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While it is revealed that the Cosmic Microwave Background (CMB) is linearly polarized at 10 %
level, it is predicted that there exists no significant intrinsic source for circular polarization (CP)
in the standard cosmology. However, during the propagation through a magnetised plasma, the CP
of the CMB could be produced via the Faraday conversion (FC). The FC converts a pre-existing
linear polarization into CP in presence of a magnetic field with relativistic electrons. In this paper,
we focus on the FC due to supernova remnants of the first stars, also called Pop III stars. We derive
an analytic form for the angular power spectrum of the CP of the CMB generated by the general
FC. We apply this result to the case of the FC triggered by explosions of the first stars and evaluate
the angular power spectrum, CV Vl . We show that the amplitude of l(l + 1)CV Vl /(2π) > 10−2µK2

for l > 100, with only one Pop III star per halo, the age of Pop III SN remnants as 104 years and
frequency of CMB observation as 1 GHz. We expect the CP of the CMB to be a very promising
probe of the yet unobserved first stars, primarily due to the expected high signal along with an
unique frequency dependence.

I. INTRODUCTION

Observations of the Cosmic Microwave Background (CMB) are essential in modern cosmology. In particular, a
precise measurement of the CMB polarization is one of the major goals for ongoing and future CMB observations.
Theoretical studies of the CMB polarization predict a 10% level in linear polarization under standard cosmology [3–
6]. The linear polarization of the CMB can be produced by anisotropic Thomson scattering around the epoch of
recombination [1, 2]. Since the first detection of CMB polarization anisotropy by DASI [7], several observations
have measured the angular power spectrum of the polarization and the cross-correlation with the CMB temperature
anisotropies (e.g., Ref. [8] for one of recent works). These observational results are consistent with the theoretical
predictions of the cosmological observables that follow from the standard ΛCDM model. On the other hand, the
circular polarization (CP, hereafter) of the CMB is usually assumed to be zero, because there is no generation
mechanism at the epoch of recombination within the standard cosmology.

However, the CP of the CMB can be created in the free-streaming regime after the epoch of recombination. One of
such generation mechanism is the Faraday conversion (FC) which is formalized by the generalized Faraday rotation.
Due to the FC, the linear polarization of the CMB can be converted to the CP with the presence of relativistic
magnetized plasma [10, 11]. The FC could be expected when the CMB propagate through relativistic magnetized
plasma in galaxy clusters. Ref. [12] has shown that the FC due to galaxy clusters might be able to create the CP at
the level of 10−9 at frequencies of 10 GHz.

The CP of the CMB can be generated by other mechanism. Mohammadi have investigated the generation of the
CP of the CMB through their scattering with the cosmic neutrino background [13]. Giovannini has shown that
the curvature perturbations can produce the CP with the presence of primordial magnetic fields around the last
scattering surface [14, 15]. Sawyer has discussed the CP due to photon-photon interactions mediated by neutral
hydrogen background [16]. In addition, some new physics effects can induce the CP of the CMB [17–19].

Recently Mainini et al. have performed the first attempt to detect the CP of the CMB since ’90 [20]. They have
improved the upper limit on the degree of the CP, which is between 5× 10−4 and 0.4× 10−4 at large angular scales
(between 8◦ and 24◦). However, this limit is very far from 10−9 degree of the CP predicted in a cosmological context.

In this paper, we evaluate the CP of the CMB via the FC in supernova (SN) remnants of the first stars. The formation
of the first stars is a important milestone in the evolution of the structure formation. After photon decoupling,
overdensity regions began to grow and collapsed to dark matter halos. Inside of dark matter halos, formation of
luminous objects like stars was not solely driven by gravity and requires a sufficient amount of baryon gas cooling
inside of a dark matter halo, to eventually form stars. These first born stars are thought to be very massive and
are termed as the first stars or alternatively Pop III stars. It is believed that Pop III stars formed in small halos
(106-108 M�) at z ∼ 20-30 (see Refs. [21, 22] for recent reviews). Although Pop III stars are key to early structure
formations as the first luminous objects and the sources of cosmic reionization and cosmic metal pollution, no Pop III
stars have been directly observed and there is some debate on their properties including mass range of Pop III stars.
In the isolation scenario, Pop III star mass is predicted to be massive, 100–500 M� [23–28].

It is known that Pop III stars with mass > 10 M� cause SNe at their death. The detection of SNe of Pop III stars
are expected as one of the possible probes of first stars as these SNe could be much brighter than their progenitors or
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host galaxies. In particular, Pop III stars with 140-260 M� could explode as pair-instability SNe, which is up to 100
times more energetic than Type Ia and Type II SNe [29]. Many works have been done to investigate the observability
of Pop III SNe [30–38]. According to these works, SNe of Pop III stars could be found by the James Webb Space
Telescope (JWST) or the Wide-Field Infrared Survey Telescope (WFIRST). Additionally, SN remnants of Pop III
stars may be also detectable. Meiksin and Whalen have found that SN remnants of Pop III stars in 107 M� halos
can produce observable radio signatures [39]. Oh et al. have shown that SN remnants of Pop III stars may induce
additional CMB temperature anisotropy through the Sunyaev-Zel’dovich effect [40].

In this paper, we adopt a simple analytic model for the evolution of SN remnants to study the FC in a SN remnant
of a Pop III star. Our aim is to evaluate the anisotropy of the CMB CP. We calculate the power spectrum of the FC
by using the halo formalism [41], then we compute the angular power spectrum of the CMB CP. Throughout this
paper, we adopt a flat ΛCDM cosmology, with h = 0.7, Ωc = 0.23, and Ωb = 0.046.

II. CIRCULAR POLARIZATION DUE TO FARADAY CONVERSION

Due to the Thomson scattering with the presence of quadrapole temperature anisotropy, the CMB becomes linearly
polarized during the epoch of recombination. As the CMB propagates through inter-galactic medium and galaxy clus-
ters, there are secondary effects which are imprinted on the CMB temperature anisotropy and polarization properties.

