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I. INTRODUCTION

Numerical simulations of lattice Quantum Chromodynamics (QCD) and other lattice gauge theories rely on Markov
Chain Monte Carlo techniques to evaluate the path integral that defines the theory and its correlation functions.
Ensembles generated in a Markov process, however, are often highly correlated due to slow modes in the stochastic
evolution. Such correlations reduce the effective sample size of the generated ensemble, and thus directly influence
the efficiency of such simulations. The problem of slow modes becomes particularly acute in the vicinity of critical
points where the continuum limit is defined, resulting in what is commonly known as critical slowing down. Although
a variety of algorithmic developments, such as cluster algorithms [1, 2] and the worm algorithm [3], have dramatically
reduced the problem of critical slowing down for some simple statistical models, they appear to have limited utility
for gauge theories such as QCD, where simulations at lattice spacings a < 0.05 fm remain extremely challenging.

In gauge theories, topological quantities® (e.g., topological charge and susceptibility) are examples of observables
that couple strongly to slow modes of the stochastic evolution. In the continuum and at infinite volume, topological
charge is invariant under continuous local deformations of a field configuration. By contrast, on a finite lattice, changes
in topology are possible through local updates. Such changes, however, require traversals over large action barriers
in configuration space, which in the continuum become infinite and result in the break up of the configuration space
into distinct topological sectors. The likelihood of such tunneling events rapidly diminishes in the approach to the
continuum as the height of such topological barriers diverge, resulting in a problem known as topological freezing.
This phenomenon was first observed in quenched calculations with improved gauge actions [4] as well as in more
recent dynamical simulations [5]. Recently, open boundary conditions (BCs) in time [6] were proposed as a method
for enhancing changes in topology by allowing charge to flow in and out through the boundaries. Although offering
an improvement in topological tunneling over periodic BCs, open BC simulations still suffer from critical slowing
down [7].

It is important to note that for gauge theories, critical slowing down persists even in the absence of topological
freezing, because the evolution of long distance (slow) modes can only arise through the application of many local
updates at the scale of the lattice spacing. As the lattice spacing is reduced, the number of updates required to move
modes at a given physical scale increases. Multiscale evolution algorithms offer the prospect of performing Markov
process updates that change modes at different physical scales more efficiently. A number of such approaches have
been explored in the literature, primarily for models that are simpler than QCD, and have met with some success
(see e. g., [8-13]). We are unaware, however, of any successful work in this direction relevant to QCD.

In this study we investigate a less ambitious direction, namely a multiscale thermalization algorithm, which combines
standard heat bath (HB) or hybrid Monte Carlo (HMC) updating methods with the real-space renormalization group
(RG) and multigrid concepts of restriction and prolongation between pairs of matched coarse and fine lattices and
lattice actions. The algorithm proceeds in four steps:

1. A coarse action is determined by a renormalization group (RG) transformation from the target (fine) lattice
action;?

2. A set of N, independent equilibrated coarse configurations are subsequently generated by a conventional Monte
Carlo process;

3. Each coarse configuration is then prolongated (or refined), thereby producing a set of N configurations defined
on the fine lattice;

4. The prolongated (fine) ensemble is then equilibrated (or rethermalized) and evolved in parallel using a con-
ventional algorithm to produce an ensemble of N, decorrelated configurations for each of the N, independent
streams.

This procedure may be generalized to have several levels of refinement proceeding from the coarsest to finest target
ensemble. At each level, the coarse action should follow an RG flow of the underlying gauge dynamics.

Assuming that the computational cost of the coarse evolution and prolongation are negligible compared to the
fine evolution, the efficiency of this strategy is determined by the rethermalization time of the prolongated ensemble
compared to the decorrelation time for fine evolution. Under the physically reasonable assumption that the distribution
of prolongated configurations only differs from that of the target distribution for fine configurations by cutoff artifacts,
one might expect the former time scale to be shorter than the latter. Given this is indeed the case, the scheme will

1 Below, we will specify to a particular definition of topology, but the evolution properties and connection to slow modes are insensitive
to these details.
2 In practice, an approximation to the RG transformation is used.
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FIG. 1. Left: Correlations in topology between an ensemble before (fine) and after restriction and prolongation (refined), as a
function of the coupling, 3 (see Sec. IV D for details). Right: Average Wilson loop (approximately 0.4 fm x 0.4 fm in dimension)
as a function of rethermalization time for an initial ensemble obtained via prolongation of a matched coarse ensemble, and
corresponding estimates as a function of the thermalization time for cold and hot starts; (re)thermalization time is measured in
terms of the number of unit length HMC trajectories, 7 (see Sec. IVF and Appendix D for details). Horizontal band indicates
a high precision determination of the Wilson loop obtained from a large decorrelated ensemble.

provide an efficient method for initializing field configurations at a fine lattice spacing for subsequent parallel evolution,
ultimately yielding decorrelated ensembles of size Ny X Ne.

In many cases, thermalization is considerably more challenging than evolution and therefore we expect the approach
to have significant advantages. Computationally, the parallel nature of the fine evolution of multiple independent
streams means that ensembles can be generated more efficiently using fewer computational resources. The trade-off
between the parameters Ny and N, opens possibilities for optimizing the statistical power of subsequent analysis and
the use of hardware resources. Furthermore, the strategy can be implemented on a hierarchy of different coarse/fine
pairs resulting in rapid thermalization at multiple scales, thus enabling simulations at very fine lattice discretizations.

