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We give simple arguments for new non-renormalization theorems on higher derivative couplings of

gauge theories to supergravity, with sixteen supersymmetries, by considerations of brane-bulk super-

amplitudes. This leads to some exact results on the effective coupling of D3-branes in type IIB string

theory. We also derive exact results on higher dimensional operators in the torus compactification

of the six dimensional (0, 2) superconformal theory.

I. INTRODUCTION

A great deal of the dynamics of maximally su-

persymmetric gauge theories and string theories can

be learned from the derivative expansion of the ef-

fective action, in appropriate phases where the low

energy description is simple. On the other hand,

it is often nontrivial to implement the full con-

straints of supersymmetry on the dynamics, due to

the lack of a convenient superspace formalism that

makes 16 or 32 supersymmetries manifest (see [1–

7] however for on-shell superspace and pure spinor

superspace approaches). It became clear recently [8–

11] that on-shell supervertices and scattering ampli-

tudes can be used to organize higher derivative cou-

plings efficiently in maximally supersymmetric theo-

ries, and highly nontrivial renormalization theorems

of [12, 13] can be argued in a remarkably simple way

based on considerations of amplitudes.

In this paper we extend the arguments of [11]

to gauge theories coupled to maximal supergravity,

while preserving 16 supersymmetries. Our primary

example is an Abelian gauge theory on a 3-brane

coupled to ten dimensional type IIB supergravity,

though the strategy may be applied to other dimen-

sions as well. We will formulate in detail the brane-

bulk superamplitudes, utilizing the super spinor he-

licity formalism in four dimensions [14] as well as in
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type IIB supergravity [15, 16]. By considerations

of local supervertices, and factorization of nonlo-

cal superamplitudes, we will derive constraints on

the higher derivative brane-bulk couplings of the

form F 4, RF 2, D2RF 2, D4RF 2, R2, D2R2. These

amount to a set of non-renormalization theorems,

which when combined with SL(2,Z) invariance, de-

termines the τ, τ̄ dependence of such couplings com-

pletely in the quantum effective action of a D3 brane

in type IIB string theory. Some of these results have

previously been observed through explicit string the-

ory computations [17–28].

We then turn to the question of determining

higher dimensional operators that appear in the four

dimensional gauge theory obtained by compactify-

ing the six dimensional (0, 2) superconformal theory

on a torus. While it is unclear whether this the-

ory can be coupled to the ten dimensional type IIB

supergravity, we will be able to derive nontrivial con-

straints and an exact result on the F 4 term by inter-

polating the effective theory in the Coulomb phase,

and matching with perturbative double scaled little

string theory. Our result clarifies some puzzles that

previously existed in the literature.

II. BRANE-BULK SUPERAMPLITUDES

We begin by considering a maximally supersym-

metric Abelian gauge multiplet on a 3-brane cou-

pled to type IIB supergravity in ten dimensions.

The super spinor helicity variables of the ten dimen-

sional type IIB supergravity multiplet are ζαA and

ηA, where α = 1, · · · , 16 is an SO(1, 9) chiral spinor
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index, and A = 1, · · · 8 is an SO(8) little group chiral

spinor index. The spinor helicity variables ζαA are

constrained via the null momentum pm by

δABpm = Γ
αβ
m ζαAζβB . (II.1)

A 1-particle state in the type IIB supergravity mul-

tiplet is labeled by a monomial in ηA. For in-

stance, 1 and η8 ≡ 1
8!εA1···A8

ηA1
· · · ηA8

correspond

to the axion-dilaton fields τ and τ̄ , η[AηB] and
1
6!εABA1···A6ηA1 · · · ηA6 correspond to the complex-

ified 2-form fields, and η[AηBηCηD] contains the

graviton and the self-dual 4-form. The 32 super-

charges qα, q̃α act on the 1-particle states as [16]

qα = ζαAηA, qα = ζαA
∂

∂ηA
. (II.2)

The supersymmetry algebra takes the form

{qα,qβ} = {qα,qβ} = 0, {qα,qβ} =
1

2
pmΓmαβ .

(II.3)

To describe coupling to the brane, let us decompose

the supercharges with respect to SO(1, 3) × SO(6),

and write

qα = (qαI , q̃α̇
I), qα = (q̃αI , qα̇

I). (II.4)

Here α and α̇ are four dimensional chiral and anti-

chiral spinor indices, and the lower and upper index

I label the chiral and anti-chiral spinors of SO(6).

The coupling to four dimensional gauge multiplet on

the brane will preserve 16 out of the 32 supercharges,

which we take to be qaI and qα̇
I .

The four dimensional super spinor helicity vari-

ables for the gauge multiplet are λα, λ̃β̇ , θI . The

null momentum and supercharges of a particle in

the multiplet are given by [14]

pµ = σαβ̇µ λαλ̃β̇ , qαI = λαθI , qβ̇
I = λ̃β̇

∂

∂θI
.

(II.5)

The SO(2) little group acts by

λ→ eiαλ, λ̃→ e−iαλ̃, θ → e−iαθ. (II.6)

Here we adopt a slightly unconventional little group

transformation of θI , so that qαI , q̃β̇
I are invariant

under the little group, and can be combined with

the supermomenta of the bulk supergravitons in con-

structing a superamplitude. A 1-particle state in a

gauge multiplet is represented by a monomial in θI .

For instance, 1 and θ4 ≡ 1
4!ε

IJKLθIθJθKθL repre-

sent the − and + helicity gauge bosons,[29] while

θIθJ represent the scalar field φ[IJ].

In an n-point superamplitude that involves parti-

cles in the four dimensional gauge multiplet as well

as the ten dimensional gravity multiplet, only the

four dimensional momentum Pµ =
∑n
i=1 piµ and the

16 supercharges (QαI , Qβ̇
I) are conserved. Here we

have defined

QαI =

n∑
i=1

qiαI =
∑
i

λiαθiI +
∑
j

ξjαIAηjA,

Qβ̇
I =

n∑
i=1

qiβ̇
I =

∑
i

λ̃iβ̇
∂

∂θiI
+
∑
j

ξ̃jβ̇
I
A

∂

∂ηjA
,

(II.7)

where ξ̃iβ̇
I is the decomposition of the supergrav-

ity spinor helicity variable ζiαA with respect to

SO(1, 3)× SO(6) ⊂ SO(1, 9), namely

ζiαA = (ξiαIA, ξ̃iβ̇
I
A). (II.8)

A typical superamplitude takes the form[30]

A = δ4(Pµ)δ8(QαI)F(λi, λ̃i, θi, ζj , ηj), (II.9)

where

δ8(QαI) ≡
∏
α,I

QαI , (II.10)

and F obeys supersymmetry Ward identities [10]

δ4(Pµ)δ8(QαI)Qβ̇
JF = 0 (II.11)

associated with the 8 Q supercharges.

If the amplitude A (II.9) obeys supersymmetry

Ward identities, then so does its CPT conjugate

A = δ4(Pµ)Q
8F(λi, λ̃i, ∂/∂θi, ζj , ∂/∂ηj)

∏
i

θ4
i

∏
j

η8
j ,

(II.12)

where Q
8 ≡∏α̇,I Qα̇

I .

In formulating superamplitudes purely in the

gauge theory, it is useful to work with a different

representation of the 16 supercharges, by decompos-

ing

QαI = (Qαa,Qαȧ), Qα̇
I = (Qα̇a,Qα̇ȧ), (II.13)

where (a, ȧ) are spinor indices of an SU(2)× SU(2)

subgroup of the SU(4) R-symmetry. We can then
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represent the supercharges for individual particles

through Grassmannian variables (ψa, ψ̃ȧ) as

Qαa = λαψa, Qαȧ = λα
∂

∂ψ̃ȧ
,

Qα̇a = λ̃α̇
∂

∂ψa
, Qα̇ȧ = λ̃α̇ψ̃ȧ.

(II.14)

In this representation, a basis of 1-particle states

is given by monomials in ψ, ψ̃. The − and + helicity

gauge bosons correspond to ψ2 and ψ̃2, whereas the

scalars are represented by 1, ψ2ψ̃2, and ψaψ̃ȧ. We

can assign ψa and ψ̃ȧ to transform under the SO(2)

little group with charge −1 and +1, respectively.