One of such secondary effects is the creation of the circular polarization (CP) in the CMB through the mechanism
of Faraday Conversion (FC). The FC can be understood in the following way. Consider a linearly polarized electro-
magnetic (EM) wave in a homogeneous magnetized plasma. Let the direction of propagation of the EM wave be
orthogonal to the direction of the external magnetic field in the plasma. This linearly polarized EM wave can be
decomposed into two linear polarized waves with the same phase, perpendicular and parallel to the external magnetic
field. Circular polarization of an EM wave can be visualized as two linear polarized waves with a phase difference
between the linearly polarized components. Charged particles in the plasma are free to move along the magnetic
field lines and can respond easily to the electric field of the EM wave. However, the motions of the charged particles
perpendicular to the magnetic field lines are affected by the magnetic field and their response to the electric field of the
EM wave is now modified. Therefore, a difference arises in the particle motions between the two orthogonal polarization
directions of the EM field, due to the existence of the magnetic field in the plasma. This difference translates into a
phase difference between two linearly polarized components of the EM wave parallel and perpendicular to the external
magnetic field. As a result, a circularly polarized wave is generated.

In this section, after giving a brief review of the Stokes parameters, we formulate the generation of the CP of the
CMB due to the FC to obtain the analytic form of the CP angular power spectrum.

A. Stokes parameters

First of all, we consider a monochromatic EM wave propagating along ẑ. This EM wave is characterized by two
mutually perpendicular electric field components on the x-y plane. At a given point in space, the amplitude of the
electric field vectors pointing along x̂ and ŷ respectively are described by [42]

Ex = E0
x(t) cos(ωt− φx(t)),

Ey = E0
y(t) cos(ωt− φy(t)). (1)

The extent of polarization is generally quantified in terms of the so-called Stokes parameters I, Q, U and V . These
Stokes parameters for a monochromatic EM wave are defined as

I = (E0
x)2 + (E0

y)2,

Q = (E0
x)2 − (E0

y)2,

U = 2E0
xE

0
y cos(φx − φy),

V = 2E0
xE

0
y sin(φx − φy). (2)

However, in practice, we measure EM waves at a frequency ω with a bandwidth ∆ω. That is, measured EM waves
can be expressed as a superposition of many waves around ω. For such EM waves, the Stokes parameters are obtained
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by the time averaging of the electric field components of the EM waves,

I = 〈(E0
x)2〉+ 〈(E0

y)2〉,
Q = 〈(E0

x)2〉 − 〈(E0
y)2〉,

U = 〈2E0
xE

0
y cos(φx − φy)〉,

V = 〈2E0
xE

0
y sin(φx − φy)〉, (3)

where the bracket 〈 〉 denotes the time averaging with the time interval over which the measurement is performed.
As shown in above equations, the I parameter represents the intensity of the EM waves, the Q and U parameters

are associated to the LP of the EM waves and the V parameter quantifies the extent of the CP. The parameters I
and V are coordinate-independent (scalar) and dimensionless true observables. The parameters Q and U transform
under a rotation of the coordinate system while Q2 + U2 is an invariant under the rotation of the axes. The sign of
the parameter V related to the rotating direction of electric field components on the x-y plane. EM waves with V > 0
and V < 0 are called, respectively, right-handed and left-handed circular polarized waves. A linearly polarized wave is
a combination of one left circularly and one right circularly polarized waves with equal amplitudes, that is, V = 0. A
circularly polarized wave is created when the left and right circularly polarized components have unequal amplitudes.

B. Angular power spectrum of circular polarization

For the analysis of the CMB anisotropy, it is useful to perform an angular decomposition of the anisotropic values
in multipole space. Let V (n̂) be the CP at a given direction n̂ on the sky. Since the Stokes parameter V is a scalar
quantity, it can be expanded in the basis of scalar spherical harmonics Ylm(n̂) in the following way,

V (n̂) =
∑
lm

VlmYlm(n̂). (4)

Using the coefficients Vlm, we can write the angular power spectrum of the CMB circular polarization, CV Vl , as

CV Vl =
1

2l + 1

∑
m

VlmV
∗
lm. (5)

Let us consider the CP of the CMB due to the FC. The observed CP is given in terms of the Stokes V parameter
by [10]

V (n̂) = −2

∫ 0

r∗

dr U(r, ~x, n̂)α(r, ~x, n̂, b̂), (6)

where r is the comoving distance, ∗ denotes the value at the last scattering surface and U(~x, n̂) is the Stokes parameter

at a comoving space position ~x and observation direction n̂ with ~x = rn̂. Here α(r, ~x, n̂, b̂) is the FC rate with the

magnetic field direction b̂, which we will discuss in more detail in the next section. As shown in Eq. (A5) of the

appendix, α(r, ~x, n̂, b̂) can be decomposed as

α(r, ~x, n̂, b̂) = 2π

√
32π

15

∫
d3k

(2π)3
α̃(z, k)

(
2Y

0
2 (n̂) + −2Y

0
2 (n̂)

)∑
l

(−i)ljl(kr)
m=l∑
m=−l

Y ∗lm(k̂)Ylm(n̂), (7)

where ±2Y
m
l (n̂) are spin-2 spherical harmonics, jl(x) is the spherical Bessel function, and, for simplicity, we assume

that b̂ is (0, 0) in a polar coordinate system for the sky, b̂ = (θ, φ).
Generally, the stokes parameters for a linear polarization, U and Q, can be expanded as [6]