To test the viability of our strategy, we study a variety of observables that probe long distance scales in pure SU(3)
gauge theory. To facilitate our studies, we utilize restriction as a device for preparing coarse ensembles corresponding
to a renormalized coarse action. An appealing feature of our restriction and prolongation operations is that they
well preserve the topological charge distribution of the ensembles to which they are applied. As a consequence, the
ensembles obtained by prolongation will posses properly distributed topology up to lattice artifacts which are inherited
from the coarse action. The prolongator in fact satisfies the stronger property of preserving topological charge for
individual configurations at sufficiently small, but presently accessible, lattice spacings. This property is demonstrated
numerically by studying the growth in correlations in topology between ensembles before and after restriction and
prolongation as a function of the inverse lattice spacing, as shown in Fig. 1 (left). These features are important, since
they enables us to achieve thermalized ensembles in time frames which are far shorter than the decorrelation time for
fine evolution, providing the latter is controlled by topology.

Finally, a key measure for establishing the success of our approach is the requisite rethermalization time for an
ensemble prepared via prolongation to return to equilibrium under standard updating procedures. This time is to
be compared with the thermalization time for a typical ordered (“cold”) or disordered (“hot”) start, as well as
the decorrelation time for fine evolution. To address this, we monitor the (re)thermalization times for a variety
of observables, including the topological susceptibility and rectangular Wilson loops. In light of the fact that our
prolongator preserves topology, we emphasize the study of rethermalization times for non-topological long-distance
quantities and demonstrate that they are significantly shorter than the thermalization times and decorrelation times
of topological quantities in conventional evolution. In Fig. 1 (right), we provide an illustrative comparison of the
rethermalization time for a representative prolongated ensemble of size Ny, = 24, and the corresponding thermalization
times for hot and cold initial ensembles, as probed by a 0.4 fm x 0.4 fm Wilson loop (see Sec. IVF and Appendix D for
details). For this observable and a large range of other quantities that we investigate, we see that the rethermalization
time for the prolongated ensemble is dramatically shorter than the thermalization times measured for hot and cold
starts. It should be emphasized that our choice of prolongator is designed to preserve a large class of Wilson loops
on all scales, and it is likely this feature that enables the rapid thermalization seen in this example.

In the remainder of this paper, we elaborate and expand on the results highlighted above. Before doing so, we
first review some basic concepts and known results relating to Markov processes, which provide a theoretical basis for
our strategy. Following an overview of notation and definitions, we then introduce the specific choice of restriction



and prolongation operations used throughout this work. The latter is carefully chosen so as to retain an imprint
of the long distance correlations and topological charge of the coarse configurations. Then, we demonstrate the
viability of the multiscale approach through numerical studies of pure Yang-Mills gauge theory in two parts: first, by
showing that the proposed prolongation procedure preserves topological charge on a configuration by configuration
basis for sufficiently fine lattice spacing, and second by demonstrating that rethermalization time required to correct
the distribution obtained by prolongation of a coarse ensemble is shorter than the decorrelation time for fine evolution.
For the second studies we consider two commonly used algorithms, namely, heat bath (HB) and hybrid Monte Carlo
(HMC). The latter case is of greater interest, since it is the algorithm used in state-of-the-art QCD simulations
with dynamical fermions. Finally, we conclude with a detailed discussion of the potential applications and pitfalls
of these approaches, as well as an outlook on future directions. Appendices are devoted to technical details of the
simulation and prolongation algorithms as well as technical aspects of the data analysis that are required to extract
the (re)thermalization and evolution timescales in this work.

II. PRELIMINARY CONSIDERATIONS

We begin by reviewing the basic aspects of Markov processes and their use in Monte-Carlo importance sampling.
A sequence of configurations

S] — 82 —> 83— - — Sp (1)

labeled for simplicity by a discrete index 7, is generated in a Markov process described by the transition matrix
M. For simplicity, we assume M acts on a discrete configuration space ¥. The matrix elements M(s', s) give the
transition probabilities for the configuration s to go to the configuration s’. Under adequate conditions (see, e.g., [14]),
there exists a stationary distribution xo(s) = P(s), which is a right eigenstate of the transition matrix, i.e., satisfying
P(s') = >, M(s',s)P(s), normalized to ), P(s) = 1 with eigenvalue Ao = 1. The left eigenstate is Xo(s) =1 as a
consequence of probability conservation: ), M(s’,s) = 1. Expectation values of operators O(s) averaged over the
stationary distribution are given by the inner product (O) = > O(s)P(s). Although it is not required for a valid
algorithm, let us assume that M satisfies detailed balance, such that

M(s',8)P(s) = M(s,s)P(s) . (2)

In this case, the spectrum of M consists of real eigenvalues A, with |\,| = e~/ ordered such that |\,| < [A\,_1];
note that |\,| < 1 for all n. The corresponding right and left eigenvectors are given by x,,(s) and X, (s) = xn(s)/P(s),
respectively, and are chosen to be real and mutually orthonormal, satisfying > Xn(8)Xn’(S) = dnns. The spectral
decomposition of 7 applications of the transition matrix is given by

