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We study critical phenomena in the gravitational collapse of a radiation fluid. We perform nu-
merical simulations in both spherical symmetry and axisymmetry, and observe critical scaling in
both supercritical evolutions, which lead to the formation of a black hole, and subcritical evolutions,
in which case the fluid disperses to infinity and leaves behind flat space. We identify the critical
solution in spherically symmetric collapse, find evidence for its universality, and study the approach
to this critical solution in the absence of spherical symmetry. For the cases that we consider, as-
pherical deviations from the spherically symmetric critical solution decay in damped oscillations in
a manner that is consistent with the behavior found by Gundlach in perturbative calculations. Our
simulations are performed with an unconstrained evolution code, implemented in spherical polar
coordinates, and adopting “moving-puncture” coordinates.

PACS numbers: 04.25.D-, 04.25.dc 04.40.-b, 04.40.Dg

I. INTRODUCTION

Critical phenomena in gravitational collapse were first
reported in the seminal work of Chopuik [1]. Shortly
after this original discovery, which was based on studies
of massless scalar fields in spherical symmetry, similar
behavior was found in other matter models, including
vacuum (i.e. pure gravitational waves) [2], and radiation
fluids [3] (see the excellent reviews [4, 5] for a much more
comprehensive discussion.)

Critical collapse can be observed in the evolution of
generic initial data close to the threshold of black-hole
formation. We again refer to [4, 5] for thorough reviews,
and briefly summarize only the most important charac-
teristics here. Consider initial data that are parametrized
by some parameter p, with the evolution of data with p
greater than some critical parameter p? leading to black-
hole formation. Close to the critical parameter the fol-
lowing critical phenomena can then be observed in the
resulting spacetimes. For p > p?, the mass of the newly
formed black holes scales with

M ∝ (p− p?)γ , (1)

where the critical exponent γ depends on the matter
model, but not on the specific choice or parametriza-
tion of the initial data. In the strong-field region prior
to black-hole formation the spacetime approaches a self-
similar critical solution, which again depends on the mat-
ter model only. For some matter models, including mass-
less scalar fields, the critical solution features a discrete
self-similarity, while others, including perfect fluids, fea-
ture a continuous self-similarity.

Numerous studies, both numerical and analytical, have
followed up on the above initial reports of critical phe-
nomena. Most of this work, however, has focused on
spherical symmetry, where the demand for high spatial
resolution of increasingly small features can be met most
easily. As a consequence, aspects of critical collapse that
can be studied only in the absence of spherical symme-
try remain largely unexplored, for example the effects of

angular momentum (but see [6], as well as [5] for a sum-
mary of results from perturbative calculations.) Another
important question remains unresolved: studying linear
perturbations of the spherically symmetric critical solu-
tion for scalar fields, Mart́ın-Garćıa and Gundlach [7]
found that all non-spherical perturbations decay, while
Choptuik et.al. [8] found numerical evidence for the exis-
tence of an aspherical growing mode. Given the richness
of the subject, the number of numerical studies of critical
collapse in the absence of spherical symmetry is surpris-
ingly small (some recent examples of numerical studies of
critical collapse in the absence of spherical symmetry in-
clude [9–11].) As Gundlach and Mart́ın-Garćıa observed
in their review [5], “there has been less progress in going
beyond spherical symmetry than we anticipated.”

In the meantime, numerical relativity simulations in
three spatial dimensions have made tremendous progress
following the first successful simulations of the inspiral
of binary black holes [12–14]. While these newly avail-
able codes have been used to study many interesting as-
trophysical processes, they have rarely been applied to
studies of critical collapse (see [10, 11] for two examples.)
One possible reason is that most of these codes are based
either on Cartesian coordinates or more complicated co-
ordinate patches, neither one of which are well suited for
simulations of the small spatial structures encountered
in critical collapse simulations. Presumably, spherical
polar coordinates are better suited to study critical phe-
nomena, in particular the behavior of deviations from the
spherically symmetric critical solution (see, e.g., the dis-
cussion in [8].) We have recently developed a numerical
code that solves Einstein’s equations in spherical polar
coordinates [15–17], and in this paper we use this code
to study the critical collapse of radiation fluids.

The original discovery of critical phenomena in the
collapse of a radiation fluid by Evans and Coleman [3]
was quickly followed by a number of both analytical
(e.g. [18, 19]) and numerical studies (e.g. [20].) To the
best of our knowledge, however, all of these studies were
performed under the assumption of spherical symmetry.
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Here we generalize some of these results by relaxing this
assumption; in particular we compute scaling laws of the
form (1) for axisymmetric data. As first discussed in [3],
the critical solution encountered in the collapse of radi-
ation fluids features a continuous self-similarity (CSS),
rather than the discrete self-similarity found in many
other matter models. We identify this critical solution in
our spherically symmetric numerical solutions, and study
the approach to this critical solution in our aspherical
simulations. Close to criticality, the aspherical solutions
perform a damped oscillation around the spherical crit-
ical solution in a manner very similar to that described
by Gundlach [21, 22] – at least for the cases that we con-
sidered. We believe that this is the first confirmation of
this behavior in a non-linear numerical simulation.