(Q± iU) (r, ~x, n̂) =

∫
d3k

(2π)3

∑
l

m=2∑
m=−2

(Elm ± iBlm)±2G
m
l (~x,−n̂), (8)

where ±2G
m
l is a mode function for a spin-2 field,

±2G
m
l (~x, n̂) = (−i)l

√
4π

2l + 1
±2Y

m
l (n̂)ei

~k.~x. (9)
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In Eq. (8), Elm and Blm are coefficients for so-called E- and B-mode polarizations [3–6]. For simplicity, we assume
that B-mode polarization vanishes hereafter. In this assumption, the parameter U is given in terms of Elm as

2iU(r, ~x, n̂) =

∫
d3k

(2π)3

∑
l

m=2∑
m=−2

Elm (2G
m
l −−2 Gml ) . (10)

With Eqs. (7) and(10), we can decompose the Stokes parameter V (n̂) in Eq. (6) in spherical harmonics as shown
in Eq. (4). After a lengthy calculation, we finally obtain the angular power spectrum of V as

CV Vl ≈ 128

15π

∑
l′l′′l′′′

m′=2∑
m′=−2

∑
m′′+m′′′=m

∫ 0

r∗

dr

∫
k2dk

(2l′ + 1)r2
Pα

(
r,
l′′

r

)
PElm (r, k) j2l′′′(kr)I

2
lm, (11)

where PElm(r, k) is the power spectrum of the E-mode polarization, Elm, at a comoving distance r, Pα(r, k) is the
power spectrum of the FC rate at r, and Ilm is given by Eq. (A12). Note that the detailed derivation of Eq.(11) is in
the appendix and Pα has a dimension of (length). Eq. (11) conveys that, depending on the power spectrum, Pα(r, k),
the E-mode polarization is converted to the CP.

It is worth discussing the implications carried by Eq. (6). This equation quantifies a transfer of polarization from
an existing Stokes U into V, via the FC mechanism. As we will see in the following section, α in Eq. (6) depends
only on the magnitude of the component of the total magnetic field that is perpendicular to the line of sight and is
situated on the plane of the sky. In the derivation of Eq. (6), the ŷ axis is chosen to be parallel to the component of the
magnetic field on the plane of the sky. Stokes U is defined to be situated on the x-y plane and makes an angle of π/4
with respect to the ŷ. The specification of the coordinate system is important because Stokes Q and U are coordinate
dependent quantities. Stokes V and I are however, invariants. This implies if the orientation of the magnetic field
on the plane of the sky changes (without a change in the line of sight component of the magnetic field), then the
observer’s measure of Stokes Q and U changes in the context of Eq. (6). This does not change the measure of V.
Please see more on this discussion after we have introduced the parameter α in the next section.

Another important factor in this context is FR of the EM wave. FR induces transfer between the Stokes Q and
U components. This happens to due to the rotation of the incoming polarization of the EM field due to the line of
sight magnetic field component. As the plasma becomes more relativistic, the FR effects in the plasma decreases [43].
In this paper, we have considered a relativistic plasma and hence considered the FR effects on the EM wave to be
insignificant. A more realistic calculation must involve a full address of the problem involving both the FR and FC
mechanisms.

III. FARADAY CONVERSION FROM POP III STARS

Within the ΛCDM framework of structure formations, dark matter halos begin to be formed around redshifts of
z ∼ 20-30. Inside of the dark matter halos, Pop III stars were born. Although the final mass of the Pop III stars
is determined by several dynamical feed back processes related the pre-stellar gas, typically it is estimated to span
between 60-300M�.

In this paper, we investigate the CP signals generated when CMB photons pass through the SN remnants of the
Pop III stars. A SN generated due to a Pop III star explosion produces a large outburst of energy [37] and a shock
wave. As the shock wave propagates through the ambient medium of the explosion, a strong magnetic field and a large
number of relativistic electrons are produced. Consequently, CMB photons passing through SN remnants of Pop III
stars could be significantly affected by the FC.

Adopting a simple analytic model of the explosion of a Pop III star, first, we estimate the FC induced by one SN
remnant of Pop III stars. In order to estimate the angular power spectra of the CP, CV Vl , obtained in the previous
section, we need to calculate the FC power spectrum, Pα. Based on the halo model, we evaluate Pα due to SN remnants
of Pop III stars.

A. Faraday Conversion due to a Pop III star explosion

Faraday conversion rate α in Eq. (6) is given by [10]

α(z, ~x, n̂, b̂) = α0 sin(θB)
γ+2
2 ,

α0 = Cγ
e2

mec
nrelεmin(Bmag)

γ+2
2 ν−

γ+4
2 , (12)
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where θB is the angle between the direction of the line of sight n̂ and the magnetic field direction b̂, nrel is the number
density of relativistic electrons and γ denotes the power-law distribution of the relativistic electrons which described
in terms of the Lorentz factor ε as nrel(ε) = n0ε

−γ between εmin < ε < εmax. The parameter Cγ in Eq. (12) is provided
by [10],

Cγ =

{
−2γ−1γ−2 ( e

2πmec
)
γ+2
2

[
(ν(z)/νL)

γ−2
2 − 1

]
, γ 6= 2

( e
2πmec

)2 log(ν(z)/νL), γ = 2,
(13)

where νL is the characteristic frequency of the synchrotron emission by electrons at the lower bound εmin, which is
represented as νL = eB/(2πεminme). We picked εmin = 100.

When a SN occurs, large amount of energy is injected into the surrounding gas. As a result, the shock is created
and, then, relativistic electrons and magnetic fields are generated inside the shocked gas (SN remnants). In order
to estimate the FC rate in SN remnants, we evaluate the number density of relativistic electrons nrel and magnetic
fields Bmag, assuming the regime at which the shock front expands adiabatically. This regime is known as the blast
wave regime and the dynamics of this regime is expressed in the Sedov similar solution which describes a point blast
spherical explosion in an ambient medium [44]. In this solution, the radius of the shock rs is given by

rs ∼ 2 pc

(
ESN

1053erg

)1/5(
Ωbh

2

0.0245

)−1/5(
1 + z

20

)−3/5(
tage

106 yr

)2/5

, (14)

where ESN is the energy of the SN explosion and tage is the time since the explosion. In Eq. (14), we assume that the
shock expands into an ambient medium with the mean baryon mass density ρ̄b = ρ̄b0(1 + z)3 where ρb0 is the mean
baryon mass density at the present, although we will discuss the baryon density in more detail below.

