa. The reference metric fab is a function of these
Φa, which transform as scalars under diffeomorphisms. One can then construct diffeomorphism invariant
terms using the object fab∂MΦa∂NΦbgMN . Hence mGR possesses an additional internal symmetry due
to the reference metric fab, and is not simply a deformation of massless GR. As we see below, even
the zero-mass limit of mGR is not identical to standard GR. We can, instead, think of massive gravity
as a non-linear sigma model (NLSM) in the presence of bulk gravity gMN . The reference metric fab
defines the metric on the target space, while the Stückelbergs Φa denote target space coordinates. The
symmetries of fab then correspond to internal symmetries: when fab is AdSd+1, for instance, the target
space of the NLSM features a non-linearly realized SO(2, d) symmetry that transforms the Φa among
themselves.

Consider background values for the Stückelbergs, ΦaδMa = xM which break the spacetime diffeo-
morphism invariance and the reparametrization invariance of fab to the diagonal subgroup. We now
have fab∂MΦa∂NΦbgMN ≡ fMNgMN , and solve Einstein’s equations in this background. A generic
solution could have a non-trivial gMN and non-vanishing fluctuations of the Stückelberg fields δΦa.
However, it turns out that taking gMN AdSd+1, with δΦa = 0 also solves the equations of motion. It is
straightforward to see that this is the case. The full non-linear action takes the form [7]

S = Md−1
P

∫

dd+1x
√−g

[

R(g)− 2Λcc + 2m2U(KM
N )
]

+ SGHY + Sct (1)

where

KA
B = δAB −

√

g−1f
A

B, fMN = fab∂MΦa∂NΦb , (2)

for bulk metric gMN and reference metric fMN . Λcc is the cosmological constant. The potential U(K)
is a sum of all the determinants of the matrix K, from det2(K), to detd+1(K) with arbitrary coefficients.√
gdet1(K) can be expressed – up to a total derivative – as a linear combination of the cosmological

constant and the other determinants.
Meanwhile, SGHY is the usual Gibbons-Hawking-York boundary term of massless GR. There are no

additional boundary terms needed for a consistent variational principle: the invariants in the potential
U(KM

N ) contain at most one derivative per field, so their variations can be eliminated with boundary
conditions alone. Sct refers to a set of boundary counterterms that are needed to regularize the near-
boundary divergence of AdS/CFT correlation functions.
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For any reference metric fMN that solves the massless Einstein equation, taking gMN = fMN

reduces the massive gravity equations of motion to the massless Einstein equation, which fMN satisfies
by definition. We can then consider weakly coupled fluctuations in this background as long as the energy
scale of fluctuations is below some scale Λstrong on the gravity side (we return to this point briefly in
our concluding remarks). We will take both fMN and gMN to be Anti de Sitter. This solution not only
solves the equations of motion, but is stable under small fluctuations, as it reduces in the linearized
approximation to the Fierz-Pauli quadratic Lagrangian on an AdS background (see [17], and references
therein).

We can now ask: what does this story looks like in holography?
From the perspective of the dynamical metric gMN , there is simply no holographic description until

we choose the AdSd+1 vacuum for gMN . Once we fix this background, we have a dual field theory
consisting of a d-dimensional CFT with a spin 2 current (i.e. the EMT), a spin 1 current, and a scalar
operator. The n-point functions of these operators are fully determined by the action (1). The action
depends on the fact that fab is AdS, so the NLSM of the Φa fields has an internal conformal symmetry.
However, the Φa fields have no kinetic terms if the theory is expanded around 〈Φa〉 = 0; thus, the
gravity theory is infinitely strongly coupled at the origin in the field space. In other words, holography
does not afford us any advantages at this point. On the other hand, if we choose a vacuum in which
Φa = δaMXM , which defines a non-trivial vev for some operators in the CFT , and there is an “emergent”
weakly coupled theory. The conformal symmetry and internal Poincare symmetry are now broken to a
diagonal subgroup, as the background solution explicitly mixes the internal and bulk degrees of freedom.

From now on we focus on the dual field theory of massive gravity with Φa = δaMxM and background
metric AdSd+1, under which we have fab∂MΦa∂NΦb ≡ fMN = g(0)MN .

3 The massless limit: counting degrees of freedom and identi-

fying dual operators

Let us now turn to a more technical study of the operator content in the d-dimensional flat space field
theory. We have taken the reference metric fab to be AdSd+1. As shown above, pure AdSd+1 with no
Stückelbergs exactly solves the massive gravity equations of motion, so we also take gMN to be AdSd+1:

ds2 = g
(0)
MNdxMdxN =

L2

z2
(

ηµνdx
µdxν + dz2

)

. (3)

We work in the mostly plus convention. Uppercase Latin indices denote coordinates in AdSd+1; lowercase
Greek indices denote coordinates in d-dimensional Minkowski space. z ∈ [0,∞) is the radial AdS
coordinate, with boundary at z = 0. L is the AdS radius.