In addition to analyzing critical phenomena in the col-
lapse of a radiation fluid in the absence of spherical sym-
metry, this paper serves to test and calibrate the per-
formance of a free (i.e. unconstrained) evolution code
in the context of critical collapse. Traditionally, most
codes used in simulations of critical collapse were specifi-
cally designed for that purpose: they made symmetry as-
sumptions, adopted specific slicing conditions (e.g. max-
imal or polar slicing) and used constrained evolution, in
which Einstein’s constraint equations are used to replace
at least some of the evolution equations. Many more
recently developed codes used in simulations of binary
coalescence, on the other hand, are designed very dif-
ferently: they do not make any symmetry assumptions
and use free evolution, in which the constraint equations
can be monitored but are not solved. In general these
codes can be run with different slicing and gauge condi-
tions, but the “1+log” and “Gamma-driver” conditions
(see eqs. (8) and (9) below) have proven particularly use-
ful for simulations of spacetimes containing black holes.
How suitable these codes are for simulations of critical
collapse, however, remains a somewhat open question
(see also [10, 23, 24] for recent discussions.) Our findings
here demonstrate that, at least for some matter mod-
els, unconstrained evolution codes with the 1+log and
Gamma-driver coordinate conditions can indeed be used
to study critical phenomena.

Our paper is organized as follows. In Section II we
describe the setup of the problem, including a brief de-
scription of our numerical methods and the form of our
initial data. We discuss our numerical results in Sec-
tion III. In Section III A 1 we focus on “centered” initial
data, which take their maximum density at the origin
of the coordinate system. These simulations allow us
to compare directly with the findings of [3]. In order
to study deviations from spherical symmetry, however,
it also makes sense to study “off-centered” initial data,
which take their maximum away from the origin. We
first consider such data in spherical symmetry in Section
III A 2, and then generalize these to axisymmetry in Sec-
tion III B. We conclude with a brief discussion in Section
IV. We also include an appendix with some details on
the logarithmic radial grid used in this paper.

II. SETUP OF THE PROBLEM

A. Basic Equations and Numerical Solution

In the following we construct numerical solutions of
Einstein’s equations

Gab = 8πTab (2)

for the stress-energy tensor

Tab = (ρ+ P )uaub + Pgab (3)

describing a perfect fluid, where we have adopted ge-
ometrized units with G = c = 1. Here Gab is the Ein-
stein tensor, ρ is the total energy density, P = (γ−1)ρ is
the pressure, ua is the fluid four-velocity, and gab is the
spacetime metric. We specialize to a radiation fluid, for
which γ = 4/3.

We solve Einstein’s equations (2) using the Baumgarte-
Shapiro-Shibata-Nakamura (BSSN) formulation [25–27].
The BSSN formulation employs a 3+1 decomposition of
the spacetime, by which the spacetime metric gab induces
a spatial metric

γab = gab + nanb (4)

on the spatial slices (see, e.g., [28] for a textbook treat-
ment.) Here na is the normal on the spatial slice, which,
in terms of the lapse function α and the shift vector βi,
may be written as

na = α−1(1,−βi) (5)

(here and in the following indices a, b, c, . . . denote space-
time indices, while i, j, k, . . . denote spatial indices.)
Another important quantity is the extrinsic curvature,
which may be written as

Kij = − 1

2α
∂tγij +Diβj +Djβi, (6)

whereDi denotes the covariant derivative associated with
γij , as well as its trace K ≡ γijKij .

The formalism also adopts a conformal rescaling of the
spatial metric γij ,

γij = ψ4γ̄ij , (7)

where ψ is the conformal factor and γ̄ij the conformally
related metric. In the BSSN formalism the conformal
factor is usually written as ψ = eφ.

In order to implement the BSSN formalism in spheri-
cal polar coordinates we also employ a reference-metric
approach [29–32]. In such a reference-metric approach,
some geometric objects associated with the conformally
related metric γ̄ij are expressed in terms of the differ-
ence between these objects and their counterparts as-
sociated with a reference metric γ̂ij (see equation (10)
below for an example). For our applications it is natural
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to choose γ̂ij to be the flat metric expressed in spherical
polar coordinates. We further scale out appropriate pow-
ers of the geometric factors r and sin θ from all tensorial
quantities, so that for regular spacetimes all dynamical
variables used in the code remain regular. We do not,
however, attempt to regularize the equations, which still
contain inverse powers of r and sin θ and hence become
singular at the origin and on the axis. We adopt a finite-
differencing method and evolve the resulting equations
with a partially implicit Runge-Kutta (PIRK) time inte-
gration method [15, 33]. Details of our numerical imple-
mentation can be found in [16, 17].

