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Abstract

The CMS e+e−jj events of invariant mass near 2 TeV are consistent with a
W ′ boson decaying into an electron and a right-handed neutrino whose TeV-scale
mass is of the Dirac type. We show that the Dirac partner of the right-handed
electron-neutrino can be the right-handed tau-neutrino. A prediction of this model
is that the sum of the τ+e+jj and τ−e−jj signal cross sections equals twice that
for e+e−jj. The Standard Model neutrinos acquire Majorana masses and mixings
compatible with neutrino oscillation data.

1 Introduction

Searches for new gauge bosons that carry electric charge ±1, called W ′ bosons, have been

intensely performed at hadron colliders [1]. More than a year ago, the CMS Collaboration

[2] has reported an excess of events in the search for a W ′ boson decaying into a heavy

right-handed neutrino and an electron. The observed final state consists of an electron-

positron pair and two hadronic jets, with an invariant mass in the 1.8–2.2 TeV range.

Although this excess has a statistical significance of only 2.8σ, it is particularly interesting

given the theory connection [3] based on the SU(2)R gauge group between this and other

excess events observed at the LHC in the W ′ → jj [4], W ′ → WZ [5, 6] and W ′ → Wh0

[7] channels.

A key feature of the CMS e+e−jj excess is that it is not accompanied by an excess in

the e−e−jj and e+e+jj final states. In the traditional SU(2)L×SU(2)R×U(1)B−L model,

where the right-handed fermions form SU(2)R doublets [8], the right-handed neutrinos

have Majorana masses. As a consequence, the cross section for the final state with same-

sign leptons (e∓e∓jj) is equal to that for opposite-sign leptons (e+e−jj) [9, 10]. Given
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this generic prediction and the smaller backgrounds for same-sign leptons, the ATLAS

searches [11] have not included e+e−jj resonances.

An explanation for the lack of a same-sign signal has been proposed in [3], where the

right-handed neutrino NR partners with the neutral component of an SU(2)R doublet

fermion and acquires a Dirac mass. This solution works with the minimal Higgs sector

[12], namely a bidoublet and an SU(2)R triplet. A related solution, proposed in [13], is

to generate Dirac masses for right-handed neutrinos by introducing three gauge-singlet

fermions while extending the Higgs sector with an SU(2)R-doublet scalar. Both these

solutions also include subdominant Majorana masses for right-handed neutrinos, so that

the physical states are actually pseudo-Dirac. Given that only one of the 14 CMS eejj

events has same-sign leptons, which may be due to the background (estimated to be

approximately four eejj events), it is safe to neglect the Majorana component.

On the other hand it has been pointed out in [14] that particular values for the

Majorana masses of the right-handed neutrinos and their CP-violating phases may allow

a suppression of the same-sign eejj signal, without introducing additional fields. This

may be counter-intuitive, given that the W ′→ eN decays produce very narrow on-shell

N particles, whose decay widths should not be sensitive to the CP violating phases.

The suppression is provided by interference effects between processes proceeding through

different right-handed neutrinos. Other studies of the W ′ interpretation of the CMS eejj

excess can be found in [15].

Here we propose that the Dirac partner of the right-handed electron-neutrino is the

right-handed τ -neutrino. We show that the flavor structure required by this mechanism

can easily be enforced by a symmetry. The ensuing model is remarkably simple and leads

to peculiar signals at the LHC. This mechanism also explains the suppression of same-

sign eejj signals observed in the simulations discussed in [14]: our Dirac fermion can be

decomposed in two degenerate Majorana fermions whose interactions with the W ′ boson

include imaginary couplings.

In Section 2 we show how a Dirac state arises from two right-handed neutrino flavors,

and derive its interactions. The implications for LHC phenomenology are analyzed in

Section 3. Mechanisms for generating masses for the Standard Model (SM) neutrinos in

this context are discussed in Section 4. We summarize our conclusions in Section 5.
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2 Two right-handed neutrinos make a Dirac fermion

We consider an SU(3)c × SU(2)L × SU(2)R × U(1)B−L gauge theory with a minimal

fermion content: the three generations of SM quarks and leptons plus one right-handed

neutrino per generation. The three right-handed neutrinos (N e
R, Nµ

R, N τ
R) together with

the three right-handed charged leptons (eR, µR, τR) form SU(2)R doublets of U(1)B−L

charge −1. We label these by LeR = (N e
R, eR)>, LµR = (Nµ

R, µR)> and LτR = (N τ
R, τR)>.