We now study fluctuations hMN around the background g(0)MN . The quadratic order action for
metric fluctuations is simply the Fierz-Pauli action on AdSd+1:

SFP =
Md−1

P

4

∫

dd+1x
√

−g(0)
[

−hMNEMNPQh
PQ − 1

2
m2
(

hMNhMN − h2
)

]

, (4)

where h ≡ hM
M , all indices are raised and lowered with the AdS metric g

(0)
MN (3), and E is the Einstein

(Lichnerowicz) operator [22],

(EAdSh)MN =− 1

2

[

∇2
(

hMN − g
(0)
MNh

)

−
(

∇A∇NhA
M +∇A∇MhA

N

)

+ ∇M∇Nh+ g
(0)
MN∇A∇Bh

AB − 2d

L2

(

hMN − 1

2
g
(0)
MNh

)]

, (5)

and MP is the (d+ 1)-dimensional Planck mass. hMN is a symmetric two-tensor in (d+ 1) dimensions.
By naive counting it has 1

2 (d+2)(d+1) independent components, but the linearized equations of motion
impose d+ 2 constraints, so on shell there are a total of

nh =
1

2
(d+ 1)(d+ 2)− (d+ 1)− 1 =

1

2
(d+ 2)(d− 1) (6)

physical DOF. The mGR theories described in [6, 7] with action (1) maintain this number of degrees of
freedom in the full nonlinear theory, even on arbitrary backgrounds. These degrees of freedom should
precisely match the operator content of the corresponding CFT.
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As noted above, it can be helpful to decompose the graviton mode in a way that restores the
diffeomorphism invariance of the theory. We thus take

M
d−1
2

P hMN = h̄MN + αL∇(M ĀN) + βL2∇M∇N π̄ , (7)

where the ĀM and π̄ are the Stückelberg fluctuations in the vacuum Φa = δaMxM , and α, β are parameters
to be determined. Since the decomposition takes the form of a diffeomorphism hMN → hMN +∇(MξN),
the Einstein-Hilbert action is unaffected; all new terms quadratic terms come from the m2 term. The
linearized action becomes

SFP =
1

4

∫

dd+1x
√

−g(0)
{

−h̄MNEMNPQh̄
PQ

− 1

2
m2

[

(

h̄MN h̄MN − h̄2
)

+
α2L2

4
F̄MN F̄MN + dα2ĀM ĀM + dβ2L2∇M π̄∇M π̄

+ 2αL
(

h̄MN∇M ĀN − h̄∇M ĀM

)

+ 2βL2h̄MN∇M∇N π̄ − βh̄∇2π̄

+ αβ
d

L2
ĀN∇N π̄

)]}

, (8)

where F̄MN = ∂M ĀN − ∂N ĀM = ∇M ĀN − ∇N ĀM . We have used the fact that the Ricci tensor on
AdSd+1 is given by RMN = − d

L2 g(0)MN . A conformal transformation allows us to eliminate cross kinetic
terms between h̄MN and π̄:

h̄MN → h̃MN + β
(mL)2

d− 1
g(0)MN π̄. (9)

Appropriately choosing α, β yields canonically normalized kinetic terms for π̄ and ĀM , so the original
graviton in terms of h̃, Ā, π̄ is now

hMN = M
−(d−1)/2
P

[

h̃MN +
2
√
2

m
∇(MAN) +

2
√
d− 1√
d

1

m(L−1)
√

(mL)2 + d− 1
∇M∇N π̄

+
2

√

d(d− 1)((mL)2 + d− 1)
g(0)MN π̄

]

, (10)

with linearized action

SFP =

∫

dd+1x
√
g(0)

{

1

4
h̃MN (E h̃)MN − m2

8

(

h̃MN h̃MN − h̃2
)

− 1

4
F̄MN F̄MN − 1

2

2d

L2
ĀM ĀM − 1

2
∂M π̄∂M π̄ +

1

2

d+ 1

d− 1
m2π̄2

− m√
2
h̃MN

(

∇M ĀN − g(0)MN∇P Ā
P
)

+
m

2L

√

d(d− 1 + (mL)2)

d− 1
h̃π̄

+
1

L

√

d(d− 1)

2(d− 1 + (mL)2)
π̄∇P Ā

P

}

. (11)

Note that the action contains three different scales: MP , m, and L−1. For generic values of these scales,
the spin 2, spin 1, and spin 0 parts mix nontrivially. In the massless limit on AdS (when m → 0, L−1

small but finite), however, the spin 2 piece decouples completely from the spin 1 and spin 0 fields, and
the spin 1 and spin 0 fields then combine into a single massive vector on AdS with mass m2

V = 2dL−2.
There is no limit in which this vector is massless, so this set of theories always includes the same number
of degrees of freedom, regardless of the value of m.

Let us now turn to the CFT. Unlike the case of the standard AdS/CFT correspondence, where string
theory helped identify both the large Nc CFT and the corresponding supergravity theory, here we can,
at best, characterize our CFT in terms of its symmetry structure and correlation functions, viewing it
perhaps as an effective description of a more complicated UV theory. Let us say, then, that the operator

dual to hMN is some tensor τµν . A symmetric tensor in d dimensions would have d(d+1)
2 components, one
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more than the number of DOF in the bulk field hMN . τµν should thus suffer one additional constraint.
Only two possibilities do not violate Lorentz invariance:

τµνη
µν = 0 and ∂µ∂ντµν = 0 . (12)

In order to see that τµµ = 0 is the only viable option, we consider the tensor and vector parts of τµν dual

to h̃MN and AM , respectively. These modes have scaling dimension ∆T for tensors and ∆J for vectors.
Using the well-known AdS/CFT relations between mass and scaling dimension, we have

vector: ∆J =
1

2

(

d+
√

(d− 2)2 + 4(mV L)2
)

, (13)

spin 2: ∆T =
1

2

(

d+
√

d2 + 4(mhL)2
)

. (14)

As m → 0 limit, h̃MN becomes massless, so the tensor part of τµν must correspond to a dimension d
operator, the EMT Tµν . Meanwhile, the CFT current Jµ dual to AM has ∆J = d+1 when m = 0. Thus,
the appropriate m → 0 limit consists of a theory with conserved EMT, and a non-conserved current
Jµ = (JT