For all simulations reported in this paper we impose
“moving puncture” coordinate conditions, i.e. the 1+log
condition for the lapse function α

(∂t − βj∂j)α = −2αK (8)

(see [34]) together with a version of a Gamma-driver con-
dition

(∂t − βj∂j)βi = µSΛ̄i (9)

with µS = 3/4 for the shift vector βi (see [35, 36].) Here
the Λ̄i play the role of the conformal connection func-
tions,

Λ̄i ≡ γ̄jk(Γ̄ijk − Γ̂ijk), (10)

where Γ̄ijk and Γ̂ijk are the connection symbols associ-
ated with the conformally related metric γ̄ij and the flat
reference metric γ̂ij , respectively.

We solve the fluid equations by applying a similar
reference-metric approach to the “Valencia”-form [37]
of the equations of relativistic hydrodynamics (see also
[17, 38].) For the purposes in this paper the equations
simplify, since, for a radiation fluid, the rest density ρ0
vanishes, and the total energy density ρ is given by the in-
ternal energy density alone. We solve the resulting equa-
tions using a high-resolution shock-capturing technique
as described in [17, 38].

While our code was originally designed for three spa-
tial dimensions without any symmetry assumptions, we
here specialize to axisymmetric spacetimes, so that our
solutions depend on a radius r and an angle θ only. We
also impose equatorial symmetry, so that we can restrict
our computations to one hemisphere. One significant en-
hancement used in this paper concerns the radial differ-
encing. While we used a uniform grid in all coordinates
in the above references, we here allow for a logarithmic
grid in the radial directions. We provide more details on
both the grid setup and the finite differencing stencils in
Appendix A.

For the simulations presented in this paper we impose
outer boundary conditions at rout = 32 (in our code
units; see below), and choose each radial grid cell to
be larger than its smaller-radius neighbor by a factor of
c = 1.02. We also use two different radial grid reso-
lutions. In what we refer to as “high-resolution” runs

we use Nr = 396, which results in a grid spacing of
∆2 = 2.44×10−4 across the origin (see Fig. 12) and a grid
spacing at the outer boundary of 0.634. To put this into
perspective, an AMR application, in which each refine-
ment level has twice the grid resolution of the previous
level, would require about 12 nested grid levels to achieve
a similar range in grid resolution. In our ”low-resolution”
runs we use Nr = 288, for which ∆2 = 2.08× 10−3, and
the grid spacing at the outer boundary is 0.636. The
structure of our gird is also visible in Figs. 6 and 9 be-
low.

B. Initial Data

We start our simulations with initial data that are
both conformally flat, i.e. γ̄ij = γ̂ij , and time-symmetric,
i.e. Kij = 0. We then specify the initial density distribu-
tion as follows,

ρ(r, θ) =
η

4π3/2R2
0

(
1.0 + ε

r2

R2
0 + r2

P2(θ)

)
(f+ + f−)

(11)
where we have abbreviated

f± = exp

(
− (ψ2r ±Rc)2

R2
0

)
, (12)

and where

P2(θ) =
1

2

(
3 cos2 θ − 1

)
(13)

is the second-order Legendre polynomial. In the above
expression, η parameterizes the overall amplitude of the
density, while ε determines deviations from spherical
symmetry. In f± we have multiplied the (isotropic) ra-
dius r with the square of the conformal factor, ψ2, so
that, in spherical symmetry, the product can be identi-
fied with the areal radius R. The density distribution
is then centered on an areal radius of approximately Rc,
while its length-scale is approximately R0. In the follow-
ing we will consider different choices for η, ε and Rc, but
will always use R0 = 1, which determines our code units.
In the following, all dimensional quantities are expressed
in units of R0.

The density distribution (11) depends on the confor-
mal factor, which is found by solving the Hamiltonian
constraint

∇2ψ = −2πψ5ρ. (14)

In practice we iterate between the two equations (11) and
(14) until convergence has been achieved.

For spherically symmetric and centered data, i.e. ε =
Rc = 0, the density distribution (11) reduces to

ρ(r) =
η

2π3/2R2
0

exp(−R2/R2
0), (15)
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FIG. 1. The lapse function α, interpolated to the center at
r = 0, as a function of time t, for spherically symmetric (ε =
0) and centered (Rc = 0) initial data. We include results for
two values of the parameter η that bracket the critical value
ηc.

which is the initial density distribution adopted in [3] (see
their equation (6).) The total gravitational mass M can
then be computed analytically,

M =
1

2
ηR0 (for ε = Rc = 0), (16)

which shows that η = 2M/R0 serves as a non-
dimensional measure of the strength of the gravitational
fields. In generalizing the density (15) to the aspherical
distributions (11) we have introduced extra factors that
ensure that the density is smooth at the origin.

Finally, we initialize the lapse function α and the shift
vector βi according to

α = ψ−2, βi = 0. (17)

III. RESULTS

A. Spherical Symmetry: ε = 0

1. Centered Data: Rc = 0

We start our discussion with spherically symmetric
(ε = 0) and centered (Rc = 0) data. As explained
above, the initial data (11) then reduce to those of Evans
and Coleman [3], but we evolve these data with a com-
pletely independent numerical code, and different coordi-
nate conditions. For all simulations shown in this Section
we used a ”high-resolution” grid (see Section II A for de-
tails.)