The θ-representation of superamplitude is con-

venient for coupling to supergravity, while the ψ-

representation is convenient for constructing ver-

tices of the gauge theory that solve supersymme-

try Ward identities. The superamplitudes in the θ-

representation and in the ψ-representation are re-

lated by a Grassmannian twistor transform:

Aθ =

∫ ∏
i

d2ψ̃i e
∑
i ψ̃iχiAψ, (II.15)

where we make the identification θα = (ψa, χȧ), after

picking an SU(2) × SU(2) subgroup of SU(4) R-

symmetry.

A typical supervertex constructed in the ψ-

representation is not manifestly R-symmetry invari-

ant. In a supervertex that involves bulk supergravi-

tons, we can form R-symmetry invariant superver-

tices by contracting with the spinor helicity variable

of the supergraviton, or simply its transverse mo-

mentum to the 3-brane, and average over the SO(6)

orbit. It is useful to record the non-manifest R-

symmetry generators in the ψ-representation,

Raḃ =
∑
i

ψiaψ̃iḃ, Rȧb =
∑
i

∂

∂ψai

∂

∂ψ̃ḃi
,

R =
∑
i

(
ψia

∂

∂ψia
+ ψ̃iȧ

∂

∂ψ̃iȧ
− 2

)
.

(II.16)

A. F-term and D-term Supervertices

Let us focus on supervertices, namely, local su-

peramplitudes with no poles in momenta. As in

maximal supergravity theories, we can write down

F-term and D-term supervertices [11] for brane-bulk

coupling. One may attempt to write construct a

simple class of supervertices in the form (II.9) by

taking F to be independent of the Grassmann vari-

ables θi, ηj , and depend only on the bosonic spinor

helicity variables, subject to SO(1, 3) × SO(6) in-

variance. When combined with the CPT conjugate

vertex, this construction appears to be sufficiently

general for purely gravitational F-term vertices. For

instance, a supervertex involve 2 bulk supergravitons

of the form

δ4(P )δ8(Q) = δ4(p
‖
1 + p

‖
2)δ8(q1 + q2) (II.17)

corresponds to a coupling of the form R2 + · · · on

the brane.

When there are four dimensional gauge multiplet

particles involved, however, such simple construc-

tions in the θ-representation of the superamplitude

may not give the correct little group scaling. It is

sometimes more convenient to start with a superver-

tex in the ψ-representation, average over SO(6), and

perform the twistor transform into θ-representation.

For instance, we can write a supervertex that in-

volves (4 + n) gauge multiplet particles in the ψ-

representation, of the form

δ4(P )δ8(Qψ) = δ4(P )δ8(Qαa,Qα̇ȧ)

= δ4(P )δ4

(
n+4∑
i=1

λiαψia

)
δ4

(
n+4∑
i=1

λ̃iα̇ψ̃iȧ

)
.

(II.18)

This vertex is not SO(6) invariant; rather, it lies

in the lowest weight component of a rank n sym-

metric traceless tensor representation of the SO(6)

R-symmetry. In component fields, it contains cou-

plings of the form φi1 · · ·φinF 4 + · · · , where φi de-

notes the 6 scalars, and the traces between ik, i` are

subtracted off.

Indeed, one can verify that for the 4-point super-

amplitude,∫ 4∏
i=1

d2ψ̃i e
∑
i ψ̃iχiδ4(P )δ8(Qψ) = δ4(P )δ8(Qθ)

[34]2

〈12〉2 ,

(II.19)

while the analogous twistor transform on

δ4(P )δ8(Qψ) for n > 0 produces δ4(P )δ8(Qθ)

multiplied by an expression of degree 2n in χ,

that transforms nontrivially under the SO(6).

It is generally more difficult to extend a gauge

supervertex constructed in the ψ-representation to

involve coupling to the supergraviton however.
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As an example, we construct supervertices in the

ψ-representation which contain φm∂mR2 couplings

on the brane. These supervertices are naturally

related to the R2 vertex by spontaneously broken

translation symmetry. To proceed, we first need

to extend the ψ-representation to the supergraviton

states.

Just as we split the 16 preserved supercharges on

the brane in (II.13), we can split the 16 broken su-

percharges as follows,

Q̃αI = (Q̃αa, Q̃αȧ), Q̃α̇
I = (Q̃α̇a, Q̃α̇ȧ), (II.20)

We’d like to consider a representation of the super-

graviton states such that (Qαa,Qα̇ȧ, Q̃αȧ, Q̃α̇a) are

represented as supermomenta, and the remaining

16 supercharges are represented as superderivatives.

This is possible provided that (Qαa,Qα̇ȧ, Q̃αȧ, Q̃α̇a)

anticommute with one another. The anticommuta-

tor of QαI with Q̃βJ contains the transverse mo-

mentum PIJ . Hence while Qαa anticommute with

Q̃β̇b, it may not anticommute with Q̃βḃ. However,

the anticommutator {Qαa, Q̃βḃ} contains only the

component Paḃ that lies in the representation (2, 2)0

through the decomposition 6 → (2, 2)0 ⊕ (1, 1)+ ⊕
(1, 1)− under SU(2) × SU(2) × U(1) ⊂ SO(6). As

long as there are no more than two supergravi-

tons in the supervertex, we can always choose the

SO(4) subgroup of SO(6) to leave the two trans-

verse momenta of the supergravitons invariant so

that Paḃ = 0. With this choice, for each super-

graviton, (Qαa,Qα̇ȧ, Q̃αȧ, Q̃α̇a) then anti-commute

with one another, and they can be simultaneously

represented as supermomenta.

Let us compare this with the standard represen-

tation of the supercharges in the 10D type IIB super

spinor helicity formalism, for which we can decom-

pose

ζαA = (ζαIA; ζα̇
I
A) = (ζαaA, ζαȧA; ζα̇aA, ζα̇ȧA).

(II.21)

By requiring that Paḃ = 0, we have

εαβζαaAζβḃA = εα̇β̇ζα̇aAζβ̇ḃA = 0. (II.22)

When this condition is satisfied, we can go to the

ψ-representation by a Laplace transform on half of

the 8 ηA’s.

A supervertex of the form

δ8(Qαa,Qα̇ȧ, Q̃αȧ, Q̃α̇a) (II.23)

for 2 supergravitons and m D3-brane gauge multi-

plets is not SO(6) invariant (unless m = 0). Rather,

it lies in the lowest weight component in a set of su-

pervertices that transform in the rank m symmetric

traceless representation of SO(6). To form an SO(6)

invariant supervertex, we need to contract it with m

powers of the total transverse momentum PIJ , and

average over the SO(6) orbit. In this way, we ob-

tain the desire supervertex that contains φm∂mR2

coupling.

B. Elementary Vertices

There are a few “elementary vertices” that are

the basic building blocks of the brane coupling to

supergravity, and are not of the form of the F and

D-term vertices discussed above. One elementary

vertex is the supergravity 3-point vertex (Figure 1),

as discussed in [16]. In the notation of [11], it can

be written in the form

A3 =
g

(p+)4
δ10(P )δ12(W ), (II.24)

where g is the cubic coupling constant, W represents

12 independent components of the supermomentum,

specified by the null plane that contains the three ex-

ternal null momenta, and p+ is an overall lightcone

momentum as defined in [11]. The explicit expres-

sion of this vertex will not be discussed here, though

the cubic vertex is of course crucial in the consider-

ation of factorization of superamplitudes.

The supergraviton tadpole on the brane is a 1-

point superamplitude, of the form

B1 = Tδ4(P )ΠABCD(ζ)ηAηBηCηD, (II.25)

where T stands for the tension/charge of the brane,

and ΠABCD(ζ) is an anti-symmetric 4-tensor of the

SO(8) little group constructed out of the ζαA associ-

ated with a (complex) null momentum in the 6-plane

transverse to the 3-brane, of homogeneous degree

zero in ζ. If we take the transverse momentum to

be in a lightcone direction, after double Wick rota-

tion, the little group SO(8) transverse to the light-

cone is broken by the 3-brane to SO(4) × SO(4).

We may then decompose ηA = (η+
αa, η

−
α̇ȧ), where

(α, α̇) are spinor indices of the SO(4) along the brane

worldvolume, whereas (a, ȧ) are spinor indices of the
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A3

B1

B1,1

FIG. 1. Elementary supervertices. The wiggly line rep-

resents a bulk 1-particle state while the straight line rep-

resents a brane 1-particle state. The red dot represents

the bulk vertex, whereas the blue and green dots are

brane vertices.