The energy ESN generally depends on a mass of the exploded Pop III star. Since Pop III stars are predicted to be
massive, 60-300 M�, we assume that Pop III stars have 100 M� mass and explode as pair-instability SNe which are
100 times more powerful than typical type II SNe. Therefore, we adopt ESN = 1053 ergs in this paper.

The shock wave expands in the interior of a dark matter halo at first. Then the shock wave spreads out to the
outside of the halo, because rs could become larger than the size of the halo as tage increases. We simply assume that
the shock continues to expand following Eq. (14) in both the inside and the outside of the halo. Therefore, we set ρb
to

ρb =

{
ρhalob , rs ≤ Rvir

ρ̄b, rs > Rvir,
(15)

where Rvir is the virial radius of the halo and ρ̄b is the mean baryon mass density in the universe. To obtain the
baryon mass density inside of a dark matter halo ρhalob , we assume that the baryon mass distributes homogeneously
inside the virial radius. Accordingly, the baryon mass density in the halo is given by

ρhalob =
Ωb

Ωb + Ωc

3M

4πR3
vir

. (16)

The blast wave phase continues until the cooling of the SN remnant becomes effective. One of the important cooling
mechanisms is the inverse Compton (IC) scattering. The cooling time, tIC, for the IC scattering is independent of
temperature and density of the gas,

tIC =
3mec

4σT ρCMB
≈ 1.4× 107 yr

(
1 + z

20

)−4
, (17)

where σT is the Thomson cross-section of an electron and ρCMB is the CMB energy density. Eq. (17) sets an upper
limit on tage . 107 yr, used for the estimation of rs in Eq. (14).

Let us evaluate the number density of relativistic electrons. Suppose that the fraction frel of the explosion energy
ESN gets converted into relativistic energy of electrons. For a hydrodynamic shock, the inner radius of the shocked
regime (SN remnant) is estimated to be [45]

rp = rs

(
η

η − 1

)−1/3
(18)

This equation is based on the conservation of mass in the shock enclosed regime, where the density rises by a factor of
η. For the case of monoatomic gas, which we adopt here, η = 4. Therefore, the width of a remnant is rs − rp ∼ 0.1rs.
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We simply assume that the relativistic electrons are confined in the region between the radius rp and rs, whose volume
is Vrem = 4π(r3s − r3p)/3. Assuming the power-law distribution of the relativistic electrons as mentioned above, we can
obtain the normalization n0 of the distribution from

frelESN = Vrem

∫ εmax

εmin

n0mec
2ε1−γ . (19)

In our calculation, we use γ = 2, εmin = 100 and εmax = 300.
For magnetic fields, we also introduce the parameter fmag which denotes the fraction of the energy of a Pop III star

explosion into magnetic field energy. The magnetic field amplitude Bmag is obtained by solving the equation

B2
mag

8π
Vrem = fmagESN. (20)

Therefore, the magnetic field amplitude in a Pop III remnant can be approximately given by the following.

Bmag ∼ 70 mG

(
tage

106yr

)−3/5(
ESN

1053ergs

)1/5(
1 + z

20

)9/10(
fmag

0.1

)1/2

. (21)

Although the parameters frel and fmag are theoretically uncertain, we have set frel = 0.1 and fmag = 0.1 in this
paper.In these parameters, the typical value of α0 is given by the following.

α0 ∼ 20 pc−1
(
tage

106yr

)−12/5(
ESN

1053ergs

)4/5(
1 + z

20

)3/5(
fmag

0.1

)(
frel
0.1

)( ν

1GHz

)−3
. (22)

In this paper, we take the assumption about the directions of magnetic fields, sin(θB) ∼ 1, in all SN remnants
for simplicity. This implies that we have ignored the line of sight magnetic field and consequently the FR effects
associated to it. This assumption is consistent in our case since the FR effects in a relativistic plasma decreases as the
plasma becomes more relativistic [43]. However, in a non-relativistic plasma, the FR effect is not negligible in order
to evaluate the resultant circular polarization via the FC and it is necessary to solve a full set of the polarization
transfer equation including the FR and FC simultaneously.

B. Power spectrum of the FC induced by Pop III stars

In the ΛCDM model, Pop III stars are predicted to have formed inside dark matter halos. Therefore, in order to
calculate Pα, we can evaluate Pα, based on the halo model [41]. For simplicity, we assume that Pop III stars form
in halos with the virial temperature Tvir > 104 K where atomic hydrogen cooling is effective for the collapse. We
also assume that one Pop III star is formed per halo and consequently, one halo hosts one Pop III SN remnant.
Accordingly, we can write the power spectrum for the FC from Pop III star SN remnants in the following way,

Pα(z, k) = Pmat(z, k)

∣∣∣∣∫
Mthr

dM
dn

dM
b(M, z)α̃0(z, k)

∣∣∣∣2 , (23)

where Pmat(z, k) is the linear matter power spectrum at a redshift z, b(M, z) is the linear bias of a dark matter halos,
dn/dM is the mass function, and α̃0 is the Fourier component of α0 and given by,

α̃0(z, k) =

∫
d3~r

(2π)3
α0(z)ph(~r) exp(−i~k · ~r). (24)

where ph(~r) is the profile of one SN remnant. For simplicity, we assume that the FC rate is homogeneous inside the
SN remnant and the profile is given by ph(~r) = 1 for rp < |~r| < rs, otherwise ph = 0.