We perform numerical simulations for numerous differ-
ent values of η and, as expected, find that the simulations
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|η − ηc|

10−2

10−1

M
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η
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FIG. 2. Critical scaling of the maximum density ρmax for
subcritical evolutions (top panel), and the black hole mass
MBH for supercritical evolutions (bottom panel), for spheri-
cally symmetric (ε = 0) and centered (Rc = 0) data. The
crosses denote our numerical results, while the solid lines rep-
resent the fits (18) and (19). The dashed line in the inset
shows the gravitational mass (16).

result in black-hole formation for sufficiently large values
of this parameter. In Fig. 1, for example, we show ex-
amples for two values of η that, at least for the grid set-
up used in these simulations, bracket the critical value
ηc. The two values of η are so similar that, at early
times, the two resulting curves are indistinguishable. At
late times, however, the lapse evolves very differently.
In the subcritical case (η = 1.018377) the lapse returns
to approximately unity as the matter is dispersing to
infinity, leaving behind flat space, while in the super-
critical case (η = 1.018378) the lapse drops to approxi-
mately zero, which is an indication of black-hole forma-
tion.1 This bracketing of the critical parameter ηc is in
excellent agreement with the findings of [3], who reported
ηc ≈ 1.0188.

Unless the forming black hole is too small in com-
parison to our grid resolution, we can also detect the
newly forming apparent horizon with our apparent hori-
zon finder, and compute an approximate black-hole mass
from the proper area of this apparent horizon. For
η = 1.018378, for example, we found that an apparent
horizon forms at a coordinate radius of about 2.94×10−3,
meaning that the interior of the black hole is covered by
only 11 grid points (on our ”high-resolution” grid.) Ac-
cordingly, our error in the masses of small black holes is

1 We note that in Fig. 1 we plot values that are interpolated to the
origin at r = 0. This fourth-order interpolation using grid points
on both sides of the origin leads to spuriously negative values
after a black hole has formed, even though the lapse remains
positive on all grid points.
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rather large. For larger black holes, the apparent hori-
zon grows a little after it first forms, as more matter falls
into the black hole, but then settles down to an approx-
imately constant value, which we take as the black hole
mass MBH.

In the bottom panel of Fig. 2 we graph these black
hole masses MBH for supercritical evolutions (η > ηc) as
a function of η−ηc. Here we have determined the critical
parameter ηc = 1.0183770 by fitting our numerical values
to the scaling law

MBH = Csuper(η − ηc)γ , (18)

which is included in the figure as a solid line. This fit also
suggests γ = 0.363, in good agreement with the value of
γ = 0.36 reported by [3]. We note, however, that our
black hole masses are smaller than those reported in [3]
by about a factor of three. Our code, including the appar-
ent horizon finder, has passed many tests – for example,
we verified that the black-hole mass approaches that of
the spacetime’s gravitational mass (16) as η is increased;
see the inset in Fig. 2. We are not aware of any prob-
lems, but we will continue to search for possible causes
of this inconsistency. In either case, none of our analysis
in what follows relies on the masses of the forming black
holes.

As pointed out by Garfinkle and Duncan [39], the crit-
ical scaling exponent γ can also be determined from the
maximum value of the spacetime curvature attained in
subcritical evolutions. Since this curvature is related to
the density ρ by Einstein’s equations (2), we measure
the maximum value of the density ρ and, on dimensional
grounds, fit to the scaling law

ρ−1/2 = Csub(ηc − η)γ . (19)

Our numerical results, together with the fit, are shown
in the top panel of Fig. 2. Using the data included in the
plot, this fit results in ηc = 1.0183773 and γ = 0.357.

Various sources of error contribute to the uncertain-
ties in our reported values. One source of error is the
truncation error in our finite-difference calculation. To
estimate this error we performed simulations for a fixed
value of η = 1.0189 with different resolutions and con-
clude that, for our high-resolution grid, the error in the
resulting black-hole mass is a fraction of one percent.
Closer to the critical point, however, the solution de-
velops smaller spatial features, so that our truncation
error is larger (see also the discussion above.) Fitting
to the scaling laws (18) and (19) introduces additional
systematic errors, as they hold strictly only in the im-
mediate neighborhood of the critical point (see the inset
in Fig. 2.) Including or excluding data very close to the
critical point (where numerical error will be larger) or
further away from the critical point (where the scaling
laws start to break down) will change our estimate for
the critical exponent by a few percent. We therefore es-
timate the error in the critical exponents – at least those
derived from the maximum mass – to be about 2 or 3%.
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FIG. 3. The density function Ω(ξ) (see eq. (22)) as identified
from our numerical solution for η = 1.0183772 at coordinate
times t = 9.86, 10.17, 10.49 10.80 and 11.11 (compare the
inset in Fig. 1.) The corresponding proper times at the center
are τ = 2.377, 2.429, 2.479, 2.527 and 2.572, and we have
adopted τ? = 2.624 in the construction of the self-similar
variable ξ (see eq. (21).) While the density ρ itself changes
significantly between these times (see the inset), the function
Ω displays the expected self-similar behavior and depends on
ξ only (compare also Fig. 1 in [3].)