µ ,O) with large “anomalous” scaling dimension. We still need to impose one of the conditions
(12) in order to get the right number of degrees of freedom. Jµ unequivocally contains d DOF, so we need
to effectively impose the extra restriction on Tµν . When m → 0, ∂µTµν = 0, so imposing ∂µ∂νTµν = 0
does not get rid of any additional components. For consistency with the massless limit, then, τµµ = 0 is
our only choice.1 Note that this amounts to the s = 2 case of a well-known group theory result: that
the representation of the conformal group defined by a primary operator having rank s, zero trace, and
scaling dimension (d + s − 2) (together with all of it descendants) is reducible to a conserved traceless
symmetric primary of rank s and dimension (d + s− 2), a rank (s− 1) traceless symmetric primary of
dimension (d+ s− 1), and all descendants (see e.g. [23]).

How, then, do T Tt
µν , J

T
µ and O fit into τµν? Since τ must be traceless, we can only write

τµν = T Tt
µν + a

1

∂2
∂(µJ

T
ν) + b

1

2

1

∂2

(

d∂µ∂ν − ηµν∂
2
)

O , (15)

with ∂µJT
µ = 0. Note the factors of 1/∂2 in this definition, which are essential to making sure that all

parts of τ transform in the same way under dilatations. For the same reason, we cannot use a constant
scale to soak up the dimensions of the Jµ (with dimension d+1) appearing in the decomposition of τµν
(with dimension d).

The parameters a, b are arbitrary so far. We can determine them for small mL, by requiring that
T Tt
µν decouples from Jµ as m → 0. Consider the source term in the CFT generating functional for τµν :

ZCFT = exp

{

iSCFT + i

∫

ddxhµν
0 τµν

}

. (16)

h0µν is the boundary value of the (d + 1)-dimensional graviton, which we have now decomposed in

terms of the massless graviton h̃MN with boundary values h̃0µν , and the Stückelbergs ĀM and π̄ which
constitute a massive gauge field having boundary values A0µ and π̄0. Using equations (10) and (15), we
can write the coupling of the boundary values of the AdSd+1 fields to the dual operator τµν . Rewriting
the source term appearing in the partition function (after integration by parts) :

−i logZCFT = SCFT +

∫

ddxhµν
0 τµν

= SCFT +

∫

ddxM
−(d−1)/2
P

{

h̃µν
0

(

T Tt
µν + a

1

∂2
∂(µJ

T
ν) +

b

2

1

∂2

(

d∂µ∂ν − ηµν∂
2
)

O
)

+
a
√
2

m
A0µJ

Tµ +

√
2(d− 1)b

m
Aµ

0∂µO +
(d− 1)3/2b

mL−1
√

d(d− 1 + (mL)2)
π̄0∂

2O
}

.

(17)

For small mL, we can take

a =
m√
2
+O((mL)2) and b =

√
d

(d− 1)3/2
mL−1

√

d− 1 + (mL)2 +O((mL)2) , (18)

1Indeed, for a conformally invariant local theory, we should have T
µ

µ = 0.
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so A0µ and π̄0 directly source Jµ
T and O, respectively. As m → 0, h̃0µν decouples from JT

µ and O, and
sources only the transverse traceless EMT. The coupling between A0µ and ∂µO remains finite, however,
in line with our expectation that AM and π̄ together source a single, non-conserved current in the CFT.

In sum, we have derived a decomposition for the operator τµν which maps onto the conformal EMT
and a decoupled vector current in the massless case. For small but finite mass, however, it is clear that
the operators Jµ and Tµν mix, and the EMT is no longer conserved.

4 Two-point functions

We saw above that the CFT operator τµν is dual to a symmetric traceless tensor. In the limit of zero
mass, we understood that τµν must contain a conserved traceless EMT, and a non-conserved current
Jµ. Let us now study the simplest CFT data available to us, the two-point functions of τµν originally
derived in [24]:

〈τµν (x)τρσ(y)〉 =
Cd,∆̃

|x− y|2∆̃+d

[

1

2
Jµρ(x − y)Jνσ(x − y) +

1

2
Jµσ(x− y)Jνρ(x− y)− 1

d
ηµνηρσ

]

, (19)

where

Jµν(x) = ηµν − 2
xµxν

|x|2 and Cd,∆̃ =
∆̃(∆̃ + d

2 + 1)Γ(∆̃ + d
2 )

2πd/2κ2(∆̃ + d
2 − 1)Γ(∆̃)

, (20)

with

∆̃ =

√

(mL)2 +
d2

4
. (21)

Henceforth we will absorb all factors of MP into the definition of the operators, which amounts to setting
MP = 1.

Note that we did not explicitly impose any tracelessness condition on hMN (or its boundary values)
– nevertheless the two-point function is traceless. Technically speaking this is due to a suppression in z
of the trace part of hµν , which in turn means that there is no coupling to the trace parts of the boundary
sources. We have also seen, from the CFT side, that tracelessness of τµν is essential to matching DOF.