The minimal Higgs sector consistent with the W ′ signals discussed in the Introduction

has been analyzed in detail in Ref. [12]. It includes an SU(2)R triplet scalar T of U(1)B−L

charge +2, and an SU(2)L×SU(2)R bidoublet scalar Σ that is not charged under U(1)B−L.

The VEV of T breaks SU(2)R × U(1)B−L down to the hypercharge gauge group, U(1)Y ,

while inducing the required mass splitting between W ′ and Z ′ [3].

The VEV of Σ induces a mass mixing between the SU(2)L × SU(2)R gauge bosons

that carry electric charge (WL and WR), so that the physical spin-1 particles (W and W ′)

couple together to the Z boson. This VEV breaks the electroweak symmetry, and can be

parametrized as 〈Σ〉 = vH diag (cos β, eiαΣ sin β), where vH ' 174 GeV. The excess events

in the W ′ → WZ searches [5, 6] indicate a W ′WZ coupling consistent with near-maximal

WL −WR mixing, which corresponds to tan β ≈ 1.

The right-handed lepton doublets have gauge-invariant Yukawa couplings to the triplet

scalar. Our main assumption is that these Yukawa couplings have the following flavor

structure:

−yµµ
2

(L
µ

R)c iσ2 T L
µ
R − yeτ (L

e

R)c iσ2 T L
τ
R + H.c. , (2.1)

where yµµ and yeτ are positive dimensionless parameters, and σ2 is the Pauli matrix acting

on SU(2)R representations. The c label here indicates, as usual, the charge-conjugate

spinor [16]. We will show in Section 3 that this non-diagonal structure in flavor space

implies the absence of same-sign eejj events at the LHC.

The flavor structure of the Yukawa couplings in Eq. (2.1) can be enforced by a sym-

metry. An example is a a global U(1) symmetry with the LeR, LµR, LτR doublets carrying

charges −1, 0,+1, respectively; the scalar T must then be neutral under this global sym-

metry. Even a discrete subgroup (Zn with n ≥ 3) of this U(1) symmetry would be

sufficient.
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Once the scalar triplet T gets a VEV,

〈T 〉 =

(
0 0
uT 0

)
, (2.2)

the right-handed neutrinos acquire masses through the following Lagrangian terms:

−uT
(
N
e

R, N
µ

R, N
τ

R

)c 0 0 yeτ
0 yµµ 0
yeτ 0 0


 N e

R

Nµ
R

N τ
R

 . (2.3)

The parameter uT is in the 3–4 TeV range [12] in order to accommodate the mass and

coupling of the W ′ boson indicated by the LHC data.

The 2-component fermion Nµ
R is already in the mass eigenstate basis, and has a Majo-

rana mass mNµ = yµµuT . More importantly, we find that N e
R and N τ

R form a 4-component

fermion N1 of Dirac mass

mN1 = yeτuT . (2.4)

The interactions of the W ′ boson with the right-handed neutrinos in the gauge eigen-

state basis are given by

g
R√
2
W ′
ν

(
N
e

Rγ
νeR +N

µ

Rγ
νµR +N

τ

Rγ
ντR
)

+ H.c. , (2.5)

where the g
R

coupling is equal to the SU(2)R gauge coupling up to negligible corrections.

We identify the N τ
R and N e

R fields with the left- and right-handed components of the Dirac

fermion N1:

N τ
R ≡ N c

1L
, N e

R ≡ N1R . (2.6)

The spinors satisfy the usual [16] relation N c
1L
≡ (N1L)c = (1/2)(1 + γ5)iγ

2N∗1 . The

interactions of N1 with W ′ take the following form:

g
R√
2
W ′
ν

(
N1Rγ

νeR +N
c

1L
γντR

)
+ H.c. (2.7)

The interaction of Nµ
R remains as in Eq. (2.5).

We will assume in what follows that the gauge and mass eigenstates of the charged

leptons are identical. In Section 4 we will show that this can be a consequence of the

same global U(1) symmetry responsible for the flavor structure in Eq. (2.5).
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3 Predictions for the LHC

The couplings of the 4-component N1 fermion (formed of the 2-component fermions N e
R

and N τ
R) to the W ′ boson displayed in Eq. (2.7) are peculiar: the N1 antifermion in-

teracts with the electron, while the N1 fermion interacts with the τ . This has profound

implications for the LHC phenomenology.

For the mass ordering of interest here, mN1 < MW ′ . mNµ , the W ′+ boson may un-

dergo leptonic decays only into e+N1 or τ+N1, with equal branching fractions. Similarly,

the only leptonic decay channels of the W ′− boson are e−N1 and τ−N1.

