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Abstract

The second-order hydrodynamical description of a homogeneous conformal plasma that undergoes a boost-

invariant expansion is given by a single nonlinear ordinary differential equation, whose resurgent asymptotic

properties we study, developing further the recent work of Heller and Spalinski [Phys. Rev. Lett. 115, 072501

(2015)]. Resurgence clearly identifies the non-hydrodynamic modes that are exponentially suppressed at late

times, analogous to the quasi-normal-modes in gravitational language, organizing these modes in terms of

a trans-series expansion. These modes are analogs of instantons in semi-classical expansions, where the

damping rate plays the role of the instanton action. We show that this system displays the generic features

of resurgence, with explicit quantitative relations between the fluctuations about different orders of these

non-hydrodynamic modes. The imaginary part of the trans-series parameter is identified with the Stokes

constant, and the real part with the freedom associated with initial conditions.
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I. INTRODUCTION

Resurgent asymptotics using trans-series is a powerful way to extract physical information

from asymptotic expansions, systematically including exponentially small contributions that are

typically neglected in traditional asymptotic analysis à-la Poincaré [1]. This formalism is well

developed for ordinary differential equations, both linear and nonlinear, and to a lesser extent

some results are known for partial differential equations. Physical applications have included

problems in fluid dynamics [2], exact WKB [3–5], matrix models and strings [6, 7], and quantum

field theory [8–10]. There is also a well-developed literature concerning the Painlevé transcendents,

which themselves have many physical applications, being the nonlinear analogues of the familiar

special functions of linear physics [11]. A common thread is the goal to incorporate, in a controlled

numerical and analytic manner, exponentially small corrections into asymptotic expansions, in

such a way that the trans-series encodes its proper analytic continuation properties [12–14].

In this paper we discuss a new example in physics, in the context of hydrodynamics. This is

motivated by an interesting recent paper by Heller and Spalinski concerning resummation of the

gradient expansion in conformal hydrodynamics [15]. This example is relevant for hydrodynamic

studies of heavy ion collisions [16, 17], and also addresses fundamental issues of the nature of the

hydrodynamics expansion. High orders of the gradient expansion of the linearized hydrodynamic

equations have been studied in [18, 19]. Here we investigate the gradient expansion in the full

nonlinear system. Our choice of conformal hydrodynamics, and the boost invariant regime thereof,

allows us to reduce the hydrodynamic equations from a set of coupled nonlinear partial differential

equations to a single nonlinear ordinary differential equation. We study in pedagogical detail the

asymptotic properties of this nonlinear equation, using resurgent trans-series. We show that this

equation displays resurgent trans-series relations between different non-perturbative sectors, and

that the asymptotic hydrodynamic expansion encodes detailed quantitative information about non-

hydrodynamic modes. The trans-series ansatz for this system was introduced in [15], along with

the leading order resurgent relations. We extend this result by concretely studying the relations

between the late terms in the hydrodynamical derivative expansion and the low order terms in the

fluctuations around non-hydrodynamical modes. We further show that such relations exist among

different non-hydrodynamical modes, and in fact all the hydrodynamical and non-hydrodynamical

expansions are entwined by precise quantitative relations. This is the hallmark of the theory of

resurgence. We also study the Borel transforms of the hydrodynamical and non-hydrodynamical

fluctuations and establish the relations between the cut structure in the Borel plane and the
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asymptotic properties of the associated derivative expansions. Moreover in the final section of the

paper, we present a method to rearrange the trans-series in way that effectively resums the leading

fluctuations around all the non-hydrodynamical modes.

The ultimate goal is to extend these lessons from the reduced one-dimensional system to the

full hydrodynamical system away from the boost-invariant and/or conformal limits, which are

presumably non-integrable, and also to the corresponding nonlinear partial differential equations

arising through the AdS/CFT correspondence [20–26].

II. NONLINEAR EQUATION FOR BJORKEN FLOW IN CONFORMAL HYDRODY-

NAMICS

In this section we briefly recall the relevant notation for describing second order hydrodynamics

and the steps to reduce it to a single nonlinear equation in the restricted case of Bjorken flow in

conformal hydrodynamics. The general second order dissipative terms for relativistic, conformal

hydrodynamics have been derived in [27]. The equations of hydrodynamics stem from the conser-

vation of the energy-momentum tensor1, ∇µTµν = 0. In order to describe the energy-momentum

flow we use as our hydrodynamic fields the energy density in the local rest frame of the fluid, E , and

the fluid four-velocity, uµ, with uµuµ = −1. The covariant expression for the energy-momentum

tensor in terms of these hydrodynamic fields is

Tµν = p(E)gµν + (p(E) + E)uµuν + Πµν (1)

where p(E) is the pressure (related to the energy density by the equation of state), and Πµν is the

dissipative part that includes the viscous corrections. Conformal symmetry implies Tµµ = 0, which

determines the equation of the state to be p(E) = E/(d − 1), for d space-time dimensions. The

dissipative part, Πµν , is symmetric, transverse (i.e. uµΠµν = 0), and for conformal fluids, traceless.

In the hydrodynamic limit where one considers only the long wavelength, small momentum modes,

the dissipative corrections that constitute Πµν are given as an expansion in space-time gradients

of the hydrodynamic fields E and uµ [27–29]. This derivative expansion contains all terms, at a

given order, which are allowed by the underlying symmetries of the fluid. At first order in the

derivative expansion, there is only one term allowed by Lorentz and conformal symmetries, the

shear viscosity η(E):

1st order : Πµν = −η σµν ≡ −2η 〈∇µuν 〉 (2)

1 We assume the absence of other conserved charges.
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Here we use the standard notation [15, 27, 29] to denote the symmetric, transverse projection of a

tensor Aαβ

〈Aµν 〉 =
1

2
∆µα∆νβ (Aαβ +Aβα)− 1

d− 1
∆µν∆αβAαβ (3)

where ∆µν = gµν + uµuν is the transverse projection operator.

At second order, there are five new transport coefficients [27]. One characterizes the relaxation

of the energy-momentum tensor, one characterizes the coupling to space-time curvature, and the

other three describe non-linear couplings to the fluid velocity. Among these latter three, two are

related to couplings to vorticity. In this paper we study homogeneous and boost invariant flow, in

which case we can neglect the terms coupling to curvature and vorticity, so only two of the five

possible terms contribute:

2nd order : Πµν = −η σµν + η τΠ

(
〈uλ∇λσµν 〉 +

1

d− 1
σµν∇λuλ

)
+ λ1σ

〈µ
λ σ

ν〉λ + . . . (4)

The relevant second order transport coefficients are τΠ and λ1. Using conformal invariance we

can parametrize the dimensionful quantites in units of local temperature T (x). For example, the

energy density scales as E ∝ T d. For the transport coefficients, we adopt the parameterization

used in [15]

η = Cηs , τΠ =
Cτ
T

, λ1 = Cλ
s

T
(5)

where s ∝ T d−1 is the local entropy density, and Cτ , Cλ and Cη are dimensionless numbers.

