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Despite all attempts, exact solutions for black rings in more than five dimensions remain elusive.
In this paper we clarify some of the reasons for that, in particular we show that a peculiar symmetry
of the five-dimensional black ring - separability of the base - cannot occur in dimensions higher than
five. We also construct supersymmetric solutions that have symmetries of 5D supersymmetric black
ring and show that they do not have regular horizons.

I. INTRODUCTION

Stationary, asymptotically flat four-dimensional black
holes must have only spherical event horizons [1]. On
the other hand, black holes in higher dimensions are
less restricted and allowed to possess horizons of vari-
ous topologies. The first example of a black hole with
a non—spherical horizon was found by Emparan and Re-
all [2], who used Kaluza—Klein C—metric of [3] to con-
struct five-dimensional black ring with the horizon of
topology S! x S2. Alternative methods of constructing
five-dimensional black rings are based on the general-
ized Weyl ansatz [4] or the inverse scattering method
[5]. The latter approach was used to construct the black
ring with two rotations [6] and several other configura-
tions of black rings and black holes in five dimensions
[7]. Unfortunately both the Weyl and the inverse scat-
tering approaches rely on the presence of D — 2 com-
muting Killing vectors, so they cannot be used to con-
struct black rings in D > 5. In the absence of methods
for finding the exact solutions with non—spherical topol-
ogy in higher dimensions several approximate techniques
have been developed, for example, the matching asymp-
totic expansions [8] and the blackfold effective theory [9].
Along with numerical [10, 11] and approximate [12] meth-
ods, the blackfolds have been used to shows existence
of solutions with non—spherical topologies such as heli-
cal black strings/rings, non—uniform black cylinder and
several other possibilities [13, 14]. However, despite all
recent results the exact solutions with non—spherical hori-
zon topology are known only in D = 5. Approximate and
numerical higher—dimensional solutions were constructed
in [15, 16] and [17] respectively.

Another interesting direction towards finding black
rings in higher dimensions is based on using supersym-
metry. The supersymmetric five-dimensional black ring
was constructed in [18] and extended to a larger class of
solutions in [19, 20]. However, analogously to the neutral
case, SUSY black rings in higher dimensions (D > 5) are
still unknown, moreover there is even less progress in this
direction. To summarize, the exact solutions for higher
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dimensional black rings remain elusive, and in this paper
we clarify some of the reasons for that.

This paper has the following structure. In Section 2 we
try to generalize a common symmetry of five-dimensional
black holes and black rings to higher dimensions and
show that solutions with such symmetries do not exist.
In Section III we show that symmetries of 5D supersym-
metric black ring do not survive in higher dimensions as
well.

II. SEPARABILITY OF THE NEUTRAL BLACK
RING

The neutral five-dimensional black ring was con-
structed in [2, 4] and reviewed in Appendix A. We begin
by noting that the black ring metric (A.3) has a struc-
ture of a t—fiber over the four-dimensional base, which is
conformally separable:
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Moreover it is separable in two different coordinate sys-
tems as we will show in a moment. In order to do that we
recall that separability of the massless Hamilton—Jacobi
equation

gMNaMS(?NS =0 (2)

can be encoded in the conformal Killing tensor K of rank
two', which satisfies the following equation [21]

ViuKnpy = Wgnpy, (3)

where W), is the associated vector. To find conformal
Killing tensors one can solve the general equation (3) or

1 Killing tensor generalizes the well-known notion of Killing vec-
tor.



extract it from the metric via (2) if it is written in the
separable coordinates. Usually such tensors are used to
construct the conserved quantities through

I =KMNgySoNs, (4)

or to extract the separable coordinates. Procedures of
constructing Killing tensors from the metric, extracting
separable coordinates from the tensors are described in
Section 2 of [22] and here we outline the results.

The massless Hamilton—Jacobi equation (2) separates
if there exists a function f, such that
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(5)
Then the conformal Killing tensor can be read off as
KMN = X MN. (6)

Applying this procedure to the base of the black ring (1)
we get

F(x)
G(x)

(KMNY@) gy oy = 03 + F(2)G(z)d2.  (7)

Here the index (*) indicates that this tensor was read off
from the x—dependent part of the metric?. Lowering the
indices gives
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The solution (A.3),(1) contains both the black ring and
the black hole with one rotation (for details see Appendix

A), which allows us to make an assumption that higher
dimensional black rings are in the same class of solutions
as the Myers—Perry black holes with one rotation [23].
So we can study higher—dimensional neutral black holes
and based on the results make conclusions about the cor-
responding rings.