The N1 fermion predominantly decays via an off-shell W ′ into a quark-antiquark pair

and an e− or a τ+, again with equal branching fractions. Note that N1 decays into

a quark-antiquark pair and an e+ or a τ− are forbidden by the U(1) flavor symmetry

introduced in Section 2, while the N1 antifermion decays into these final states are allowed.

Consequently, the following cascade decays have equal branching fractions:

B(W ′+→ e+N1 → e+e−jj) = B(W ′+→ τ+N1 → τ+τ−jj)

= B(W ′+→ e+N1 → e+τ+jj)

= B(W ′+→ τ+N1 → τ+e+jj) . (3.1)

CPT invariance implies that these branching fractions are also equal to those for the

cascade decays of W ′− into e+e−jj, τ+τ−jj, e−τ−jj, and τ−e−jj.

The W ′ widths into same-sign eejj or ττjj, as well as into opposite-sign e±τ∓jj

vanish. These are immediate consequences of the W ′ couplings shown in Eq. (2.7) in the

Dirac basis.1 Both the same-sign and opposite-sign µµjj signals are negligible as long as

mNµ is not smaller than MW ′ by more than 5% or so.

The observed excess events in the e+e−jj final state [2] can be explained in this theory,

together with the other hints for a W ′ near 2 TeV discussed in [3] for g
R
≈ 0.5. Note

first that compared to the case where the Dirac partner of N e
R is a new fermion, the

e+e−jj rate predicted in the theory discussed here has one less parameter because the N1

coupling to an electron and a W ′ is fixed in Eq. (2.7). The ensuing branching fraction

1The same result can be obtained using the Majorana basis. After diagonalizing the mass matrix shown
in Eq. (2.3), the 2-component mass eigenstates are given by i(Ne

R −Nτ
R)/
√
2 and (Ne

R +Nτ
R)/
√
2. The

destructive interference between decay amplitudes proceeding through these two Majorana states gives
vanishing widths for W ′∓→ e∓e∓jj. Feynman rules for Majorana fermions useful for this computation
are given in [17, 10].
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Figure 1: Processes for resonant e+τ+jj production at the LHC. The Dirac fermion N1,
formed of the N e

R right-handed neutrino and the charge-conjugate of N τ
R, has interactions

with τ that violate fermion number (note the arrows) according to Eq. (2.7). The •
represents the 4-fermion interaction mediated by an off-shell W ′−.

of N1 into an electron and a quark-antiquark pair is larger by a factor of 2 than in the

baseline model analyzed in [3], while the branching fraction of W ′→ eN1 is larger by a

factor of 4. As these changes increase the e+e−jj rate (by a factor of 8), they can easily

be compensated by the phase-space suppression of the W ′→ eN1 width. We find that

the predicted e+e−jj rate is consistent with the CMS excess when the N1 mass satisfies

1.4 TeV . mN1 . 1.7 TeV for MW ′ ≈ 1.9 TeV.

As a result of the equalities between branching fractions, there are a few striking

predictions for the LHC. First the cross section for pp → W ′ → e+e−jj is equal to

that for pp → W ′→ τ+τ−jj. A comparison of the same-sign eτjj cross sections with

the opposite sign eejj cross section is less straightforward because the production cross

section in pp collisions for W ′+ is larger than that for W ′−. There is, however, a simple

relation: the pp → W ′ → e+e−jj cross section is exactly one half of the sum of the

pp→ W ′+→ e+τ+jj and pp→ W ′−→ e−τ−jj cross sections. Thus,

σ(pp→ W ′→ e+e−jj) = σ(pp→ W ′→ τ+τ−jj)

=
1

2

[
σ(pp→ W ′→ e+τ+jj) + σ(pp→ W ′→ e−τ−jj)

]
. (3.2)

These predictions can be tested in various ways in Run 2 of the LHC. The production

cross section for a W ′ of mass near 2 TeV grows by a factor of 5 at
√
s = 13 TeV compared

to
√
s = 8 TeV. Thus, the approximately ten eejj signal events observed by CMS with 20

fb−1 in Run 1 imply about 500 e±τ±jj signal events (see Figure 1) with 100 fb−1 in Run

2, if the efficiency of the event selection is not modified. Even though the backgrounds

increase in Run 2, that number of events would allow the observation of same-sign eτjj

signals independently with leptonic or hadronic τ decays.
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So far we focused on N1 decays into a lepton and two light quarks, which have the

dominant branching fractions. Other N1 decay modes potentially observable in Run 2

include a lepton plus tb̄ or WZ, which occur via an off-shell W ′, as well as a lepton plus

a W boson. All these decays lead to the same cross-section relations as those involving

light quarks. For example, σ(pp→ e+τ+t̄ b) + σ(pp→ e−τ−t̄ b) = 2σ(pp→ e+e−t̄ b).