A. Bjorken flow

We consider boost invariant flow, also known as Bjorken flow [30]. It describes a homogeneous

fluid expanding longitudinally along a fixed direction, say z. The original motivation of Bjorken

flow was to capture the essential physics of the space-time evolution of the quark-gluon plasma

produced in heavy ion collisions, which is modeled by a fluid expanding between the highly Lorentz

contracted “sheets” of nuclei, moving away from each other almost at the speed of light, shortly

after the collision. With boost invariant initial conditions the expansion is boost invariant, in

other words the system looks the same in all inertial frames. It is convenient to work with proper

time, τ , and rapidity, ζ as the space-time coordinates. They are related with the usual Minkowski

coordinates z and t as

t = τ cosh ζ , z = τ sinh ζ ⇔ τ =
√
t2 − z2 , ζ = tanh−1(t/z) . (6)
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The metric is ds2 = −dτ2 + τ2dζ2 + dx2
⊥ and the non-vanishing Christoffel symbols are Γζτζ = τ−1,

and Γτζζ = τ . In these coordinates the fluid velocity is constant, uτ = 1, uξ = ux⊥ = 0, and

the conservation equation, ∇µTµν = 0, along with Eq. (1) and the conformal equation of state,

p = E/(d− 1), reduce to

τ
dE
dτ

+
d

d− 1
E − Φ = 0 (7)

where Φ ≡ −Πζ
ζ [27]. At leading order where the viscous terms Φ are neglected, the energy density

has the asymptotic large τ behavior

E ∼ τ−
d
d−1 + . . . ,

(
E ∼ τ−4/3 + . . . , d = 4

)
(8)

Here the ellipses denote the viscous corrections. Equation (8) is the leading order result that

describes how the system cools as it expands. The viscous corrections can be calculated by inserting

(4) into (7) and solving as an expansion at large proper-time τ . We instead follow a Müller-Israel-

Stewart-like approach and promote the dissipative part of the energy-momentum tensor Πµν to

an independent hydrodynamic field.2 Using the first order relation (2) we can rewrite (4), also to

second order, as

Πµν = −η σµν − η τΠ

(
〈uλ∇λΠµν 〉 +

1

d− 1
Πµν∇λuλ

)
+ λ1Π

〈µ
λ Πν〉λ (9)

and obtain a relaxation equation for Πµν , with relaxation time τΠ. This procedure generates an

all-orders derivative expansion which agrees with the ordinary hydrodynamic expansion up to third

order, beyond which more transport coefficients should be taken into account.

In the homogeneous, boost invariant limit the relaxation equation (9) further reduces to a

non-linear equation

τΠ
dΦ

dτ
+

(
1 +

d

d− 1

τΠ

τ

)
Φ +

(
d− 3

d− 2

)
λ1

η2
Φ2 − 2

(
d− 2

d− 1

)
η

τ
= 0 (10)

where the transport coefficients η, τΠ and λ1 are functions of the energy density E . The technical

problem now is to solve the two coupled nonlinear equations (7) and (10).

To illustrate the ideas of resurgence in hydrodynamics, we consider as our central object the

all-orders expansion generated by this Müller-Israel-Stewart-like treatment of the second order,

conformal, boost invariant hydrodynamics. In d = 4 the resummation of this expansion is studied

2 The Müller-Israel-Stewart approach [31] was designed to obtain a set of hyperbolic differential equations which
have causal solutions as opposed to the hydrodynamical equations which are not hyperbolic and have acausal
propagation of certain modes. These modes are beyond hydrodynamics, but eliminating them has advantages in
numerical simulations.
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by Heller and Spalinski in [15]. We show that the usual derivative expansion encodes much more

information, such as the non-hydrodynamical modes, than one might naively anticipate, a result

which we argue has implications for more complicated and phenomenologically relevant models as

well, such as those relating hydrodynamics to gravitational systems [21, 22, 24, 26].

B. Scale invariance and the nonlinear hydrodynamic equation

Using the parametrization of the transport coefficients (5) dictated by conformal invariance,

equations (7) and (10) combine into a single highly nonlinear equation for the temperature T (τ):

Cτ
τ2T̈

T
+

(d− 3)(d− 1)Cλ
(d− 2)Cη

τ3Ṫ 2

T
+ (d− 1)Cτ

τ2Ṫ 2

T 2
+

(3d− 1)Cτ
d− 1

τ Ṫ

T
+

(
1 +

2(d− 3)Cλ
(d− 2)Cη

)
τ2Ṫ

+
1

d− 1

(
1 +

(d− 3)Cλ
(d− 2)Cη

)
τT +

dCτ − 2(d− 2)Cη
(d− 1)2

= 0 (11)

where Ṫ ≡ dT/dτ . As a consequence of the underlying scale invariance of the system, Eq. (11)

is invariant under rescaling τ → ατ , T → α−1T . Therefore we can integrate Eq. (11) to obtain

a first order equation. Scale invariance also suggests introducing a local proper-time variable, w,

measured in units of local temperature (in mathematical terms, w is known as the “Écalle time”):

w ≡ τ T (τ) (12)

and an associated dimensionless characterization of the temperature, through a function f(w)

defined as3

f ≡ d log T

d log τ
(13)

With these definitions, Eq. (11) reduces to a single first order nonlinear equation for the dimension-

less variable f(w) as a function of w, the proper time measured in the units of local temperature.

Cτwf(w)f ′(w) + Cτwf
′(w) +

(
1 +

2(d− 3)Cλ
(d− 2)Cη

)
wf(w) + dCτf

2(w) +
(d− 3)(d− 1)Cλ

(d− 2)Cη
wf2(w)

+
1

d− 1

(
1 +

(d− 3)Cλ
(d− 2)Cη

)
w +

2dCτ
d− 1

f(w) +
dCτ − 2(d− 2)Cη

(d− 1)2
= 0 (14)

(Here we study this equation in d = 4, but we note that d = 3 also has novel features.) For d = 4,

we reach the central equation to be studied in this paper:

Cτwf(w)f ′(w) + Cτwf
′(w) +

(
1 +

Cλ
Cη

)
wf(w) + 4Cτf

2(w) +
3Cλ
2Cη

wf2(w)

+
1

3

(
1 +

Cλ
2Cη

)
w +

8Cτ
3
f(w) +

4

9
(Cτ − Cη) = 0 (15)

3 Note that our f differs from the f in [15] by: fours = ftheirs − 1.
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Up to the simple shift, fours = (ftheirs − 1) noted above, (15) is the equation analyzed in [15].

It is clear that after the rescaling w → Cτw, Eq. (15) only depends on the ratios Cη/Cλ, and

Cη/Cτ . Physically, this is simply because Cτ characterizes the relaxation time, using w now as the

time variable, and so is naturally absorbed into w. However, to facilitate direct comparison with

previous results [15], we will not adopt this rescaling. And in what follows, for concrete numerical

illustrations, we will also use the parameters that are associated with N = 4 super Yang-Mills

theory [15, 27, 29]:

Cη =
1

4π
, Cτ =

2− log 2

2π
, Cλ =

1

2π
(16)

III. FORMAL LATE TIME EXPANSIONS

In this section we analyze the hydrodynamic expansion generated by the nonlinear equation

Eq. (15). The hydrodynamic regime is identified with large proper time, or equivalently large w.