SO(4) transverse to the brane as well as the null mo-

mentum. With respect to the SO(4) × SO(4), the

16 supercharges QαI , Qβ̇
I preserved by the 3-brane

coupling may be denoted Qαa, Qαȧ, Qβ̇b, Qβ̇ḃ. Qαȧ

and Qβ̇ḃ trivially annihilate the 1-particle state of

the supergraviton, Qαa ∼ η+
αa, and Qβ̇ḃ ∼ ∂/∂η−β̇ḃ.

The supergraviton tadpole supervertex can then be

written as

B1 = Tδ4(P )(η+)4. (II.26)

This amplitude contains equal amount of graviton

tadpole and the charge with respect to the 4-form

potential, reflecting the familiar BPS relation be-

tween the tension and charge of the brane.

The supergraviton-gauge multiplet 2-point vertex

B1,1 is another elementary vertex. Here again there

is no Lorentz invariant to be formed out of the two

external null momenta. Both the transverse and par-

allel components of the graviton momentum are null.

To write this vertex explicitly, we take the graviton

transverse momentum to be along a lightlike direc-

tion on the (X8, X9) plane, and the parallel momen-

tum to be along a lightlike direction on the (X0, X1)

plane. We will write the null parallel and transverse

momenta p‖, p⊥ in this frame as

p‖ = (p
‖
+, p

‖
+, 0, · · · , 0, 0),

p⊥ = (0, 0, 0 · · · , ip⊥+, p⊥+).
(II.27)

Note that p
‖
+, p

⊥
+ transform under the boosts on the

(X0, X1) and (X8, X9) planes, which will be impor-

tant for us to fix the p
‖
+, p

⊥
+ dependence in the su-

pervertex B1,1.

The “tiny group” SO(6) that acts on the trans-

verse directions to the null plane spanned by the

momenta of the two particles (one on the brane, one

in the bulk) rotates X2, · · · , X7, which is broken by

the 3-brane to SO(2) × SO(4). The spinor helicity

variables are decomposed as

ξαIA =
(
ξ+a|A, ξ−a|A, ξ+ȧ|A, ξ−ȧ|A = 0

)
,

ξ̃ Iα̇ A =
(
ξ̃+a|A, ξ̃−a|A, ξ̃+ȧ|A, ξ̃−ȧ|A = 0

)
,

λα =
(
λ+ =

√
p
‖
+, λ− = 0

)
,

λ̃α̇ =
(
λ̃+ =

√
p
‖
+, λ̃− = 0

)
.

(II.28)

We will also split θI = (θa, θȧ). The 16 unbroken

supercharges are represented as

Q+a = ξ+a|AηA + λ+θa, Q−a = ξ−a|AηA,

Q+ȧ = ξ+ȧ|AηA + λ+θȧ, Q−ȧ = 0,

Q+,a = ξ̃+a|A
∂

∂ηA
+ λ̃+

∂

∂θa
, Q−,a = ξ̃−a|A

∂

∂ηA
,

Q+,ȧ = ξ̃+ȧ|A
∂

∂ηA
+ λ̃+

∂

∂θȧ
, Q−,ȧ = 0.

(II.29)

The supervertex can be written in this frame as[31]

B1,1 =
√
Tgδ4(P )

δ6(Q+a, Q−a, Q+ȧ)

p
‖
+p
⊥
+

, (II.30)

From boost invariance on the (X0, X1) plane, we

know there is one power of p
‖
+ in the denominator.

Since the supervertex scales linearly with the mo-

mentum, we determine the factor p⊥+ in the denom-

inator.

The normalization of B1,1 is unambiguously fixed

by supersymmetry. Note that there is a unique 2-

supergraviton amplitude of the form [32]

δ8(Q)

st
, (II.31)
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R

1R 3R

Φ
1R 2R

FIG. 2. Factorization of the R2 amplitude through el-

ementary vertices. The red dot represents the bulk su-

pergravity vertex whereas the blue and green dots are

brane vertices.

at this order in momentum. Here s = −(p1 + p2)2,

t = (p⊥1 )2 = (p⊥2 )2. The 2-supergraviton ampli-

tude factorizes through B1A3 and B1,1B1,1 (Figure

2), from which the relative coefficients of these two

channels are fixed (proportional to Tg).

C. Examples of Superamplitudes

Let us now attempt to construct a 4-point super-

amplitude that couples one supergraviton to three

gauge multiplet particles, that scales like p3 (Fig-

ure 3). We will see that such a superamplitude must

be nonlocal, and an independent local supervertex

of this form does not exist. This superamplitude

should be of the form δ4(P )δ8(Q) times a rational

function that has total degree 2 in η and θ,[33] homo-

geneous degree −1 in the momenta, and must have

the little group scaling such that a term ∼ η4θ2
1θ

2
2θ

2
3

(representing three scalars coupled to the graviton

or the 4-form potential) is little group invariant.

FIG. 3. A factorization for the RF 3 superamplitude for

the case of an Abelian gauge multiplet coupled to super-

gravity.

To construct this superamplitude, we will pick the

supergraviton momentum to be in the X9 direction,

and decompose the spinor helicity variables accord-

ing to SO(3) × SO(5) ⊂ SO(8), where the SO(8)

that rotates X1, · · · , X8 can be identified with the

little group of the supergraviton, and the SO(3)

and SO(5) rotate X1, X2, X3 along the 3-brane and

X4, · · · , X8 transverse to the 3-brane, respectively.

We can write ηA = ηαI , where α is an SO(3) spinor

index and I an SO(5) spinor index. We can split

ζαA into (ζBA, ζḂA), where B and Ḃ are chiral and

anti-chiral SO(8) indices. Then the spinor helic-

ity constraint on ζ is simply that ζḂA = 0, and

ζBA =
√
p⊥δBA. Further decomposing the index

B into SO(3) × SO(5) indices βJ , and identifying

A ∼ αI, we have

ζβJ,αI =
√
p⊥εβαΩJI , (II.32)

where ΩIJ is the invariant anti-symmetric tensor of

SO(5) ∼ Sp(4). The supercharges can now be writ-

ten explicitly (in SO(3)× SO(5) notation) as

QαI =
√
p⊥ηαI +

3∑
i=1

λiαθiI ,

QαI =
√
p⊥

∂

∂ηαI
+

3∑
i=1

λ̃iα
∂

∂θIi
.

(II.33)

The general superamplitude that solves the super-

symmetry Ward identity and has the correct little

group scaling and momentum takes the form

δ4(P )δ8(Q)
∑
i,j

fij(λk, λ̃k)

×
(
λ̃iαη

α
I −

√
p⊥θiI

)(
λ̃jβη

β
J −

√
p⊥θjJ

)
ΩIJ ,

(II.34)

where fij is a rational function of λkα and λ̃kα,

k = 1, 2, 3. Note that since we are working in a

frame tied to the supergraviton momentum, α is an

SO(3) index, and we can contract λi with λ̃j , and

write for instance [ji〉 = λ̃jαλ
α
i . The little group

and momentum scaling demands that fij has homo-

geneous degree −4 in the λk’s and degree 0 in the

λ̃k’s.

Due to the δ8(Q) factor, we can rewrite (II.34) as

δ4(P )δ8(Q)(p⊥)−1
∑
i,j

fij(λ, λ̃)

×
(
[ik〉θkI + p⊥θiI

)(
[j`〉θ`J + p⊥θjJ

)
ΩIJ .

(II.35)
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It appears that such an amplitude with the cor-

rect little group scaling will necessarily have poles,

thereby forbidding a local supervertex.[34]

The corresponding 4-point disc amplitude on D3-

brane in type IIB string theory has a pole in (p⊥)2,

and no pole in s, t, u (at zero value). Here s =

−(p1 + p2)2, t = −(p2 + p3)2, u = −(p3 + p1)2,

with s + t + u = (p⊥)2. In particular, there is a

coupling (∂iδτ)φiF 2
−, that corresponds to the term

proportional to η8θiIθiJΩIJ in (II.35). This coupling

is represented by

η8p⊥
(
[12]2θ3Iθ3J + [23]2θ1Iθ1J + [31]2θ2Iθ2J

)
ΩIJ .