This means that our results are in good agreement with
those reported by [3] (γ ≈ 0.36) as well as the analytical
results of [18, 19], who found γ ≈ 0.3558. We believe
that our results for the critical parameter ηc are more
accurate; in Section III A 2 below we compare results for
both a high-resolution and a low-resolution grid and find
agreement to within less than 0.1%.

We also examine the self-similarity of the critical so-
lution. In the strong-field region of the spacetime, close
to criticality and prior to black-hole formation, as the
spacetime “tries to decide” whether or not to collapse
to a black hole, the solution contracts to a focal point
– or rather “focal event” – in a self-similar fashion (see
Fig. 1 in [20] for an illustration.) In order to analyze this
behavior we first define a variable

R ≡ ψ2 (γ̄θθ)
1/2

. (20)

In spherical symmetry (for which γ̄φφ = sin2 θ γ̄θθ), R
becomes independent of θ and may be interpreted as the
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FIG. 4. Same as Fig. 2, but for off-center (Rc = 3), spher-
ically symmetric (ε = 0) data. Here we include numerical
results obtained both on high and low-resolution grids. The
solid lines represent the fits (18) and (19), fitted to the high-
resolution results.

areal radius. We then define a self-similar coordinate2

ξ ≡ R

τ∗ − τ , (21)

where τ is the proper time measured by an observer at
the origin, r = 0, and τ∗ is the value of this proper time
for the focal event (which, a priori, is not known.) A
self-similar solution can then be expressed as a function
of ξ.

As an example of a self-similar variable we follow [3]
and define a measure of the density,

Ω ≡ 4πR2ρ. (22)

In Fig. 3 we graph the function Ω versus ξ for an evo-
lution with η = 1.0183772, which is close to the critical
parameter. We construct Ω and ξ from data at different
times just prior to either black-hole formation or disper-
sal (see the inset in Fig. 1.) Choosing τ∗ = 2.624 the
resulting curves are so similar that they can hardly be
distinguished in Fig. 3 – as expected for a self-similar
solution.

2. Off-center Data: Rc = 3

Before turning to axisymmetric simulations in Section
III B, we discuss spherically symmetric (ε = 0) off-center

2 We note that we consider here “self-similarity of the first kind”,
rather than the second kind, which allows for a similarity expo-
nent n in the definition ξ ≡ R/(τ∗ − τ)n. Evans and Coleman
[3] considered the latter, but also defined ξ in terms of coordi-
nate time rather than proper time at the center (see also the
discussion in [4].)
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Rc = 3, Nr = 396
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FIG. 5. Comparison of the self-similar variable Ω(ξ) as found
in the evolution of centered initial data (Rc = 0, compare
Fig. 3), with that found in the evolution of off-centered data
(Rc = 3). The two solutions agree very well, demonstrating
the universality of the critical solution. For the off-centered
data we show results obtained on both high-resolution (Nr =
396) and low-resolution (Nr = 288) grids.

data with Rc = 3. Qualitatively, the results are very
similar to those for the centered data in Section III A 1,
except that now the fluid first has to propagate to the
origin before it can collapse there. The fluid therefore
collapses at a later time than for the centered data. As
the fluid converges toward to the origin its density in-
creases; accordingly, the critical parameter ηc is smaller
for off-center data than for centered data.

In Fig. 4 we show both subcritical and supercritical
scaling for the off-centered data, similar to Fig. 2 for cen-
tered data. Here, however, we include results obtained
both on a high-resolution and a low-resolution grid (see
Section II A.) The solid line is a fit based on the high-
resolution data; for the subcritical data we found the
best fit for γ = 0.356, while for the supercritical data
we found γ = 0.357 – both in excellent agreement with
the expected values. For the high-resolution data we
found ηc ≈ 0.1240904, while for the low-resolution data
ηc ≈ 0.124085.

Evolutions closer to the critical parameter develop
structures on a smaller spatial scale (in particular smaller
black holes for supercritical evolutions) and hence require
higher resolution; it is therefore not surprising that sim-
ulations with a higher radial resolution remain reliable
closer to the critical parameter. While we cannot per-
form simulations quite as close to the critical parame-
ter on the low-resolution grid as with the high-resolution
grid, it is evident from Fig. 4 that the low-resolution grid
is still perfectly adequate for the observation of critical
scaling.