Mathematically speaking the large w expansion is a formal series which is divergent, asymptotic

and non-Borel summable. Such asymptotic behavior is characteristic of gradient expansions of

effective actions [32]. This is by no means a bad thing: the asymptotic nature of the expansion

actually encodes important physical information.

A. Late time hydrodynamic expansions

The late proper-time hydrodynamic expansion4 of f(w) is an expansion in inverse powers of w.

Since w ∼ τ2/3 in d = 4, this expansion translates into a late proper-time expansion for T (τ) using

(12, 13). We start with the formal series ansatz

f (0)(w) =
∞∑
k=0

f
(0)
k w−k . (17)

The meaning of the superscript (0) will become clear in Section IV, when we include the terms

beyond hydrodynamics. With this ansatz (17), the nonlinear equation (15) generates a recursion

4 As terminology, we refer to the all-orders expansion (17) generated by the Müller-Israel-Stewart-type analysis
described in Section II as the “hydrodynamic expansion”. We will see that a consistent asymptotic analysis of the
basic nonlinear equation (15) requires the addition of further terms, which go beyond hydrodynamics.
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relation for the the coefficients f
(0)
k :

−Cτ
k∑

k′=0

(k′ − 1) f
(0)
k−k′ f

(0)
k′−1 − Cτ (k − 1) f

(0)
k−1 +

(
1 +

Cλ
Cη

)
f

(0)
k + 4Cτ

k−1∑
k′=0

f
(0)
k−k′−1f

(0)
k′

+
3Cλ
2Cη

k∑
k′=0

f
(0)
k−k′f

(0)
k′ +

1

3

(
1 +

Cλ
2Cη

)
δk,0 +

8Cτ
3
f

(0)
k−1 +

4

9
(Cτ − Cη) δk−1,0 = 0 (18)

These can be solved iteratively. The equation that determines f
(0)
0 is quadratic. Therefore there

are actually two solutions to the recursion relations, leading to two different large w expansions:

f
(0)
+ (w) ∼ −1

3
+

4Cη
9

1

w
− 8Cη(Cλ − Cτ )

27

1

w2
+

16Cη (2(Cλ − Cτ )2 − 3Cη Cτ )

81

1

w3
+ . . . (19)

f
(0)
− (w) ∼ −1

3

(
1 +

2Cη
Cλ

)
− 4Cη

9

(
1− 4Cη Cτ

C2
λ

)
1

w
+ . . . (20)

In terms of physical quantities, such as the proper time τ and the local temperature T (τ), it is the

former expansion, f
(0)
+ , which leads to the familiar hydrodynamic expansion T (τ) ∼ τ−1/3− 2Cη

3τ +

. . . . On the other hand, the latter expansion f
(0)
− leads to T (τ) ∼ τ

− 1
3

(
1+

2Cη
Cλ

)
+ . . . , which does

not connect to the ideal hydrodynamic result at late times. Furthermore, the expansion f
(0)
− (w)

in (20) is unstable, in a sense explained below, so we concentrate on the expansion f
(0)
+ from now

on. With this understood, for notational simplicity we drop the subscript “ + ”, and simply write

f (0)(w) for the function with late time expansion in (19).

B. Divergence, Borel ambiguities, and exponentially suppressed terms

It is straightforward to show that the expansion (19) is divergent. The late terms in the

expansion grow factorially fast, and their leading large-order growth can be characterized as

f
(0)
k ∼ Γ(k + β)

Sk+β
, k →∞ (21)

for some real numbers S and β, whose physical meaning will become clear shortly. Furthermore,

with the N = 4 parameters in (16), the parameter S turns out to be positive. There are three

important and interrelated points related to this divergent behavior [1, 33]. First, the hydrodynamic

expansion (17) is a typical asymptotic expansion: for a fixed large value of w, the terms f
(0)
k w−k at

first decrease for increasing low values of k, but eventually start growing beyond some value of k,

say k∗. This transition happens roughly when d(f
(0)
k w−k)/dk

∣∣∣
k∗

= 0, or k∗ ≈ Sw. One can obtain

exponential precision by the procedure of “least-term-truncation”, truncating the series at k ∼ k∗.

The associated inherent error is exponentially small

f
(0)
k∗ w

−k∗ ∼ wβ e−Sw (22)
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Second, one could try to apply Borel summation:

f (0)(w) ∼
∞∑
n=0

Γ(n+ β)

Sn+βwn
=

∞∑
n=0

wβ
∫ ∞

0

du

u
e−Swu un+β ∼

∫ ∞
0

du

u
e−Swu

uβ

1− u
. (23)

However, when S > 0, as is the case here, the Borel integral has a pole at u = 1, leading to an

ambiguous imaginary part

Im[f (0)(w)] ∼ ∓iπ wβ e−Sw (24)

Notice that this is the same order of magnitude as the least-term-truncation error in (22). The

ambiguity (24) is due to the ambiguity of deforming the integration contour around the pole. The

existence of such an ambiguous term is problematic for several reasons: it has an undetermined

sign, and furthermore it is pure imaginary. However the function f(w) should be real, since it is

related to the physical temperature. It is clear that in order to fix this ambiguity we need to add

to f (0)(w) an exponentially suppressed term of the same order.

Third, one can consider linearized perturbations around the solution f (0)(w). This is achieved

by an ansatz f (0)(w) → f (0)(w) + δf (0)(w). Inserting this ansatz into Eq. (15), keeping the first

two terms in the w−1 expansion of f (0)(w) in (19) and the linear terms in δf (0)(w) leads to the

equation

0 = w

(
2Cτ

3

d(δf (0))

dw
+ δf (0)

)
+

4CηCτ
9

d(δf (0))

dw
+

4Cλ
3
δf (0) +O(w−1) (25)

which has the solution5

δf (0)(w) ∼ wβ exp

[
− 3

2Cτ
w

]
, β =

Cη − 2Cλ
Cτ

(26)

Notice that the linearized perturbation in (26) has the same functional form as the least-term-

truncation error (22), and the ambiguity (24) of naive Borel summation. This is not a coincidence,

as all three phenomena are manifestations of the asymptotic character of the hydrodynamic ex-

pansion (17). In fact, by general arguments [1, 33] the constants S and β appearing in the leading

large order growth (21), and hence also in the error (22) and the ambiguity (24), are exactly the

same constants that appear in the linearized perturbation (26). Thus we deduce that

S =
3

2Cτ
, β =

Cη − 2Cλ
Cτ

(27)

5 The same argument for the other expansion f
(0)
− , in Eq. (20), leads to δf

(0)
− (w) ∼ wβ exp

[
− 3Cλ

2Cτ (Cη−Cλ)
w
]

with

β =
2C3

λ−CηC
2
λ−4C2

ηCτ

Cτ (Cη−Cλ)2
. Notice that for the N = 4 parameters (16), the exponent is positive, which is related to

the unstable nature of the expansion in (20).
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which becomes now a numerical prediction for the leading large-order growth (21) of the coefficients

of the hydrodynamic expansion, which are generated from the recursion relations (18). Numerically,

for the N = 4 SYM plasma parameters in (16):

S =
3π

2− log 2
≈ 7.21181 , β = − 3

4− 2 log 2
≈ −1.1478 (28)

In Section V we confirm the consistency of these arguments with great precision.