In Eq. (23), we consider only the halo-halo correlation term of the halo model, and we neglect the one-halo Poisson
term. In other words, we take into the correlation between SN remnants in different halos, while we ignore the
correlation within a given SN remnant. In this work, we are interested in the correlation of the CP on large scales (the
order of 10 Mpc or equivalently l < 2000 in terms of multipole). Since the typical size of SN remnants is much smaller,
we can neglect the correlation contribution within a given SN remnant. We will discuss in more detail later.

In Eq. (23), Mthr is the threshold mass of the halos hosting a Pop III star and corresponds to the virial mass with
Tvir = 104 K [46],

Mthr = 3.5× 107h−1
(

Tvir
104 K

)3/2(
Ωm

Ωm(z)

∆c

18π2

)−2(
1 + z

10

)−3/2
, (25)
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where µ is the mean molecular weight and mp is the proton mass. For a fully ionized plasma, we used, µ = 0.6.
We choose the mass function, dn/dM , to be alternately defined in terms of a multiplicity function f(ν) as,

dn

dM
dM =

ρ̄

M
f(ν)dν. (26)

Here ρ̄ is the mean matter density in the universe and ν is defined as ν = (δc/σM )
2

where δc is the threshold
overdensity of spherical collapses at redshift z and σM is the rms linear density fluctuations obtained with a top-hat
filter of mass M at an initial time (see [41] and references therein).

For the function f(ν), we adopt the function proposed by Sheth and Tormen [47]

νf(ν) = A(1 + ν−p1 )
( ν1

2π

)1/2
e−ν1/2, (27)

where ν1 = aν with a = 0.7, p = 0.3 and A is the normalization constant determined by
∫
f(ν)dν = 1. Following

Ref. [41], the linear bias, bν , is given in terms of ν by

b(ν) = 1 +
ν − 1

δc

2p

δc(1 + νp1 )
. (28)

In Fig. 1, we plot the power spectrum of α, Pα(z, k). As the redshift decreases, the power spectrum amplitude grows.
This is simply due to the growth of the density fluctuations, as a result of which the resultant number density of halos
becomes larger at lower redshifts. Fig. 1 also shows that the power spectrum depends on the age of SN remnants tage
and the observation frequency ν.

An estimation of the power spectrum for α in Fig. 1 at the peak scale (k ∼ 10−2Mpc−1) can be verified as follows.
For tage=105 yr and ν=1 GHz, we obtain the value of α̃0 ∼ 0.2 Mpc2. At z ∼ 20, the integral of dn/dM over M in
Eq. (23) gives ∼ 1 Mpc−3 [46], and the bias factor is b(M, z) ∼ 1. Since the amplitude of the matter power spectrum
at k ∼ 10−2 is P (k) ∼ 100 Mpc3, we obtain Pα ∼ 10 Mpc at the peak scale from Eq. (23).

Since we consider only the halo correlation term, as shown in Eq. (23), the spectral shape is same as the one of the
linear matter power spectrum. However, in general, the Poisson term is non-negligible on small scales. Taking into
account the Poisson term, one can expect that the shape of the power spectrum Pα would deviate from the linear
matter power spectrum and be enhanced around k > 105 Mpc−1, which also corresponds to the typical scale of the
SN remnants of Pop III stars.

Since we consider only the halo correlation term, as shown in Eq. (23), the spectral shape is same as the one of
the linear matter power spectrum. However, in general, the Poisson term is expected to be non-negligible on small
scales. Taking into account the Poisson term, one can expect that the shape of the power spectrum Pα would deviate
from the linear matter power spectrum and be enhanced around the scale corresponding to the typical scale of the SN
remnants of Pop III stars. The average proper size of the remnants of age, tage=106 years is ∼ 10 pc at z ∼ 20. This
corresponds to an apparent angular size of ∼ 10−6 in degrees. Therefore, the Poisson term could contribute much on
angular power spectrum around multipoles of l ∼ 106. Since such scales are too small to observe the angular power
spectrum, we do not address the Poisson term in this paper.

IV. RESULTS FOR THE PREDICTED CV Vl FROM POP III STARS

We numerically calculate the angular power spectrum of the CMB CP due to the SN remnants of Pop III stars,
substituting the power spectrum Pα obtained in the previous section to Eq. (11).

Although Eq. (11) involves multiple summations of multipoles, we can reduce the calculation. Due to the property
of the Wigner-3j symbols in Eq. (A12), the non-zero contributions come from the terms with l′+L is odd in Eq. (11).
Therefore, non-vanishing Ilm requires m′ 6= 0 in Eq. (11). Under the assumption that the CMB is statistically isotropic,
the angular correlation of multipole components Vlm defined in Eq. (4) is independent of m. Therefore the calculation
with only m = 0 in Eq. (11) is enough to obtain the angular power spectrum. Additionally, in order to reduce
computational efforts, we ignore the azimuthal dependence due to m′′. In other words we just multiply (2l′′ + 1)
instead of evaluating a m′′ dependent summation.

In Fig. 2, we present the results of T 2
CMBC

V V
l in the units of (µK)2. Here we assume that Pop III stars exist in

high redshifts between z = 24 and 17, and we set ν = 1 GHz, frel = 0.1 and fmag = 0.1. Although Pα has a peak at
k ∼ 10−2 corresponding to l ∼ 100, the angular power spectrum of the CMB CP CV Vl peaks at higher l ∼ 2000. This
is because CV Vl is the convolution between the Pα and the E-mode power spectrum. We also show the dependence
on tage in Fig. 2.As the SN remnants expand with tage increase, the number density of relativistic electrons and
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FIG. 1: Power spectra of Faraday conversion generated by the First stars at different redshifts. The unit of Pα(k, z) is in
Mpc.The solid lines correspond to tage = 104 years and ν = 1 GHz. The dashed lines correspond to tage = 105 years and ν = 1
GHz. Lastly, the dotted lines correspond to tage = 104 years and ν = 30 GHz. Here, ν is the frequency of the CMB photons
observed today.

magnetic field energy decrease. Accordingly the FC becomes ineffective in the case with large tage. For comparison,
we also plot the angular power spectrum with ν = 30 GHz. The spectrum is strongly sensitive to the frequency of the
CMB observation. Although the frequency dependence depends on the power-law index γ of the relativistic electron
distributions, the amplitude of CV Vl is proportional to ν−6 for the case with γ = 2.