MT(s,8) = D xuls" )N Xn(s) - 3)

n>0

It follows that the 7th configuration in Eq. 1 is drawn from the distribution:

Pr(s') =P(s) + D xnls)An [Z Xn(8)P1(s)| (4)

n>0

where P;(s) is an initial probability distribution. The expectation of an operator at this point in the Markov process
is given by:

(0)r =(0)+ > AL (5)

n>0

3 Xa(£)0(s)

S

S Xals)Pi(s)

At late times in the Markov process, both the distribution and observables converge to their stationary values
exponentially, assuming the existence of a gap in the spectrum of M. The rate of this convergence (i.e., thermalization
time) is dominated by the exponential correlation time 7oy, = 71. In addition to the time scale, Texp, the rate of
thermalization is influenced by the overlap between the initial distribution P;(s) and left eigenvectors x,(s), for
n > 0; in particular, if the overlap vanishes or is exponentially small for n = 1, then the relevant thermalization time
scale would be governed by the shorter time scale, 7. It is observationally established in many examples that near a
phase transition, Texp ~ £* where ¢ is the largest correlation length of the system (in dimensionless units) and z is a
dynamical critical exponent. Local updating processes are diffusive by nature, implying an exponent z ~ 2. However
in some cases, such as lattice gauge theories, the scaling can be far worse (e.g., z ~ 5 for topological quantities [5]).



For critical systems of spatial extent L, £ ~ L, and the scaling becomes Tey, ~ L?; this kind of volume scaling is a
hallmark property of critical slowing down.

A second time scale (or set of scales) of interest is the integrated autocorrelation time 7iyt(O), which characterizes
the correlations in measurements of an observable after thermalization due to the sequential nature of the Markov
process. In contrast with Teyp, this time scale depends not only on the algorithmic details (e.g., the eigenvalues and
eigenvectors of M), but also on how well the observable in question couples to the various modes of the stochastic
process. Because of the presence of such correlations, the estimated uncertainties on a given quantity (O), are
enhanced by a factor /27, (O) compared to those obtained under the assumption that the ensemble is decorrelated.
The integrated autocorrelation time is defined by

_ 1 I'a(0)
Tmt(o) - 2 + AZ>O Fo(O) 9 (6)
where
TA(0) =) 60(s)MA(s',5)50(s)P(s) , (7)

is the lag-A autocovariance function, and dO(s) = O(s) — (O). Using Eq. 3, this expression may be written as

TA(0) =) a (0)Nr,  an(0) =

n>0

> 50(8)%(8)1 : (®)

and consequently the integrated correlation time may be expressed as

Z an(0)

n>0

—1
1
Tint(o) - Zan(o) M Mn = 5 + 11—\ 5 (9)

n>0

where 1, > 0 for all n > 0. Under the assumption that O is real (or is the real part of an observable), then a,(0O) >0
for all n > 0, and one can establish the bound 7, (O) < Fing, where

1 A 1 1
7A-int S 5 + 1_|1)|\1| S Texp + E?Xp . (10)
It follows that integrated autcorrelation times are at worst on the order of 7.y, when the latter is large. Interestingly,
this bound does not preclude the possibility that Tint < Texp-

In a standard Markov Chain Monte Carlo simulation, represented schematically by Fig. 2 (a), there are two relevant
time scales associated with the algorithm: the equilibration or thermalization time Tiherm X Texp, and the decorrelation
time for observables, which is bounded by 27i,t. The former will depend to some extent on the initial configuration,
drawn from the probability distribution P;(s); if the initial configuration is drawn from the stationary distribution
P(s), then the thermalization time will vanish.3

Next, let us introduce operators that map probability distributions between fine and coarse configuration spaces.
Borrowing the terminology of multigrid, we refer to these as restriction operators, R, when mapping from the fine to
coarse configuration space and prolongation operators, Q, when mapping from the coarse to fine configuration space.
To facilitate the discussion, we adorn all coarse and fine quantities with the labels (¢) and (f), respectively. For
example, fine and coarse configurations are labeled as sf € ¥/ and s¢ € X¢, where ¥/ and ¢ represent the fine and
coarse configurations spaces, respectively. The restrictor and prolongator can be represented by the matrices R(s¢, s/)
and Q(s/, s°) which act on fine and coarse configuration spaces, respectively. The restrictor and prolongator should
be probability preserving, and therefore must satisfy Y. ., Q(s/,s¢) = > .. R(s¢,s/) = 1. Such transformations can
be one-to-one, in which case the rectangular matrices R and Q have at most one nonzero entry per row and column,
or they can be probabilistic. Both restriction and prolongation operations are non-unique, need not satisfy RQ =1,
and cannot satisfy QR = 1 since the rank of Q and R is that of dim(X%°) and not dim(3/). Explicitly, the restriction
operation acting on a fine probability distribution P7 produces a coarse probability distribution, given by

Pe(s) =Y _R(s",sT)PI(sT) (11)

3 Strictly speaking, it doesn’t make sense to talk about a thermalized configuration, but rather a configuration that is drawn from a
thermalized distribution.



and can be interpreted as a renormalization group transformation (e.g., decimation or block spin averaging in a simple
implementation). This can be seen by noting the equality of partition functions Y. P¢(s¢) = Y. ; P(s/). On the
other hand, the prolongation operation maps a coarse probability distribution to a fine distribution, given by

Pf(sf) = Z Q(sf, sOYPE(sY) (12)

and can be interpreted as a kind of inverse RG transformation.

