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We show that, in the first or second order orthonormal frame formalism, black hole entropy is the
horizon Noether charge for a combination of diffeomorphism and local Lorentz symmetry involving
the Lie derivative of the frame. The Noether charge for diffeomorphisms alone is unsuitable, since
a regular frame cannot be invariant under the flow of the Killing field at the bifurcation surface.
We apply this formalism to Lagrangians polynomial in wedge products of the frame field 1-form
and curvature 2-form, including general relativity, Lovelock gravity, and “topological” terms in four
dimensions.

I. INTRODUCTION

The entropy of black holes in any diffeomorphism in-
variant gravity theory can be identified via a variational
identity known as the first law of black hole mechanics.
In the approach of Wald [1], this identity arises from
considering the Hamiltonian Hξ that generates evolution
with respect to the flow of the horizon-generating Killing
vector ξ of a black hole solution. The variation δHξ at
a solution is equal to a variation of boundary terms, and
vanishes because ξ generates a symmetry of the dynami-
cal fields. When the boundaries lie at the horizon bifur-
cation surface and at spatial infinity, the implied relation
between the boundary term variations is the first law,
from which Wald’s formula for the black hole entropy as
Noether charge can be inferred.
This method is usually applied in a context where the

spacetime geometry is characterized by the metric tensor
alone, however in some settings it is necessary or de-
sirable to use instead a formalism with geometry deter-
mined by an orthonormal frame and either the associated
spin connection (second order formalism) or an indepen-
dent spin connection (first order formalism). Application
of Wald’s method in this setting appears at first to yield a
vanishing Noether charge at the bifurcation surface where
ξ vanishes — and therefore vanishing black hole entropy
— because the Noether charge form involves ξ without
derivatives. The puzzle this raises has not to our knowl-
edge been discussed explicitly in the literature.
We trace the trouble to the requirement that the frame

(hereafter the ‘orthonormal’ qualifier is implicit) has van-
ishing Lie derivative with respect to ξ. This requirement
cannot be met at the bifurcation surface, and implies
that the derivative of the frame diverges at the bifurca-
tion surface, so that the spin connection diverges. On
the other hand, the diffeomorphism Noether charge form
involves the contraction of the vanishing Killing vector
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with the diverging spin connection. We first show how
one can evaluate a finite, non-zero entropy by taking the
limit as the bifurcation surface is approached.
Next, in a second approach, we modify the derivation

so that the singular behavior does not arise in the first
place. In a frame formalism the theory is symmetric un-
der both diffeomorphisms and local Lorentz transforma-
tions of the frame. We show in this paper how the black
hole entropy can be derived as the Noether charge for a
particular combination of these symmetries. The frame
can be invariant under the combined symmetry associ-
ated with ξ, without having singular derivative at the
horizon, so that the extraction of the black hole entropy
requires no limit. The variation corresponding to this
symmetry is defined by a “Lorentz-Lie” derivative which
is covariant under local Lorentz transformations of the
frame field. It is defined by adding to the ordinary Lie
derivative a connection term built from the frame field
and its partial derivatives. Besides allowing for nonsingu-
lar invariant frames at the bifurcation surface, this notion
of combined Lorentz-diffeomorphism symmetry should
allow the symmetry to be implemented on nonparalleliz-
able manifolds, where no global frame field exists. More
generally, for theories containing fields charged under a
gauge group G, the Noether charge formalism for sym-
metry under combined diffeomorphisms and local gauge
transformations has been formulated recently in terms of
fields living on a principal G-bundle over spacetime [2].
This paper is organized as follows. Section II reviews

the derivation showing that black-hole entropy is the
horizon Noether charge associated with the diffeomor-
phism generated by the horizon-generating Killing vec-
tor field. In Section III we examine this Noether charge
for general relativity in the frame formalism, diagnose
the pathology, and treat it with a limit. In Section IV
we introduce the Lorentz-covariant Lie derivative, and in
Section V we show how black hole entropy is the hori-
zon Noether charge associated with the combined Lorentz
and diffeomorphism symmetry it generates. In section
VA we use this formalism to evaluate the black hole en-
tropy in Lovelock theory in arbitrary dimensions, and in
section VB we apply it in four dimensions to evaluate
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the contributions of the Holst [3], Euler and Pontryagin
terms. We conclude in section VI with a brief discussion.
We work in the units such that 16πG = c = 1. Lower

case Greek letters are used for the spacetime indices, and
internal Lorentz indices are denoted by lower case Latin
letters. The metric signature is (−+++).