Similar to our analysis in Section III A 1 we also iden-
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tify the critical solution in these evolutions; adopting a
proper time τ∗ = 6.45 for the focal event our results
are very similar to those shown for the centered data in
Fig. 3. In Fig. 5 we show a comparison between the crit-
ical solutions found in the centered and off-centered sim-
ulations. The two solutions can hardly be distinguished,
which demonstrates the universality of the critical solu-
tion. In the same plot we also include the critical solution
as observed on a low-resolution grid. The excellent agree-
ment demonstrates that the low-resolution grid is suffi-
cient to identify the critical solution, and we therefore
will use a low-resolution grid only in the axisymmetric
simulations of Section III B.

B. Axiymmetry: ε = 0.1 and ε = 0.5

We now turn to the aspherical collapse of radiation
fluids, and consider evolutions with ε = 0.1 and 0.5. All
results presented in this section are for off-centered data
with Rc = 3, evolved with a low-resolution radial grid
with Nr = 288.

As an example of our evolutions we show profiles of the
density ρ at three different coordinate times in Fig. 6. We
show results for a subcritical evolution with η = 0.12442
(represented as a wireframe), as well as a supercritical
evolution with η = 0.12443 (represented as a colored sur-
face), both for ε = 0.5. At the earlier two times the
two profiles cannot be distinguished, but at the latest
time the density for the supercritical evolution continues
to increase, while the density for the subcritical evolu-
tion has dropped down to much smaller values. These
simulations were carried out with a very modest angular
resolution of Nθ = 12 (since we impose equatorial sym-
metry, these grid points cover only one hemisphere.) In
order to evaluate whether such a coarse resolution is ade-
quate, we show in Fig. 7 results for a subcritical evolution
with η = 0.1240 and ε = 0.5 for three different resolu-
tions, Nθ = 8, 12 and 16 grid points. Even though these
are still very small resolutions, we see that the difference
in the two higher resolutions is relatively small, in part
because the deviations from sphericity remain relatively
small throughout the evolution. As a compromise be-
tween accuracy and computing time we therefore chose
Nθ = 12 for all simulations presented in this Section.

In Fig. 8 we show the critical scaling of the maximum
density (for subcritical evolutions) and black-hole mass
(for supercritical evolutions) in our simulations. The
spherical data for ε = 0 are identical to the low-resolution
results shown in Fig. 4. The aspherical data for ε = 0.1
and 0.5 follow remarkably similar scaling laws for both
the maximum density and the black-hole masses; fits to
these different data sets can hardly be distinguished in
Fig. 8. To within the accuracy of our simulations, the
critical exponent γ appears to be the same for our choices
of ε – it is possible, of course, that larger deformations
from sphericity would lead to a change in γ (compare [8].)
The critical parameter ηc, on the other hand increases

FIG. 6. Profiles of the density ρ at different instances of
coordinate time t for data with ε = 0.5 and Rc = 3. The
black wireframe shows the density for a subcritical evolution
with η = 0.12442, while the colored surface shows results for
a supercritical evolution with η = 0.12443. In the first two
panels the two surfaces cannot be distinguished, but in the
last panel the density keeps increasing for the supercritical
evolution, while for the subcritical evolution the density has
dropped to very small values. Note the vastly different scales
in the different panels.
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FIG. 7. The central value of the lapse αc for a subcritical (η =
0.1240) axisymmetric (ε = 0.5) evolution for three different
angular resolutions, Nθ = 8, 12 and 16. Even though these are
all quite coarse resolutions, we see that the difference between
the two higher resolutions is already relatively small.
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FIG. 8. Same as Fig. 4, but for both spherical and axisym-
metric data. The solid lines represent the fits (18) and (19).
The spherical data for ε = 0 are the same as the low-resolution
data in Fig. 4.

slightly with ε; for ε = 0.1 we found ηc ≈ 0.124094,
and for ε = 0.5 about ε ≈ 0.124432, compared to about
ηc ≈ 0.124085 for the the low-resolution spherical data
with ε = 0.

We now turn to the approach of aspherical collapse to
the critical solution. In Fig. 9 we show profiles of the
function Ω, defined in eq. (22), for a spherical and as-
pherical evolution close to criticality. In these profiles,
the colored surfaces show profiles of Ω for an aspherical
collapse with ε = 0.5, while the wireframes show pro-

FIG. 9. Profiles of the function Ω at three different instances
of coordinate time t for near-critical evolutions. The colored
surface shows results for ε = 0.5 and η = 0.124432, while
the wireframe shows results for spherical data with ε = 0
and η = 0.124085 (see Fig. 5.) The aspherical collapse leads
to damped oscillations around the critical solution; we show
these oscillations approximately at times when their difference
from sphericity is greatest.
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FIG. 10. Maxima of the function Ω along the axis (θ = 0)
and in the equatorial plane (θ = π/2), as a function of time,
for subcritical evolutions close to the critical parameter ηc.
The spherical self-similar contraction shown in Fig. 5 occurs
while the Ωmax is approximately constant. Here we include
results for ε = 0.1 and 0.5; it can be seen that these maxima
oscillate around the respective spherical values.

files for a spherical collapse. The radial contours for the
spherical collapse are similar to those shown in Figs. 3
and 5, except that Ω is shown as a function of the self-
similar variable ξ there, while we graph Ω as a function of
x = r cos θ and y = sin θ here. In the aspherical evolution
the density function Ω appears to “slosh” back and forth
between the poles and the equator in damped oscillations
around the spherical critical solution. In Fig. 9 we show
these oscillations at times that more or less correspond
to the largest deviations from sphericity.