One can roughly estimate CV Vl in the following way. CV Vl is a convolution between power spectrum of circular
polarization coefficient α and that of E-mode polarization and can be approximated to l2CV Vl ∼ l2Cααl CEEl where
CEEl and Cααl are the angular power spectra for CMB E-mode polarization and the FC parameter α, respectively. We
are interested in scales l > 100. The Limber approximation gives the relation between Cααl and Pα (given in Fig. 1) as
l2Cααl ∼ kPα(l/rz) where rz is the radial distance to redshift z and krz ∼ l. For example, at z ∼ 20, in scales l ∼ 103,

l/rz∼20 corresponds to k ∼ 0.1 Mpc−1. For tage=105 yr and ν=1 GHz, including the contributions from all redshifts, at

k ∼ 0.1 Mpc−1, Pα ∼ 103 Mpc from Fig. 1. The angular power spectrum of E-mode polarization is CEEl ∼ 10−2 µK2 at

l ∼ 103. Therefore, the resultant angular power spectrum of the CP is l2CV Vl ∼ kPαCEEl ≈ 10−2 µK2 for tage = 105 yr
at 1 GHz. This estimation is consistent with our calculated total CV Vl in Fig. 2.

In Fig. 3, we show the redshift dependence of CV Vl . In this case we have only considered remnants with tage=104

yrs. Fig. 3 conveys that CV Vl decreases with increasing redshift. This is primarily due to the increase in the number
density of Pop III stars in lower redshifts directly due to increase in the number of halos. In this paper, although we
do not take into account the redshift dependence of the evolution of Pop III star properties, their properties strongly
depend on redshift. In particular, the metal pollution due to explosions of Pop III stars make mass of Pop III stars
small and, finally, the abundance of Pop III stars are dominated by Pop II stars. These redshift evolutions induce the
suppression in the efficiency of the FC in lower redshifts. Therefore, CV Vl in lower redshifts is expected to lower than
our estimation. However, this is beyond the scope of this paper.

There are two factors involved in the understanding an order of magnitude estimate for the redshift dependence.
One, an increase in the number density of halos with decreasing redshift and two, a given length scale is manifested
at a slightly larger angular scale (or at a slightly higher multipole) with decreasing redshift. The dominating effect of
increase in the signal due to increase in the number density of halos with decreasing redshift is clearly manifested in
Fig. 3. An approximate increase of two orders of magnitude in the power spectrum at a given scale upon decrease of
redshift from z = 23 to z = 17 is shown in Fig. 3. This change is also manifested in Fig. 3 with a similar reduction in
the signal between z = 23 and z = 17.
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FIG. 2: Angular power spectra of circular polarization from Eq. (11) times T 2
CMB in (µK)2. We have chosen a few cases for the

age of the remnant of the Pop III explosion, with 104 < tage < 106 in years. The frequency of observation of the CMB has been
chosen to be ν = 1 and 30 GHz. Other parameters for this plot are described in Sec. IV. In this figure only one Pop III star
was assumed per halo.
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FIG. 3: Angular power spectra of circular polarization from Eq. (11) times T 2
CMB in (µK)2. We have chosen a few redshift slices

and the age of the remnant of the Pop III explosion to be tage = 104 in years. The frequency of observation of the CMB has
been chosen to be ν = 1 GHz for this plot. Other parameters for this plot are described in Sec. IV.
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V. DISCUSSION AND SUMMARY

In this paper, we have studied the CP signals of the CMB, focusing on the Faraday Conversion (FC) caused by
the SN remnant of the Pop III star explosions. In the SN remnant, the relativistic electrons are produced and the
magnetic fields are amplified. Therefore, during the propagation through the SN remnant, the CMB undergoes FC
which transfers some of its linear polarization into circular polarization (CP).

In this paper, we have derived an analytic form for the angular power spectrum of the CMB CP. This analytic form
is general to the CP due to the FC. The angular power spectrum is the convolution between the CMB E-mode and
the FC rate power spectra.

We have applied this analytic form to estimate the CP of the CMB due to the SN remnants of Pop III stars.
Compared with primary E-mode polarization, the amplitude of the produced CP is suppressed by a factor of 10−4 in
terms of the angular power spectrum for remnants of the Pop III stars with tage > 105 yr. The efficiency of the FC
strongly depends on the frequency of CMB photons. We found that the amplitude of the CP angular power spectrum
is proportional to ν−6. The signals of the CP fall off with increasing frequency. As the SN remnant evolution, we
adopt the simple analytic model, the Sedov similar solution. In this model, as the SN remnant evolves, the number
density of relativistic electrons and the amplification of magnetic fields are suppressed. Therefore, the signals of the
CP also decrease with the age of the remnant, tage growing.

Throughout this paper, we have assumed that energy of each Pop III explosion is ESN = 1053 ergs. However,
ESN depends on various properties of Pop III stars and is theoretically uncertain. However, the produced CP also

depends on the energy of the explosion. The angular power spectrum CV Vl is roughly proportional to E
(16+2γ)/10
SN

with the spectral index γ of the relativistic electron distribution. For γ = 2, we retrieve an approximate quadratic
dependence of CV Vl on ESN. Therefore, the detailed energy distribution of Pop III SNe is required to predict CV Vl
precisely. Additionally, there exists the theoretical uncertainty on the conversion of the SN energy into the energies
of relativistic electrons and magnetic fields, which we parameterize as frel and fmag. We will address the modeling of
these parameters based on simulations in a future work.

