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Abstract

The possibility of treating boundary conditions in terms of a bilocal dynamical field is formal-
ized in terms of a boundary action. This allows for a simple path-integral perturbation theory
approach to physical effects such as radiation from a time-dependent boundary. The nature
of the action which governs the dynamics of the bilocal field is investigated for a limited case
(which includes the Robin boundary conditions).



1 Introduction

The role of boundary conditions in field theory has recently been of considerable research

interest. This has been explored in great detail in the case of the Casimir effect, for a variety

of geometries [1]. The question obviously goes beyond the Casimir effect, which only pertains

to the vacuum-to-vacuum amplitude. The impact of different boundary conditions on higher

point functions is clearly of importance in diffraction theory and other physical phenomena.

The general theory of self-adjoint extensions [2]-[4] also allows for boundary conditions with

negative eigenvalues for the operators of interest such as the Laplace operator; these are related

to edge excitations and can lead to interesting phenomena [5, 6].

From the mathematical point of view, boundary conditions are necessary to render the

problem well-defined with the needed self-adjointness properties. But from a physical point of

view, boundary conditions are idealizations of dynamics on the boundary. Thus the dynamics of

material particles which constitute a metal plate would lead to nonzero electrical conductivity

and, in an idealized limit, would give the standard Dirichlet and Neumann conditions used

in Casimir calculations with the electromagnetic field. Thus it is physically meaningful to

have boundary conditions which can vary from point to point on the boundary or which can

evolve with time, in accordance with some dynamical principle. Effectively, one must treat

boundary conditions as additional dynamical fields with their own action and time-evolution.

In particular, one may ask how the dynamics of boundary conditions for a given set of fields is

modified by the back reaction of the fields themselves. In this paper, we start exploring some

of these questions.

In considering diffractive contributions to the Casimir effect, we have recently developed a

boundary action approach [7]-[10]. The strategy is to obtain a lower dimensional field theory

defined on the boundaries, as a functional of the boundary value of the field, by integrating

over the bulk fields. This boundary action makes it straightforward to incorporate the effects

due to edges and apertures on the boundary as part of the integration over the boundary

values of the fields. The formalism was also extended to include general boundary conditions

as allowed by the von Neumann theory of self-adjoint extensions [10]. In this case, an integral

kernel in the boundary theory encodes the allowed boundary conditions. This formulation

has the advantage of recasting the entire discussion of boundary conditions and how they can

change with space or time as a lower dimensional field theory which lives on the boundary. In

particular, one does not have to modify the mode expansions of the bulk fields as one changes

the boundary conditions. Thus boundary conditions can indeed be treated as a dynamical

field. In this paper, we will take the next logical step and consider how the bulk fields can

affect the dynamics of the boundary conditions.

The paper is organized as follows. In the next section, we will briefly review the bound-

ary action. In section 3, we consider radiation from the boundary due to time-dependent

Robin conditions. This problem is closely related to the dynamical Casimir effect since time-

dependent boundary conditions can simulate moving mirror effects [11] - [14]. The calculation

of the radiation from boundaries with time-dependent Robin boundary conditions was done by

2



using Bogoliubov transformations to define a new set of creation and annihilation operators for

the field [12, 13]. Our method will be much simpler, involving the perturbative expansion of a

path-integral for boundary fields. We reproduce known results to the order one can compare,

but we can also state a general result in terms of a T -matrix for the interaction. Although

the main purpose of this calculation is to show that the point of view of regarding boundary

conditions as dynamical fields does lead to calculable results, it also shows that one can easily

accommodate arbitrary dimensions, higher order effects, corrections due to bulk interactions

of fields, etc.

In section 4, we consider the effective action for boundary conditions, i.e., for the integral

kernel or the bilocal field on the boundary which encodes the boundary conditions, which

obtained by integrating out the fields. This is a rather involved problem, our calculation is for

a limited choice of the bilocal field. Nevertheless, it illustrates the method and some general

features of the action for this field. A more complete analysis is clearly called for, this is

currently under investigation.

The paper concludes with a short discussion.

2 General boundary conditions

We review the boundary action briefly considering a free scalar field φ in a region V with

the usual kinetic term of the form
∫

V (∂φ)
2/2. On the boundary, the combination ϕ + i∂nϕ,

where ϕ is the boundary value of φ and ∂nϕ is its normal derivative, is to be viewed as an

element of a Hilbert space of L2-functions. The general boundary condition, according to the

von Neumann theory of self-adjoint extensions, is [2, 3]

ϕ+ i ∂nϕ = U (ϕ− i ∂nϕ)

(ϕ+ i ∂nϕ)(x) =

∮

y
U(x, y) (ϕ − i ∂nϕ)(y) (1)

where U is a unitary operator on the boundary Hilbert space; this is made more explicit in

the second line by writing U(x, y). We can also rewrite the boundary condition as

∂nϕ = −i

(

U − 1

U + 1

)

ϕ ≡ −Kϕ (2)

where K is a hermitian operator; it corresponds to the Cayley transform of U . The limit

K → 0, equivalent to U = 1, gives the Neumann boundary condition, while K → ∞ gives the

Dirichlet condition, as seen by dividing (2) by K and taking the limit K → ∞. The case of

K being a constant (proportional to the identity on the Hilbert space) is the Robin condition.