To analyze the two-point function in greater detail, we work in momentum space, where we can
decompose (19) in terms of traceless Lorentz structures as

〈τµν(q)τρσ(p)〉 = δd(p+ q)
[

ΠαP
A
µνρσ +ΠβP

B
µνρσ +ΠγP

C
µνρσ

]

, (22)

with form factors

Πα =
Q(p)

(∆̃ + d
2 )(∆̃ + d

2 − 1)

(

∆̃2 − (d− 1)∆̃ +
d

2

(

d

2
− 1

))

, (23)

Πβ =
Q(p)

(∆̃ + d
2 )

(

d

2
− ∆̃

)

, (24)

Πγ = Q(p) , (25)

and

Q(p) = − ∆̃Γ(1− ∆̃)p2∆̃

22∆̃+1Γ(1 + ∆̃)
. (26)

The traceless Lorentz structures

P
A
µνρσ =

1

d(d− 1)

(

ηµν − d
pµpν
p2

)(

ηρσ − d
pρpσ
p2

)

, (27)

P
B
µνρσ = −1

2

[(

ηµρ −
pµpρ
p2

)(

ηνσ − pνpσ
p2

)

+

(

ηµσ − pµpσ
p2

)(

ηνρ −
pνpρ
p2

)]

+
1

2
(ηµρηνσ + ηµσηνρ)−

pµpνpρpσ
p4

, (28)

P
C
µνρσ =

1

2
(ηµρηνσ + ηµσηνρ)−

1

d
ηµνηρσ − P

A − P
B (29)
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form an orthonormal basis for Lorentz structures with four indices. They obey P
µ
µρσ = P

ρ
µν ρ = 0,

Pµνρσ = Pνµρσ = Pρσµν , where P
I
P
J = δIJPI .

Recalling that in momentum space

τµν(p) = T Tt
µν + a

i

p2
p(µJ

T
ν) −

b

2

1

p2
(

ηµνp
2 − dpµpν

)

O , (30)

we can extract T Tt
µν using P

C :

T Tt
µν = P

C ρσ
µν τρσ , (31)

and JT
µ , O with

P
A ρσ
µν τρσ = − b

2

1

p2
(

ηµνp
2 − dpµpν

)

O , (32)

and

P
B ρσ
µν τρσ = −a

i

p2
p(µJ

T
ν) . (33)

Applying these projectors PI to the correlation function in momentum space, we recover all possible
two-point functions among T tT , JT , and O. In particular, due to the orthogonality of the projectors,
we can quickly see that there are no mixed two-point functions. For instance

〈T T
µν(p)

(

iq(ρJ
T
σ)(q)

)

〉 = δd(p+ q)PC〈ττ〉PB ∝ P
C
P
B = 0 . (34)

The two-point functions are simply

〈T Tt
µν (p)T

Tt
ρσ (q)〉 = δ(d)(p+ q)ΠγP

C
µνρσ , (35)

1

p2
〈p(µJT

ν)(p)q(ρJ
T
σ)(q)〉 = −δ(d)(p+ q)

p2

a2
ΠβP

B
µνρσ = −2p2

m2
δ(d)(p+ q)ΠβP

B
µνρσ , (36)

〈O(p)O(q)〉 = δ(d)(p+ q)
4

d(d− 1)b2
Πα =

4(d− 1)2

d2m2L−2(d− 1 + (mL)2)
δ(d)(p+ q)Πα . (37)

For small m, the leading terms in Πβ and Πα go like (mL)2, so the JT
µ and O two-point functions

given in (36), (37) are finite even in the massless limit. The T Tt
µν two-point function is always order 1,

and is not only traceless but transverse. When m 6= 0, T Tt
µν is still conserved in momentum space, but

its conservation is due entirely to the Lorentz structure P
C , and is satisfied despite the fact that its

two-point function scales as p2∆̃ instead of the p2d of conserved, d-dimensional EMTs in local quantum
field theories.

We argue that this unusual scaling property, combined with conformality, implies that the dual of
mGR is a nonlocal theory. Why exactly do conserved currents have a prescribed dimension? Consider,
for instance, a d-dimensional system with non-abelian internal symmetry that has corresponding vector
currents J i

µ (i labels the generators T i). The constant which parametrizes internal symmetry transfor-
mations is not dependent on spacetime at all, and is thus dimensionless. The symmetry is generated by
global charges proportional to T i. For local theories, these charges can be realized as integrals over the
time components of the conserved currents, and in fact we can write down a local version of the global
algebra:

[J i
0(~x), J

j
0 (~y)] = if ijkδ(d−1)(~x− ~y)Jk

0 (~x) . (38)

In order for this relation to hold, the current must have dimension (d−1).2 Similarly, the EMT generates
spacetime translations, and is described by a parameter which has dimensions of length. By the identical
argument to the above, then, we can see that for d-dimensional local theories, the EMT must have mass
dimension d if it is related to a conserved charge. In the dual to mGR, this is clearly not the case: the

2This argument clearly applies only to non-abelian symmetry groups. Another argument is that in both the abelian and
the non-abelian case, we can always choose to gauge the symmetry. The gauge field has mass dimension 1 by definition, so
the current to which it couples must have dimension (d− 1).
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fact that the scaling dimension of Tµν differs from d implies that there is no relationship between the
global charge and the current. So while the global conformal symmetry may remain, we cannot realize
its commutation relations in terms of local currents.

Furthermore, the unusual scaling dimension of Tµν cannot arise as the result of renormalization group
(RG) flow from some local, Lorentz invariant UV fixed point. In that case, non-conserved operators would
acquire anomalous dimensions, but the EMT would retain the same scaling it possesses at m = 0.

We argue in the next section that this strange behavior can arise in a conformal but non-local
framework, sometimes termed an “unparticle” theory.

5 Unparticles and toy models for anomalous scaling

The “unparticle stuff” of [21] defines a theory having a non-trivial IR fixed point, which couples weakly
to the Standard Model (SM) at high energies. Below some scale ΛU , the new “unparticle” fields decouple
from the SM, matching onto a generically strongly coupled conformal sector consisting of “unparticle”
operators. Because this sector is conformally invariant, it cannot be characterized by excitations of well-
defined mass. Instead, one can think of them as a non-integer number of states [21], or as fields with
continuous mass distributions [25,26]. Similar ideas were applied in [27] to deduce correlation fucntions
in strongly correlated electron matter.