The oscillations can be seen more clearly in Fig. 10,
where we show the maxima of Ω, both along the axis
and in the equatorial plane, as a function of time. The
spherical data form a plateau between times of approx-
imately t = 12 and t = 23; it is during this time that
the solution contracts in a self-similar fashion as shown
in Fig. 5. For the aspherical evolutions we observe oscil-
lations around these spherical results; these oscillations
appear to be damped, and to have a decreasing period,
as one might expect from an oscillation around a self-
similarly contracting solution.

In order to analyze these oscillations more quantita-
tively, we plot in Fig. 11 the differences in the maximum
values of Ω between aspherical and spherical data. We
also display these differences as a function of a time co-
ordinate

T = − ln(τ∗ − τ), (23)

appropriate for self-similar collapse. In terms of this co-
ordinate, the focal event at τ = τ∗, which we take to be
τ∗ = 6.45 as found in Section III A 2, occurs at a time

FIG. 11. Same as Fig. 10, with the same symbols used for
the respective lines, except that here we show the differ-
ences between the aspherical and the spherical data. We also
show these data as a function of the time coordinate T (see
eq. (23)), in terms of which the focal event occurs at positive
infinity. The dotted lines are fits based on (24).

of positive infinity. Gundlach [21, 22] found that pertur-
bations of a critical solution perform damped oscillations
that, up to another periodic function, can then be written
in the form

u(T ) = Ae−κT (cos(ωT + φ)) . (24)

Here κ is a damping coefficient, ω the frequency of the
oscillations, and φ a phase shift.

In order to test this, we include in Fig. 11 fits based on
(24) as the dotted lines.3 For ε = 0.1 we obtain excellent
fits with values of ω within one percent of ω = 3.33 for
both the axis and equatorial data, while the values for
κ are within 10% of κ = 0.35. The fits for ε = 0.5 are
not quite as clean as those for ε = 0.1 – possibly these
deviations are caused by nonlinear effects. The values
of ω based on fits for ε = 0.5 are still very similar to
those found for ε = 0.1, but the value of κ found from
a fit for the axis data is somewhat smaller (κ ≈ 0.27.)
We caution, however, that the exact value of these fits
again depends on how early or late data points we in-
clude. Earlier data points are affected by the solution
not having entered the self-similar contraction yet, while
later data points show more numerical noise as the so-
lution contracts to very small spatial scales and we lose
sufficient resolution.

3 Strictly speaking, we include in these fits an additional parameter
u0 that allows for a non-zero off-set in eq. (24), so that u(T ) −
u0 equals the right-hand side of (24). We always found this
parameter to be small.
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Quite reassuringly, the above values of ω and κ are
close to those found by Gundlach [22] for aspherical per-
turbations of the critical collapse of perfect fluids. For
polar ` ≥ 2 perturbations (see his Section IV.F), and
for a radiation fluid, his results can be read off from his
Fig. 11, with ω ≈ 3.6 and κ ≈ 0.37. Both values are
within about 10% of the values that we identified from
our fully nonlinear simulations.

IV. DISCUSSION

We perform numerical simulations of radiation fluids
close to the onset of black-hole formation and study crit-
ical phenomena for spherically symmetric as well as as-
pherical initial data. We find critical scaling for both sub-
critical and supercritical evolutions, and for both spher-
ical and aspherical data. We also identify the critical
solution in spherical evolutions, find evidence for its uni-
versality, and demonstrate how, in aspherical evolutions,
near-critical data perform a damped oscillation around
the spherical critical solution – at least in the cases we
consider.

Our results are consistent with those of Gundlach [22],
who used perturbation techniques to show that all as-
pherical perturbations of the critical solution decay in
damped oscillations (see also [21], as well as [7] for sim-
ilar calculations for scalar fields.) Matching our numer-
ical results to damped oscillations of the form (24) we
find damping coefficients and frequencies that are within
about 10% of those reported in [22]. However, our re-
sults also do not rule out the existence of a growing non-
spherical mode as reported by Choptuik et.al. [8], since
those modes may only appear for larger deviations from
sphericity, closer to the critical point, or perhaps they
may appear only for some matter models, but not for oth-
ers. It is also possible that the grid resolutions adopted
in this paper are not sufficient to detect this mode. We
plan to further pursue this issue in future studies.

In addition to studying critical phenomena in the as-
pherical collapse of radiation fluids, this paper serves as
a demonstration that an unconstrained evolution code,
using ”moving-puncture” coordinates, is suitable for the
study of critical collapse, at least for some matter models
(see also [10, 23, 24] for recent discussions of this issue.)
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Appendix A: Logarithmic Finite-Difference Stencils

In this appendix we describe the structure of our log-
arithmic radial grid together with some of the finite-
difference stencils that we use.