These are special points on the space of boundary conditions; clearly, in general, there is a

much larger class of choices.

In [7], we considered a two-step evaluation of the Euclidean partition function. While

variants of this, including the possibility of interacting fields were also considered in [8], for the

present discussion, we will consider a free massless scalar field theory with a standard action
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S(φ) = 1
2

∫

(∂φ)2. Further we consider a boundary which is a plane normal to the x1 direction.

We can then write the partition function as

Z =

∫

[dφ] e−S(φ) (3)

with the field φ(x) parametrized as

φ(x) =

∫

x′

ϕ(x′)n · ∂x′G(x′, x) + η(x) (4)

where G(x′, x) is the Green’s function for the Laplacian in the bulk with Dirichlet boundary

conditions, ~n is the unit vector normal to the boundary and ϕ is the boundary value of φ. The

field η(x) also obeys the Dirichlet condition η = 0 on the boundary. The parametrization (4)

ensures the appropriate boundary behavior for φ. Integrating out η one obtains

Z = det(−�)V

∫

[dϕ] e−SB,ϕ(ϕ) (5)

where SB,ϕ denotes the boundary action. It is of the form1

SB,ϕ =
1

2

∫

x′,y′

ϕ(x′)M(x′, y′)ϕ(y′)

M(x′, y′) = n · ∂x′ n · ∂y′G(x′, y′) (6)

The general boundary condition (2) can be incorporated by using the augmented boundary

action [10]

SB(ϕ,K) =
1

2

∫

x′,y′

ϕ(x′)
[

M(x′, y′) +K(x′, y′)
]

ϕ(y′) (7)

The parametrization (4) does not imply any boundary condition on φ since the boundary value

ϕ is unrestricted. One may even think of the plane as a fictitious plane where we have φ = ϕ.

The boundary conditions on φ are imposed by the boundary action (7), when we integrate

over ϕ, after the choice of K. As said before, K = 0 corresponds to Neumann and K → ∞ to

Dirichlet conditions.

To see how action (7) comes about, we start by considering the normal derivative of the

field. Consider formulating the functional integral for Z by discretizing the coordinate along

the normal direction, say, the x1-direction, denoted as x below for brevity. The Euclidean

action which enters (3) then has the form

S = S({φi}) =
1

2

∫

d3xT
[

(φN − φN−1)
2

xN − xN−1
+

(φN−1 − φN−2)
2

xN−1 − xN−2
+ · · ·

]

+
1

2

∫

d3xT
N
∑

i

(xi − xi−1)(∇Tφi)
2 (8)

1For a similar action on a de Sitter background, see [15].

4



where φN = ϕ = φ(xN , xT ) is the boundary value of φ and the superscript T indicates compo-

nents tangential to the boundary. Integrating out the fields φi, keeping φN = ϕ fixed, we get

the boundary action SB(ϕ) given as

e−SB(ϕ) =

∫ N−1
∏

1

dφi exp(−S(ϕ, {φi}) (9)

If we functionally differentiate e−S with respect to ϕ = φN , we find

δ

δϕ
e−S ≡ δ

δφN
e−S = −(φN − φN−1)

xN − xN−1
e−S → −∂nϕ e−S (10)

In other words, the normal derivative can be obtained as the result of functional differentiation

of the e−S with respect to the boundary value of the field. This is a key result for us as it gives

a way to express the normal derivative entirely in terms of the boundary action.

We can now see that the general boundary condition (2) can be obtained for the remaining

integration over ϕ if we use the augmented action SB(ϕ,K) from (7). For this consider the

identity

∫

[dϕ] exp (−SB(ϕ,K)) (∂nϕ) =

∫

[dϕ] exp

(

−1

2

∫

ϕKϕ− SB(ϕ)

)

(∂nϕ)

=

∫

[dϕ] exp

(

−1

2

∫

ϕKϕ

) (

− δ

δϕ

)

e−SB(ϕ)

=

∫

[dϕ] exp

(

−1

2

∫

ϕKϕ

)

(−Kϕ) e−SB(ϕ) (11)

where, in the last line, we have done a partial functional integration. The first and last steps

of this equation show that

∫

[dϕ] e−SB(ϕ,K) (∂nϕ+Kϕ) = 0 (12)

This justifies our argument that the augmented boundary action (7) incorporates the general

boundary condition (2). (This equation may be related to the Schwinger-Dyson equation for

a boundary action given by the right hand side of Eq.(15) in the first reference in [4]. Our

derivation of (12) however follows a rather different route. We thank the referee for pointing

this out.)