II. BLACK HOLE ENTROPY AS

DIFFEOMORPHISM NOETHER CHARGE

In this section we sketch Wald’s derivation [1] estab-
lishing that black hole entropy is the diffeomorphism
Noether charge for the horizon-generating Killing field,
evaluated at the bifurcation surface. This will set the
stage for the application to the frame formalism, and
our modified derivation using a Lorentz-diffeomorphism
Noether charge.
Wald’s derivation applies to any diffeomorphism in-

variant theory defined by a Lagrangian n-form L, where
n is the spacetime dimension. Denoting the dynamical
fields collectively by φ, the variation δL induced by a field
variation δφ can be written as

δL = E δφ+ dθ(φ, δφ). (1)

The quantity E defines the field equations, E = 0. The
(n−1)-form θ is constructed locally out of the dynamical
fields and their first variation, and is called the “symplec-
tic potential”. The anti-symmetrized field variation of θ
defines an (n− 1)-form, called the “symplectic current”,
via

Ω(φ, δ1φ, δ2φ) = δ1θ(φ, δ2φ)− δ2θ(φ, δ1φ). (2)

When integrated over a spatial initial value surface, Ω
defines the symplectic form on the phase space of solu-
tions.
Now consider the variation induced by a diffeomor-

phism generated by a vector field ξ,

δξφ = Lξφ. (3)

Diffeomorphism invariance of the theory means that the
Lagrangian is constructed only from the dynamical fields,
without any background structure. In this case, the vari-
ation of L induced by the field variation δξφ is equal to
the Lie derivative of the Lagrangian itself,

δξL = LξL = d iξL. (4)

Since this is a total derivative we learn that the vector
fields on the spacetime generate symmetries of the dy-
namics. With each ξ is associated an (n− 1)-form called
the Noether current form, defined as

jξ = θ(φ,Lξφ) − iξL, (5)

whose exterior derivative is given [according to (1), (3),
and (4)] by

djξ = −ELξφ. (6)

For all vector fields ξ, the current jξ is therefore closed
“on shell”, i.e. when E = 0. This implies [4] that, on
shell, jξ is an exact form,

jξ = dQξ, (7)

where Qξ is some (n−2)-form that is constructed locally
from the fields and their derivatives. The integral of Qξ

over a closed (n − 2)-surface S is called the “Noether
charge” of S relative to ξ .
In the covariant framework used by Wald, the space of

solutions to the field equations is the phase space of the
theory, and the on shell variation δξφ is the phase space
flow vector corresponding to the 1-parameter family of
diffeomorphisms generated by ξ. The Hamiltonian Hξ

generating this flow is related to the symplectic form via
Hamilton’s equations, δHξ =

∫
Σ
Ω(φ, δφ,Lξφ), where Σ

is a Cauchy surface. On shell this variation is a boundary
term:

δHξ =

∫

Σ

Ω(φ, δφ,Lξφ) (8)

=

∫

Σ

δθ(φ,Lξφ)− Lξθ(φ, δφ) (9)

=

∫

Σ

δjξ + δ(iξL)− iξdθ − d iξθ (10)

=

∮

∂Σ

δQξ − iξθ. (11)

In the second line we used (2), in the third line (5), and
in the fourth line (7) and (1). If ξ generates a symmetry
of the fields in a solution φ, then Lξφ = 0, and thus (8)
implies δHξ = 0, so that (11) yields an identity relat-
ing the surface term variations away from that solution,∮
∂Σ

δQξ − iξθ = 0.
Now consider a stationary, axisymmetric black hole

with a Killing field ξ that generates a Killing horizon
with nonzero, constant surface gravity κ, and vanishes
on a bifurcation surface B. If we choose the hypersurface
Σ to have its only boundaries at spatial infinity and at
B, then the variational identity takes the form

∮

B

δQξ =

∮

∞

δQξ − iξθ, (12)

where the orientations of both surfaces are induced by
a vector pointing toward infinity. The right hand side
can be shown to be equal to δE −ΩH δJ where E and J
are the asymptotically defined total energy and angular
momentum, respectively, and ΩH is the angular velocity
of the horizon. To evaluate the left-hand side, note that
since ξ is a Killing vector, its second and higher deriva-
tives can be written in terms of ξ and its first derivative,
together with the Riemann tensor and its derivatives, so
Qξ depends on ξ only algebraically via ξ and ∇ξ. At B
the vector ξ vanishes, and