With the concepts of restriction and prolongation in hand, consider a simulation represented schematically by
Fig. 2 (b), corresponding to the scenario in which Ny = 1 and N, > 1. Here, evolution is first performed on a coarse
lattice using an algorithm represented by the coarse transition matrix M¢ (which implicitly depends on a coarse
action) until it is thermalized. Subsequently the lattice is prolongated, and finally rethermalized using an algorithm
represented by the fine transition matrix M7. Note that the subsequent rethermalization is needed to correct the
prolongated configuration at the scale of the fine cutoff. In this example, there are now three relevant time scales

associated with the algorithm in its entirety: the coarse thermalization time 7 .,,,, the rethermalization time Tritherm,

and the decorrelation time of the fine evolution, bounded by Q%i{m. The procedure represented by Fig. 2 (b) will be

computationally less costly than Fig. 2 (a) provided 75, + Ti,therm < th;erm. Nevertheless, the improvements that

can be found here are attenuated by the cost of the generation of a large ensemble since th;erm / (NeQ%i{m) — 0 as

N, — oo.

As previously discussed, the rethermalization time of the prolongated configuration is at worst governed by the time
scale Tefxp, which is algorithm dependent, and overlap factors, which depend in part on the initial refined distribution
and are thereby controllable. In light of Eq. 4 and Eq. 5, we can in principle accelerate the approach to equilibrium
of the fine ensemble, by setting to zero the overlap of our refined ensemble with a fixed set of the slowest modes:

Y Wh(sh)a(s!, s)Pe(s7) = 0. (13)

sfse

Removal of the lowest mode in this fashion, for example, would imply that the rethermalization time in no longer
governed by Tefxp, but rather the shorter time scale, 7'2f . In practice this is difficult to achieve, but by judicious choices,
one seeks to approximate this condition for as wide a range of slow modes as possible. Note that this condition depends
on the prolongator, the Markov process used to equilibrate the fine ensemble, and implicitly on the renormalized coarse
action. All of these factors are therefore important in maximizing the efficiency of our algorithm.

Finally, let us consider a simulation represented schematically by Fig. 2 (¢), corresponding to the scenario in which
Ns > 1, and N, = 1. In this case, the evolution is first performed on a coarse lattice using an algorithm represented by
the transition matrix M€ until an ensemble of decorrelated configurations are generated. The ensemble of decorrelated
coarse configurations are subsequently prolongated, and finally rethermalized using an algorithm represented by the
transition matrix M. This procedure has three time scales associated with it: the coarse thermalization time Tiherm s

the decorrelation time for coarse evolution, bounded by 27,, and the rethermalization time TrJ;therm. The procedure
f
-

retherm < th + N327A—if where

herm nt?’

Ny is the size of the target ensemble being generated. For large N,, the condition reduces to 275, + Tt porm < 2%{’;.
Since the decorrelation time for coarse evolution is usually negligible compared to that for fine evolution, the approach
will be less computationally costly when the decorrelation time for fine evolution exceeds the rethermalization time
for the prolongated ensemble. Note that the computationally most intensive component of this algorithm, namely
rethermalization, is embarrassingly parallel, and so each stream can be generated with maximal efficiency on available
computing resources.

Our goal for the remainder of this paper is to explore choices of P¢ and Q, given a fine transition matrix M/, such
that Fig. 2 (c) becomes a viable simulation strategy in pure gauge theory, and to investigate the timescales associated
with the various approaches described above. Provided that the fine evolution is ergodic, the proposed algorithm
as a whole will also be ergodic. Given that the prolongated ensemble inherits the long-distance properties of the
coarse ensemble, the relevant parts of the fine configurations space ¥/ are in some sense evenly populated. Since
the rethermalization merely corrects the missing short-distance part of the prolongated distribution, our underlying
assumption is that all of the fine configuration space can be covered within the rethermalization time.

is computationally less costly than Fig. 2 (a) provided that 7§, + Ns27&, + N

III. ACTIONS, OBSERVABLES, RESTRICTION AND PROLONGATION

Here, we provide explicit details pertaining to the implementation of our multiscale thermalization algorithm. We
begin by considering a D-dimensional hypercubic lattice, with lattice spacing a and periodic boundary conditions.
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FIG. 2. Ensemble generation strategies: single fine lattice stream (a), single coarse lattice stream, followed by refinement
followed by a single fine lattice stream (b), and a single coarse lattice stream, followed by parallel refinement and rethermalization
of equilibrated coarse lattices (c). In all cases, B represents a fine configuration, [J represents a coarse configuration, unshaded
shapes correspond to unthermalized configurations and shaded shapes correspond to thermalized configurations. For each
simulation strategy, ensemble averages are performed over shaded (fine) configurations, either generated from a single stream
(a,b) or in parallel (c).