A continuous mass distribution can arise as an effectively continuous KK tower, which begs interpre-
tation in terms of the AdS/CFT correspondence. Indeed, [28] demonstrated the emergence of unparticle
behavior in the CFT dual of a single massive scalar field on asymptotically AdS space.

We will now show that such theories, which effectively possess a fractional number of particles, are
one way to produce the conserved, traceless tensors with non-integer scaling that we observed above.

Consider symmetric traceless two-tensor unparticles (“ungravitons” in the language of [29]) Oµν . We

can decompose the operator Oµν in a basis of individual particle operators φ
(i)
µν : Oµν =

∑n
i=1 ciφ

(i)
µν .

Each φ(i) produces a particle of mass mi and polarization ǫµν when it acts on the vacuum. We will
eventually take n → ∞: an continuum of particles with a continuous mass distribution. The unparticle
propagator has form

〈Oµν(p)Oρσ(0)〉 =
∞
∑

i=1

|ci|2
p2 −m2

i + iǫ
P
C
µνρσ

∣

∣

on−shell
=

∫ ∞

0

dt
ρµνρσ(t)

p2 − t+ iǫ
, (39)

with spectral function ρµνρσ =
∑∞

i=1 |ci|2δ(t − mi)
2
P
C
µνρσ. By “on-shell” we mean that the factors of

momentum p2 are replaced by (−m2
i ) in the projector.

When the mass splitting vanishes, we achieve a spectral density ρ(t) ∼ t∆−1, which gives a propagator
∼ p2(∆−1) for some (non-integer) ∆ [26]. [28] details how such spectral functions can arise from scalar
or vector fields in asymptotically AdS space. The interior of the (d + 1) dimensional space affects the
spectrum and spectral densities of the CFT operators – by tuning the background metric, then, it seems
that one could produce a variety of different spectral functions.

According to this picture, the bulk AdS theory corresponds to a conformal sector featuring unparticles
generated by a vector current Jµ and a traceless, transverse two-tensor T tT

µν . The theory is strongly
coupled, so there is no straightforward way to capture the content of the unparticle sector, or in fact the
relationship between T tT

µν and Jµ. Nevertheless this theory is conformal: we know the dual geometry
still possesses the full AdS symmetry. It also seems to have dynamical gravity, which would imply the
existence of an EMT – but from the scaling of the correlation functions we understand that this cannot
be the case.

5.1 Unparticle actions

Though the unparticle sector is strongly coupled by definition, we can write down a nonlocal action that
generates the spectral functions defined above. This very simple for scalar particles, because the Lorentz
structure of the propagator is trivial:

Sχ =
1

2

∫

ddp χ(−p)p−2δχ(p) , (40)
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where δ is some (usually non-integer) number. This generates a propagator of the form 〈χχ〉 ∼ ip2δ.
Similarly, we can reproduce the vector propagator by taking the action

Sζ =

∫

ddp

{

−1

4
F (ζ)
µν p−2δF (ζ)µν + p−2δζµOgfµνζ

ν

}

, (41)

where F
(ζ)
µν (p) = ipµζν − ipνζµ. The first term in the action still possesses the usual gauge freedom of

Maxwell theory, so we include Ogf (ζµ) to fix the gauge. Say we choose

ζµOgfµνζ
ν = − 1

2ξ2
(pµζµ)

2 . (42)

The propagator for the vector unparticles is thus

D(ζ)
µν = −ip2δ−2

(

ηµν − (1 − ξ2)
pµpν
p2

)

. (43)

Taking ξ → 0 for example yields a transverse propagator.
Now consider spin 2 unparticles. We want the Lorentz structure of the propagator to be that of

massive spin 2 particles, but for the scaling to differ from the usual ∆ = d. Consider the action

Sζ =

∫

ddp θµν(−p)
[

Êµνρσ + p2Qgf (θ)
]

p−2δθρσ(p) , (44)

where Ê is the Lichnerowitz operator in momentum space (which is of order p2) and Qgf (θ) again refers
to some “gauge fixing” operator that eliminates the redundancy of the description. In order to match
onto the propagator for the two-tensor unparticles, we should require

p−2δ
(

Ê + p2Qgf (θ)
)µναβ

P
C
αβρσ =

i

2

(

δµρ δ
ν
σ + δµσδ

ν
ρ

)

, (45)

where P
C
ρσµν is precisely the tensor structure appearing the two-point function, and

Qgf =− 1

4γ2

[

1

p2
(pµpρηνσ + pµpσηνρ + pνpρηµσ + pνpσηµρ) + βηµνηρσ

]

, (46)

with γ → 0 and β an arbitrary non-zero constant yields the desired result.
We can now assemble these three different types of unparticles into a single action, designed in such

a way that the scaling dimensions of the “un-propagators” match those computed via holography:

Stotal =

∫

ddp
{

Kθθ
µν(−p)

[

Êµνρσ + p2Qgf (θ)
]

p−2(∆̃+1)θρσ(p)

+ Kζ

[

−1

4
F (ζ)
µν p−2∆̃F (ζ)µν + ζµp−2∆̃−2Ogfµνζ

ν

]

+Kχχ(−p)p2(2−∆̃)χ(p)

}

, (47)

where

K−1
θ = − ∆̃Γ(1− ∆̃)

22∆̃+1Γ(1 + ∆̃)
, (48)