∇µξ
ν = ∂µξ

ν = κnµ
ν , (13)
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where nµν is the binormal to B (i.e. the normal 2-form,
normalized to −2), oriented as determined by the deriva-
tive of the Killing vector in (13). Hence all the ξ de-
pendence of Q for the background solution is contained
in the specification of the bifurcation surface and the
(constant) surface gravity κ. Moreover, the replacement
∇µξ

ν → κnµ
ν may be made before the variation is taken:

the quantity aµbν δnµ
ν vanishes unless aµ is normal and

bν is tangent to B, yet there are no normal-tangential
components in the background tensor because they would
not be invariant under the Killing flow of ξ at B (which
acts as a boost normal to B). The identity (12) there-
fore takes the form of the so-called first law of black hole
thermodynamics

TH δS = δE − ΩHδJ , (14)

where TH = ~κ/2π is the Hawking temperature, and

S =
2π

~

∮

B

Q̂ξ, (15)

where Q̂ξ (for the background as well as for the var-
ied solution) is obtained from Qξ by the replacement
∇µξν → nµν . The black-hole entropy S is thus pro-
portional to the horizon Noether charge corresponding
to the horizon-generating diffeomorphism. (For a more
complete discussion see [5].)
In order for the entropy to be nonzero, it would

seem that Qξ must depend on ∇ξ, so jξ, and therefore
θ(φ,Lξφ), must depend on ∇∇ξ. Since the Lie derivative
of a tensor field depends on∇ξ, this requires that θ(φ, δφ)
depends on at least one derivative of δφ, and therefore
that L involves at least second derivatives. Since the
first order orthonormal frame formalism involves only
one derivative, it thus appears that the black hole en-
tropy would vanish in that formalism, but that conclu-
sion is obviously erroneous. The right hand side of the
first law (14) is of course independent of which formal-
ism is used. In the next section we compute the horizon
Noether charge for general relativity using the frame for-
malism, diagnose the flaw in the above reasoning, and
show how to evade the problem.

III. DIFFEOMORPHISM NOETHER CHARGE

FOR GENERAL RELATIVITY WITH

ORTHONORMAL FRAMES

In the first-order orthonormal frame formalism, the La-
grangian for General relativity in n dimensions is writ-
ten in terms of the frame field 1-form ea, which is
SO(n− 1, 1) vector-valued, and the SO(n− 1, 1) connec-
tion 1-form ωa

b. These are the independent dynamical
variables of the theory. The spacetime metric is given by
gµν = ηabe

a
µe

b
ν , where ηab is the Minkowski metric, and

the curvature 2-form is defined by Ra
b = dωa

b+ωa
c∧ω

c
b.

We raise and lower Lorentz indices with ηab and its in-
verse, ηab. We sometimes omit the Lorentz indices when
that will not cause confusion.

The Lagrangian n-form for General Relativity in n-
dimensions is a function of the frame and the spin-
connection via the curvature 2-form,

L(e, ω) = ǫa...bcd e
a ∧ . . . ∧ eb ∧Rcd. (16)

This is manifestly gauge invariant and diffeomorphism
covariant. The variation is given by

δL = δea ∧
∂L

∂ea
+Dδωab ∧

∂L

∂Rab
(17)

= δea ∧
∂L

∂ea
+ δωab ∧D

∂L

∂Rab

+ d

(
δωab ∧

∂L

∂Rab

)
. (18)

where D is the Lorentz covariant exterior-derivative [6],
and we have used the identity δRab = Dδωab. (The vari-
ation forms are placed in the first position in order to
avoid the need for a dimension-dependent minus sign
that would arise when integrating by parts on the D.)
The equations of motion are given by

ǫabc...df e
c ∧ . . . ∧ ed ∧Def = 0, (19)

ǫab...cde e
b ∧ . . . ∧ ec ∧Rde = 0. (20)