Let us label the sites of the lattice with D-vectors n, with components n, = n - e,, where e, is a unit basis vector
in the p direction and g =0,--- , D — 1. Note that a D-dimensional hypercubic lattice comprises g-dimensional unit
“g-cells”, where ¢ = 0,---,D. For example, with D = 4, the lattice comprises sites (¢ = 0), bonds (¢ = 1), and
plaquettes (¢ = 2), and so on. The total number of such cells is given by

N, = Ny (S) : (14)

where Ny is the total number of lattice sites.
The Wilson action [15] for pure lattice Yang-Mills gauge theory is given by

S=p> Y [1-wi'(m)] , (15)

n pu<v

where U,(n) € SU(N.) are variables associated with the bonds of the lattice, WX (n) are 1 x 1 Wilson loops

%

associated with the plaquettes of the lattice, and 8 = 2N,/g? is the coupling. Note that if Wilson lines are given by

Lj(n) =P 1:[ Uu(n+ney) , (16)

n=0

where P is the path-ordering symbol, then a rectangular m x n Wilson loop in the p-v plane is given by
mXn 1 m n m n
W™ (n) = E%Tr Ly (n) Ly (n+me,) L)} (n + ne,) L (n)" | (17)

and the corresponding space-time averaged Wilson loop is given by
Wwmxn — ZZWan ) (18)
n pu<v

For the purpose of this study, we consider restriction and prolongation operations that take an ensemble associated
with a “fine” lattice with spacing a to an ensemble associated with a “coarse” lattice with spacing 2a, and back. To
facilitate the discussion, we begin by classifying the various g-cells of the fine lattice according to their positions with
respect to the 2P hypercubes which define the coarse lattice. We define the function

x(n) = Z(nu mod 2) , (19)

which allows us to associate integers 0,--- , D to the sites of the 2P hypercubes, as shown in Fig. 3 (a) for D = 3
space-time dimensions. The subset of sites associated with the coarse lattice satisfy x(n) = 0, and are consequently
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FIG. 3. Classification of lattice cells, labeled by the integers 0 (red), 1 (blue), 2 (green) and 3 (yellow). Left: x(n) Center:
X (n) Right: X, (n)

given by n/2 € ZP. Note that this convention is but one of 2P possibilities for the alignment of the coarse lattice
with respect to the fine; since the fine lattice theory is invariant under lattice translations, any choice is acceptable
without loss of generality. Similarly, we may define the quantities

Xu(n) = x(n —nyey)
Xw/(n) = X(n —nuey — nveu)
Xuvo(n) = x(n —n, e, —nye, —nyeq)
Xuvop(M) = x(n —ny e, —nye, —nye; —nye,) (20)
which associate the integers 0, - -+ ; D — ¢ to the remaining g-cells of the lattice, where ¢ = 0, --- , D. The classification

of bonds is shown in Fig. 3 (b) and the classification of plaquettes is shown in Fig. 3 (¢) for D = 3 space-time
dimensions.

For this study, we consider the simplest restriction (or blocking) procedure, which proceeds by assigning products
of fine bond variables U ;{ to the coarse bond variables Uj;:

Ut(n/2) = Ul (n)Ul(n+e,), (21)

for all values of n satisfying x(n) = 0. Other schemes are also possible, however the specific choice plays a minor role
in the present implementation of our algorithm. In all cases, information is lost in the restriction operation.

Prolongation proceeds in two steps: first, the transfer of the coarse lattice variables to an appropriate subset of
bonds on the fine lattice, and second, interpolation of the transferred variables to the remaining undefined bonds of the
fine lattice. The prolongator is designed to preserve the long-distance structure of the theory (as it is encoded by the
configurations), including correlation lengths and topological charge. As a consequence, if the coarse configurations
to which prolongation is applied are thermalized, the resulting fine configurations will also be thermalized except
for short-distance defects at the scale of the cutoff. Fine evolution can correct for such short-distance defects, and
it is reasonable to expect that the evolution time required to bring the entire prolongated ensemble into thermal
equilibrium will be short. Since topology freezing is one of the major issues in present-day simulations that we aim to
address, it is advantageous for the restriction and prolongation procedures to preserve the topological charge either
configuration by configuration within an ensemble, or in terms of its distribution over the ensemble?.

The first step of the prolongation procedure is to associate the coarse bond variables with the fine lattice. Since
there are more bonds on the fine lattice than the coarse, there is no unique prescription for doing this. However, a
simple choice is to demand that

Ul(n) =US(n/2) , Uln+e,) =1, (22)

for all n satisfying x(n) = 0. Note that the gauge freedom of the fine action allows us to set one of the two fine bond
variables above to unity; in Fig. 4 (b) we show an example of this assignment for a 2 x 2 x 2 cell, having transferred
bond variables from the coarse unit cell shown in Fig. 4 (a). The remaining bond variables are undefined, and may
be set to arbitrary values; in this study we initially set them to unity. Note that 2 x 2 Wilson loops originating
from the even sites of the fine lattice (i.e., where x(n) = 0) are exactly equal to the plaquettes of the coarse lattice.
Furthermore, all even length Wilson loops originating from the even sites are exactly preserved by the map. This is

4 Note that the topological charge depends on the ultraviolet regulator and a particular definition will be discussed below. It is only in
the limit of weak coupling where configurations satisfy an admissibility criterion [16], that the definition becomes unique.



the key to our construction, and it implies that there is a set of long distance loops from which the renormalization
group invariant area law can be computed (i.e., using Creutz ratios constructed from even-sided loops).