(II.36)

Comparing to (II.35), we need∑
i,j

fij [i1〉[j1〉+ 2p⊥
∑
i

f1i[i1〉+ (p⊥)2f11 =
[23]2

(p⊥)2
.

(II.37)

A solution for fij with the correct little group scaling

is

f11 =
[23]2

(p⊥)4
, f22 =

[31]2

(p⊥)4
, f33 =

[12]2

(p⊥)4
,

f12 = − [13][23]

(p⊥)4
, f23 = − [21][31]

(p⊥)4
, f31 = − [32][12]

(p⊥)4
.

(II.38)

To see this, we make use of the following identity for

SU(2) spinors,

[23][11〉 − [13][21〉+ [12][31〉 = 0. (II.39)

It then follows that∑
k

fik[kj〉 = 0. (II.40)

Then, the superamplitude can be simplified to

δ4(P )δ8(Q)p⊥
∑
i,j

fijθiIθjJΩIJ

= δ4(P )
δ8(Q)

(p⊥)3

{
[23]2(θ2

1) + [31]2(θ2
2) + [12]2(θ2

3)

− [13][23](θ1θ2)− [21][31](θ2θ3)− [32][12](θ3θ1)
}
,

(II.41)

where (θiθj) ≡ θiIθjJΩIJ . One can verify that, de-

spite the (p⊥)3 in the denominator, this amplitude

has only first order pole in (p⊥)2. For instance, con-

sider the component proportional to η6θ4
1, that cor-

responds to an amplitude that couples the 2-form

potential C2 in the bulk to one + helicity gauge

bosons and two − helicity gauge bosons. This term

in (II.41) scales like λ1αλ1β [23]2 in our frame, which

agrees with the amplitude constructed out of F 2
+F

2
−

vertex (in DBI action) and the 2-point C2F− ver-

tex, sewn together by a gauge boson propagator, in

our frame which is infinitely boosted along the mo-

mentum direction of the supergraviton. The covari-

antized form of this term in the superamplitude is

proportional to

δ4(P )(η6)AB(θ4
1)

× εIJKL(λα1 ζαIA)(λβ1 ζβJB)(ζγKCζ
γ
LC)[23]2

(p⊥)2
.

(II.42)

In the case of non-Abelian gauge multiplet cou-

pled to supergravity, there is a simpler 4-point

brane-bulk superamplitude we can write down, of

order p. The color ordered superamplitude (Figure

4) is

δ4(P )
δ8(Q)

〈12〉〈23〉〈31〉 + (CPT conjugate). (II.43)

Note that this expression only has simple poles in

s12, s23, or s13. For instance, if we send 〈12〉 → 0,

the residue is proportional to (p⊥)2. In particular,

this amplitude couples δτ (or δτ from the CPT con-

jugate term) to three gluons of − (or +) helicity,

that factorizes through a cubic vertex in the gauge

theory and a brane-bulk cubic vertex.

fabc

FIG. 4. A factorization for the RF 3 superamplitude for

the case of an non-Abelian gauge multiplet coupled to

supergravity.

As another example, let us investigate a superam-

plitude that contains the coupling δτF 2
+F

2
−. We will

label the momenta of the four gauge multiplet fields

p1, · · · , p4. Such an amplitude must take the form

δ4(P )δ8(Q)F(λiα, λ̃iα), (II.44)

where F is a rational function of λi and λ̃i, i =

1, 2, 3, 4, of a total homogeneous degree −4 in the
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λi’s and degree 4 in the λ̃i’s. A local supervertex

would require F to be a polynomial in λ, λ̃, which

is obviously incompatible with the little group and

momentum scaling. We thus conclude that there

is no local supervertex that gives rise to δτF 2
+F

2
−

coupling.[35]

On the D3-brane in type IIB string theory, there

is a nonlocal δτF 3
+F− amplitude. This should be

part of a 5-point superamplitude of the form

δ4(P )δ8(Q)
∑

i1,i2,i3,i4

f I1I2I3I4i1i2i3i4
(λ, λ̃)

×
4∏
s=1

(
λ̃isαη

α
Is −

√
p⊥θisIs

)
,

(II.45)

where f I1I2I3I4i1i2i3i4
(λ, λ̃) is a rational function of homo-

geneous degree −4 in the λ’s and degree 0 in the

λ̃’s. This amplitude has a pole in s123, s124, s134,

s234, and no pole in sij nor in (p⊥)2. In partic-

ular, the components proportional to η8θ4
4 and to

θ4
1θ

4
2θ

4
3 (corresponding to δτF 3

−F+ and δτF 3
+F− re-

spectively) should have only a pole in s123.

D. Soft Limits and D3-brane Coupling

So far our considerations of brane-bulk coupling

are based on supersymmetry Ward identities and

unitarity of scattering amplitudes. In the context

of D-branes in string theory, a crucial extra piece of

ingredient is the identification of the Abelian gauge

multiplet on the brane as the Nambu-Goldstone

bosons and fermions associated with the sponta-

neous breaking of super-Poincaré symmetry. The

amplitudes then obey a soft theorem on the scalar

fields of the gauge multiplet. The soft theorem re-

lates the amplitude A(φIJ , · · · ) with the emission of

a Nambu-Goldstone boson φIJ in the soft limit to

the amplitude A(· · · ) without the φIJ emission,

lim
pφ→0

A(φIJ , · · · ) =

√
g

T
pIJA(· · · ). (II.46)

Here pIJ is the [IJ ]-component of the total momen-

tum transverse to the 3-brane. The normalization of

the soft factor is unambiguously determined by the

relation between B1,1 and the 1-point amplitude B1.

Let us consider the 3-point amplitude between a

supergraviton and two gauge multiplets. The mo-

menta of the two gauge multiplets and the graviton

are p1, p2, p3, with p1 + p2 + p
‖
3 = 0. The amplitude

takes the form

B1,2 = g
δ8(Q)

〈12〉2 . (II.47)

Expanding in components, we have

B1,2 = g
(

[12]2η8
3 + 〈12〉2θ4

1θ
4
2 + · · ·

)
, (II.48)

where the terms proportional to θ4
1θ

4
2 and η8

3 give

the vertices for τF 2
+ and τ̄F 2

− coupling, respectively.

Note that (p⊥3 )2 = −(p1+p2)2 = −2p1·p2 = 〈12〉[12].

φIJ

pφ→0−−−→ √
g
T p

IJ

FIG. 5. Single soft limit of B1,2.

B1,2 is related to B1,1 by taking the soft limit on a

scalar φIJ on the brane (Figure 5). The soft theorem

on the Nambu-Goldstone bosons φIJ implies that, in

the limit p1 → 0,

B1,2|θ1Iθ1J →
√
g

T
pIJB1,1, (II.49)

where pIJ = pIJ3 is the φIJ component of the trans-

verse momentum. More explicitly, we can write

B1,2|θ1Iθ1J = g
λ1αλ1β

〈12〉2 δ6(αβ)[IJ](q2 + q3), (II.50)

where

δ6(αβ)[IJ](Q) =
1

768

[
εII1I2I3(QαI1Qα1I2Qα2I3)εJJ1J2J3(QβJ1Q

α1
J2Q

α2
J3)

+ εI1I2I3I4(QαI1Q
β
I2Q

α1
I3Q

α2
I4)εIJJ1J2(Qα1J1Qα2J2)

]
.

(II.51)

The RHS of (II.50), after imposing p2 + p
‖
3 = 0, is

independent of the choice of λ1, and is proportional

to the 2-point bulk-brane vertex B1,1.

More specifically, let us choose the frame as in

the supervertex B1,1. We take p2, p
‖
3 to be along a

lightlike direction in the (X0, X1) plane and p⊥3 to
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be along a lightlike direction on the (X8, X9) plane.

The SO(6) spinor indices I is broken into spinor

indices a, ȧ of SO(4) that rotates X4, X5, X6, X7.

We pick the transverse momentum of the supergravi-

ton to be along the direction [IJ ] = [ab] on the

(X8, X9) plane (while [IJ ] = [aḃ] would be a di-

rection in the X4, X5, X6, X7 space). The spinor

helicity variables in this frame are given by (II.28).