The conclusion is that by itself the hydrodynamic series expansion f (0)(w) in (17) is merely a

formal expression. In order to promote it to a well-defined function it is necessary to enhance it

by adding some exponential terms that go beyond the hydrodynamic expansion. These terms are

not arbitrary: they are highly constrained. The linearized perturbation is only the first element

of an infinite set of exponential corrections. These exponential terms are required to render an

unambiguous answer for the actual solution, f(w), of the differential equation. The full expansion

that contains all these exponential terms in addition to the formal series expansion (17) is known

as a “trans-series” [1]. In the next section we demonstrate how such a trans-series is constructed.

IV. TRANS-SERIES EXPANSIONS

The leading exponential correction to the perturbative series, δf (0)(w), is only the tip of the

iceberg. Just like the hydrodynamic series f (0)(w) itself, the first exponential correction is also

an asymptotic series: the factor wβ e−Sw is multiplied by another formal series in w−1, which

we denote as f (1)(w), and which is also divergent, and with the same leading rate of growth

(21) as in the hydrodynamic series. By the same arguments, we conclude that there must be a

correction of the form w2β e−2Sw. Furthermore, this second exponential term is also multiplied

by another asymptotic series, denoted by f (2)(w), which requires the existence of corrections of

the form w3β e−3Sw. This pattern continues ad infinitum. (This is also clear generically from the

nonlinearity of the underlying differential equation.) In order to obtain an unambiguious answer,

all these exponential terms, and their fluctuations, must be included in the answer. The resulting

combined object is known as a “trans-series”.6 More importantly, the theory of resurgence predicts

that these various asymptotic series, which make up the full trans-series, are related to one another

in extremely intricate ways. These inter-relations will be demonstrated explicitly in Section V.

6 More general trans-series also include powers of logarithms, and possibly iterations of powers, exponentials and
logarithms [1, 13, 14].
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We are led to the following trans-series ansatz generalization of the formal hydrodynamic ex-

pansion (17):

f(w) ∼ f (0)(w) + σ wβ e−Sw f (1)(w) + σ2w2β e−2Sw f (2)(w) + . . . (29)

∼
∞∑
n=0

f (n)(w)σn ζn(w) (30)

This is a sum over powers of an exponential factor (the analog of the “instanton fugacity” in semi-

classical expansions in quantum mechanics or quantum field theory, with S being the instanton

action)

ζ(w) ≡ wβ e−Sw (31)

each multiplied by a formal large w series (the analog of the pertrurbative fluctuations about the

nth instanton sector):

f (n)(w) ∼ f (n)
0 +

1

w
f

(n)
1 +

1

w2
f

(n)
2 +

1

w3
f

(n)
3 + . . . (32)

In the trans-series expansion (29, 30), σ is the trans-series expansion parameter, which is in general

a complex number. As discussed below, its imaginary part will be fixed by resurgent cancellations

associated with the reality of the trans-series, while its real part is a free parameter related to the

initial conditions of the ODE. At this stage, it simply counts the “non-perturbative” order of the

trans-series expansion.

Inserting the trans-series ansatz (29) into the nonlinear ODE (15), we obtain a set of recursion

relations by equating to zero the coefficient of each wnβ−ke−nSw, for all k ≥ 0 and n ≥ 0. Setting

n = 0 leads to the recursion relations (18) that generate the hydrodynamic series (19) studied in

the previous section. Setting n = 1, we obtain the recursion relations that generate the asymptotic

series f (1)(w) that multiplies the first exponentially suppressed term, or the first non-hydrodynamic

series. We refer to the asymptotic series f (n)(w) as the “nth non-hydrodynamic series”.

−Cτ
k∑

k′=0

[
f

(1)
k−k′ f

(0)
k′−1

(
k′ − 1

)
+ f

(0)
k−k′

(
S f

(1)
k′ + (k′ − β − 1) f

(1)
k′−1

)]
+

(
1 +

Cλ
Cη

)
f

(1)
k

−Cτ
(
S f

(1)
k + (k − β − 1) f

(1)
k−1

)
+ 4Cτ

k−1∑
k′=0

[
f

(1)
k−k′−1f

(0)
k′ + f

(0)
k−k′−1f

(1)
k′

]
+

3Cλ
2Cη

k∑
k′=0

[
f

(1)
k−k′f

(0)
k′ + f

(0)
k−k′f

(1)
k′

]
+

8Cτ
3
f

(1)
k−1 = 0 . (33)

The first two terms, k = 0 and k = 1, in these recursion relation determine the constants S and

β to be as in (26). The leading coefficient f
(1)
0 is a free parameter, and the remaining coefficients,

11



f
(1)
k (k ≥ 1), are determined by Eq. (33), and are all proportional to f

(1)
0 . Therefore, without loss

of generality we can normalize f
(1)
0 = 1, and characterize the freedom in terms of the constant σ.

This normalization fixes all the other coefficients f
(1)
k uniquely. The leading non-hydrodynamic

series is

f (1)(w) ∼ 1 +
2
(
C2
η − Cη(Cλ − 6Cτ ) + 2Cλ(Cτ − Cλ)

)
3Cτ w

+ . . . (34)

The higher hydrodynamic series are determined by similar recursion relations. For completeness

we give the full recursion relation for arbitrary n and k:

−Cτ
n∑

n′=0

k∑
k′=0

f
(n−n′)
k−k′

(
n′ S f

(n′)
k′ + (k′ − n′β − 1) f

(n′)
k′−1

)
− Cτ

(
nS f

(n)
k + (k − nβ − 1) f

(n)
k−1

)
+

(
1 +

Cλ
Cη

)
f

(n)
k + 4Cτ

n∑
n′=0

k−1∑
k′=0

f
(n−n′)
k−k′−1f

(n′)
k′ +

3Cλ
2Cη

n∑
n′=0

k∑
k′=0

f
(n−n′)
k−k′ f

(n′)
k′ +

8Cτ
3
f

(n)
k−1

+
1

3

(
1 +

Cλ
2Cη

)
δk,0δn,0 +

4

9
(Cτ − Cη) δk−1,0δn,0 = 0 (35)

Once the free parameter f
(1)
0 , or σ, is fixed there is no more freedom, and all the coefficients f

(n)
k

are determined completely by the recursion relations (35). This is perhaps surprising, but it is

generic [1]. The dependence of the trans-series on σ is exactly as written in Eq. (30), i.e. σ enters

the trans-series as σnf (n)(w). For example, the second non-hydrodynamic expansion is

f (2)(w) ∼ 3(Cλ − Cη)
2Cη

+
−2C3

η + C2
η(4Cλ − 11Cτ ) + 2Cη

(
C2
λ + 4CλCτ + 2C2

τ

)
+ 2C2

λ(Cτ − 2Cλ)

CηCτw

+ . . . (36)

and the third non-hydrodynamic series is

f (3)(w) ∼ 9(3Cη − 2Cλ)(Cη − Cλ)

8C2
η

+
1

4C2
ηCτw

[
Cτ
(
48C3

η − 67C2
ηCλ + 16CηC

2
λ + 4C3

λ

)
+

4CηC
2
τ (4Cλ − 5Cη) + 3(Cη − Cλ)(Cη + Cλ)(Cη − 2Cλ)(3Cη − 2Cλ)

]
+ . . . (37)

The remaining coefficients can be generated in a straightforward fashion, but are rather cumber-

some to write.