K−1
ζ = − L−2∆̃Γ(1− ∆̃)

22∆̃Γ(1 + ∆̃)(∆̃ + d
2 )

2
, (49)

K−1
χ = − L4(d− 1)2

d2(∆̃ + d− 1)2
(

∆̃ + d
2

)

∆̃Γ(1− ∆̃)

22∆̃−1Γ(1 + ∆̃)
. (50)

Note that this is a toy mock-up of a quadratic action that recovers the desired correlation functions we
found using AdS/CFT.
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5.2 A nonlocal effective field theory from inhomogeneous scaling

In the previous subsection, we demonstrated a way to write down a d-dimensional action for unparticles
to yield the Lorentz structures and scalings of the correlators derived from mGR. These theories preserve
Lorentz (and in fact conformal) invariance, but are nonlocal – in addition to being somewhat ad hoc.
It is illuminating, then, to understand how such effective theories could arise from more local flat
space theories. We will consider, in particular, (d + 1)-dimensional flat space theories, which are local
in d dimensions (labeled by xµ), but which exhibit inhomogeneous (“Lifshitz-like”) scaling along one
direction, y. These Lagrangians are still invariant under (a modified set of ) diffeomorphisms. We
eventually integrate out of the auxiliary (y) direction to find nonlocal conformally invariant field theories.

5.2.1 Scalar particles

Consider an action for a scalar in half of (d+ 1)-dimensional Minkowski space.

S = −1

2

∫ ∞

0

dy

∫

ddx
[

∂αΦ
y Φ(x, y)∂αΦ

y Φ(x, y) + ∂µΦ(x, y)∂
µΦ(x, y)

]

+ Sbdy , (51)

where the “(d+ 1)”th coordinate y ∈ [0,∞). Given appropriate boundary conditions for the fields and
choice of Sbdy, this action has a well-defined variational principle. The parameter αΦ characterizes a
theory inhomogeneous scaling in the auxiliary y direction. We assume that αΦ > 0. The equations of
motion are

δS =

∫ ∞

0

dy

∫

ddx
[

−(−1)−αΦδΦ(x, y)∂2αΦ
y Φ(x, y) + δΦ(x, y)∂2Φ(x, y)

]

−
∫

ddx

n−1
∑

k=0

(−1)n−1+k−αΦ
dn−k−1

dyn−k−1
δΦ

dk+2αΦ−n

dyk+2αΦ−n
Φ

∣

∣

∣

∣

∞

0

, (52)

where n is an integer such that n− 1 < αΦ < n. We impose the boundary conditions that (1) Φ and all
of its derivatives vanish as y → ∞, and (2) δΦ(y = 0) = 0, with Φ(x, 0) = ϕ(x). We can eliminate any
remaining boundary terms at y = 0 by adding a boundary action (à la Gibbons-Hawking-York):

Sbdy =
1

2

∫

dy

∫

ddx ∂y

(

n−2
∑

k=0

(−1)k∂n−k−1+αΦ
y Φ∂k−n+αΦ

y Φ

)

. (53)

Assuming (for technical reasons) that αΦ is a ratio of odd integers, we can show that

Φ(x, y) = e−y(−∂2)1/2αΦ
ϕ(x) (54)

solves the equations of motion in the y direction. Plugging this solution into the action and integrating
out y, we end up with the dynamics of the effectively d-dimensional field ϕ(x):

Son−shell,Φ = −1

2

∫

ddx Φ∂2αΦ−1
y Φ

∣

∣

∞

0

=
(−1)2αΦ−2

2

∫

ddx ϕ(−∂2)
1− 1

2αΦ ϕ . (55)

In order to match the scaling of the scalar propagator derived in previous sections, we should choose
αΦ = (2∆̃ + 2)−1. Such scaling should of course be neutralized by a dimensionful parameter to achieve
the correct scaling in the Lagrangian.

5.2.2 Vectors

Similarly, we can construct a (d + 1)-dimensional theory with inhomogeneous scaling for vectors, that
leads to a non-local but conformal-invariant effective action upon dimensional reduction. The vector case
is a bit more complicated, because it is not sufficient to achieve the correct scaling, we also want to extract
d-dimensional modes which are transverse. To this end, let us introduce the gauge transformations

Aµ → Aµ + ∂µG , (56)

Ay → Ay + ∂αA
y G . (57)

10



Under these transformations, the modified field strength F̃MN is invariant:

F̃µν = ∂µAν − ∂νAµ , (58)

F̃µy = ∂µAy − ∂αA
y Aµ , (59)

and we can write the action

S =

∫

ddx

∫ ∞

0

dy

[

−1

4
F̃MN F̃MN

]

+ Sbdy (60)

where Sbdy denotes the boundary action determined as before to cancel boundary variations, given
boundary conditions δAµ(y = 0) = 0 and Aµ → 0 as y → ∞.

Using the gauge freedom, we set Ay = 0, with which the Ay EOM yields ∂αA
y ∂µAµ = 0. The

longitudinal part of Aµ thus has no dynamics in the y direction, and we take it to vanish. The EOM
now take on a similar form to the ones we found in the scalar case:

∂2A⊥
µ = (−1)−αA∂2αA

y A⊥
µ , (61)

with similar solutions. The on-shell effective action in d dimensions becomes

Son−shell,A =

∫

ddx
(−1)2αA−2

2
A⊥

µ (∂
2)

1− 1
2αA A⊥

µ . (62)

Matching dimensions to the transverse part of the vector current two-point function calculated holo-
graphically, we have αA = (2∆̃ + 4)−1.