In particular, λ2+ =

√
p
‖
+, λ2− = 0 and pIJ3 = p⊥+.

Focusing on the (α, β) = (−,−) term in (II.50), this

is indeed proportional to the supervertex B1,1 in the

soft limit in this frame:

g
λ1+λ1+

〈12〉2 δ6(−−)[ab](q2 + q3)

∝ g δ
6(Q+a, Q−a, Q+ȧ)

p
‖
+

=

√
g

T
p⊥+B1,1.

(II.52)

E. The Brane-Bulk Effective Action

Let us comment on the notion of effective ac-

tion for the brane in our consideration of higher

derivative couplings. We will be interested in the

“massless open string 1PI” effective action for a D3-

brane in type IIB string theory. Namely, we will

be considering a quantum effective action through

which the full massless open-closed string scatter-

ing amplitudes are reproduced by sewing effective

vertices through “disc type” tree diagrams, that is,

diagrams that correspond to factorization through

either massless open or closed string channels of a

disc diagram.

This effective action is subject to two subtleties.

The first is the appearance of non-analytic terms.

This is familiar in the massless closed string effec-

tive action already: in type IIB string theory, there

are for instance string 1-loop non-analytic terms at

α′D2R4 and α′4D8R4 order in the momentum ex-

pansion. Often, the higher derivative terms one

wishes to constrain does not receive non-analytic

contributions in the quantum effective action of

string theory. Sometimes, when the non-analytic

terms do appear, such as those of the same order

in momentum as D2RF 2 and R2 terms in the D3-

brane effective action, as will be discussed in the next

section, their effect is to add a term that is linear in

the dilaton (logarithmic in τ2) to the coefficient of

the higher derivative coupling of interest, which is

related to a modular anomaly.

If we work with a Wilsonian effective action, take

the floating cutoff Λ to be very small (compared to

string scale) and then consider the momentum ex-

pansion, the non-analytic term is absent, and in-

stead of the log τ2 contribution, we will have a con-

stant shift of the coefficient of the higher derivative

operator (like D2RF 2 or R2) that depends logarith-

mically on Λ. Our analysis of supersymmetry con-

straints applies straightforwardly in this case (and

as we will see, such constant shifts are compatible

with supersymmetry). In doing so, however, one

loses the exact SL(2,Z) invariance in the effective

coupling, and the modular anomaly must be taken

into account to recover the SL(2,Z) symmetry.

R

1+

2+ 3−

4−

R

1+

2R

3−

FIG. 6. Examples of non-disc type diagrams. The black

dots represent (bare) brane-bulk coupling.

The second subtlety has to do with the brane.

Note that, in the “massless open string 1PI” effec-

tive action, closed string propagators that connect

say a pair of discs have been integrated out already.

This is because the tree diagrams that involves bulk

fields connecting pairs of brane vertices behave like

loop diagrams (Figure 6), where the transverse mo-

mentum of the bulk propagator is integrated [36, 37].

Therefore, in analyzing tree level unitarity of super-

amplitudes built out of higher derivative vertices of

the effective action, we will consider only the “disc

type” tree diagrams.
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III. SUPERSYMMETRY CONSTRAINTS

ON HIGHER DERIVATIVE BRANE-BULK

COUPLINGS

Following a similar set of arguments as in [11],

we will derive non-renormalization theorems on

fF (τ, τ̄)F 4 terms that couple the Abelian field

strength on the brane to the dilaton-axion of

the bulk type IIB supergravity multiplet, and on

fRFF (τ, τ̄)RF 2 and fR(τ, τ̄)R2 terms that couple

the brane to the bulk dilaton-axion and graviton.

A. F 4 Coupling

Let us suppose that there is supersymmetric F 4

coupling on the brane, whose coefficient fF (τ, τ̄) de-

pends on the axion-dilaton field τ in the bulk. Con-

sider a vacuum in which the dilaton-axion field τ

acquires expectation value τ0, and we denote its fluc-

tuation by δτ . Expanding

fF (τ, τ̄)F 4 = fF (τ0, τ̄0)F 4

+ ∂τfF (τ0, τ̄0)δτF 4 + ∂τfF (τ0, τ̄0)δτF 4

+ ∂τ∂τfF (τ0, τ̄0)δτδτF 4 + · · · ,
(III.1)

one could ask if the coefficient of δτF 4, namely ∂τfF
at τ = τ0, is constrained by supersymmetry in terms

of lower point vertices. This amounts to asking

whether the coupling δτF 4 admits a local supersym-

metric completion, as a supervertex. As already ar-

gued in the previous section, such a supervertex does

not exist. The reason is that the desire supervertex,

in θ-representation, must be of the form

δ4(P )δ8(Qθ)F(λi, λ̄i), (III.2)

where F(λi, λ̃i) must have total degree −4 in λi,

i = 1, · · · , 4, and degree 4 in λ̃i, as constrained by

the little group scaling on the massless 1-particle

states in four dimensions. Such a rational function

will necessarily introduce poles in the Mandelstam

variables, and will not serve as a local supervertex.

The situation is in contrast with the 4-point F 4

supervertex, which does exist. There, the rational

function F can be written as [34]2/〈12〉2, which due

to the special kinematics of 4-point massless ampli-

tude in four dimensions does not introduce poles in

momenta. This is not the case for higher than 4-

point amplitudes, where the local supervertex of the

similar form does not exist. Also note that, had

there been such a 5-point supervertex, it would give

rise to an independent δτF 2
+F

2
− coupling, whereas

in string theory the analogous nonlocal superampli-

tude on the D3-brane contains an amplitude of the

form δτF 3
+F− instead.

Now that an independent δτF 4 supervertex does

not exist, the coefficient ∂τfF , which is given by

the soft limit of a 5-point superamplitude, is fixed

by the residues of the 5-point superamplitude at its

poles. It must then be fixed by lower point superver-

tices, namely, by the coefficient of F 4. This means

that there is a linear relation between ∂τfF and fF ,

which takes the form of a first order differential equa-

tion on fF (τ, τ̄). In fact, as noted already below

(II.45), the actual 5-point superamplitude that fac-

torizes through an F 4 supervertex has degree 12 in η

and θ (see Figure 7), so the δτF 2
+F

2
− coupling which

has degree 8 in η and θ must not be part of this

superamplitude and the first order differential equa-

tion simply says that fF (τ, τ̄) is a constant.

1+
2δτ 3+

4+

5−

+ −

FIG. 7. Factorization of the δτF 3
+F− amplitude through

one F 2
+F

2
− vertex and an RF 2 supervertex.

This is indeed what we see in the DBI action for

a D3-brane in type IIB string theory. In the usual

convention, the gauge kinetic term is normalized as

τ2F
2, and the DBI action contains τ2F

4 coupling

in string frame, which translates into τ2
2F

4 in Ein-

stein frame [38]. In the consideration of scattering

amplitudes, it is natural to rescale the gauge field by

τ
−1/2
2 , so that the kinetic term is canonically normal-

ized. This is the correct normalization convention in

which the expansion (III.1) applies, and the DBI ac-

tion corresponds to fF (τ, τ̄) = 1. Thus, we conclude

that the tree level F 4 coupling is exact in the full

quantum effective action of type IIB string theory.

Note that, rather trivially, this result is consistent

with SL(2,Z) invariance. Unlike the R4 coupling in

type IIB string theory, however, here the constraint
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from supersymmetry is stronger, and one need not

invoke SL(2,Z) to fix the F 4 coefficient.

The above discussion is in contrast to the F 4 cou-

pling in the Coulomb phase of a four dimensional

gauge theory with sixteen supersymmetries.[39] In

this case, one may consider the F 4 coefficient as a

function of the scalar fields on the Coulomb branch

moduli space. There are independent supervertices

of the form

δ4(P )δ8(Qψ) (III.3)

in the ψ-representation, that contains couplings of

the form φi1 · · ·φinF 4 + · · · and transforms in the

rank n symmetric traceless tensor representation of

the SO(6) R-symmetry. As a consequence, through

consideration of factorization of 6-point superampli-

tudes at a generic point on the Coulomb branch, one

derives a second order differential equation that as-

serts ∆φf(φ) is proportional to f(φ). Comparison

with DBI action then fixes this differential equation

to simply the condition that f(φ) is a harmonic func-

tion. This reproduces the result of [40, 41].