It is worth pointing out that the use of the action (7) to take care of boundary conditions

has some advantageous features. The field η and the Green’s function G(x′, x) in (4) obey a

fixed boundary condition, namely, the Dirichlet condition. The real genesis of various boundary

conditions for the field φ is transferred to ϕ and the action (7) which controls it. This makes it

much easier to analyze change of boundary conditions, including time-dependence, dynamical

determination of boundary conditions, how back-reaction from other fields can modify the

boundary conditions, etc. We can treat the boundary conditions effectively as a boundary field.

The fact that this approach is viable, namely that the boundary action (7) does reproduce the
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physical effects of different boundary conditions correctly, is clear from calculations of the

Casimir energy [10, 16]. We also point out that a similar idea of dynamically implementing

the standard Robin boundary condition in terms of a boundary action was also suggested in

[16], although our formalism is somewhat more general.

Going back to (7), we see that we can impose different conditions on different subsets of the

boundary. Regions with Neumann condition will have K = 0, while regions on the boundary

where K → ∞ must have ϕ = 0. We may regard the hermitian operator K as an integral kernel,

as already indicated in (7). Thus, generally, boundary conditions correspond to a bilocal field

K(x′, y′) on the boundary and the general form of the boundary action is

SB = SB(ϕ,K) + SK (13)

where SK is the action for the field K(x′, y′). We have obtained the form of SB(ϕ,K), but

the question arises: What is the form of the action SK for the bilocal field K(x, y)? A related

question is: To what extent is it advantageous to think of K(x, y) as a dynamical field?

We will take up the second question first. In the next section, we consider some examples

which highlight the value of viewing K as a field. We calculate the radiation from a time-

dependent boundary condition. Such boundary conditions can be engineered in many ways:

For example, for the electromagnetic field, one can consider a metal plate as the boundary and

modulate the conductivity. This can also be viewed as the problem of moving mirrors where

the effect of the movement can be transferred to time-dependence of the boundary condition

[11].

Regarding the first question, clearly, the form of SK is to be determined ultimately by the

physics of the material of the boundary. However, we can gain some insight into the nature of

SK by calculating corrections to it due to the fields ϕ, i.e., by integrating out ϕ. This is familiar

from standard field theory. If we integrate out one set of fields and obtain the corrections to

the action for another set of fields, we can postulate that the action for the latter must at

least have terms of the appropriate structure (as monomials of the fields and their derivatives)

to provide proper renormalization for the terms generated by integrating out the first set of

fields. A simple and age-old example is when we consider fermions coupled to a scalar field.

Integrating out the fermions shows that we must have the usual kinetic term, mass term and an

additional quartic self-coupling for the scalar for proper renormalization. This is the strategy

we will follow here. We will consider the nature of the action for K generated by integrating

out the ϕ fields.

Finally, although we will use a simple free field theory example for the calculations to

follow, we may note that the formulation is quite general and can easily handle interacting

theories. The construction of the boundary action for the general case was briefly discussed in

[8]. The part of the boundary action without the Kϕ2 term is defined by

e−SB(ϕ) =

∫

[dη] e−S(η+φ0) (14)

where η vanishes on the boundary and φ0(x) =
∫

ϕ(x′)n·∂G(x′, x). φ0 is extended into the bulk

from its value ϕ on the boundary in a unique way, so that there are no additional functional
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degrees of freedom associated with it. The result (14) can be phrased as follows. Consider the

generator Γ[χ] of the 1PI vertices of the theory, which is defined by

exp (−Γ[χ]) =

∫

[dη] exp

(

−S[χ+ η] +

∫

δΓ

δχ
η

)

(15)

Here we will consider evaluating Γ such that the field η vanishes on the boundary. This

means that the Green’s functions occurring in, say, a perturbative expansion of Γ will obey the

Dirichlet conditions. So far the field χ is an arbitrary field. We now choose χ as a particular

solution of the equation of motion
δΓ

δχ
= 0 (16)

obeying the condition χ → ϕ on the boundary. Comparing (14) and (15) with this condition,

we see that the integral in (15) gives the boundary action. In other words,

SB[ϕ] = Γ[χ], subject to
δΓ

δχ
= 0, and χ → ϕ on the boundary (17)

The full boundary action can then be written as

SB = Γ[χ]

]

(δΓ/δχ)=0, χ→ϕ

+
1

2

∫

x′,y′

ϕ(x′)K(x′, y′)ϕ(y′) + SK (18)

This gives the boundary action including the effect of interactions.