The second step, interpolation, is designed to remove the most damaging ultraviolet defects induced by the first step.
There are a number of ways to carry out the interpolation of gauge fields (see, e.g., [16-18]). Following the approach
of 't Hooft [18], we use an interpolation which respects the Liischer bound for sufficiently smooth configurations [16],
and as a consequence, exactly preserves the topological charge for those configurations. The gauge field interpolation
is carried out by sequentially minimizing the partial actions:

Sq=p Z Z S (m) [1— Wit (m)] (23)

n pu<v

with respect to “active” bonds variables which satisfy x,(n) = d+1, ford =0,--- , D —2. The interpolation proceeds
starting from low dimensional to high dimensional cells. A useful property of this prescription is that at each stage of
the interpolation, the active bond variables in one 2412 cell are completely decoupled from those in neighboring 2¢+2
cells. Thus the interpolation can be performed locally at each stage.

At stage d = 0, the minimization can be performed analytically, following [18], however, the analytic forms become
complicated for d > 0. In this study, we followed a numerically simpler procedure for performing the minimization,
that is valid for all stages. Specifically, repeated applications of APE smearing [19, 20] of the form:

Uu(n) = U, (n) = Psy(n,) |Un(n) + ¢ Z Z%,XW(n)TZD(n) ) (24)

o=+1 v
were performed on the active bonds at a given stage, where
T,j;,(n) =U,(n)Uu(n +e,)U,(n+ eH)T (25)
and

T, (n)= U,(n—e,)U,n—e,)U,(n—e,+e,)t (26)
are forward and backward oriented staple operators, Pgy(n,) is a projection operator onto SU(N.), and c is a small
parameter to be specified later. The number of times this smearing is applied to the gauge fields will also be specified
later.

Before moving on to numerical studies, we define several additional quantities, which will prove useful later on.
Partially space-time averaged plaquettes, associated with the different plaquettes subsets:

- 1
W;X1 = Z Z 6d,x‘w(n)W;}yXl(n) ) (27)

1x1
Nd n u<v

and average displaced 2 x 2 Wilson loops, given by:

_ 1
W2x2 = 7 3D bunmWi(n) . (28)
d

n u<v

The normalization for these quantities are given by

1x1 D\ N,
N* :2(D—d)(D—d—1)<d 2D
and

- ()0

respectively. Note that

D D D
SNt =SNG 1)
d=0 d=0

which is just the total number of plaquettes on the lattice.
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FIG. 4. Schematic description of prolongation: (a) coarse bond variables; (b) transfer of coarse bond variables to a fine lattice;
(c) interpolation performed on 2 x 2 plaquettes; (d) interpolation performed on 2 x 2 x 2 cubes; the procedure is continued
for the remaining stages (not shown). Black bond variables are set to unity, as allowed by gauge freedom, and dashed bond
variables are undefined at intermediate stages of the refinement; dark blue bond variables are transferred from the coarse lattice,
whereas the lighter blue bond variables are determined via the interpolation.

TABLE I. Decorrelated target ensembles of size N, generated using HB with 10 over-relaxation sweeps. Lattice spacing is
set via the Sommer scale 7o = 0.5 fm, based on the works [21] (coarsest) and [22] (finer). The reference scale ¢ is defined in
Sec. IVB.

Lattice Ié] a [fm] N to/a?

12% x 24 5.626 0.1995(20) 385 0.72966(69)
16® x 36 5.78 0.1423(5) 385 1.3858(15)
243 % 48 5.96 0.0999(4) 185 2.7891(45)
323 x 72 6.17 0.0710(3) 185 5.5007(83)

IV. SIMULATIONS
A. Target ensembles

In the remainder of this work we consider pure SU(3) gauge theory in D = 4 dimensions, and make use of four
decorrelated target ensembles of size N, generated in a standard way. Physical observables on these ensembles will
serve as benchmarks that the multiscale thermalization algorithm should reproduce. The ensembles are described
in Table I, and have lattice spacings ranging from approximately 0.07 - 0.2 fm, separated by multiples of v/2. The
lattice spacings were determined from empirical formulas relating the Sommer scale in lattice units (rg/a) to the
coupling [21, 22], taking ro = 0.5 fm. The spatial extents of the lattices where chosen to be approximately 2.25 — 2.40
fm; the temporal extents where chosen to be twice the spatial extents in order to minimize thermal effects. Standard
boundary conditions, periodic in all directions, were used throughout. Ensembles were generated with the Cabibbo-
Marinari HB algorithm [23] combined with over-relaxation [24]. Each HB sweep was performed on a checkerboard
sweep schedule with Np, = 1 attempted updates to each SU(2) subgroup per bond variable via the method of
Creutz [25]. Each HB sweep was followed by N,, = 10 over-relaxation sweeps following the same checkerboard sweep
schedule. For all ensembles, 1500 HB sweeps were initially performed for thermalization starting from a weak field
configuration; subsequent configurations were saved after every 100 sweeps for future use.