B. RF 2 Coupling

The 3-point superamplitude between one super-

graviton and two gauge multiplets is particularly

simple because there is only one invariant Mandel-

stam variable, t = (p⊥3 )2 = 〈12〉[12], where p3 is

the momentum of the supergraviton. A general 3-

point superamplitude of this type takes the form (in

θ-representation)

A1,2 = δ4(P )
δ8(Qθ)

〈12〉2 f(t), f(t) =
∑
n≥−1

fnt
n+1.

(III.4)

Previously, we have considered the term f−1 which

we called B1,2 in (II.47). We have seen that it is not

renormalized, and is fixed by the bulk cubic cou-

pling. We will work in units in which this coupling

is set to 1. Now let us consider the possibility of

having fn for general n ≥ 0 as a function of the

dilaton-axion τ, τ̄ .

First, let us ask what are the independent local

supervertices that could couple δτ, δτ to RF 2. Such

an (3 +m)-point supervertex, with the correct little

group scaling in four dimensions, must take the form

δ4(P )δ8(Qθ)
Pn+1

〈12〉2 , (III.5)

where Pn+1 is a function of the spinor helicity vari-

ables that scales with momentum like tn+1. For

m ≥ 1, the 〈12〉2 in the denominator must be can-

celed by a factor from the numerator in order for

the supervertex to be local (there is no longer the

special kinematic constraint as in the case of the 3-

point vertex that renders (III.4) local even for the

f−1 term). For this, we need n ≥ 1, so that we can

write a local supervertex of the form

δ4(P )δ8(Qθ)[12]2Pn−1. (III.6)

The 4-point superamplitude for τRF+F− can not

factorize through lower point supervertices. It fol-

lows that the coefficient f0 in (III.4) as a function

of τ, τ̄ is subject to a homogenous first order dif-

ferential equation, which simply states that f0 is a

constant. Moreover as we shall see below, f0 is fixed

to be identically zero using tree-amplitude in type

IIB string theory.

Supervertices of the form (III.6) are F-term ver-

tices, and give rise to (δτ)mD2nRF 2 coupling. We

would like to constrain ∂τ∂τ̄fn from supersymme-

try, by showing that as the coefficient of a coupling

of the form δτδτD2nRF 2, it cannot be adjustable by

introducing a local supervertex. So let us focus on

the 5-point supervertices. When n ≥ 2, such a cou-

pling may be part of a 5-point D-term supervertex

of the form

δ8(Q)Q
8F(λi, λ̃i, θi, ζj , ηj), (III.7)

where F is of homogeneous degree 2(n − 2) in the

momenta. For n = 1, on the other hand, the only

available supervertex is the F-term vertex of the

form (III.6), which gives (δτ)2D2RF 2 rather than

δτδτD2RF 2 coupling. There appears to be no in-

dependent 5-point supervertex for δτδτD2RF 2, and

the supersymmetric completion of such a coupling

can only be a nonlocal superamplitude. Therefore,

f1 is determined by the factorization of the 5-point

superamplitude into lower point superamplitudes,

that involves 1 or 2 cubic vertices of the type f0 or

f1 (Figure 8). Thus, we have relations of the form

4τ2
2 ∂τ∂τ̄f1(τ, τ̄) = af1 + bf2

0 , (III.8)
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where a, b are constants that are fixed entirely by

tree level unitarity and supersymmetry Ward iden-

tities.

R

R

1+

2δτ 3δτ̄

4R

5−

R

1+

2δτ̄ 3δτ 4R

5−+−

FIG. 8. Factorization of the δτδτ̄RF+F− amplitude

through lower-point vertices.

Let us compare this with the disc amplitude on

D3-branes in type IIB string theory, where f(t) is

given by (in string frame) [32]

−2
Γ(−2t)

Γ(1− t)2
= t−1 + ζ(2)t+ 2ζ(3)t2 + · · · ,

(III.9)

which, after going to Einstein frame and rescaling

the gauge field so that the gauge kinetic term is

canonically normalized, corresponds to

f−1 = 1, f0 = 0, f1 = ζ(2)τ2, f2 = 2ζ(3)τ
3/2
2 ,

(III.10)

etc. As remarked earlier, f0 = 0 is an exact result

in the full quantum effective action for the D3-brane

in type IIB string theory. Comparing with (III.8),

we learn that f1(τ, τ̄) is a harmonic function on the

axion-dilaton target space. Knowing its asymptotics

in the large τ2 limit, we can then determine this

function by SL(2,Z) invariance.

There is a subtlety here, having to do with non-

analytic terms from the open string 1-loop ampli-

tude, that gives rise to a log(τ2)D2RF 2 term. As a

consequence, f1(τ, τ̄) is only SL(2,Z) invariant up to

an additive modular anomaly. This is similar to the

modular anomaly of the R2 coefficient, pointed out

in [17, 21] and to be discussed below. After taking

into account the modular anomaly, f1 is unambigu-

ously fixed to be

f1(τ, τ̄) =
1

2
Z1(τ, τ̄) = ζ(2)τ2 −

π

2
ln τ2

+ π

∞∑
m,n=1

1

n

(
e2πimnτ + e−2πimnτ̄

)
.

(III.11)

Here we denote the non-holomorphic Eisenstein se-

ries by Zs = 2ζ(2s)Es [42],

Zs =
∑

(m,n)6=(0,0)

τs2
|m+ nτ |2s , (III.12)

which have the weak coupling expansion (for s 6= 1),

Zs = 2ζ(2s)τs2

+ 2
√
πτ1−s

2

Γ(s− 1/2)ζ(2s− 1)

Γ(s)
+O(e−2πτ2).

(III.13)

For n = 2, the candidate 5-point D-term super-

vertex (III.7) has an F which is of degree 0 in the

momenta. In order to achieve the correct little group

scaling for D4RF 2, F must be a non-constant func-

tion of [12]/〈12〉 which would lead to a nonlocal ex-

pression in the absence of special kinematics. There-

fore we conclude there’s no independent δτδτ̄D4RF 2

supervertex, which again results in a 2nd order dif-

ferential equation of the form,

4τ2
2 ∂τ∂τ̄f2(τ, τ̄) = af2(τ, τ̄) (III.14)

where we’ve used f0 = 0. String tree level amplitude

(III.10) fixes a = 3/4. Combining with SL(2,Z) in-

variance, we have f2 = E3/2. In particular, the per-

turbative contributions to D4RF 2 come from only

open string tree-level and two-loop orders.

C. R2 Coupling on the Brane

Now we turn to R2 coupling on the 3-brane. The

F-term supervertices for n-point super-graviton cou-

pling to the brane at four-derivative order are given

by

δ4(Pµ)δ8(

n∑
i=1

QiαI) = δ4(Pµ)δ8

(
n∑
i=1

ξiαI
AηiA

)
(III.15)
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and its CPT conjugate. Since there are no four-

dimensional particles involved in this amplitude,

there is no little group scaling to worry about. These

F-term vertices contain δτn−2R2 and δτn−2R2 cou-

plings. The mixed δτnδτmD2kR2 couplings, as part

of a local supervertex, can come from D-term super-

vertices for k ≥ 2, but not for k = 0, 1. The δτδτR2

coupling can only be the soft limit of a 4-point brane-

bulk superamplitude, that factorizes through either

an R2 vertex or a D2RF 2 vertex, along with the el-

ementary vertices (Figure 9).[43] The coefficient of

δτδτR2 is determined by the residues at these poles,

thereby related linearly to R2 and D2RF 2 coeffi-

cients. We immediately learn that the coefficient

fR(τ, τ̄) of R2 coupling must obey

4τ2
2 ∂τ∂τfR(τ, τ̄) = afR(τ, τ̄) + bf1(τ, τ̄), (III.16)

where f1(τ, τ̄) is the coefficient of D2RF 2.

R R

1δτ 2δτ̄ 3R 4R

Φ Φ

R

1R 2δτ 3δτ̄ 4R

R

Φ Φ

1δτ 2δτ̄ 3R 4R

FIG. 9. Potential factorizations of the δτδτ̄R2 amplitude

through lower-point vertices.