We denote gridpoints with ri and define

∆i ≡ ri − ri−1 (A1)

(see the schematic drawing in Fig. 12.) Since we use
finite-difference stencils that, for each gridpoint, use up
to two nearest neighbors on both sides, we define the
first two ghost-points, r0 and r1, with negative values of
the radius (see also Fig. 1 in [16].) We further choose
the location of r1 and r2 so that the origin, at r = 0, is
half-way between these two points, i.e.

r2 = −r1 = ∆2/2. (A2)

For a uniform grid the grid spacing ∆ri is constant across
the entire grid. Here we instead allow for a logarithmic
grid and choose

∆i+1 = c∆i (A3)

with c ≥ 1.
We would now like to represent derivatives of a func-

tion f , say, in terms of finite-differencing stencils involv-
ing the function values at a gridpoint ri as well as its
two nearest neighbors on both sides. To this end, we
express the function values at those gridpoints in terms
of a Taylor expansion up to fourth order about the cen-
tral point, and write all distances in terms of ∆ri. For
fi+2 = f(ri+2), for example, we have

fi+2 = f
(0)
i + δ2f

(1)
i +

1

2!
δ22f

(2)
i +

1

3!
δ32f

(3)
i +

1

4!
δ42f

(4)
i

+O(δ52f
(5)
i ), (A4)

where

δ2 ≡ ri+2 − ri = c(1 + c)∆i, (A5)

and where f
(n)
i denotes the n-th derivative of the function

f evaluated at r = ri. We write similar expressions for

fi+1, fi−2 and fi−2, as well as fi = f
(0)
i , and observe that
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I AI BI

+2 − 1

c2(1 + c)(1 + c2)(1 + c+ c2)

2(1 − 2c2)

c3(1 + c)2(1 + c2)(1 + c+ c2)

+1
1 + c

c2(1 + c+ c2)

2(2c− 1)(1 + c)

c3(1 + c+ c2)

0
2(c− 1)

c

2(1 − c− 5c2 − c3 + c4)

c2(1 + c)2

−1 − c2(1 + c)

(1 + c+ c2)

2c(2 − c)(1 + c)

(1 + c+ c2)

−2
c6

(1 + c)(1 + c2)(1 + c+ c2)

2c5(c2 − 2)

(1 + c)2(1 + c2)(1 + c+ c2)

TABLE I. Finite-difference coefficients AI and BI for the first (middle column) and second (right column) derivative on a
logarithmic grid, using centered, five-point stencils (see eqs. (A9) and (A10).)

we can combine the resulting five equations into a single
matrix equation

fi+2

fi+1

fi
fi−1

fi−2

 = M


f
(0)
i

f
(1)
i

f
(2)
i

f
(3)
i

f
(4)
i

 , (A6)

where the matrix M is given by

M =



1 c(1 + c)∆i
(c(1 + c))2

2
∆2
i

(c(1 + c))3

6
∆3
i

(c(1 + c))4

24
∆4
i

1 c∆i
c2

2
∆2
i

c3

6
∆3
i

c4

24
∆4
i

1 0 0 0 0

1 −∆i
1

2
∆2
i −1

6
∆3
i

1

24
∆4
i

1 − (1 + c)

c
∆i

(1 + c)2

2c2
∆2
i

(1 + c)3

6c3
∆3
i

(1 + c)4

24c4
∆4
i


. (A7)

We now invert the matrix equation (A6) to obtain


f
(0)
i

f
(1)
i

f
(2)
i

f
(3)
i

f
(4)
i

 = M−1


fi+2

fi+1

fi
fi−1

fi−2

 , (A8)

from which we can read off finite-difference expressions
for the first four derivatives of the function f in terms
of the function values at ri and its nearest neighbors. In
particular, we have

f
(1)
i =

1

∆i

+2∑
I=−2

AIfi+I (A9)

and

f
(2)
i =

1

∆2
i

+2∑
I=−2

BIfi+I (A10)

for the first two derivatives, where the coefficients AI and
BI are listed in Table I (see also [40]).

For a uniform grid, with c = 1, the finite-difference
stencils reduce to the more familiar expressions

f
(1)
i =

1

12∆i
(fi−2 − 8fi−1 + 8fi+1 − fi+2) (A11)

and

f
(2)
i =

1

12∆2
i

(−fi−2 + 16fi−1 − 30fi + 16fi+1 − fi+2).

(A12)
For uniform girds the leading-order error terms in the
Taylor expansion (A4) cancel out exactly when they are
combined to form the expressions (A11) and (A12), so
that in both of these expressions the error scales with
∆4
i . This cancellation does not occur for a logarithmic

grid with c 6= 1, so that the leading-order error term is
one order lower.

We use a similar approach to derive expressions for
one-sided derivatives that are used in up-wind differenc-
ing of advective shift terms.
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