More physically, these non-hydrodynamical series correspond to exponentially damped modes

multiplied by a gradient expansion due to viscous terms. Recalling w ∼ τ2/3, these modes con-

tribute to expansions of physical quantities such as the local temperature, or energy density as

ζn(w) ∼ τ
2nβ

3 e−n
3

2Cτ
τ2/3

∼ τ
2nβ

3 e
−n 3

2T0

τ
τΠ . (38)

Note that for the N = 4 parameters (16) these modes introduce a transcendental power (i.e. β) of

τ in the gradient expansion. It is illustrative to compare the non-hydrodynamic modes to instanton

12



contributions in quantum mechanics and quantum field theory. The coefficient S that controls the

damping is analogous to the two-instanton action in the dilute instanton gas picture, where the

ambiguities that arise from the divergence of perturbation theory are cured by non-perturbative

corrections from higher (multi-)instanton sectors [4, 5, 9]. Here the non-hydrodynamic modes play

the role of instantons.

V. LARGE ORDER BEHAVIOR, STOKES CONSTANTS AND BOREL ANALYSIS

The reality condition on the trans-series f(w) in (29, 30) means that cancellations must occur of

imaginary terms generated by Borel summation of the different f (n)(w) expansions. As described

in the comprehensive analysis of real trans-series by Aniceto and Schiappa [13], this leads to an

infinite hierarchy of relations between the expansion coefficients f
(n)
k of different n sectors. In

this Section we analyze these relations numerically, and confirm that these resurgence relations

do indeed hold. This also allows us to deduce the Borel plane structure of the associated Borel

transforms, which reveals some interesting branch-cut structure.

A. Hydrodynamic derivative expansion: f (0)(w)

Resurgence predicts [13] that the leading large-order growth of the expansion coefficients f
(0)
k

in (21) receives subleading corrections of the form:

f
(0)
k ∼ S1

Γ(k + β)

2πi Sk+β

(
f

(1)
0 +

S

k + β − 1
f

(1)
1 +

S2

(k + β − 1)(k + β − 2)
f

(1)
2 + . . .

)
+ . . . . (39)

This is an example of the resurgent relations between two sectors of the trans-series, namely

between the hydrodynamic f (0)(w) and the first non hydrodynamic series f (1)(w). Recall that the

constants S and β appearing in (39) are known, being given by (27). The subleading terms are also

known, as they are completely determined by the low order coefficients, f
(1)
0 , f

(1)
1 , f

(1)
2 , . . . , of the

first non-hydrodynamic series f (1)(w) in (34). It is therefore possible to determine numerically the

overall constant S1, a “Stokes constant”7, by generating many coefficients f
(0)
k from the recursion

relations (18). It is simple to generate many thousands of these coefficients, which provides great

precision.

In Figure 1 we plot the ratio of the large order expression (39) to the actual coefficients. This

clearly demonstrates the remarkable precision of the resurgence relation (39). Indeed, as shown in

7 The factor 2πi is the denominator is conventional, being convenient for the associated Borel analysis.

13



the second plot, when all three terms on the right-hand-side of (39) are included, the agreement

with the prediction of the large-order growth is at the one percent level already by the 10th term in

the expansion. From direct comparison of the large order expression (39) with the exact coefficients
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FIG. 1: The first plot shows plot the ratio of the large order expression (39) to the exact coefficients f
(0)
k ,

as a function of k. The blue, green and red points refer to the inclusion of the zeroth, first, and second

subleading terms in (39). The second plot shows a close-up view of the ratio using the expression with the

first three terms in (39). This clearly demonstrates the remarkable precision of the resurgence relation (39):

the agreement is better than the one percent level already by k ≈ 10.

f
(0)
k we deduce the numerical value of the Stokes constant S1:

S1 ≈ −0.040883 i , for N = 4 parameters (40)

Note that S1 is pure imaginary.

The form of the large order growth is intimately connected with the Borel transform of the

asymptotic series f (0)(w). The Borel transform is defined as

f̂ (0)(s) ≡
∞∑
k=0

f
(0)
k+1

k!
sk . (41)

For factorially divergent series such as f (0)(w), this new function f̂ (0)(s) has a finite radius of

convergence. The Borel summation of f (0)(w) is then formally defined as

Sθf (0)(w) = f
(0)
0 +

∫ eiθ∞

0
e−ws f̂ (0)(s) ds . (42)

The angle θ determines the contour of integration in the complex- s plane, usually called the “Borel

plane”, and is correlated with the phase of the original expansion parameter w. For our original

problem we are interested in θ = 0, since w is a real parameter. However f̂ (0)(s) has singularities
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along the real axis, where θ = 0. A quick way to see this is to use the large order expression (39)

in (41):

f̂ (0)(s) ∼ S1

2πi
Γ(β + 1) (S − s)−β−1

[
f

(1)
0 +

S − s
β

f
(1)
0 +

(S − s)2

β(β − 1)
f

(1)
0 + . . .

]
+ . . . . (43)

It is clear that there is a branch point at s = S. In order to avoid the branch cut we deform the

contour infinitesimally as θ = 0±, but depending on the direction, one encounters a discontinuity.

Let us consider θ = 0+. The discontinuity is pure imaginary, and is of the order Im[f (0)(w)] ∝

S1f
(1)
0 wβe−S w. Requiring that the trans-series is real, this ambiguous contribution to f (0)(w) that

arises from the singularity in the Borel transform must be canceled by f (1)(w). This cancellation

fixes the imaginary part of σ in the trans-series (30) to be [12, 13]

Im[σ] = −1

2
Im[S1] (44)

With N = 4 parameters, Im(S1) ≈ −0.04. For a detailed analysis of the reality of trans-series,

and the associated cancellations of imaginary ambiguities we refer the reader to [13].