A few clarifying remarks are in order at this point. First of all, the action S[χ + η] in

(15) is the classical action plus the counterterms, so that Γ obtained from this equation is the

renormalized effective action. So most of the renormalization effects are included in the first

term of (18). One could also have an independent renormalization of some of the boundary

terms (of appropriate dimension), as pointed out by Symanzik many years ago [17]. In the

formulation used in [17], terms with support only on the boundary were added to the action

to encode the boundary condition. These terms, since they involve a monomial of the fields of

dimension 2 and 3, in general require their own counterterms. The appropriate Z-factor for

the boundary term
∫

φ∂nφ was calculated to the lowest order in [17]. The net effect of this

renormalization is to change the boundary condition to a renormalized one. The details of how

this happens are a bit different in our analysis. The analog of φ∂nφ, for us, comes from Γ and

the Z-factors for that are just the usual ones of the covariant formulation, with no additional

Z-factors. However, one can have, in principle, an independent renormalization of the ϕKϕ

term in (18), which will effectively include the same effect as the Symanzik calculation. This

is also in line with the formulation in [4], where the renormalization of A (the analog of our

K) is considered.

The parametrization (4) for φ(x) results in a decoupling between bulk and boundary terms

in the case of a free theory. This is not the case for interacting theories. As a result, there

are modifications to the boundary action (6), upon integrating out the bulk fields. It is

interesting to see how this is captured in terms of our definition of the boundary action via
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Γ(χ). Consider, for argument’s sake, a simple λφ4-interaction. If we separate the field as in

(4), we can get several terms mixing the bulk part η and the boundary part φ0 =
∫

ϕ(x′)n ·
∂G(x′, x). For example, 6λ

∫

φ2
0(x) η

2(x) would be one such term, indicating the mixing of

bulk and boundary effects. Upon integrating out η, we get a contribution to the boundary

action of the form 6λ
∫

ϕ(x′)n · ∂G(x′, x)ϕ(y′)n · ∂G(y′, x)G(x, x). The Green’s functions

are all with Dirichlet conditions, since η vanishes on the boundary. Since, in (15), we are

calculating Γ[χ] also with Dirichlet conditions for the Green’s functions, we do have terms

like 6λ
∫

χ2(x)G(x, x) in Γ[χ]. The solution for χ obeying δΓ/δχ = 0 may be taken to

be χ(x) = φ0(x) =
∫

ϕ(x′)n · ∂G(x′, x) to the lowest order in perturbation theory, so that

6λ
∫

χ2(x)G(x, x) = 6λ
∫

ϕ(x′)n ·G(x′, x)ϕ(y′)n ·G(y′, x)G(x, x). Thus Γ provides a compact

way to keep track of modifications due to interactions.

3 Radiation from boundary

We will consider a single flat boundary, say at x1 = 0, with Robin boundary conditions for

the field φ, with the parameter κ taken to be a local boundary field. In other words, we take

K(x, y) = κ(x) δ(3)(x − y). We use a notation where the coordinates of a point in the bulk

are denoted by (x, x1), where x corresponds to directions tangential to the boundary surface,

including the Euclidean time direction and x1 > 0 is along the direction perpendicular to

the boundary. One immediate consequence of time-dependent boundary conditions is radia-

tion from the boundary; this has been calculated for scalar fields and time-dependent Robin

boundary conditions in (1+1) dimensions [12] by carrying out a Bogoliubov transformation on

the fields. From our point of view, the Robin boundary condition corresponds to a boundary

action term
∫

κϕ2/2 for a scalar field. Thus we may view the radiation as a decay process

for the κ field, κ → ϕϕ. It is then straightforward to calculate this in simple perturbation

theory. The physical observation is that we have two detectors placed somewhere in the bulk,

say at points x and y, which show the transition corresponding to the absorption of two of

the ϕ-particles. The boundary fields propagate into the bulk as given in (4). Let J designate

a source operator associated with the detector whose matrix element effects the transition

detecting the ϕ-particle. The amplitude for the process is then given by

A =

∫

Jfi(x, x1)Jf ′i′(y, y1) 〈φ(x, x1)φ(y, y1)〉

=

∫

Jfi(x, x1)Jf ′i′(y, y1)〈ϕ(x′)ϕ(y′)〉∂1′G(x′, x′1;x, x1)|x′
1
=0 ∂1′G(y′, y′1; y, y1)|y′