B. Wilson flow

Wilson flow [26-28] was used to define a number of the observables studied in this work. The diffusive nature of
the flow allows us to consider a series of observables, which probe different length scales at different flow times, .
Wilson flow was applied to the target ensembles described in Table I using both a fixed step size algorithm [27], and
an adaptive step size algorithm [29]. The accuracy of the integration along the flow is controlled by the size of the
step in the former case and a tolerance level in the latter case (see [29] for an explicit definition of this tolerance).
The adaptive approach is more efficient because the flow has a smoothing effect on the fields. Consequently, the
forces that drive the flow become smaller with flow time, thus enabling the use of larger step sizes at later times. We
have established the validity of our implementation of the adaptive step Wilson flow by direct comparison with fixed
step size Wilson flow for the target ensembles in Table I. For the autocorrelation time and (re)thermalization studies
performed later in this work, the adaptive step size algorithm was used, due to its higher efficiency.
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FIG. 5. Left: t*E(t) as a function of t/ty; determined values of ¢y are provided in Table I. Right: Deviation between to obtained
using Wilson flow with a fixed step size (This work), and the nominal values t; introduced in Table II. Corresponding results
obtained in [27] (Liischer) are shown for comparison.

For the target ensembles, Wilson flow measurements were performed using a fixed step size of 0.01; results for the
quantity t2E(t) (for this study, we use the clover-leaf definition) are provided in Fig. 5 as a function of t/t;. The
Wilson flow scale, o, is defined by t3E(ty) = 0.3; values of this scale and corresponding statistical errors were obtained
by linearly interpolating the nearest estimates of t2E(t) to 0.3. The results from this analysis are provided in Table I;
for the 24% and 323 ensembles, we obtained estimates of ¢, which are consistent with [27]. For the same ensembles,
the adaptive step size algorithm was used with tolerance of 0.01. Measurements along the flow were made in multiples
of t§/4, where t} is introduced as a nominal value for ¢y (this parameter was chosen to be sufficiently close to to, but
also a multiple of 0.01 so that we may directly compare estimates of F(t) using both methods). For the 323 ensemble,
we found a maximum deviation of about 0.02% in the estimates of E(t) for t € [0, 5t5]. For 123, 163 and 243 lattices,
the deviation was less than 0.001% on the same interval. The good agreement for these ensembles not only validates
our implementation, but also indicates that our choice of tolerance level is adequate for the studies we are pursuing.
Note that for ¢t > 5t(, the flow radius v/8t exceeds the size of our lattices, and beyond that, the Wilson flow was used
primarily for its smoothing properties in determining the topological charge. For all ensembles, the topological charge
was found to be consistent between fixed and adaptive step algorithms over the entire range of flow times on a per
configuration basis.

C. Restriction and prolongation

As a first test of the prolongation algorithm described in Sec. III, we investigate how the target fine ensembles
described in Table I are modified by the application of restriction using Eq. 21, followed immediately by prolongation
using Eq. 22 and Eq. 23. The gauge field interpolation was performed by sequentially minimizing the partial actions
Sy until at each stage, d, the relative change in the partial action reached 0.001%. For the ensembles considered,
the action minimization required by our interpolation procedure was performed using repeated applications of APE
smearing, using Eq. 24 with ¢ = 0.05. The variation of the average plaquette, (IW1*1), and partially averaged plaquette
(Wc}“} are shown in Fig. 6 for each ensemble as a function of the number of smearing applications, beginning with
undefined bonds set to unity. Notice from the results that the average plaquette (W'*!) which is proportional to
the action, S, up to an overall additive constant, is not a monotonically increasing function of the number of cooling
sweeps. This is due to the fact that it is not the total action that is being minimized at each stage of the interpolation,
but rather the partial action Sy.

The average partial plaquettes (W, *') and displaced 2 x 2 Wilson loops (W32*2) are shown in Fig. 7 as a function
of the target ensemble coupling for each ensemble after restriction and prolongation. The former demonstrates that
although the prolongated configurations retain an imprint of the coarse lattice, the configurations are nonetheless
smooth by comparison to configurations from the associated target ensemble. The latter observable provides a
measure of the reduced translational symmetry of the restriction/prolongation operators. Note that (I 02X2) is just
the average plaquette measured on the coarse lattice, whereas (Wf“) corresponds to fully displaced plaquettes. Clear
signals of the reduced translational symmetry is evident with approximately a factor of 4 difference between the two.
Later, we explore the rate at which displaced 2 x 2 Wilson loops converge to the same value as a function of Monte
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FIG. 7. Partially averaged plaquette (left) and average displaced 2 x 2 Wilson loop (right) as a function of 3, measured on the
four target ensembles after restriction and prolongation.

Carlo evolution time, since this provides a measure of how quickly the full translational symmetry of the fine theory
is restored.