The branch cut singularity of the Borel transform f̂ (0)(s) can also be seen in another way. By

generating many coefficients f
(0)
k , using the recursion relations (18), we automatically generate

many terms in the Taylor series for f̂ (0)(s), from (41). The location of the nearest singularity

may be deduced by a root test or ratio test, but to see the branch cut it is better to use a Padé

approximant [33]. The Padé approximant to f̂ (0)(s) approximates it as a ratio of two polynomials:

f̂ (0)(s) ≈ p(0)(s)

q(0)(s)
. (45)

The branch cuts of the actual Borel transform function manifest themselves as an accumulation of

poles in the Padé approximant. Of course the further away a branch point is from the origin, the

more precision and number of terms it would require to reproduce the associated branch cut. We

computed the symmetric Padé approximant of order 300; namely p(0)(s) and q(0)(s) are taken to

be polynomials of order 150. We used precision of 800 significant figures. The result is shown in

Fig. 2. It is clear that there is a branch cut that starts at s = S = 3
2Cτ

, along the positive real

axis, consistent with the resurgent behavior in (43) and the large-order behavior in (39). The fact

that the location of the singularity in the Borel plane coincides with the “instanton action” (31)

in the trans series is a generic feature of resurgence.

Due to the nonlinear nature of the original differential equation (15), there are in fact infinitely

many exponentially suppressed terms in the trans-series, each of which is associated with an action

nS. This fact translates into the existence of branch points located at s = nS for all n ≥ 1.
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FIG. 2: The poles in the Borel complex s-plane of the Padé approximant to the Borel transform of the

hydrodynamic expansion, f̂ (0)(s). The poles accumulate into a branch cut that starts at S = 3
2Cτ

, which is

the analog of the instanton action.

The ambiguities that arise from each of these branch points are cured by the existence of the nth

non-hydrodynamic series. In terms of the large order growth this means that the late terms of the

hydrodynamic series actually contains information about all the non-hydrodynamic series. More

precisely, the expression (39) can be further refined as [13]

f
(0)
k ∼ S1

Γ(k + β)

2πi Sk+β

(
f

(1)
0 +

S

k + β − 1
f

(1)
1 +

S2

(k + β − 1)(k + β − 2)
f

(1)
2 + . . .

)
+S2

1

Γ(k + 2β)

2πi (2S)k+β

(
f

(2)
0 +

2S

k + 2β − 1
f

(2)
1 +

(2S)2

(k + 2β − 1)(k + 2β − 2)
f

(2)
2 + . . .

)
+S3

1

Γ(k + 3β)

2πi (3S)k+β

(
f

(3)
0 +

3S

k + 3β − 1
f

(3)
1 +

(3S)2

(k + 3β − 1)(k + 3β − 2)
f

(3)
2 + . . .

)
+ . . . . (46)

Note that the expression in each line involves low order coefficients of non-hydrodynamic series

of different order, and that there is only one constant, the Stokes constant S1, that needs to be

determined numerically.

B. First (leading) non-hydrodynamic expansion: f (1)(w)

We can repeat the analysis of the previous section for the fluctuations f (1)(w) about the first

non-hydrodynamic term in the trans-series. Once again, general arguments for a real trans-series
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predict the large order growth [13]:

f
(1)
k ∼ 2S1

Γ(k + β)

2πi Sk+β

(
f

(2)
0 +

S

k + β − 1
f

(2)
1 +

S2

(k + β − 1)(k + β − 2)
f

(2)
2 + . . .

)
+ . . . (47)

The coefficients f
(2)
k on the right-hand side are the low order terms of the second non-hydrodynamic

series f (2)(w) in (36). Note that in (47) all constants on the right-hand-side are known: the overall

normalization constant is fixed to be twice the very same Stokes constant S1 found in the large-

order behavior (39) of the hydrodynamic series. In this sense (47) is an even stronger prediction

than (39). In Figure 3 we plot the ratio of the large order expression (47) to the exact coefficients

generated from the recursion relations (33). Again, the agreement is excellent.
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FIG. 3: The first plot shows plot the ratio of the large order expression (47) to the exact coefficients f
(1)
k ,

as a function of k. The blue, green and red points refer to the inclusion of the zeroth, first, and second

subleading terms in (47). The second plot shows a close-up view of the ratio using the expression with the

first three terms in (47). This clearly demonstrates the remarkable precision of the resurgence relation (47):

the agreement is at the one percent level already by k ≈ 10.

The Borel plane structure can be deduced by the same Borel-Padé analysis, and as shown in

Figure 4 we see once again a cut along the positive real axis, starting at the branch point S. The

Borel plane structure is almost identical to that of the hydrodynamic series; namely there are

infinitely many branch cuts located at s = nS and accordingly, the large order growth (47) can be

refined similar to (46). In other words, late terms of f (1)(w) contain the low order terms of all the

higher non-hydrodynamic series f (n)(w) with n ≥ 2.

C. Second (next-to-leading) non-hydrodynamic expansion: f (2)(w)

At the next order, studying the large order growth of the coefficients of the second non-

hydrodynamic series f (2)(w), we observe a new phenomenon, the possibility of which was pointed
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FIG. 4: The poles in the Borel complex s-plane of the Padé approximant to the Borel transform of the first

non- hydrodynamic expansion, f̂ (1)(s). The poles accumulate into a branch cut that starts at S = 3
2Cτ

.

out by Aniceto and Schiappa in their exhaustive analysis of the resurgent structure of real trans-

series [13]. The large order growth of the f
(2)
k coefficients is determined not only by the the low

order coefficents of f (3)(w), but also by the the low order coefficents of f (1)(w):

f
(2)
k ∼ S−1

Γ(k − β)

2πi (−S)k−β

(
f

(1)
0 +

−S
k − β − 1

f
(1)
1 +

(−S)2

(k − β − 1)(k − β − 2)
f

(1)
2 + . . .

)
+

3S1
Γ(k + β)

2πi Sk+β

(
f

(3)
0 +

S

k + β − 1
f

(3)
1 +

S2

(k + β − 1)(k + β − 2)
f

(3)
2 + . . .

)
+ . . . . (48)

Here S−1 is a new Stokes constant whose value we determine numerically to be S−1 ≈ −57.922 +

115.651i. Note that in the first line the phase of S−1 is cancelled by the factor i(−1)−β in the

denominator, as the coefficients f
(2)
k are real.

In Fig 5 we plot the ratio of the expression (48) to the exact coefficients f
(2)
k generated from

the recursion relations in (35). As in the previous cases, the agreement is excellent. Note that

if we do not include the effect of the f
(1)
k coefficients, the agreement is terrible. In fact, for the

particular choice of N = 4 parameters that we study, because β < 0, the contribution of the first

non-hydrodynamic sector (i.e. the first line in (48)) is more dominant compared to the third non-

hydrodynamical sector (the second line in (48)). Related with this fact, the coefficients of the series

f (2)(w) are actually sign-alternating, as opposed to the hydrodynamic series f (0)(w) and the first

non-hydrodynamic series f (1)(w), for which the expansion coefficients are non-alternating. But this

sign-alternating behavior does not necessarily mean that f (2)(w) is Borel summable. To explore

this, we use the Borel-Padé method to study the singularity structure of the Borel transform f̂ (2)(s).
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FIG. 5: The first plot shows plot the ratio of the large order expression (48) to the exact coefficients f
(2)
k ,

as a function of k. The blue, green and red points refer to the inclusion of the zeroth, first, and second

subleading terms in (48). The second plot shows a close-up view of the ratio using the expression with the

first three terms in (48). This clearly demonstrates the remarkable precision of the resurgence relation (48):

the agreement is at the one percent level already by k ≈ 10.