The SU(2)L×SU(2)R×U(1)B−L gauge group implies that besides the W ′ boson there

is a Z ′ boson. The breaking of SU(2)R×U(1)B−L by an SU(2)R-triplet VEV, as assumed

here, implies that the Z ′ is substantially heavier than the W ′ boson. For MW ′ ≈ 1.9

TeV and g
R

in the 0.45–0.6 range, the Z ′ mass satisfies 3.4 TeV < MZ′ < 4.5 TeV [3], a

range that will be probed in Run 2 of the LHC. Our right-handed neutrino sector leads

to testable predictions. The Z ′ → N̄1N1 decay followed by N1 decays to an electron or τ

and two jets leads to final states with two leptons and four jets. The flavor structure of

the model implies

B(Z ′→ e−τ−+ 4j) = B(Z ′→ e+τ++ 4j) = B(Z ′→ e+e−+ 4j) = B(Z ′→ τ+τ−+ 4j) .

(3.3)

An additional prediction of our model is that the same-sign same-flavor channels Z ′ →
τ±τ±+ 4j and Z ′ → e±e±+ 4j are forbidden.

4 Masses for Standard Model neutrinos

Both the charged lepton masses and Dirac neutrino masses may be generated, in principle,

by the following SU(2)L×SU(2)R×U(1)B−L-invariant Yukawa couplings to the bidoublet

Σ and its charge-conjugate state Σ̃:

−LαL
(
yαβ Σ + ỹαβ Σ̃

)
LβR + H.c. (4.1)

where α, β are flavor indices, LαL = (ναL, `
α
L)> are the SU(2)L lepton doublets, and y and

ỹ are dimensionless coefficients. However, depending on the charges of Σ and LαL under

the U(1) global symmetry discussed in Section 2, the terms shown in Eq. (4.1) may be

forbidden.

The Dirac masses that link the SM neutrinos to the right-handed neutrinos cannot

be larger than the MeV scale if the right-handed neutrino masses are at the TeV scale

(otherwise the SM neutrino masses, obtained from the seesaw mechanism, are too large).
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Since the nonzero components of the bidoublet VEV are of the same order (i.e., tan β ∼ 1

as discussed in Section 2), a fine-tuned cancellation between the y and ỹ coefficients would

be needed to keep these Dirac masses much smaller than the τ mass. We therefore choose

global U(1) charges that forbid the interactions in Eq. (4.1); for example, LeL, LµL and LτL
have same charges as the corresponding right-handed leptons (−1, 0, +1), while Σ has

charge +3.

Let us present a different mechanism for generating the SM lepton masses. We in-

troduce a gauge-singlet scalar φ that carries U(1) charge +3, and acquires a VEV 〈φ〉.
Consider the following gauge-invariant operators:

− c̃α
m3
f

φL
α

L Σ̃ T̃ †T̃ LαR + H.c. , (4.2)

where c̃α (α = e, µ, τ) are dimensionless couplings and mf is the mass of some heavy

fields, which have been integrated out. These operators generate the charged lepton

masses (similarly to the down-type quark masses [12]) once the scalars acquire VEVs:

(me,mµ,mτ ) = vH cosβ
〈φ〉u2T
m3
f

(c̃e, c̃µ, c̃τ ) . (4.3)

This ensures that the gauge and mass eigenstates of the charged leptons coincide, as

mentioned in Section 2.

The SM neutrinos get Majorana masses from the following gauge-invariant dimension-

6 operators:
ηαβ
M2

(LαL)c ΣT Σ† LβL . (4.4)

The global U(1) allows the ηµµ, ηeτ and ητe coefficients to be nonzero. Dirac masses

between the SM and right-handed neutrinos may also be generated by

−Cαβ
m3
f

φL
α

L Σ̃T †T LβR + H.c. , (4.5)

with the result

mD = vH sinβ
〈φ〉u2T
m3
f

C . (4.6)

Here we ignored the complex phase from the Σ VEV, and we collected the Cαβ coefficients

in a 3×3 matrix C. The mass matrices for the charged and neutral leptons are independent

of one another and no cancellation is necessary. The full 6×6 mass matrix in the neutrino

sector has the following block structure:

Mν =

(
mL mD

m>D MR

)
, (4.7)
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where the Majorana mass matrix for the right-handed neutrinos, MR, is shown in Eq. (2.3),

and the Majorana mass matrix for the SM neutrinos, mL, arises from operators (4.4).