5.2.3 Spin 2

For spin 2, we can use a similar strategy to the vector. We will write the action for the tensor HMN in
terms of modified lapse and shift functions

N = (gyy)−1/2 ≈ 1 +
1

2
Hyy + . . . , (63)

Nµ = gyµ ≈ Hyµ + . . . , (64)

where now

S =

∫

ddx

∫ ∞

0

dy N
√
gd

(

Rd + K̃2
µν − K̃2

)

, (65)

and K̃µν is a modified extrinsic curvature, which to linearized order in HMN is

K̃µν ≈ 1

2

(

∂αh
y Hµν − ∂µHνy − ∂νHµy

)

. (66)

The action is symmetric under a modified set of diffeomorphisms,

Hµν →Hµν + ∂µξν + ∂νξµ , (67)

Hµy →Hµy + ∂αh
y ξµ . (68)

Hyy does not transform, and has no dynamics in the y direction. We have a total of d gauge parameters
defining the transformation, we expect the number of dynamical degrees of freedom to be

(d+ 1)(d+ 2)

2
− 1− 2d =

1

2
d(d− 1) . (69)

It will be convenient to decompose the fields as

Hµν(x, y) = HTt
µν + ∂µAν + ∂νAµ + ∂µ∂νπ + ηµνσ , (70)

Hµy(x, y) = Bµ + ∂µϕ , (71)
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where HTt
µν is transverse traceless, and Aµ, Bµ are transverse. We can use the gauge freedom to set

Aµ = 0 and π = 0. Under this gauge fixing and after some manipulation, the EOM in d+ 1 dimensions
are

∂2HTt
µν − (−1)−αh∂2α

y HTt
µν =

= ∂µ∂ν
[

Hyy − (d− 2)σ + 2(−1)−αh∂αh
y ϕ

]

+ ηµν(−1)1−αh(d− 1)∂2α
y σ

+ 2(−1)1−αhηµν∂
αh
y ∂2ϕ− (−1)−αh∂αh

y (∂µBν + ∂νBµ) . (72)

As before, we seek solutions to these equations from which we can derive the effective d-dimensional
dynamics. Let us set σ = 0. This implies ∂2Bµ ∝ σ = 0, so we can assume Bµ = 0 as well. Now

∂2HTt
µν − (−1)−αh∂2αh

y HTt
µν = 2(−1)1−αh∂αh

y ηµν∂
2ϕ . (73)

Since the trace must vanish, we also have ∂2αh
y ∂2ϕ = 0 and

∂2HTt
µν − (−1)−αh∂2αh

y HTt
µν = 0 . (74)

Imposing the boundary condition HTt
µν(x, 0) = HTt

µν(x), we have the same effective action,

Son−shell,H =

∫

ddx(−1)−αhHTt
µν

(

−∂2
)1− 1

2αh HTt
µν . (75)

Here αh = (2∆̃ + 2)−1 as for the scalar case.

5.2.4 Assembling the effective action

The goal of this exercise was to show that we can reproduce the correlators of the operator τµν , or
equivalently, the correlation functions of the unparticle theory in the previous subsection. Putting
together the results just derived, we have a 1-PI effective action in d dimensions derived from the
(d+1)-dimensional theory with anomalous scaling along an auxiliary direction. The (d+1)-dimensional
Lagrangian is given by

Sd+1 =

∫

dd+1x
1

2

{

−(∂
1

2(∆̃+1)
y Φ)2 − ∂µΦ∂µΦ− 1

2
F̃MN F̃MN +N

√
gd

(

Rd + K̃2
µν − K̃2

)

}

, (76)

where the inhomogeneous field strength, lapse and shift, and extrinsic curvatures are defined as above.
Note that the action in d of the (d+1) dimensions is local– it only exhibits unusual scaling in the auxiliary
direction. Furthermore, though the action (76) contains “gravity,” it does not feature a cosmological
term – the background is not curved. We now assume that these bulk terms interact with some operators
on the “brane” at y = 0. Recall the decomposition of τµν as

τµν =
(

P
Aρσ
µν + P

Bρσ
µν + P

Cρσ
µν

)

τρσ . (77)

in terms of idempotent, mutually orthogonal operators PI . We assume that these (irreducible) operators
living on the brane couple to Φ, A, H. The couplings of the source τµν to the fields goes like

Sint =

∫

ddx

[

CA
1

∂2

(

∂2ηµν − d∂µ∂ν
)

ΦPµν
Aρστ

ρσ + CB
1

∂2
(∂µAν + ∂νAµ)P

µν
Bρστ

ρσ + CChµνP
µν
Cρστ

ρσ

]

,

(78)

where the couplings CA, CB, and CC are determined via the coefficients appearing the two-point function
as computed via AdS/CFT.

Now, upon integrating out in y, we have the 1-PI effective action

Seff = (−1)
−

2∆̃+1

∆̃+1

∫

ddx
[

Φ(−∂2)−∆̃Φ+ (−1)
−

1
(∆̃+1)(∆̃+2)A⊥

µ (−∂2)−∆̃−1A⊥µ + hTt
µν(−∂2)−∆̃hTtµν

]

.

(79)

We have thus shown how the nonlocal behavior in a field theory might arise. This 1-PI effective action
is related to the unparticle description of (47) in that it yields the same correlation functions for the
irreducible parts of τµν .
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6 Conclusion and Outlook

We have described the dual of massive gravity (with small m) on AdS with AdS reference metric, which
we conjecture to be a nonlocal conformal theory characterized by a spin 2 operator. As m → 0, this
operator reduces to the conserved EMT and a vector current. We showed, furthermore, that it is possible
to generate such theories as the dimensional reductions of frameworks with inhomogeneous scaling.