The first of these equations implies (assuming ea is non-
degenerate) the “torsion-free” condition Dea = 0, which
can be solved for the connection ω = ωe. When this is
substituted in the second equation of motion, that be-
comes equivalent to the vanishing of the Ricci tensor of
gµν , so one recovers the (vacuum) Einstein equation. If
one puts ω = ωe in the Lagrangian at the beginning, one
has the second order frame formalism, and (19) is true
as an identity. The diffeomorphism Noether current (5)
involves the Lie derivative of the connection, Lξω, which
is given by

Lξω = iξdω + d(iξω) = iξR+D(iξω). (21)

Here we are treating the connection components as a col-
lection of 1-forms, and we shall do the same with the
frame components. If the relevant manifold cannot be
covered by a single frame field — i.e. is not parallelizable
— this strategy would not be available, because under a
change of local Lorentz gauge the Lie derivative would
not transform properly so as determine a well-defined
symmetry operation. In that case, something like the
Lorentz-Lie derivative discussed below would be required.
From (18) we can read off the symplectic potential de-

fined in (1),

θ = δωab ∧
∂L

∂Rab
. (22)

Using (21), the diffeomorphism Noether current (23) can
thus be written as

jξ = d

(
iξω

ab ∧
∂L

∂Rab

)

− (iξω
ab) ∧D

∂L

∂Rab
+ (iξR

ab) ∧
∂L

∂Rab
− iξL. (23)



4

(In the first and second terms, the first factor is a 0-
form, so the wedge product is just ordinary multiplica-
tion. Throughout this paper we sometimes include such
unnecessary wedge notations since they seem helpful in
organizing the structure of the expressions.)
The second term in the Noether current (23) vanishes

by the ω equation of motion. Moreover, the Lagrangian
(16) has the nice property

iξL = (iξe
a) ∧

∂L

∂ea
+ (iξR

ab) ∧
∂L

∂Rab
, (24)

from which it follows that, taken together, the third and
fourth terms of (23) vanish by the e equation of motion.
Thus we may simply read off the Noether charge (n−2)-
form,

Qξ = iξω
ab ∧

∂L

∂Rab
. (25)

Notice that this is linear in ξ, with no derivative on ξ. If ξ
is a horizon generating Killing field, Qξ therefore appears
to vanish when evaluated at the bifurcation surface B of
the Killing horizon. This would imply that the entropy
(15) vanishes, but obviously something is wrong with this
argument.
The problem arises because, in showing that the en-

tropy is proportional to the horizon Noether charge, we
assumed that the dynamical fields have vanishing Lie
derivative with respect to ξ. Because of this, the con-
nection ωe diverges as B is approached. We shall ex-
plain shortly from a geometric viewpoint why the con-
nection diverges, but first let us show that iξω

e has a
finite, nonzero limit at B, and use this to find the en-
tropy.
The Lie derivative of the frame is given by

Lξe
a = iξde

a + diξe
a

= iξDea +Diξe
a − iξω

a
b ∧ eb. (26)

Setting this equal to zero, and using the field equation
Dea = 0 (or the definition of ωe in the second order
formulation), we obtain

iξ(ω
e)ab = eµbDµ(iξe

a), (27)

where eµb is the inverse frame. To evaluate the right hand
side note that the action of Dµ on tensors has not so far
been specified (other than being torsion-free) hence we
may choose it to act on tensor indices as the torsion-
free covariant derivative ∇µ determined by the metric.
With this choice we have Dµe

a
ν = 0, where Dµ denotes

the full derivative including both the spacetime and spin
connections. Then, using the Leibniz rule, (27) becomes

iξ(ω
e)ab = eµb e

a
ν∇µξ

ν . (28)

The limiting value at B is given by

lim
→B

iξ(ω
e)ab = −κnab, (29)

where again κ (13) is the surface gravity, and nab =
nµνeaµe

b
ν is the bi-normal to B, converted to a Lorentz

tensor. Thus, despite appearances, iξω
e does not vanish

at the bifurcation surface. This can only happen because
ωe blows up there.
Using (29), we find the Noether charge form (25) is

given by

lim
→B

(Qξ) = −κnabǫabc...de
c ∧ . . . ∧ ed. (30)