We have assumed the direction of the magnetic field generated by their explosions, to be aligned to the ẑ axis. In
other words, we have assumed Bmag = Bz. If we relax this assumption, and consider a general direction of Bmag, we

may use Bz = Bmag/
√

3 according to the equipartition over the all directions. The signal of CP due to only Bz is
then suppressed by a factor of 1/9. In this case, there are additional contribution due Bx and By, the components of
magnetic field in the x̂ and ŷ directions. These contributions could be additive or subtractive and a precise estimate
is difficult without a more detailed numerical modeling.

In our evaluation of the CMB CP, we ignore the Faraday rotation (FR) effect. The FR arises when the CMB
photons pass through a magnetised plasma. Therefore, when the FC of the CMB occurs, the FR is also expected
to be effective. Since the FR rotates the direction of the linear polarization, the relative angle between the linear
polarization and the magnetic fields changes. Even more, when the FR is efficient, it might be change the sign of the
CP due to the FC. Therefore the magnitude and sign of the final CP might depend on the details of the FR in the
system. Although the FR due to magnetic fields in intergalactic medium, galaxy clusters and the Milky way has been
studied (e.g. [51–53]), the FR of the CMB in SN remnants of Pop III stars has not been addressed yet. In order to
evaluate the effect of SN remnants on the CMB linear and circular polarization, it is required to study the FR and
FC consistently. We propose to investigate this detail in the future.

In Ref. [12], the signals of the CMB CP due to the propagation through galaxy clusters are predicted that the peak
amplitude is 10−1 (µK)2 at l = 103 for ν = 1GHz. Our predicted signals due to the Pop III stars with tage = 104 yr
can dominate these signals. Although the signals due to the Pop III stars with tage = 105 yr are comparable with
these signals around l . 103, these can dominate the signals from galaxy clusters on the smaller scales. Even with
tage = 106 yr, the signals from the Pop III SNe would dominate the ones from galaxy clusters at l > 5×103. Therefore,
the Pop III SNe can contribute the CMB CP significantly, in particular, on small scales l > 103.

We propose that if the future CMB experiments are equipped with CP measuring instruments, the CMB observation
can also be used as a probe of the Pop III stars. In addition to the 〈V V 〉 correlations, 〈TV 〉 and 〈EV 〉 correlations are
expected to be higher, leading up to a better detection prospect. An unique frequency signature of the CP signal due
to the FC and absence of any significant foreground makes CP signal to be a promising probe of the Pop III stars,
which are yet unobserved.
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Appendix A: Derivation of CV Vl

In this appendix, we derive the angular power spectrum of the CP of the CMB, Eq. (11). As shown in Eq. (6), the
observed Stokes parameter V due to the FC is given by

V (n̂) = −2

∫ 0

r∗

dr U(r, ~x, n̂)α(r, ~x, n̂, b̂). (A1)

According to Eq. (12), α is proportional to (sin θB)(γ+2)/2 where θB is the angle between the line-of-sight direction

n̂ and the direction of magnetic fields b̂. In order to express the θB-dependence explicitly, we rewrite α as

α(r, ~x, n̂, b̂) = α0(r, ~x)(sin θB)(γ+2)/2. (A2)

For simplicity, we consider only z-direction component of magnetic fields with adopting γ = 2. In this case, the
θB-dependence can be written as

(sin θB)(γ+2)/2 = sin2 θ =
1

2

√
32π

15

(
2Y

0
2 (n̂) + −2Y

0
2 (n̂)

)
, (A3)

where θ is a polar angle component of n̂ in a spherical coordinate system n̂ = (θ, φ) for the sky. We perform the
Fourier decomposition of α0(r, ~x),

α0(r, ~x) =

∫
d3k

(2π)3
α̃(r, k) exp(i~k · ~x). (A4)

Accordingly, α(r, ~x, n̂, b̂) is expressed as

α(z, ~x, n̂, b̂) = 2π

√
32π

15

∫
d3k

(2π)3
α̃(z, k)

(
2Y

0
2 (n̂) + −2Y

0
2 (n̂)

)∑
l

(−i)ljl(kr)
m=l∑
m=−l

Y ∗lm(k̂)Ylm(n̂), (A5)

where we use the Rayleigh expansion,

ei
~k.~x =

∑
lm

4π(−i)ljl(kr)Y ml (k̂)Y ml (n̂), (A6)

with k̂ = ~k/k.
From Eq. (10), we can write the Stokes parameter U as

U(r, ~x, n̂) = − i
2

∫
d3k

(2π)3

∑
l

m=2∑
m=−2

Elm (2G
m
l −−2 Gml ) . (A7)

Substituting Eqs. (A5) and (A7) to Eq. (A1) provides

V (n̂) = −8π2i

√
32π

15

∑
l

m=2∑
m=−2

∑
l′

m′=l′∑
m′=−l′

∑
l′′

m′′=l′′∑
m′′=−l′′

∫ 0

r∗

dr

∫
d3k

(2π)3

∫
d3k′

(2π)3

×(−i)l+l
′+l′′

√
4π

2l + 1
α̃(r, k′)Elm(k, r)jl′(k

′r)jl′′(kr)Y
∗
l′m′(k̂

′)Y ∗l′′m′′(k̂)

×
(
2
Y ml (n̂)−−2 Y ml (n̂)

) (
2Y

0
2 (n̂) + −2Y

0
2 (n̂)

)
Yl′m′(n̂)Yl′′m′′(n̂). (A8)

Decomposing the Stokes parameter V to spherical harmonics as shown Eq. (4), we obtain

Vlm = −8π2i

√
32π

15

∑
l′

m′=2∑
m′=−2

∑
l′′

m′′=l′′∑
m′′=−l′′

∑
l′′′

m′′′=l′′′∑
m′′′=−l′′′

∫ 0

r∗

dr

∫
d3k

(2π)3

∫
d3k′

(2π)3

×(−i)l
′+l′′+l′′′

√
4π

2l′ + 1
α̃(r, k′)El′m′(k)jl′′(k

′r)jl′′′(kr)Y
∗
l′′m′′(k̂

′)Y ∗l′′′m′′′(k̂)