All Lagrangian terms discussed above are invariant under the global U(1). However,

the spontaneous breaking of this symmetry implies the existence of a Nambu-Goldstone

boson θφ that couples to leptons. In order to satisfy phenomenological constraints, the

global U(1) must also be explicitly broken so that θφ becomes heavy (alternatively, the

global symmetry is a Zn group, avoiding the presence of Nambu-Goldstone bosons). Note

that 〈φ〉 may be much larger than the SU(2)R breaking scale, so that even small explicit

U(1) breaking terms may push the mass of θφ above the reach of the LHC.

Lagrangian terms that explicitly break the global U(1) may also have important con-

tributions to the elements of the mD and mL matrices. The smallness of these mass

terms implies negligible effects in MR. Thus, there is enough freedom to accommodate

the masses and mixings of the active neutrinos. After integrating out the right-handed

neutrinos, whose masses are at the TeV scale, the SM neutrinos acquire Majorana masses.

Let us comment on the particular case where mL is negligibly small. Given the par-

ticular structure of MR, the minimal possibility for mD that reproduces the light neu-

trino squared-mass differences and mixing angles observed at neutrino oscillation experi-

ments [18] is the following:

mD =

 m11 0 m13

m21 0 m23

m31 0 m33

 ≡ (mD1 , 0 , mD3) . (4.8)

The Majorana mass matrix for the light active neutrinos is obtained by a TeV-scale

seesaw:

mν = mD1
1

mN1

m>D3. (4.9)

Notice that in this minimal model only the Dirac fermion, formed by N e
R and (N τ

R)c, par-

ticipates in the light neutrino mass generation, because the Majorana state Nµ
R decouples.

The neutrino mass matrix given in Eq. (4.9) has a zero mode and thus one of the light

neutrino masses vanishes, while the other two generate the solar and atmospheric neutrino

mass differences. This scenario resembles the minimal linear seesaw [19] studied in detail

in [20], where it was shown that the flavor structure of the neutrino Dirac mass terms,

mD1 and mD3, is completely fixed by neutrino oscillation data up to a global factor.

In order to generate a third light neutrino mass (and have more freedom in the pa-

rameter space), the second column of mD should be switched on. If this is the case, Nµ
R

would also participate in the generation of light neutrino masses.
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Our TeV-scale right-handed neutrino sector is not currently constrained by low-energy

observables such as neutrinoless double beta decay or lepton-flavor violating decays.

Generically, the rate for neutrinoless double beta decay mediated by the W ′ and the right-

handed neutrinos is tightly correlated to the pp→ e∓e∓jj cross section. Our mechanism,

which forbids the same-sign eejj signal at the LHC, also forbids neutrinoless double beta

decay mediated by two W ′ bosons.

There is, however, a new physics contribution to the neutrinoless double beta decay

mediated by two W bosons. This arises from one insertion of the mixing between a SM

neutrino and a right-handed neutrino [see m13 in Eq. (4.8)], and one insertion of the

mixing between the SU(2)L×SU(2)R gauge bosons. The latter has an upper limit [12] of

sin θ+ ≤ (g
R
/g)(MW/M

′
W )2 ≈ 10−3, where g is the SM weak coupling. The contribution

of this type [21] to the effective neutrino mass relevant for neutrinoless double beta decay

is given by

mββ '
g

R

g
sin θ+

m13

mN1

〈p〉

≈ 0.1 eV

(
sin θ+
10−3

)( m13

1 MeV

)(1 TeV

mN1

)(
〈p〉

100 MeV

)
, (4.10)

where 〈p〉 is the momentum transfer in the nuclear transition. For m13 ∼ 0.3 MeV and

mN1 ≈ 1.5 TeV, this would be within the reach of future neutrinoless double beta de-

cay experiments. In addition, there is the usual light neutrino contribution with two W

propagators. This is suppressed if the light neutrino spectrum has normal mass ordering,

so a neutrinoless double beta decay signal would provide information about N1. For an

inverted ordering (or normal ordering with a quasi-degenerate spectrum), the contribu-

tions from N1 and from the light neutrinos are comparable. Thus, the total rate could be

slightly enhanced or even suppressed with respect to the case of only light neutrinos.