This is just 2κ times the “area” [(n − 2)-volume] ele-
ment on B, hence

∮
B
Qξ = κA/8πG (restoring the 16πG),

so the entropy (15) is SBH = A/4~G, the Bekenstein-
Hawking entropy.
To explain why and how the connection diverges at the

bifurcation surface, we employ a simple analogy with a
two dimensional Euclidean space. The Killing vector field
that generates the rotation around the origin is given by
ξ = ∂θ in polar coordinates (r, θ). The origin is a fixed
point of the rotational isometry, i.e. ξ vanishes there, so it
is analogous to the bifurcation surface. A frame that has
zero Lie derivative with respect to this rotation Killing
field rotates by 2π when traversing a circle around the
origin. For a circle closer to the origin, the frame rotates
faster, because the circumference shrinks. At the origin
the frame has to rotate infinitely fast, which implies that
the connection diverges. Explicitly, let the frame be given
by e1 = dr and e2 = rdθ, so that Lξe

a = 0. The non-zero
connection components are given by ω2

1 = −ω1
2 = dθ.

The norm of dθ is (gθθ)1/2 = 1/r, so dθ, and there-
fore the connection, diverges at the origin, although the
contraction iξω

2
1 = 1 is finite and nonzero. At the bi-

furcation surface of a black hole space-time one has a
hyperbolic version of this phenomenon. For instance,
for a Schwarzschild black hole we have e0 = Ndt and
e1 = N−1dr, with N = (1 − 2M/r)1/2 the norm of the
Killing vector ∂t. Then ω0

1 = κdt, where κ = 1/4M
is the surface gravity. The connection diverges since the
norm of dt is N−1, although i∂t

ω0
1 = κ is finite.

If we are to avoid the occurrence of a singular spin con-
nection in the Noether charge computation of black hole
entropy, we must modify the realization of the diffeomor-
phism symmetry, so that a frame can be invariant under
the symmetry and yet nonsingular at the bifurcation sur-
face. The next section introduces this realization.

IV. LORENTZ-LIE DERIVATIVE

The Lie derivative of tensor fields with respect to a
vector field ξ is defined, with no additional structure,
as the rate of change of the pull-back along the flow
of ξ. A frame consists of co-vectors which are carried
by the flow in a unique way. The covectors remain or-
thonormal under the flow of a Killing vector, but they
undergo a Lorentz transformation. Therefore the Lie
derivative of a frame with respect to a Killing vector
is generally nonzero. However, given a frame, one can
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define a modified derivative which includes a compensat-
ing local Lorentz transformation, so that the modified
derivative of the frame with respect to a Killing vector is
always zero. We call this the Lorentz-Lie (LL) derivative.
The LL derivative we employ has been introduced sev-
eral times, using various formalisms (see [7–12] and refer-
ences therein). Acting on a spinor field, the LL derivative
agrees with the definition given by Kosmann [7]. It was
called the Yano derivative in [11], where other notions of
generalized Lie derivative are also discussed.
We denote the Lorentz-Lie derivative by Ke

ξ (the no-

tation is chosen in honor of Kosmann). It is the Lie
derivative supplemented with a local SO(n− 1, 1) gauge
transformation generated by a particular λe

ξ which is de-
termined by a frame ea as follows. Note first that metric
compatibility, i.e. the vanishing of Ke

ξη
ab, implies anti-

symmetry of λe
ξ, that is, (λ

e
ξ)

(ac) = (λe
ξ)

(a
bη

c)b = 0. Now
consider the action of Ke

ξ on ea,

Ke
ξe

a = Lξe
a + (λe

ξ)
a
be

b. (31)

The spacetime tensor eaK
e
ξe

a can be decomposed into its
symmetric and anti-symmetric parts,

eaµK
e
ξe

a
ν = ea(µK

e
ξe

a
ν) + ea[µK

e
ξe

a
ν]. (32)

Owing to the antisymmetry of (λe
ξ)

ab, the symmetric part
is independent of λe

ξ, and is given by

ea(µK
e
ξe

a
ν) =

1

2
Lξgµν . (33)

The LL derivative Ke
ξe

a will therefore vanish when ξ is
a Killing vector if and only if the antisymmetric part
vanishes. The antisymmetric part,

ea[µK
e
ξe

a
ν] = ea[µLξe

a
ν] + eaµebν(λ

e
ξ)

ab, (34)

can be set to zero by choosing

(λe
ξ)

ab = eσ[aLξe
b]
σ . (35)

This choice of λe
ξ defines the LL derivative associated

with ea. The LL derivative of ea with respect to an ar-
bitrary vector field is thus given by