1
=0(19)

where 〈ϕ(x′)ϕ(y′)〉 is the propagator for ϕ as given by the boundary action and G(x, x1; y, x1) is

the Dirichlet Green’s function. In order to derive the transition amplitude (19) corresponding

to the absorption of two particles of energy ω and ω′, it is necessary to analytically continue

to Minkowski space. We briefly outline how this is done. For a single boundary, taken to be

at x1 = 0, the Euclidean Green’s function GE is given by

GE(x, x1; y, y1) = 2

∫

ddk

(2π)d

∫ ∞

0

dk1
π

eik(x−y)

k2 + k21
sin(k1x1) sin(k1y1) (20)
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The analytical continuation to Minkowski signature is done by using the substitutions

xE = (xd+1, ~x||) → xM = (ix0, ~x||)

kE = (kd+1, ~k||) → kM = (−ik0, ~k||) (21)

and the iǫ prescription. Here xd+1 is the Euclidean time and ~x|| denotes the spatial directions

tangential to the boundary. Using (21) we find

∂x1
G(x, x1; y, y1)|x1=0 = −i

∫

dµ(k)

∫ ∞

−∞

dk1
iπ

eik(x−y)k1e
ik1y1

k21 +
~k2|| − k20 − iǫ

(22)

where dµ(k) = dk0d~k||/(2π)
d. Using contour integration we find

∂x1
G(x, x1; y, y1)|x1=0 = −i

∫

dµ(k)eik(x−y)eik1y1 (23)

where

k1 =







√

k20 − ~k2
||

if k20 > ~k2||

i
√

~k2
||
− k20 if ~k2|| > k20

(24)

Further

M(x, y) = ∂x1
∂y1

G(x, x1; y, y1)|x1,y1=0 = −i

∫

dµ(k)eik(x−y)ik1 (25)

where k1 is given in (24). The Minkowski boundary action for the field ϕ is thus given by

SB(ϕ, κ) = −1

2

∫

ϕ(x) [ik1 + κ]x,y ϕ(y) = −1

2

∫

ϕ(x) [ik1 + κ0 + δκ(x)]x,y ϕ(y) (26)

where we have separated out a constant term κ0 which is space-time independent. The last

term in (26) can be treated as the interaction part in a perturbation scheme. The propagator

for ϕ is then given by

〈ϕ(x)ϕ(y)〉 = 〈ϕ(x)ϕ(y)〉κ0
+

∫

z
〈ϕ(x)ϕ(z)〉κ0

(−iδκ(z))〈ϕ(z)ϕ(y)〉κ0

+

∫

z

∫

z′

〈ϕ(x)ϕ(z)〉κ0
(−iδκ(z))〈ϕ(z)ϕ(z′)〉κ0

(−iδκ(z′))〈ϕ(z′)ϕ(y)〉κ0
+ · · ·(27)

where

〈ϕ(x)ϕ(y)〉κ0
= −i

∫

dµ(k)
eik(x−y)

κ0 + ik1
(28)

Using (23) and (27) we can in principle calculate the transition amplitude in (19) in ar-

bitrary dimensions and to all orders in δκ. The calculation is particularly straightforward in

(1+1) dimensions. In this case we find that the transition amplitude for the absorption of

particles of energy ω, ω′ by the detectors is given by

A = i
Jfi(ω, |ω|)Jf ′i′(ω

′, |ω′|)
(κ0 + i|ω|)(κ0 + i|ω′|)

[

−δκ(−ω − ω′) +

∫

dξ(1)

2π

δκ(−ω − ξ(1))δκ(ξ(1) − ω′)

(κ0 + i|ξ(1)|)
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· · · − (−1)n
∫

dξ(1)

2π
· · · dξ

(n)

2π

δκ(−ω − ξ(1))δκ(ξ(1) − ξ(2)) · · · δκ(ξ(n) − ω′)

(κ0 + i|ξ(1)|) · · · (κ0 + i|ξ(n)|)
]

(29)

where J and δκ in (29) refer to the appropriate Fourier transforms. In order to calculate the

frequency spectrum of the particle number observed in the detectors we have to square the

amplitude and sum over the final states. The last step is a bit tricky since we are summing

over the final states of the detector. For a perfect detector, this process must be equivalent

to integrating over the final particle phase space. This means that for the summation over a

small range of final states we can use

∑

f

Jfi(ω)J
∗
fi(ω) = 2ω

dω

2π
(30)

A more detailed argument justifying (30) is given at the end of this section. Using this and

integrating over ω′ we obtain the particle number distribution as observed in one detector as

dN(ω) = dω
2ω

π

∫

dω′

2π

ω′Θ(ω′)

(κ20 + ω2)(κ20 + ω′2)
×

∣

∣

∣

∣

∣

[

−δκ(−ω − ω′) +

∫

dξ(1)

2π

δκ(−ω − ξ(1))δκ(ξ(1) − ω′)

(κ0 + i|ξ(1)|)

· · · − (−1)n
∫

dξ(1)

2π
· · · dξ

(n)

2π

δκ(−ω − ξ(1))δκ(ξ(1) − ξ(2)) · · · δκ(ξ(n) − ω′)

(κ0 + i|ξ(1)|) · · · (κ0 + i|ξ(n)|)

]

∣

∣

∣

∣

∣

2

(31)

= dω
2ω

π

∫

dω′

2π

ω′Θ(ω′)

(κ20 + ω2)(κ20 + ω′2)

∣

∣T (−ω − ω′)
∣

∣

2
(32)

Expression (31) is in agreement with previous results for particle production rate from time-

dependent Robin boundary conditions. In [12] the frequency resolved particle production rate

was calculated using Bogoliubov transformation for the fields up to second order in δκ. This

agrees with (31) with the notational identification, κ = −1/γ, κ0 = −1/γ0, δκ = −δγ/γ20 .