Let us compare this relation with the perturbative

results in type IIB string theory. In the previous sub-

section we have fixed f1(τ, τ̄) to be 1
2Z1(τ, τ̄). fR re-

ceives the contribution 2ζ(3)τ2 from the disc ampli-

tude [32]. This gives a linear relation between a and

b. Modulo the modular anomaly due to non-analytic

terms, f1 is a harmonic function, and so afR + bf1

is either zero (which implies that fR is harmonic)

or an eigenfunction of the Laplacian operator with

eigenvalue a. If a is zero, the equation (III.16) is

incompatible with the tree level result of f1. If a is

nonzero, comparison with the tree level answer then

implies that afR+bf1 cannot have an order τ2 term,

and its perturbative expansion in τ−1
2 only contains

non-positive powers of τ2. On the other hand, writ-

ing a = s(s − 1), then the eigen-modular function

afR + bf1 must have perturbative terms of order τs2
and τ1−s

2 , which would lead to a contradiction un-

less this function is identically zero. In conclusion,

fR(τ, τ̄) is also a harmonic function, and since it

should be a modular function modulo the modular

anomaly due to a log τ2 term coming from the non-

analytic terms in the quantum effective action, it is

given by the modular completion of its asymptotic

expansion at large τ2, namely Z1(τ, τ̄). This proves

the conjecture of [21].

In a similar way, we can derive the supersymme-

try constraint on D2R2 coupling. The independent

D2R2 supervertices are

δ4(P )δ8(Q1aI +Q2aI)s
⊥
12,

δ4(P )δ8(Q1aI +Q2aI)u12,
(III.17)

where s⊥12 = −(p⊥1 +p⊥2 )2 and u12 = −4(p⊥1 )2+(p⊥1 +

p⊥2 )2, p⊥i being the component of the momentum of

the i-th particle perpendicular to the 3-brane. F-

term n-point supervertices give rise to δτn−2D2R2

and δτn−2D2R2 couplings, but δτδτD2R2 coupling

is not part of a local supervertex, and must be the

soft limit of a 4-point superamplitude that factorizes

through the D2R2 vertex. Note that the first D-term

supervertex that contributes to the 4-point ampli-

tude starts at the order of D4R2 (Figure 10), and

would not affect the D2R2 superamplitude. Thus

the independent coefficients fsR,2(τ, τ̄) and fuR,2(τ, τ̄)

of D2R2 supervertex obey a second order differential

equation of the form

4τ2
2 ∂τ∂τ

(
fsR,2(τ, τ̄)

fuR,2(τ, τ̄)

)
= M

(
fsR,2(τ, τ̄)

fuR,2(τ, τ̄)

)
,

M ∈ Mat2×2(R).

(III.18)

By comparing with the D2R2 term in the disc

and annulus 2-graviton amplitude on a D3-brane

in type IIB string theory, which is proportional to

τ
3/2
2 u12R

2(1+O(τ−2)) in Einstein frame[44] [21, 32],
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we conclude that M has an eigenvector ( 0
1 ) with

eigenvalue 3/4. Combined with SL(2, Z)-invariance,

this allows us to determine fuR,2 = Z3/2 up to an

nonzero constant coefficient. Now the other in-

dependent differential constraint is 4τ2
2 ∂τ∂τ̄f

s
R,2 =

afsR,2 + bfuR,2. If b 6= 0, the leading contribution

to fsR,2 in τ−1
2 must be τ

3/2
2 log τ2 up to a nonzero

constant, but such non-analytic piece cannot appear

at tree level in string perturbation theory. Writ-

ing a = s(s − 1), then fsR,2 is an eigen-modular

function with perturbative terms of order τs2 and

τ1−s
2 . However since fsR,2 receives no contribution

at order τ3/2 (tree) and τ1/2 (open string one loop),

consistency of string perturbation theory demands

fsR,2 = 0 identically. To sum up, the D2R2 coupling

on the brane is captured by a single eigen-modular

function fuR,2 = Z3/2(τ, τ̄).

Φ Φ

R

1R 2δτ 3δτ̄ 4R

D

1R 2δτ 3δτ̄ 4R

FIG. 10. A factorization channel of the δτ δ̄τD4R2 am-

plitude and a D-term supervertex that contributes at the

same order.

IV. TORUS COMPACTIFICATION OF 6D

(0, 2) SCFT

Let us consider the six dimensional AN−1 (0, 2)

superconformal theory compactified on a torus of

modulus τ , to a four dimensional quantum field

theory that may be viewed as the SU(N) N = 4

super-Yang-Mills theory, deformed by higher dimen-

sional operators that preserve 16 supercharges and

SO(5) ⊂ SO(6) R-symmetry. We would like to de-

termine these higher dimensional operators.

A. Harmonicity Condition on the Coulomb

Branch Effective Action

A clear way to address this question is to consider

the Coulomb phase of the theory, and study the ef-

fective action of Abelian gauge multiplets. We will

focus on couplings of the form

f(τ, τ , φi, y)F 4, (IV.1)

where φi, i = 1, · · · , 5 and y constitute the six

scalars Φi in the gauge multiplet, with the φi trans-

forming in the vector representation of SO(5). We

may view the compactification as first identifying the

6D A1 (0, 2) SCFT compactified on circle with a 5D

gauge theory, which is 5D maximally supersymmet-

ric SU(2) gauge theory up to D-term deformations,

and then further compactifying the 5D gauge theory

[45–47]. On the Coulomb branch, the scalar y comes

from the Wilson line of the Abelian gauge field, and

is circle valued.

It is known from [40] that the (φi, y) dependence

is such that f(τ, τ , φi, y) is a harmonic function on

the moduli space R5 × S1. In the amplitude lan-

guage, as already explained in section 2, this can be

argued as follows. Expanding near a point on the

Coulomb branch, the only supervertices of the form

(δφ)2F 4 are in the symmetric traceless representa-

tions of the local SO(6) R-symmetry, whereas the

R-symmetry singlet (δφ)2F 4 coupling can only be

part of a nonlocal amplitude. Unlike the supergrav-

ity case, here the Coulomb branch effective theory

would be free without the F 4 and higher derivative

couplings, and the six point amplitude can only fac-

torize into a pair of F 4 or higher order supervertices,

and in particular cannot have polar terms at the

same order in momenta as (δφ)2F 4. It follows that

the SO(6) singlet (δφ)2F 4 vertex is absent, which is

equivalent to the statement that f(τ, τ̄ , φi, y) is an-

nihilated by the Laplacian operator on the Coulomb

moduli space. The (τ, τ) dependence of the F 4 cou-

pling, on the other hand, does not follow from su-

persymmetry constraints on the low energy effective

theory.

As a side comment, if we start with M-theory on

a torus that is a product of two circles of radii R10
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and R9, wrap M5-branes on the torus times R1,3,

reduce to type IIA string theory along the circle of

radius R10 and T-dualize along the other circle, we

obtain D3-branes in type IIB string theory with τ =

iR10/R9, compactified on a circle of radius

R̃ = `s
`

3
2
11

R9R
1
2
10

(IV.2)

that is transverse to the D3-branes. Here `11 is the

11 dimensional Planck length and `s is the string

length. To identify the four dimensional world vol-

ume theory with the torus compactification of the

(0, 2) SCFT requires taking the limit R9, R10 � `11,

which implies that R̃ � `s. Thus, it is unclear

whether the four dimensional gauge theory of ques-

tion can be coupled to type IIB supergravity, with

τ identified with the dilaton-axion field.

B. Interpolation through the Little String

Theory

Nonetheless, without consideration of coupling to

supergravity, we will be able to determine the func-

tion f(τ, τ , φi, y) completely (including the τ, τ de-

pendence) by an interpolation in the Coulomb phase

of the torus compactified (0, 2) little string theory,

in a similar spirit as in [48]. Based on the SO(5)

symmetry and the harmonicity of f(τ, τ , φi, y), we

can put it in the form

f(τ, τ , φi, y) = c(τ, τ̄)

+
∑
n∈Z

∫ 2πR

0

dv
ρ(τ, τ , v)

[|φ|2 + (y − v − 2πnR)]
2 .