Ke
ξe

a
µ =

1

2
eaνLξgµν . (36)

In particular, when ξa is a Killing vector field we have
Kξe

a = 0.
It will be useful to find an explicit expression for λe

ξ

(35) in terms of ∇ξ. We have

(λe
ξ)

ab = eµ[aLξe
b]
µ (37)

= eµ[aξν∇νe
b]
µ + eµ[a(∇µξ

ν)eb]ν (38)

= iξ(ω
e)ab + eµ[aeb]ν ∇µξ

ν . (39)

In the second line we expressed the Lie derivative using
the torsion-free metric compatible derivative ∇, and in
the third line we used ∇eb = Deb−(ωe)bce

c = −(ωe)bce
c.

Under a Lorentz transformation of the frame, ea →
La

be
b, the quantity λe

ξ transforms like a connection for
the Lie derivative,

λLe
ξ = Lλe

ξL
−1 + LLξL

−1. (40)

This makes the LL derivative covariant under SO(n −
1, 1) gauge transformations. The action of the LL deriva-
tive is extended to any Lorentz tensor by requiring that
it be a derivation, i.e. by stipulating that the Leibniz
product rule applies. Its action on any SO(n− 1, 1) con-
nection is defined so that the λξ term implements the
infinitesimal gauge transformation of a connection,

Ke
ξω

ab = Lξω
ab −D(λe

ξ)
ab (41)

= iξR
ab +D(iξω − λe

ξ)
ab (42)

This result will be key when evaluating the entropy using
the Lorentz-diffeomorphism Noether charge.
Let us illustrate the action of the LL derivative in

two-dimensional flat Euclidean space. The frame we
considered above has zero Lie derivative along the ro-
tation Killing vector field ξ = ∂θ. Hence for that
frame and that vector field we have λξ = 0, so the
LL derivative is just the Lie derivative, which vanishes
on the frame. The problem with such a frame, as ex-
plained above, is that it is singular at the fixed point of
the Killing flow. Next we consider a Cartesian frame,
e1 = dx and e2 = dy. Writing the same Killing vector
as ξ = x∂y − y ∂x, it is simple to see that (Lξe)

1 = −e2

and (Lξe)
2 = e1. Although this frame is not rotation-

ally invariant, its LL derivative must vanish since ξ is a
Killing field. Indeed we have (λe

ξ)
1
2 = −(λe

ξ)
2
1 = 1, so

(Kee)1 = (Lξe)
1+(λe

ξ)
1
2 e

2 = −e2+e2 = 0, and similarly

(Kee)2 = (Lξe)
2 + (λe

ξ)
2
1 e

1 = e1 − e1 = 0. In effect, the
gauge transformation cancels the nonzero Lie-derivative
with respect to a Killing vector. (If we consider instead
the shear vector field x∂y, which is not a Killing vec-
tor, then both the Lie and LL derivatives of the Carte-
sian frame are non-vanishing, and they differ from each
other.) Similarly, the rotation invariant frame has non-
vanishing Lie derivative with respect to the translation
Killing vector ∂x, but its LL derivative with respect to
∂x vanishes.

V. BLACK HOLE ENTROPY AS

LORENTZ-DIFFEOMORPHISM NOETHER

CHARGE

We may now repeat the steps in the Noether charge
construction of Sec. II, replacing the Lie derivative vari-
ation by the LL derivative,

δφ = Ke
ξφ. (43)

Assuming the diffeomorphism-covariant Lagrangian is a
Lorentz scalar, its variation is the same whether the fields
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of which it is built vary by the Lie derivative, or the LL
derivative, hence it satisfies Ke

ξL = LξL = d iξL.
The Noether current associated with the LL symmetry

is defined by

jKξ = θ(φ,Ke
ξφ) − iξL, (44)

which is closed on shell for all ξ, and hence is the exterior
derivative of a Noether charge (n− 2)-form,

jKξ = dQK
ξ . (45)

The derivation of the first law of black hole mechanics
proceeds as in the case of the diffeomorphism Noether
current, but the role of the Lie derivative is played
by the LL derivative. In particular, to make use of
the correspondingly modified variational identity (11),
the background fields must now satisfy Ke

ξφ = 0, so
that the variation of the Hamiltonian generating the
combined Lorentz-diffeomorphism symmetry will vanish.
This leads to a new expression for the black hole entropy,

S =
2π

~

∮

B

Q̂K
ξ , (46)

where again the hat on Q indicates the replacement
∇µξν → nµν . In order to evaluate this for a particu-
lar theory one needs first to find the Noether current and
then the corresponding Noether charge form. Let us see
how it works out for General Relativity and some closely
related theories.