Some higher order corrections, argued to be relevant in experimental setups for detecting

dynamical Casimir effect [11], were calculated in [13], again using Bogoliubov transformations.

Our expression (31) is in agreement with these results as well, after the appropriate translation

in the notation. Finally, we note that the term in the square brackets in (31) is the T -matrix

if one regards δκ as a potential energy term for the ϕ on the boundary. This is made explicit

in (32).

The approach we used in calculating the radiation intensity is quite general and is applicable

in arbitrary dimensions. We will now outline the corresponding derivation in (3+1) dimensions

to order (δκ)2. In this case δκ(x, t) is in general a function of both space and time. Following

the same procedure as before, we find that the transition amplitude for an absorption of two

particles of frequency ω and ω′ by the detectors when they are placed far away from the

boundary is

A = −i Jfi(ω,~k||, k1)Jf ′i′(ω
′, ~k′||, k

′
1)

δκ(−ω − ω′,−(~k + ~k′)||)

(κ0 + i|k1|)(κ0 + i|k′1|)
+ · · · (33)

10



where k1 =
√

ω2 − ~k2|| and k′1 =

√

ω′2 − ~k′
2

||. This is the far-field contribution. If the detec-

tors are placed very near the boundary, there will be a near-field contribution. The latter

corresponds to the contribution from the range of ~k|| such that ~k2|| > ω2. We are ignoring this

for detectors placed far from the boundary. (The distinction between what is far and what is

near is controlled by the wave length of the particle.) To continue along the lines of (33), the

summation over the final states gives

∑

f

J(ω,~k)J∗(ω,~k) = 2ωk
d3~k

(2π)3
(34)

This is the higher dimensional analogue of (30). Squaring the amplitude (33), using (34) and

integrating over ω′ with k′1 =

√

ω′2 − ~k′
2

|| we find

dN(ω) = 2ω
d3~k

(2π)3

∫ ∞

|~k′
|||

ω
′2dω′

π

√

ω′2 − ~k′
2

||

∣

∣δκ(−ω − ω′,−(~k + ~k′)||)
∣

∣

2

(κ20 + ω2 − ~k2||) (κ
2
0 + ω′2 − ~k′

2

||)

d2~k′||

(2π)2
(35)

If δκ(t) depends only on time and is space independent, (35) can be simplified further. We

find

dN(ω) = A 2ω
d3~k

(2π)3

∫ ∞

|~k|||

ω
′2dω′

π
√

ω′2 − ~k2||

|δκ(−ω − ω′)|2

(κ20 + ω2 − ~k2
||
)(κ20 + ω′2 − ~k2

||
)

(36)

where A is the area of the boundary.

The basic idea in demonstrating the calculations (31) and (35, 36) was to phrase everything

as a standard perturbative calculation in field theory, so that it brings out the nature of κ as a

boundary field; it also shows how one can easily include corrections, due to back-reaction from

the bulk fields as well as multiple emission processes.

Before we close this section, for completeness, we give the argument justifying (30) and (34).

These are really a standard result although not expressed in this form in most calculations.

The amplitude for the emission (or absorption or scattering) of particles is usually written in

the form of the integral over all coordinates of the product of a vertex function V (x1, x2 · · · )
and the single particle wave functions,

A =

∫

{x}
V (x1, x2, · · · , xn, x)uk1

(x1)uk2
(x2) · · ·

ei
~k·~x

√
2ωkV

=

∫

x
F (x)

ei
~k·~x

√
2ωkV

(37)

where uk’s are the wave functions (or their conjugates as needed), and in the second expression

we have abbreviated the integral since we want to focus on one emitted particle of momentum
~k. The field is taken to be free and enclosed in a spatial cubical box of volume V with, say,

periodic boundary conditions (with V → ∞ eventually). The summation over final states in

the square of this amplitude gives the factor V (d3k/(2π)3), so that the phase space measure

from the particle under consideration is

1

2ωkV
V

d3~k

(2π)3
=

1

2ωk

d3~k

(2π)3
(38)
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There is another way to think about this process. The particles are emitted from the

interaction region and absorbed by some detectors. One can consider this whole process; in

fact, this is even more physical as this is exactly what is done in any experimental observation.