In the complex-s Borel plane (see Fig. 6), in addition to the infinitely many branch points along the

positive real axis s = nS, associated with the higher (3rd, 4th, 5th, etc.) non-hydrodynamic series,

there is an additional branch cut along the negative real axis that starts at the branch point s = −S.

This branch cut is associated with the first non-hydrodynamic series, and the corresponding Stokes

constant S−1 is related to the Stokes discontinuity at θ = π. It is clear from the existence of the
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FIG. 6: The poles in the Borel complex s-plane of the Padé approximant to the Borel transform of the

second non-hydrodynamic expansion, f̂ (2)(s). The poles accumulate into two branch cuts, which start at

S = 3
2Cτ

, and at S = − 3
2Cτ

.

branch cuts on the positive real axis, f (2)(w) is not Borel summable along the positive real axis,
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even though it is an alternating series. A better way to conceptualize this is to view f (2)(w)

as being composed of different sub-series, each of which is related to different non-hydrodynamic

sectors (each line in (48)). The sub-series related to the first non-hydrodynamic series is alternating,

Borel summable along the positive real axis, and is the dominant contribution to the late term

coefficients f
(2)
k . Therefore the whole series f (2)(w) is alternating. However, all the sub-series

associated with non-hydrodynamic series with n ≥ 3 lead to non-alternating sub-series which are

not Borel summable along the positive real axis. This phenomenon is reminiscent of the quantum

mechanical example discussed in [34], where there are complex instantons with negative actions,

dubbed “ghost instantons”, which contribute to the large-order behavior of perturbation theory;

the structure is very similar to the way in which the first non-hydrodynamic series contributes to

the large order growth of the f
(2)
k expansion coefficients.

D. Third and higher non-hydrodynamic expansions: f (n)(w) with n ≥ 3

The large-order behavior found in the second non-hydrodynamic sector in the previous section

persists at third order and beyond. For example, at third order we find the large-order growth of

the expansion coefficients:

f
(3)
k ∼ 2S−1

Γ(k − β)

2πi (−S)k−β

(
f

(2)
0 +

−S
k − β − 1

f
(2)
1 +

(−S)2

(k − β − 1)(k − β − 2)
f

(2)
2 + . . .

)
+ . . .

4S1
Γ(k + β)

2πi Sk+β

(
f

(4)
0 +

S

k + β − 1
f

(4)
1 +

S2

(k + β − 1)(k + β − 2)
f

(4)
2 + . . .

)
+ . . .

(49)

with the same S−1 parameter. The agreement of (49) with the exact coefficients generated from

the recursion relations (35) is again excellent, as shown in Figure 7. We stress that there are no free

parameters in this comparison. All constants on the right-hand-side of (49) are determined. The

Borel plane structure of the Borel transform f̂ (3)(s) is shown in Figure 8, showing the same two

branches, starting at s = ± 3
2Cτ

. We expect that this Borel plane structure persists to all orders.

For completeness, we note that there are further even smaller corrections to (49), involving

f (1), and also f (n) with n ≥ 5. The f (1) part introduces a new Stokes constant S−2 which can be

determined numerically. The general pattern for the large order growth of the N th hydrodynamical

series f (N)(w) is as follows. There is a set of alternating sub-series related to the sectors n =

1, 2, . . . , N − 1, each of which has an associated Stokes constant S−(N−n). They generate branch

points in the Borel plane along the negative real axis: s = −S,−2S, . . . ,−(N − 1)S. As mentioned

before, there is another set of sub-series related to the sectors n = N + 1, N + 2, . . . all of which
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FIG. 7: The first plot shows plot the ratio of the large order expression (49) to the exact coefficients f
(3)
k ,

as a function of k. The blue, green and red points refer to the inclusion of the zeroth, first, and second

subleading terms in (49). The second plot shows a close-up view of the ratio using the expression with the

first three terms in (49). This clearly demonstrates the remarkable precision of the resurgence relation (49):

the agreement is at the few-percent level already by k ≈ 10.
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FIG. 8: The poles in the Borel complex-s plane of the Padé approximant to the Borel transform of the third

non-hydrodynamic expansion, f̂ (3)(s). The poles accumulate into a two branch cuts that start at s = 3
2Cτ

and s = − 3
2Cτ

. The two poles that do not lie on the real axis are artifacts of the finite order (150) of our

Padé approximation.

are non-alternating. They generate branch cuts at s = S, 2S, . . . . In other words the location of

the branch cut in the Borel plane of f̂ (N)(s) due to the non-hydrodynamical sector n 6= N is given

by the “relative action” sbranch = (n−N)S. This is an illustration of the general behavior of real

trans-series and has also been observed in resurgent analysis of topological string theory [7, 13].
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VI. TRANS-ASYMPTOTIC REARRANGEMENT AND INITIAL CONDITIONS

At earlier proper-time (i.e. smaller w), the terms in the trans-series expansion (29) become

disordered, as exponentials compete in size with inverse powers of w. In such a situation, there

is a systematic way to rearrange the terms of the trans-series as one approaches the edge of its

domain of numerical usefulness [1, 35]. This is the first step in “trans-asymptotic matching” [35].

This procedure effectively resums all the exponentially small non-hydrodynamic modes for a given

power of 1/w, and rearranges the trans-series (30) into the form

f(w) ∼
∞∑
k=0

Fk(σ ζ)

wk
(50)

This means that we have identified Fk(σ ζ) with the formal expansion

Fk(σ ζ) =

∞∑
n=0

f
(n)
k (w)σn ζn (51)

but we will see that we can in fact obtain closed-form expressions for the Fk(σ ζ).

In (50), ζ = ζ(w) is the same “instanton fugacity”, ζ(w) ≡ wβ e−Sw, introduced in (31).

Inserting this reorganized ansatz for f(w) into the original differential equation (15), leads to

a sequence of ordinary differential equations, one for each Fk(ζ), with ζ now being regarded as

the independent variable. Note that the argument of Fk involves also an arbitrary numerical

factor multiplying ζ. As in the expansion (30), there is just one such undetermined constant, and

by comparison we identify it with the trans-series parameter σ in (30). The tower of differential

equations for Fk(ζ) can be solved recursively: the first equation of the tower involves only F0(ζ), the

second only involves F0(ζ) and F1(ζ), and so on. [For notational convenience we scale σ = 1 here,

and reintroduce it again later]. Moreover, while the equation for F0(ζ) is nonlinear, all subsequent

equations for Fk(ζ) are linear. Furthermore, when expanded as series in ζ, each function Fk(ζ) is

convergent, even though the full trans-series expression (50) is of course still divergent [35].