A. Lovelock gravity

The analysis for General Relativity in section III ac-
tually applies more generally to any Lagrangian L(e, ω)
that is constructed from wedge products of frames and
curvature 2-forms, since the nice property (24) continues
to hold, and the rest of the derivation is generic. In par-
ticular, the expression for the Noether charge form (25)
applies to all such Lagrangians. These Lagrangians cor-
respond to Lovelock gravity theories, together with vari-
ous “topological” terms that do not affect the equations
of motion.
Comparison of the expressions (42) and (21) for the

LL and Lie derivatives of the connection reveals that,
to obtain the Noether charge form, we merely need to
replace iξω by iξω − λe

ξ in (25). This yields

QK
ξ = (iξω − λe

ξ)
ab ∧

∂L

∂Rab
. (47)

The key point now is that since the frame is LL invariant
and not Lie invariant, it can be assumed to be regular at
B. Therefore the quantity iξω vanishes at B, and from
(39) (13) we have there

(λe
ξ)

ab = κnab. (48)

When this is substituted in (47), the result is identical to
what we obtained using the limiting expression (29) with
a singular, Lie invariant frame. That is,

Q̂K
ξ = −κnab ∧

∂L

∂Rab
, (49)

and integrating this gives the entropy (46).
The Lagrangian for Lovelock gravity is

L(e, ω) = ǫa...bcd(c0 e
a ∧ . . . ∧ eb ∧ ec ∧ ed

+c1 e
a ∧ . . . ∧ eb ∧Rcd + . . . ), (50)

where ci is a coupling constant for the term with i factors
of the curvature, and the terms indicated by the ellipses
each contain one more factor ofR than the previous term.
The c0 term is a cosmological constant, and the c1 term
is the Einstein-Hilbert Lagrangian. The form QK

ξ is ob-
tained from L by moving, in turn, each factor of R all
the way to the first position and replacing it by −κnab.
Contracting nab with the rank-n Lorentz ǫ in L produces
twice the rank-(n− 2) Lorentz ǫ associated via the frame
with the SO(n−2) group of the tangent space of B. The
remaining Lorentz indices are thus all projected into this
subspace. The coefficient of the term in QK

ξ with m − 1
factors of R is thus 2κmcm.
The curvatures in the entropy integrand are those

of the connection ω, whose equation of motion is
D ∂L/∂Rab = 0. One way — and generically the only
way — to satisfy this is to have Dea = 0, i.e. for ω to be
the spin connection ωe determined by e. For such solu-
tions the curvature appearing in the entropy is the one
determined by e. These curvature 2-forms are all pulled
back to B and, as explained above, their Lorentz indices
are all projected into the B-subspace. Moreover, the ex-
trinsic curvature of the bifurcation surface vanishes, so
these curvatures all reduce to intrinsic curvatures of B.
The entropy is therefore determined by the intrinsic ge-
ometry of the horizon [13].
The first and second order formalisms for Lovelock

gravity are not strictly identical in more than four dimen-
sions, since there exist solutions in the first order formal-
ism for which ω 6= ωe. That is, the connection may have
torsion. In fact, black hole solutions with this property
exist, and their entropy might involve this torsion via the
curvature (see for example [14] and references therein).
In [15] black hole solutions in Born-Infeld gravity (which
is a special case of Lovelock gravity in even dimensions)
supporting non-zero torsion were constructed. However,
by construction all the Noether charges for these solu-
tions vanish, including the entropy. It would be interest-
ing to find solutions with non-trivial torsion contributing
to the black hole entropy.