The emitted particle propagates from the boundary to the detector (taken to be at spacetime

point y, with y0 > x0) and so the amplitude for this is

A =

∫

x,y
F (x)G(x, y)J(y) =

∫

x,y
F (x)

eip0(x0−y0)−i~p·(~x−~y))

2ωp

J(ω,~k)

2π
eiωy

0−i~k·~y

=

∫

x
F (x) ei

~k·~x J(ω,~k)

2ωk
(39)

Upon squaring the amplitude (39) and summing over a small range of final states (which are

now the final states of the detector), we get a factor
∑

f |J |2/4ω2
k. This factor will be sensitive

to the detection efficiency via the |J |2, but we can consider a perfect detector where this should

give the same result as we obtained for the free particle. The agreement of this factor with

(38) then shows that we need (34) for a perfect detector.

This second way of thinking about the process has some advantage for us. For the first

method, we will need wave functions with correct boundary conditions with K included. While

this is not particularly difficult, our approach has been to use the boundary action directly,

so it is interesting to bypass the wave functions. The formula (34) re-expresses the needed

summation as a property of the detector, and so the same result can be used for our case as well.

The same detector can be used for the particles emitted by the boundary. (Strictly speaking

there could be a small back-reaction effect on the detector when a boundary is introduced,

but to the order we are interested in this is not important.) As for the propagation of the

particle from the boundary to the detector, we already have that taken care of in terms of

∂1′G(x′, x′1; y, y1).

4 The effective action

We now turn to the action SK for the bilocal boundary field K(x, y). As explained earlier, our

strategy is to integrate out the ϕ-field and identify the kind of terms which would be generated.

We then expect that such terms should exist in the action for K. The full investigation taking

account of the bilocal nature of K would be rather involved. Here we make a first attempt by

considering K’s of the form K(x, y) = κ(x) δ(x − y) = κ0 δ(x − y) + δκ(x) δ(x − y). With this

choice of K(x, y), we can easily integrate out the fields ϕ in the boundary action and obtain

the effective action for κ as

∆Seff =
1

2
Tr log(M + κ0 + δκ) (40)

with M =
√
k2. Here we have reverted to the Euclidean signature; since we are embarking

on loop calculations, it is easier to do this. We are also considering the case of the entire

d-dimensional boundary contributing; we do not assume Dirichlet condition on any part of the
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boundary. (Such regions, because we need κ → ∞, cannot be treated in a perturbative fashion.

We will need to use a modified M with ϕ expanded in mode functions with support only in

non-Dirichlet regions.) Also, to minimize clutter in equations, we will use the vector notation

for momenta and coordinates; they will designate components tangential to the boundary.

Expanding (40) in powers of δκ, we get the first correction as

∆S
(1)
eff =

1

2

∫

ddx
ddk

(2π)d

[

ei
~k(~x−~y)

√

~k2 + κ0
δκ(x)

]

y→x

(41)

The part of δκ which is independent of x can be absorbed into κ0, so that, without loss of

generality, we can take
∫

ddx δκ(x) = 0. Thus, we can take ∆S
(1)
eff = 0.

The term which is quadratic in δκ is given by

∆S
(2)
eff = −1

4

∫

ddx ddy
ddk

(2π)d
ddp

(2π)d
δκ(x)

ei
~k(~x−~y)ei~p(~y−~x)

(
√

~k2 + κ0)(
√

~p2 + κ0)
δκ(y)

=
1

2

∫

ddx ddy δκ(x)

[

ddl

(2π)d
e−i~l(~x−~y) fd(~l)

]

δκ(y) (42)

where

fd(~l) = −1

2

∫

ddp

(2π)d
1

(

√

(~p +~l)2 + κ0

)

(

√

~p2 + κ0

)

(43)

The function fd(~l) is even in ~l and we will see it has an expansion in terms of l2, where l = |~l|.
Below, we evaluate (43) in the case d = 3, 2, 1. Carrying out the angular integrations in (43),

we get

fd=3(l) = − 1

8π2l

[

∫ ∞

0

dp p

(p+ κ0)

[

l + p− |l − p| − κ0 log

(

κ0 + l + p

κ0 + |l − p|

)]

(44)

The above integral is divergent. This is due to the fact that fd(l = 0) in (43) diverges for

d ≥ 2. After introducing an upper cutoff Λ for the p integration we find

fd=3(l) = − 1

8π2l

[

∫ l

0

dp p

(p+ κ0)

[

2p− κ0 log

(

κ0 + l + p

κ0 + l − p

)]

+

∫ Λ

l

dp p

(p + κ0)

[

2l − κ0 log

(

κ0 + l + p

κ0 + p− l

)]

]

(45)

For the effective action, we are interested in a small l/κ0-expansion. The integrals can be

evaluated in a straightforward manner to obtain

fd=3(l) = − 1

8π2

[

2Λ + 2κ0 − 4κ0 log

(

Λ+ κ0
κ0

)]