Our discussion is complementary to existing work on field theory duals for bigravity. Indeed, an
appropriate limit of bigravity – whose AdS/CFT dual was studied in the compelling work of [30, 31] –
might takes us to massive gravity alone. Bigravity theories feature two dynamical metrics, with two
different Planck masses, each corresponding to the EMT of some field theory. The setup of [30], for
instance, features two copies of AdS space – each housing a massless graviton and a scalar field – which
share a boundary. A particular choice of boundary condition couples the two scalar fields, which in turn
generate a mass for a linear combination of the two gravitons via loop corrections. The full theory now
has one massive graviton (gµν) dual to some symmetric two-tensor operator, and a massless graviton
(fµν) dual to the conserved total EMT. One arrives at mGR by decoupling the metric fµν from the rest
of the bigravity dynamics by taking its Planck mass to infinity, as shown in [32]. However, this still does
not answer the question of what the dual theory of the decoupled system should look like, especially
since mGR exists as a well-defined theory in its own right, not only as a limit of bigravity.

In this work, we studied the quadratic order Lagrangian. An important next step would be to
understand the interpretation of mGR parameters in terms of CFT data, which would go hand in hand
with an analysis of the interaction terms. Top-down formulations of gauge-gravity duality have the
advantage that we can precisely identify the relationship between parameters in AdS to parameters in
the CFT. For standard AdS5/CFT4, the large MP , small curvature (L−1) theory corresponds to a large
Nc, large ’t Hooft coupling λ = g2YMNc limit of the CFT via the well-known relations (see e.g. [33] for
a review)

(

L

ls

)4

∼ λ , (M10ls)
8 ∼ N2

c

λ2
=

1

g4YM

⇒ LM10 ∼ N1/4
c . (80)

L is the AdS radius, M10 is the 10d string theory Planck mass, and ls is the string length. Only relative
scales are important, and the string length ls never appears on its own in the supergravity approximation
(because all massive string excitations are infinitely massive). If we choose the 10d Planck mass as our

reference scale, we can clearly see from these relations that the string scale l−1
s ∼ g

1/2
YMM10 ≫ M10 when

the CFT is strongly coupled (gYM ≫ 1). Similarly, when
√
Nc ≫ 1 the spacetime curvature of AdS is

weak, R ∼ L−2 ≪ M−2
10 . It is in this limit that we can use perturbative (super)gravity.

We can, at most, treat mGR on AdSd+1 as some effective theory which may (or may not) derive
from a string theory, so any identification of mGR parameters with CFT parameters is thus conjectural
at best, though as m → 0 we should recover the pure gravity identifications. We might conjecture,
then, that our low energy effective theory on the mGR side corresponds to a strongly coupled conformal
theory, characterized by a coupling λ. Just as the AdS scale is dual to the magnitude of the CFT
coupling, we conjecture that the ratio m/MP defines an additional CFT coupling, λ̃ which encodes the
non-locality of the theory. Future work should explore the details of this relationship via higher-point
correlation functions.

mGR itself displays interesting phenomena, which beg CFT interpretation. For instance, here is
generically a scale above which the gravitational excitations in mGR become strongly coupled. This
implies some parametric threshold in terms of the CFT parameters beyond which we cannot reliably use
perturbative gravity. It seems naively that for small m, this regime is always out of reach.

In order to use a perturbative gravity description, one should consider excitations with energies below
some cutoff Λcut(m,MP , L). This is simply the lowest scale suppressing interactions that appear as we
expand the potential U . We can read off the scale from the Galileon-type interactions of the type

�π̄(∂π̄)2 , (81)

which, once we canonically normalize the fields, are suppressed by a coefficient

Λ
−

d+3
2

cut = M
−

d−1
2

P · β2L4 · γ ⇒ Λcut ∼ MP

[

(

L−1

MP

)3(
m

MP

)−1
(

(mL)2 + d− 1
)3/2

]
2

d+3

.

(82)

13



If we take d = 3, and L → ∞ andm finite, we recover the Minkowski space result [6]: Λcut ∼ (MPm
2)1/3.

While the graviton mass is a small, i.e. m ≪ L−1 ≪ MP we are free to consider momenta of order
the AdS scale without straying into the regime of strong gravitational interactions (for any dimension
d > 1):

L−1

Λcut
∼ (mL)

2
d+3

(

L−1

MP

)

d−1
d+3

< 1 . (83)

This means that the gravitational description of the CFT should be reliable, even for higher point
functions of CFT operators.

If we consider a graviton mass near the AdS scale L−1, e.g. m = ρL−1 where ρ ∼ O(1),

L−1

Λcut
∼
[

ρ2
(

ρ2 + d− 1
)−3
]

1
d+3

(

L−1

MP

)

d−1
d+3

. (84)

It is straightforward to check that this function is maximized at ρ2 = (d− 1)/2. As long as L−1 ≪ MP

by a few orders of magnitude, this ratio remains less than unity (for dimensions 2, 3, 4). For values of
m up to the AdS scale, then, strong interactions in gravity are safely above MP , and we can explore
the full parameter space of the dual couplings λ and λ̃. It would be interesting to explore these limits
in greater detail, and to understand in particular what conspiracy of CFT parameters λ and λ̃ induces
strong coupling behavior in mGR.

In this work we considered the duality between mGR with small m, and conformal theories. One
might also study other mGR solutions which are only asymptotically AdS. Is there, for instance, a
Hawking-Page transition in these frameworks? And if so, how is this reflected in the structure of the
CFT?
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