B. “Topological” terms

As a further application of the Lorentz-diffeomorphism
symmetry discussed here, we now look into the contribu-
tions of “topological” terms to the black hole entropy
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in four dimensional general relativity. The contributions
of these terms have been studied before, using various
formalisms; see for example Refs. [12, 16–18].
The Lagrangian 4-form is given by

L(e, ω) =
(
∗(ea ∧ eb)

+ cH ea ∧ eb + cE ∗Rab + cPRab
)
∧Rab, (51)

where denotes Lorentz dual, e.g. ∗Rab = 1
2ǫ

abcdRcd.The
coupling constants are cH for the Holst term [3], cE for the
Euler (Gauss-Bonnet) invariant, and cP for the Pontrya-
gin invariant. The Holst term modifies the connection
equation of motion, but does not affect its solution ωe,
and it drops out of the frame equation of motion when
the connection is on shell. The Euler and Pontryagin
terms depend only on the connection. The Euler and
Pontryagin terms are exact forms, so do not affect the
equations of motion. Were they exterior derivatives of
gauge-invariant forms, we could absorb those forms into
the symplectic potential θ (1), and from general consid-
erations conclude that the entropy is unaffected by them
[19]. However, those forms are not gauge invariant, hence
these terms might contribute to the black hole entropy.
The black hole entropy (46) for the Lagrangian (51) is

given by

S =
2π

~

∮

B

ncd
(
∗ec∧ ed+ cHec∧ ed+2cE ∗Rcd+2cPRcd

)
.

(52)
The Einstein-Hilbert term is proportional to the area of
B, as we saw before. The Holst term vanishes because
the binormal is orthogonal to B. The Euler term is one
of the terms in the general Lovelock Lagrangian (50).
Therefore, as explained above, it involves only the in-
trinsic curvature of B. In the present case, since B is
two-dimensional, that just amounts to the Ricci scalar.
The integral of this term in the entropy is a topolog-
ical invariant, proportional to the Euler characteristic
of the horizon [13]. In higher, even dimensions, simi-
lar terms exist, involving (n − 2)/2 curvature tensors.
Finally, it turns out that, since the extrinsic curvature
vanishes, the Pontryagin term is an exact form on B,so
its integral vanishes. To see that the pull-back of ncdRcd

to B is exact, let la and na be null normals to B sat-
isfying lcn

c = −2, so ncd = l[cnd]. Then we have
ncdRcd = lcD

2nc = d(lcDnc)−Dlc ∧Dnc. Since the ex-
trinsic curvature of B vanishes, the null normals must be
parallel transported along B into multiples of themselves,
so pulled back to B we have Dlc = σlc and Dnc = −σnc

for some 1-form σ. Hence Dlc ∧Dnc = −2σ ∧ σ = 0.

VI. DISCUSSION

In this paper we have made use of the Lorentz-Lie
derivative Kξ to define a particular variation of the frame
field (and other Lorentz tensors) under a diffeomorphism

generated by a vector field ξ. In words, the LL derivative
is defined by combining the usual Lie derivative with a
term that subtracts the local Lorentz transformation in-
duced on the frame by the flow. This subtraction term
depends on the frame field, and amounts to a connection
that covariantizes the Lie derivative with respect to local
Lorentz transformations. A key property of this defini-
tion is that if ξ is a Killing vector, the LL derivative of
the frame vanishes. This property makes it possible for
the frame to be LL-invariant at the bifurcation surface
of a Killing horizon while remaining regular there. Using
this formalism, we showed how the LL Noether charge
yields the black hole entropy. We illustrated the com-
putational convenience of this method by evaluating the
black hole entropy for Lagrangians that are polynomial
in wedge products of the frame field 1-form and curvature
2-form.
The computations in this paper were carried out us-

ing a single “local Lorentz gauge”, so in effect we as-
sumed that the relevant portion of the spacetime could
be covered by a single gauge patch. Further analysis
would be required to deal with situations where that is
not the case. For example, one could use the frame bun-
dle formalism, which has been discussed in this setting
in Refs. [2, 12].
We have restricted attention here to Lagrangians that

are Lorentz scalar n-forms. It could be interesting to
study the Noether charge formalism allowing for La-
grangians having this property only up to the exterior
derivative of a non-scalar n-form. This would shed a
different light on the contributions of the Euler and Pon-
tryagin terms studied here, and could be useful in further
generalizations.
Finally, the combined diffeomorphism-gauge Noether

current analysis can also be applied when the local gauge
symmetry is internal, as in Yang-Mills theory. A simple
example involving the electromagnetic field is discussed
in Appendix E1 of [20]. It employs the notion of “gauge
covariant Lie derivative” to arrive directly at a gauge-
covariant Noether current. A general analysis is provided
in Ref. [2].
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