+
1

72π2κ0
l2 + · · · (46)

where the ellipsis indicates terms of higher order in powers of l2. Using this expression for

fd=3(l) in (42), we see that the first term of (46) is like a mass renormalization, while the second
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term is like a wave function renormalization. Since the mass renormalization is divergent as

Λ → ∞, we have to postulate that the starting action has a term 1
2

∫

µ (δκ)2. Even though it

is not forced by the divergence structure, we can also consider adding a term proportional to
∫

(∇δκ)2. Thus we consider the starting action S0K

S0K =
Z0

2

∫

δκ(−∇2 + µ)δκ (47)

With the addition of the contribution from (42), we get the effective action

Sd=3
K =

Z

2

∫

δκ(−∇2 + µren)δκ

µren = µ− 1

8π2

[

2Λ + 2κ0 − 4κ0 log

(

Λ+ κ0
κ0

)]

+ · · · (48)

Z = Z0 +
1

72π2κ0
+ · · ·

In (48), we could consider eliminating Z by scaling δκ to get a canonically normalized kinetic

term for δκ, but this will redefine terms with higher powers of δκ in the expansion of (40) as

well as the 1
2

∫

δκϕ2 term. So we will leave the action (48) as it is.

In the case of d = 2 we find

fd=2(l) = − 1

4π

[

log

(

Λ + κ0
κ0

)

− 1

]

+
1

96πκ20
l2 + · · · (49)

This implies that the corresponding renormalized parameters for d = 2 would be

µren = µ− 1

4π

[

log

(

Λ+ κ0
κ0

)

− 1

]

+ · · · (50)

Z = Z0 +
1

96πκ20
+ · · ·

Similarly in the case of d = 1 we find

fd=1(l) = − 1

2πκ0
+

1

12πκ30
l2 + · · · (51)

There are no divergences in this case and the corresponding renormalized parameters are

µren = µ− 1

2πκ0
+ · · · , Z = Z0 +

1

12πκ30
+ · · · (52)

The calculations we have done are just the beginning in elucidating the nature of the action

for K. Even with the form of K we have chosen, there are higher order corrections possible.

Further the full bilocal nature of K will bring in further complications and new features. Clearly

continued investigations into these questions are needed, which we propose to take up in future.

For now, some observations on the nature of K might be useful.

The topology of the unitary transformation in (1) is an interesting question. It is a well

known result, namely Kuiper’s theorem, that all the homotopy groups of the set of unitary
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transformations on an infinite dimensional Hilbert spaceH vanish. Therefore, a priori, it would

seem that we have only trivial topology. However, there are operators U which differ from the

identity only on a finite-dimensional subspace of the Hilbert space H, or phrased differently,

of the form U = 1+O, where O is a compact operator. The homotopy groups of such unitary

operators can be nontrivial in general. The question of which type of U ’s will be relevant for

a given physical situation has to be answered on physical grounds such as requiring finiteness

of energy. In other words, it will be determined by SK. If we consider restricted classes of U ’s,

we can certainly get nontrivial topology; this has the potential to lead to interesting solitonic

excitations of the boundary field. For such cases, staying within the chosen class, one may not

be able to use simple boundary conditions such as the Dirichlet or Neumann ones as topology

forces variation of K(x, y) with x, y in a certain way. Clearly, the calculation of the action is

crucial to discuss such questions. The case we have considered for the calculation of the action,

namely, K(x, y) = κ(x) δ(x − y) does not quite fit into the case of U ’s of the form U = 1 +O,

with O compact. So new techniques are needed for evaluating the action in the general case.

5 Discussion

Boundary conditions can in general be encoded as an integral kernel. This kernel can be viewed

as a bilocal dynamical field on the boundary. Physical effects due to boundary conditions, such

as radiation from the boundary for time-dependent boundary conditions, can be calculated

using standard field theory techniques such as perturbation theory. This is illustrated in

section 3. The nature of the action which governs this bilocal field was considered in section

4. By integrating out the bulk fields, we can obtain the general form of the action. This is

worked out for a limited class of boundary conditions (which included the Robin case). The

more general question of the action governing the bilocal field is under investigation.

There are also more general situations than what we have considered here to which this

method can evidently be applied. Moving boundaries, multiple boundaries, temperature de-

pendence are some obvious examples. In particular, the physical situations presented in [18]

might be cases where our approach could provide an alternate analysis. (We thank the referee

for pointing this out.) Situations which require nonlocal boundary conditions for which the

bilocal nature of K(x, y) and the action governing it are fully operational would be another

important case. These matters will be taken up in future work.

We thank Dan Kabat for a critical reading of the manuscript. This research was supported

in part by the U.S. National Science Foundation grants PHY-1213380, PHY-1417562 and by
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