The Myers—Perry black holes are reviewed in Appendix
A, and here we start with writing the tensor (8) in the
standard Myers—Perry coordinates for the static case.
Substituting the map (A.8) into (8) we get
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We have found the conformal Killing tensor associated
with separability of the base in the ring—like coordinates,
and now we want to find all separable coordinate systems
for static neutral black holes followed by analysis of the
cases with one rotation. Solving the conformal Killing
tensor equation (3) on the base of the Tangherlini solu-
tion [24] with D > 5

dStpse = + 7r2(d6?* 4 sin® 0d¢? + cos® 0d03,_,),

(10)

we obtain the following non-trivial conformal Killing ten-
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Now we identify the separable coordinate systems asso-
ciated with these conformal Killing tensors.

2 Note that one always can read off another tensor from the y—
dependent part of the metric, but these tensors will not be inde-
pendent.

3 Note that here we do not write expression for the associated
vectors W) entering right-hand side of the conformal Killing
tensor equation (3) because they can be easily recovered from
the corresponding conformal Killing tensors k(%)

(D-3)/2
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Using the prescription (6) we extract the obvious ten-
sor from (10)
rP=3 —m
A (r) — 3
D5 = K'Y =K.

(12)
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Here the index (") indicates that this tensor is associ-
ated with the r coordinate. We conclude that K3 is as-
sociated with separability in the standard Myers—Perry
coordinates.



Next by comparing the expressions (9) and (11) we find
that the tensor responsible for separation in the ring—like
coordinates is

@) QL (;Cm n /c<2>) L K®). (13)
m

Thus we have associated two independent confor-
mal Killing tensors with separable coordinate systems,
namely the ring—like and standard Myers—Perry coordi-
nates, but the complete solution of the conformal Killing
equation (3) gives three independent tensors, so it is nat-
ural to ask about the meaning of the third one. To an-
swer this question we recall the procedure of extracting
coordinates from Killing tensors described in Section 2 of
[22]. Tt was shown that the separable coordinates can be
obtained from the eigenvectors of corresponding tensors.
For the tensors (11) we find
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here as before we used ¢ = r(P=3/2 p = /g2 —m.
To summarize we see that the expressions for conformal

Killing tensors (11) have universal character in all dimen-
sions. It means that the bases of neutral static black holes
have the same symmetries in any dimension and five di-
mensions is not an exception. Now we will check this
statement in the rotating case. Direct solving the con-
formal Killing tensor equation and treating rotation as
a perturbative parameter shows that introduction of ro-
tation decreases the number of conformal Killing tensors
down to one in dimensions higher than five. In five di-
mensions turning on rotation destroys one of the tensors,
and the survivors are K and KV + (2 corresponding
to separation in the standard Myers—Perry and ring-like
coordinates respectively. In dimensions higher than five
only one tensor responsible for separation in the Myers—
Perry coordinates survives. We conclude that if higher
dimensional black rings are in the same class of solution
as black holes they would not have the separable bases
unlike their five—dimensional counterpart.

IIT. SUPERSYMMETRIC BLACK RINGS

In the previous section we have been focusing on the
neutral black rings and now we switch to the analysis
of their supersymmetric counterparts. Consider the five
dimensional SUSY black ring constructed in [18] and re-
call that it was found by utilizing a very special feature
of the neutral black ring - separability of the fiber. The
solution was written in the form

ds®> = — f2(dt +w)? + [ hppdaz™da" (15)

with m,n = 1,..,4, and the fiber one—form w was as-
sumed to satisfy

2
ye—1
Furthermore 5D SUSY ring was embedded into M the-
ory in [19], which is a good starting point for constructing
higher dimensional SUSY rings. Following [19] the solu-
tion reads

w = wedd + wydy,  Opwy =

2 4 6
ds?, =dsy+ X' d2? + X*> def + XY dz}, (17)
i=1 1=3 1=5
.A:Al/\le/\dZQ+A2/\d23/\dZ4—|—A3/\dZ5/\dZG.

Here A is the three-form potential with four-form field
strength G = dA. The solution is specified by three
scalars X?, and three one-forms A?, which are defined
on a five-dimensional spacetime with metric ds%:

ds? = —(HyHaHy) ™%/ (dt + w)? + (HyHaHy)V/3dx?,
X' = H; '(HH,H;)"? (18)

Here H; are harmonic functions on the flat four—
dimensional base dx3.