It is straightforward to show that the ansatz (50) leads to the following equations for Fk(ζ):

Cτ

k∑
k′=0

(
−Sζ dFk

′

dζ
+ βζ

dFk′−1

dζ
− (k′ − 1)Fk′−1(ζ)

)
Fk−k′(ζ) +

3Cλ
2Cη

k∑
k′=0

Fk′(ζ)Fk−k′(ζ)

+Cτ

(
−Sζ dFk

dζ
+ βζ

dFk−1

dζ
− (k − 1)Fk−1(ζ)

)
+

8

3
CτFk−1(ζ) + 4Cτ

k−1∑
k′=0

Fk−k′−1(ζ)Fk′(ζ)

+

(
1 +

Cλ
Cη

)
Fk(ζ) +

4

9
(Cτ − Cη)δk−1,0 +

2

3

(
1 +

Cλ
2Cη

)
δk,0 = 0 (52)

We focus on the class of parameters with Cλ = 2Cη, which includes the particular case of N = 4
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parameters that we have been using for numerical purposes. Then the first equation

−3

2
ζF0(ζ)

dF0(ζ)

dζ
− 3

2
ζF0(ζ) + 3(F0(ζ))2 + 3F0(ζ) +

2

3
= 0 (53)

determines F0(ζ) to be

F0(ζ) =
1

6

(
−2 + c2ζ2 ± c ζ

√
4 + c2ζ2

)
≈ −1

3
± c

3
ζ + . . . (54)

where c is an integration constant. Matching with the trans-series expansion (29) fixes c = 3 and

selects the upper sign:

F0(ζ) = −1

3
+

3

2
ζ2 + ζ

√
1 +

9

4
ζ2 (55)

From the small ζ expansion of F0(ζ) one can read off the leading (i.e. w0) coefficient of the nth

non-hydrodynamic series. To see this explicitly, compare

F0(ζ) = −1

3
+ ζ +

3

2
ζ2 +

9

8
ζ3 + . . .

≡ f
(0)
0 + f

(1)
0 ζ + f

(2)
0 ζ2 + f

(3)
0 ζ3 + . . . (56)

with the leading coefficients given in Eqs. (19), (34), (36) and (37), with Cλ = 2Cη.

The next equation in the tower (52) determines F1(ζ)

−3

2
ζ (F0 + 1)

dF1

dζ
+ 3 (2F0 + 1)F1 − 3Cη ζ (F0 + 1)

dF0

dζ
+ 4CτF

2
0 +

8

3
CτF

2
0 +

4

9
(Cτ − Cη) = 0

(57)

Note that this equation is linear in F1(ζ). After choosing the integration constant to match the

1/w term of the first non-hydrodynamical expansion (34), we obtain

F1(ζ) =

(
3ζ +

√
4 + 9ζ2

)2

18Cτ
√

4 + 9ζ2

[
54Cη(Cτ − Cη)ζ + Cτ

(
9(Cτ − Cη)ζ2 + 2Cη

) (
−3ζ +

√
4 + 9ζ2

)
+6Cτ(2Cτ − 3Cη) ζ sinh−1

(
3ζ

2

)]
(58)

Similarly to (56), the small ζ expansion of F1(ζ) generates all the f
(n)
1 coefficients in the trans-series:

F1(ζ) =
4Cη

9
+

2Cη
3

(
10− 9Cη

Cτ

)
ζ +

(
13Cη −

18C2
η

Cτ
+ 4Cτ

)
ζ2

+

(
15Cη

2
−

81C2
η

4Cτ
+ 9Cτ

)
ζ3 + . . .

= f
(0)
1 + f

(1)
1 ζ + f

(2)
1 ζ2 + f

(3)
1 ζ3 + . . . (59)
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FIG. 9: The black (dashed) line is the numerical integration of the nonlinear differential equation (15),

starting at very early time w = 10−6. The red (solid) lines correspond to the trans-asymptotic expansion

(50), using the expressions for F0 and F1 in (55, 58), the imaginary part of the trans-series parameter σ

fixed by (40, 44), and different values of the real part of σ (from bottom to top: −0.2,−0.12, 0.06, 0.12, 0.2).

This clearly illustrates that the physical meaning of the real part of the trans-series parameter σ is that it

corresponds to matching a particular member of the family of trans-series to a particular solution with a

prescribed initial conditon. A detailed example of such a matching procedure for the Painlevé I equation

can be found in [36].

which can be checked from Eqs. (19), (34), (36) and (37), with Cλ = 2Cη. This procedure can be

continued to determine all the Fk(ζ), as all the equations are linear for k ≥ 1.

The advantage of this procedure can be seen when we reintroduce the trans-series parameter

σ factor in the argument of Fk, writing again Fk(σ ζ). The condition of reality of f(w) fixes the

imaginary part of σ in terms of the (numerically determined) Stokes parameter S1 in equation (40,

44), but the real part of σ is arbitrary [13, 35]. This remaining real constant parametrizes the entire

family of trans-series solutions to the differential equation, each member of which connects to the

hydrodynamical expansion at large w, but which have different behavior once w becomes small

enough that the exponential factors become comparable with powers of w. Thus, this real part of

the trans-series parameter characterizes the various different possible “initial conditions”, at early

times (i.e. small w), each of which eventually tends to the hydrodynamical expansion as w →∞.

In [15] this phenomenon was referred to as an “attractor”. This is in fact a generic feature of the

large class of nonlinear differential equations whose solutions can be expressed in trans-series form

[1, 35]. This behavior is illustrated in Figure 9, in which we vary the real part of σ, and see that
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this corresponds to different possible choices of initial condition. This simple observation resolves

the apparent inconsistency between the fact that the formal hydrodynamic series expansion (19)

has no undetermined parameter, while the exact (numerical) solution to the first-order nonlinear

equation (15) clearly depends on one initial condition: this is why there is a family of trans-series

solutions, parametrized by the trans-series parameter σ, more precisely by its real part if f(w) is

real.

VII. CONCLUSIONS

We have shown that the nonlinear ordinary differential equation describing boost-invariant

Bjorken flow in conformal hydrodynamics exhibits characteristic signs of resurgence. The formal

late-time Taylor expansion of the hydrodynamic derivative expansion is asymptotic, and can be sys-

tematically extended to a trans-series expansion, for which we have characterized the Borel plane

structure. This analysis reveals precise relations between the fluctuations about different “non-

perturbative sectors”, associated with modes beyond hydrodynamics. These modes are exponen-

tially damped and the damping rate, or the inverse relaxation time, plays the role of an instanton

action in the language of semi-classical physics. The factorial large order growth of the fluctuation

coefficients in one sector is precisely determined by low orders of expansions about neighboring

sectors. This means, in particular, that the asymptotic hydrodynamic expansion encodes physical

information about non-hydrodynamic modes. For example, the trans-series expansion of the en-

ergy density E(τ) at late proper-time includes also exponentially small terms ∼ τα exp
[
−c τ2/3

]
,

and these non-hydrodynamic modes have an interpretation in terms of quasi-normal modes in the

gravitational picture. Resurgent asymptotic analysis suggests that these general features should

extend to the partial differential equations in more general hydrodynamical problems with gravity

duals, in which the metric coefficient functions are expanded in terms of both proper time and

distance from the horizon.
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