Due to the large e− τ flavor mixing in the right-handed neutrino sector in our model,

it is relevant to ask whether there are constraints from charged lepton-flavor violating pro-

cesses. The τ → eγ contribution from loops involving the W ′ and right-handed neutrinos

is suppressed because the flavor structure of our model imposes that lepton-flavor viola-

tion and lepton-number violation can only occur simultaneously. The main contribution

to charged lepton-flavor violating decays in our model is in the τ∓→ µ∓µ∓e± channel.

This decay proceeds via a box diagram with two W ′ bosons, where one of the fermion

lines involves only muon-flavor states, while the τ − e flavor transition takes place along

the second fermion line via an N1 exchange. The branching fraction for this process is
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of the order of g8
R
M4

W/(4πgMW ′)4 ≈ 10−12, where we have taken into account that the

mNµ/MW ′ and mN1/MW ′ ratios are of order one. This prediction is below the current

experimental limit B(τ−→ e+µ−µ−) < 1.7× 10−8 [1].

As the muon-lepton number is violated in Eq. (2.1) by two units, the U(1)-invariant

contributions to µ → eee, µ → e conversion in nuclei, or µ → eγ vanish. The explicit

breaking of the U(1) flavor symmetry leads to contributions through the mixing of light

and heavy neutrinos. Given that in our model flavor-violating processes occur at one

loop, the most sensitive probe is µ → eγ. The predicted branching fraction, though, is

below the current limit [22] because it is suppressed by (α/π) sin2θ+ . 10−9 as well as

(m21/mµ)2 . 10−5.

5 Conclusions

In a SM extension with three right-handed neutrinos of masses at the TeV scale, we have

proposed a flavor structure that pairs the right-handed electron-neutrino and the right-

handed tau-neutrino, forming a Dirac fermion (N1) whose mass violates lepton number.

The right-handed muon-neutrino (Nµ
R) remains a purely Majorana state. This flavor

structure is enforced by a global U(1) symmetry, and leads to peculiar interactions [see

Eq. (2.7)] of the W ′ boson associated with the SU(2)L×SU(2)R×U(1)B−L gauge group.

Our flavor symmetry predicts specific relations between the decay widths of the TeV-

scale neutrinos. N1 decays into an e− or a τ+ and a W ′ (which is off-shell for mN1 < MW ′)

or a W (through WL −WR mixing). The branching fractions for decays involving e− are

equal to those involving τ+. The Nµ
R Majorana fermion decays, also with 50% branching

fractions, into a µ− or a µ+ and a W ′ (which is on-shell assuming mNµ > MW ′).

Furthermore, the decays of the W ′ into a SM lepton and a heavy neutrino have tightly

correlated branching fractions, as shown in Eq. (3.1). As a consequence, the decay of the

W ′ boson into an electron and a right-handed neutrino produces an e+e−jj signal, while

the rate for same-sign e∓e∓jj events automatically vanishes. This provides a compelling

explanation for the excess of opposite-sign e+e−jj events with an invariant mass near 2

TeV reported by the CMS Collaboration [2].

The flavor symmetry leads to additional predictions at the LHC. First, the opposite-

flavor same-sign processes pp → W ′+→ τ+e+jj and pp → W ′−→ τ−e−jj are allowed;

the sum or their rates is exactly twice the rate for the same-flavor opposite-sign process
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pp → W ′→ e+e−jj. Second, the rates for the two same-flavor opposite-sign processes,

W ′→ e+e−jj and W ′→ τ+τ−jj, are equal. These and other predictions discussed in

Section 3 can be tested in Run 2 of the LHC.

The masses for active neutrinos get contributions from both a TeV-scale seesaw mecha-

nism and lepton-number violating dimension-6 operators involving only left-handed fields.

Ignoring the latter, there are Dirac mass terms at the MeV scale that link the left- and

right-handed neutrinos; after integrating out the right-handed neutrinos at the TeV scale,

the left-handed neutrinos acquire Majorana masses at the sub-eV scale. The minimal

choice for the Dirac mass matrix that reproduces the neutrino oscillation data leaves one

of the light neutrinos massless. In this scenario, the light neutrinos acquire Majorana

masses only from their Yukawa interactions with N1. A more general choice for the Dirac

mass matrix would allow the third left-handed neutrino to acquire mass. In that case, the

right-handed muon-neutrino would also be involved in the generation of active neutrino

masses.
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