(IV.3)

Here 2πR is the periodicity of the field y. The con-

stant term c(τ, τ) and the source profile ρ(τ, τ , v)

are yet to be determined functions. Now let us com-

pare this to the Coulomb branch effective action of

the A1 (0, 2) little string theory (LST) compacti-

fied on a torus, of complex modulus τ and area

L2. The Coulomb moduli space MLST is param-

eterized by the expectation values of four scalars

φi, i = 1, · · · , 4, a fifth compact scalar φ5, and

the zero mode of the self-dual 2-form potential A =
1
2Aµνdx

µ ∧ dxν , namely

y = L−1

∫
T 2

A. (IV.4)

Here we defined y such that it has a canonically

normalized kinetic term, and has periodicty L−1(≡
2πR). The compact scalar φ5, on the other hand,

has periodicity L/`2s.[49] The torus compactified

(0, 2) superconformal theory is obtained in the limit

`s → 0 while keeping L finite. In this limit φ5 de-

compactifies while y retains the periodicity L−1.

Far away from the origin on the Coulomb branch,

the (0, 2) LST can be described by the double

scaled little string theory, whose string coupling gs
is related to the expectation values of the scalar

fields φi (after compactification to four dimensions)

through[50]

gs =
1

L
√∑4

i=1 φ
2
i

. (IV.5)

Together with the SO(4) symmetry and harmonicity

condition on R4 × T 2, the coefficient of F 4 in LST

should take the form

fLST (τ, τ , φi, y) = c(τ, τ , L/`s) +
∑
n,m∈Z

∫
dudv

ρ(τ, τ , L/`s, u, v)[∑4
i=1 φ

2
i + (φ5 − u−mL/`2s)2 + (y − v − n/L)2

]2 ,(IV.6)

where u, v are integrated along the φ5 and y cir-

cles in the moduli space. In the weak coupling limit

gs → 0, and therefore large |φi| with i = 1, · · · , 4,

the F 4 term in the Coulomb effective action can be

computed reliably from the LST perturbation the-

ory. In particular, in the large φi limit, the lead-

ing contribution to fLST comes from the tree level

scattering amplitude, which scales like g2
s ∼ |φ|−2,

plus corrections of order e−|φ|.[51] This then fixes
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the constant term c(τ, τ , L/`s) to be zero and∫
dudv ρ(τ, τ , L/`s, u, v) = 1, (IV.7)

which is in particular independent of τ, τ .

In the limit

`s → 0, L, φ1, · · · , φ5, y finite, (IV.8)

the (0, 2) LST reduces to the (0, 2) superconformal

theory, and we should recover SO(5) R-symmetry.

In this limit, the F 4 coefficient (IV.6) becomes a

harmonic function on R5 × S1, thus the source ρ in

(IV.6) should be localized at u = 0. This argument

also determines c(τ, τ) = 0 in (IV.3). Next, if we

further take the limit

L→ 0, φ1, · · · , φ5, y finite, (IV.9)

we should recover four dimensional N = 4 SYM,

where the higher dimensional operators (to be dis-

cussed below) are suppressed, with the SO(6) R-

symmetry restored. In this limit, the coefficient

f(τ, τ , φi, y) for the F 4 term becomes a harmonic

function on R6, so we learn that ρ must be supported

at v = 0 as well. Importantly, as stated below (IV.6),

the matching with tree level DSLST amplitudes at

large |φ| fixes the overall normalization of ρ to be in-

dependent of τ, τ̄ , hence ρ(τ, τ̄ ,∞, u, v) = δ(u)δ(v).

Thus, we determine f(τ, τ , φi, y) to be given exactly

by (after rescaling all scalar fields by L/(2π))

H(φi, y) =
∑
n∈Z

1

[|φ|2 + (y − 2πn)2]
2 (IV.10)

as the coefficient of F 4 in the Coulomb branch of the

A1 (0, 2) SCFT. [52]

The key to the above argument is that while the

dependence on τ , which are the complexified cou-

pling constant, of the torus compactified (0, 2) the-

ory could a priori be arbitrarily complicated, the

dependence on τ , which becomes the modulus of the

target space torus, of the LST tree level scattering

amplitude is completely trivial. By interpolating be-

tween the weakly coupled (0, 2) LST with the (0, 2)

superconformal field theory, we determine the τ de-

pendence of the F 4 coefficient of the latter theory.

We have implicitly worked in the convention

where the gauge fields have canonically normalized

kinetic terms. If we work in the more standard field

theory convention where the kinetic term for the

gauge field is written as τ2F
2, then the F 4 term

acquires a factor τ2
2 , and so we can write

f(τ, τ , φi, y) = τ2
2H(φi, y). (IV.11)

Let us compare this with our expectation in the

large τ2 regime, where F 4 coupling can be computed

from 5D maximal SYM compactified on a circle, by

integrating out W -bosons that carry Kaluza-Klein

momenta at 1-loop. As argued in [48], the 5D gauge

theory obtained by compactifying the (0, 2) SCFT

(as opposed to little string theory) does not have

trF 4 operator at the origin of the Coulomb moduli

space, thus the 1-loop result from 5D SYM holds in

the large τ2 regime. This indeed reproduces (IV.11).

Near the origin of the Coulomb branch, expand-

ing in φi and in y, the term n = 0 in (IV.10) can be

understood as the 1-loop F 4 term in the Coulomb

effective action of N = 4 SYM. The n 6= 0 terms,

which are analytic in the moduli fields at the origin,

can be viewed as F 4 and higher dimensional oper-

ators that deform the N = 4 SYM at the origin.

From the expansion∑
n 6=0

1

[|φ|2 + (2πn− y)2]
2

=
ζ(4)

8π4
+
ζ(6)

16π6

(
5y2 − |φ|2

)
+

ζ(8)

128π8

[
35y4 − 42y2|φ|2 + 3(|φ|2)2

]
+ · · ·
(IV.12)

we can read off the operators at the origin of the

moduli space,[53]

ζ(4)

8π4
τ2
2O(8) +

3ζ(6)

8π6
τ2
2O(10)

66 + · · · (IV.13)

Here O(8) is the 1/2 BPS dimension 8 operator that

is the supersymmetric completion of trF 4, whereas

O(10)
ij is the 1/2 BPS dimension 10 operator in

the symmetric traceless representation of SO(6) R-

symmetry, of the form

O(10)
ij = tr(Φ(iΦj)F

4)− 1

6
δijtr(|Φ|2F 4) + · · ·

(IV.14)

Likewise, there is a series of higher dimensional 1/2

BPS operators that transform in higher rank sym-

metric traceless representations of the R-symmetry.

In fact, these are all the BPS (F-term) operators
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that are Lorentz invariant in the SU(2) maximally

supersymmetric gauge theory. In the higher rank

case, i.e. torus compactification of Ar (0, 2) SCFT

for r > 1, the 4D gauge theory is also deformed by

the 1/4 BPS dimension 10 double trace operator of

the form D2tr2F 4 + · · · , and analogous higher di-

mensional operators in nontrivial representations of

R-symmetry. These receive contributions from the

circle compactified 5D SYM at two-loop order.
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is identified with (g∞s `sL)−1 times the displacement

of the 5-branes along the M-theory circle, while φi
is identified with (g∞s `sL)−1xi. This then fixes the

normalization in the relation between gs of DSLST

and |φ|.
[51] Note that, from the DSLST perspective, there

are no higher order perturbative contributions to

fLST , but there are non-perturbative contribu-

tions. It would be interesting to recover these non-

perturbative terms of order e−|φ| by a D-instanton

computation in the (0, 2) DSLST on the torus.

[52] The periodicity of y is either 4π or 2π depending on

whether the gauge group is SU(2) or SO(3). Here

we are considering the case of SO(3) where there is

a single singularity on the moduli space where the

SO(6) R-symmetry is restored. The SU(2) case will

be considered in [54].

[53] Our result (IV.13) disagrees with the proposal of

[46], where a different modular weight was assigned

to f(τ, τ̄), and the proposed answer has a subleading

perturbative term in τ−1
2 . One can directly verify,

from the circle compactification of 5D SYM, that

there are no higher loop contribution to the F 4 term

through integrating out KK modes. The higher loop

corrections to the effective action only appear at

D2F 4 order and above. Furthermore, by unitarity

cut construction it appears that the F 4 term in the

Coulomb effective action cannot be contaminated

by higher dimensional operators in the 5D gauge

theory that come from the compactification of (0, 2)

SCFT.

[54] C. Córdova, T. T. Dumitrescu, and X. Yin, to

appear.