×
∫
d2n̂

(
2
Y m

′

l′ (n̂)−−2 Y m
′

l′ (n̂)
) (

2Y
0
2 (n̂) + −2Y

0
2 (n̂)

)
Yl′′m′′(n̂)Yl′′′m′′′(n̂)Ylm(n̂). (A9)
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Since the product of two spherical harmonics can be given in terms of 3j symbols, the non-zero contributions comes
from the terms including 2Y

m
l (n̂)−2Y

0
2 (n̂) and −2Y

m
l (n̂)2Y

0
2 (n̂) which are represented as

2Y
m
l (n̂)−2Y

0
2 (n̂) =

∑
L

√
5(2l + 1)(2L+ 1)

4π

(
l 2 L
m 0 m

)(
l 2 L
2 −2 0

)
Y 0
L (n̂),

−2Y
m
l (n̂)2Y

0
2 (n̂) =

∑
L

√
5(2l + 1)(2L+ 1)

4π

(
l 2 L
m 0 m

)(
l 2 L
−2 2 0

)
Y 0
L (n̂). (A10)

Integrating Eq. (A9) over n̂ yields

Vlm = −8π2i

√
32π

15

∑
l′

m′=2∑
m′=−2

∑
l′′

∑
l′′′

∑
m′′+m′′′=m

∫ 0

r∗

dr

∫
d3k

(2π)3

∫
d3k′

(2π)3

×(−i)l
′+l′′+l′′′

√
4π

2l′ + 1
α̃(r, k′)El′m′(r, k)jl′′(k

′r)jl′′′(kr)Y
∗
l′′m′′(k̂

′)Y ∗l′′′m′′′(k̂)Ilm. (A11)

Here Ilm represents the integration over n̂,

Ilm =

∫
d2n̂

(
2Y

m′

l′ (n̂)−2Y
0
2 (n̂)−−2 Y m

′

l′ (n̂)2Y
0
2 (n̂)

)
Yl′′m′′(n̂)Yl′′′m′′′(n̂)Ylm(n̂)

=
∑
L,L′

(2L+ 1)(2L′ + 1)

4π

√
5(2l + 1)(2l′ + 1)(2l′′ + 1)(2l′′′ + 1)

4π

×
[(

l′ 2 L
2 −2 0

)
−
(

l′ 2 L
−2 2 0

)](
l′ 2 L
m′ 0 −m′

)
×
(

l′′ l′′′ L′

m′′ −m′′ 0

)(
L L′ l
−m 0 m

)(
l′′ l′′′ L′

0 0 0

)(
L L′ l
0 0 0

)
, (A12)

where, for non-zero Ilm, m′′ + m′′′ should be m. Note that in the above expression, m′ = 0 is not allowed since it
requires l′ + L =even, which is opposed by the first difference term in Eq. (A12) that requires l′ + L to be odd in
order to have a non-vanishing difference term.

Let us calculate the angular power spectrum of Vlm, plugging Eq. (A11) to Eq. (5),

CV Vl = 64
32π5

15

∑
l′l′′l′′′

m′=2∑
m′=−2

∑
m′′+m′′′=m

∑
L′L′′L′′′

M ′=2∑
M ′=−2

∑
M ′′+M ′′′=m

∫
dr

∫
dr′

∫
d3k

(2π)3

∫
d3k′

(2π)3

∫
d3K

(2π)3

∫
d3K ′

(2π)3

×

√
(4π)2

(2l′ + 1)(2L′ + 1)
〈α̃(r, k′)α̃(r′,K ′)〉〈El′m′(k, r)EL′M ′(K, r′)〉

×jl′′(k′r)jl′′′(kr)jL′′(K ′r′)jL′′′(Kr′)Y ∗l′′m′′(k̂′)Y ∗l′′′m′′′(k̂)Y ∗L′′L′′(K̂
′)Y ∗L′′′L′′′(K̂)Ilm(l′)Ilm(L′)

= 64
32π5

15

∑
l′l′′l′′′

m′=2∑
m′=−2

∑
m′′+m′′′=m

∫
dr

∫
dr′

∫
k2dk

(2π)3

∫
k′2dk′

(2π)3

× 4π

(2l′ + 1)
〈α̃(r, k′)α̃(r′,K ′)〉〈El′m′(k, r)EL′M ′(K, r′)〉jl′′(k′r)jl′′′(kr)jl′′(k′r′)jl′′′(kr′)I2lm. (A13)

Since we are interested in the scales corresponding to l > 100, we can apply the Limber approximation to Eq. (A13),∫
k2dkP (k)jl(kr)jl(kr

′) ≈ πδ(r − r′)
2r2

P (k)|k=l/r. (A14)

Finally, we obtain the angular power spectrum of the Stokes parameter V as

CV Vl =
128

15

∑
l′l′′l′′′

m′=2∑
m′=−2

∑
m′′+m′′′=m

∫
dr

∫
k2dk

(2l′ + 1)r2
Pα

(
l′′

r
, r

)
PElm (k, r) j2l′′′(kr)I

2
lm, (A15)
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where we define the power spectra of α and Elm at a comoving distance r as

〈α(k, r)α∗(k′, r)〉 = (2π)3δ3(k − k′)Pα(k, r), 〈Elm(k, r)E∗lm(k′, r)〉 = (2π)3δ3(k − k′)PE(k, r). (A16)

In our final calculation of CV Vl , we have simplified the evaluation of Ilm by using Eq. (B2) and Eq. (B4) of Ref. [48]
for Wigner-3js with zero azimuthal numbers. For the Wigner-3js with non-zero azimuthal numbers, we have used
Eq. (A5c) of Ref. [49] wherever appropriate.