Now we want to write the prototype of 7D SUSY black
ring while keeping the symmetries of (17), such as the flat
base and several Z; symmetries. First we extend the flat
base to six dimensions effectively absorbing zs, z¢ into
dx3 and focus on symmetries associated with the rest of
zi. Recalling the equations of motion in 11D SUGRA

1 apc 1 2\ _
Run 1 (gMABCgN 129MNg =0,

d*g+%gAg:o (19)

we note that even though, for example, (z1,22) —
—(21, 22) is not a symmetry of the field strength G, it is
a symmetry of equations of motion (19). The rest of the
symmetries together with their restrictions on the metric
and three—form are collected in the following table?:

Symmetry Prohibited expressions

(21,22) = —(21, 22) | 913, 914, 923, Gou
Ais, A1g, Az, Azg (20)
911 # 922,933 7 Ga4
(21,23) = —(21,23) | 912, 934

21 <> 29,23 <> 24

The first line constrains the three form A and partially
fixes the metric. The rest constrains the metric resulting
in the following ansatz

2 4

ds}) = —Hy(dt +w)® + Hadxg + Hs Y _dz} + Hy Y _ dz},
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A= A" Ndzy Ndzy + A Ndzz Adzy +C, (21)

4 Here z; are denoted as i. For example, gz121 = 911, etc.



where fli,i = 1,..,4 are unknown functions, dx% is the
flat six-dimensional space, A2 ,C are respectively one—
and three—forms on the seven—dimensional base. Per-
forming the dimensional reduction along one of z; fol-
lowed by three T dualities along remaining z; and finally
S duality gives the solution in IIB SUGRA:

ds?y = —H2(dt +w)? + H2(dzy + fdt + )* + H2dx>
+H?(dz2 4+ d22), €** = H;,

B = [1dt + Badzs + gdtdze + Wo. (22)

Here oneforms w,a are defined on the flat six—
dimensional base. Solving the Killing spinor equations
for this ansatz reveals that the most general solution is
governed by the chiral null model [25]:

4
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dx¢ (dH) = 0, d x¢ (d[HF]) = 0.

d g (dw) = 0, (23)

This family of solutions does not admit a horizon with a
non-zero area, but does give rise to a stretched horizon
[26] and upon dualization to D1-D5 frame may lead to
completely regular geometries [27].

We conclude that the natural extension of 5D SUSY
black ring to higher dimensions by keeping its symmetries
(the flat base and several Zs symmetries) leads to the
chiral null model, which means the absence of a horizon.
So in order to produce the finite ring-like horizons in
higher dimensions one must consider the non-flat bases.

IV. CONCLUSIONS

In the first part of this work we have shown that unlike
neutral static black holes, which have the same symme-
tries in all dimensions, rotating higher dimensional black
holes/rings do not. In particular, we found that separa-
bility of the base in more than one coordinate system is
a special feature of the low—dimensional rotating black
holes (D < 5), which makes the 5D black ring metric to
have such a simple structure. Our results show that if
higher dimensional black rings are described by the same
class of solutions as the black holes (as it occurs in 5D),
then their metric will not have a simple and symmetric
structure.

In the second part of this work we show that general-
ization of 5D supersymmetric black ring to higher dimen-
sions while keeping its symmetries (in particular, the flat
base) results in vanishing horizon. It would be interesting
to extend this analysis to the non—flat bases.
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Appendix A: Myers—Perry black holes and the
neutral black ring

In this appendix we review neutral rotating black holes
and the neutral five—dimensional black ring, in particular
we are interested in black holes/ring with one rotation.
Starting with the Myers—Perry black hole [23], setting all
the rotation parameters except one to zero and introduc-
ing

pH1 =sinf = syp, cosl =cy (A1)
one gets
2 _ 2 m 2 2
As® = —dt" + (dt + a59d¢)
dr?
2, 22 2
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Next we recall the neutral black ring with one rotation
[28]°

s Fl(x) 2
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In order to avoid conical singularity at x = —1 and y =

—1 # x one must set [2]

211+ X
1+v
Further one needs to avoid a singularity at x = 1 which
can be done in two ways
2w
14w
where the first choice corresponds to a black ring and the
second one to a black hole. In particular the metric (A.3)

with A = 1 and the five-dimensional neutral black hole
with one rotation ((A.2) with D = 5) are related through

Ap = Atp = (A.5)

Ar A =1, (A.6)
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t
typ = BR ®BR VYBR (A7)
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5 Note that here comparing to [28] we swapped ¢ and 1 to be
consistent with black holes.



For the static black hole A = 1,v = 0 we get

4R22
F&)=1-¢, GE)=1-¢, z=-1+ TQCQ,
4R?s3 9

Finally the flat space limit is obtained by setting v = 0
followed by writing

r=—-1+4R%%, y=—-1+4R%j (A.9)

and sending R to zero

(A.10)
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