D. Topological charge

The topological charge, Q(t), and susceptibility, x(¢) (defined as the square of Q(t) divided by the spacetime
volume), is determined as a function of the Wilson flow time using the three-loop improved gluonic definition of the
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FIG. 8. Plots of ¢(Q) as a function of t/to for fine (left) and refined (right) ensembles; dashed line corresponds to 1/4/12.
TABLE II. Wilson flow parameters used for comparative study of @ on the fine and refined lattices, autocorrelation time studies,

and (re)thermalization time studies; all flows where performed using an adaptive step size [29] with a maximum allowed step
of 0.2.

Lattice ty/a? flow time extent [t§/a?] meas. freq. [t§/a’] tol.
128 x 24 0.73 40 1/4 0.01
16® x 36 1.39 25 1/4 0.01
243 x 48 2.79 14 1/4 0.01
323 x 72 5.49 8 1/4 0.01

topological charge operator [30]. As a function of flow time, the topological charge is expected to approach integer
values. A measure of the deviation of the topological charge from integer values over the ensemble is given by:

LN
€Q) = N Z Qi — Q). (32)

where [Q;] is defined as the nearest integer to @; for each decorrelated configuration, labeled by i. Note that a locally
uniform distribution for @); about integer values (e.g., when the distribution for @ is broad and smooth on scales
much larger than unity) yields ¢(Q) = 1/4/12. This measure is expected to approach zero for the gluonic definition of
the topological charge at late flow times. Plots of this quantity are provided in Fig. 8 for the target (fine) ensembles
and ensembles obtained from restriction and prolongation (refined), as described in the previous section. In units
of the nominal scale t§, we find that the topological charge approaches integer values faster as the lattice spacing is
decreased. This can be understood in terms of smoothness of the gauge field configurations. Following [27], we may
consider the quantity

sp=Ne [1 =W, ()], (33)

measured on field configurations at flow time ¢y, where p is a plaquette associated with site n and basis vectors
e, and e,. Given the measure of the configurations smoothness, h = max,(sp), gauge configurations satisfying the
admissibility criterion h < 0.067 will fall into distinct topological sectors [27]. Configurations that violate the bound
due to lattice artifacts, on the other hand, will not. In this study, we find that 0% of configurations satisfy the
criterion for a = 0.1 fm, whereas only 9% of configurations satisfy the criterion at a ~ 0.07 fm; these results appear
consistent with [27]. Note that according to that study, at a ~ 0.05 fm, this percentage increases to about 70%. For
equal flow times in lattice units, we find that the fine ensemble is more likely to have configurations that satisfy the
admissibility condition than its refined counterpart; this result is counter-intuitive, and is due to the fact that the
refined ensemble is smoother at the scale of the lattice spacing, and thus undergoes diffusion under Wilson flow at a
rate slower than the fine ensemble. As a byproduct of this, we see in Fig. 8 (b) that the topological charge attains
integer values at a somewhat slower rate than that in Fig. 8 (a).

In Fig. 9, we show scatter plots of the topological charge measured at the longest flow time for each of the target
ensembles, and the corresponding topological charge measured after restriction and prolongation. As was evident
in Fig. 8, we see that for both fine and refined ensembles, the topological charge takes on integer values at large
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flow times. Furthermore, for large 8 we find that the distributions become increasingly skewed, indicating increasing
correlation between the topological charge of the original and refined configurations. In Fig. 10 (left) we provide plots
of this correlation as a function of flow time for each value of 8. We note that the correlations in topological charge
are largely independent of flow time for ¢ 2 tg; this observation holds even at early times, where the topological
charge need not take integer values. In Fig. 1 (left), the correlations in topological charge measured at the latest flow
time are plotted for each value of 5. Despite the large violations of the admissibility condition at the lattice spacings
considered in this work, we nonetheless see a clear increasing trend in the topological charge correlations between fine
and refined lattices. Our expectation is that these correlations will rapidly approach unity as the lattice spacing is
further reduced by a factor of v/2 — 2. Finally, in Fig. 10 (right) we show the p-values obtained from a two-sample
Kolmogorov-Smirnov test that the topological charge distributions on fine and refined ensembles come from the same
underlying distribution. The p-values were obtained as a function of Wilson flow time, and in each case are consistent
or exceed 0.05 after flow times of a few ¢§. Already at § = 6.17 (a = 0.07 fm), it is difficult to distinguish between
the distributions and at even finer lattice spacings, the distributions will be exactly preserved. This is important as it
indicates that when we apply prolongation to a coarse ensemble with a well-sampled topological charge distribution,
the resulting fine ensemble will continue to have a well sampled topological charge distribution, albeit with lattice
artifacts inherited from the coarse level of discretization. These differences can be corrected by the fine evolution, or
by improvement of the coarse action.

E. Algorithms and autocorrelations

In order to establish the viability of our multiscale approach, we must first determine the decorrelation time scales
associated with conventional gauge evolution methods, and their associated scaling behavior with the lattice spacing.
In this work, we focus on two particular algorithms, namely, HB and HMC. The former algorithm is described in
Sec. IV A, however, for this application we consider the parameter choices Np;, = 100 and N,,, = 0. The total number
of updates is given by 7. For the later case, we use a PQP-type leapfrog algorithm, with 7 trajectories of unit length
and the number of leap-frog steps per trajectory tuned to yield an approximate acceptance rate of 70% for each
coupling. Full details regarding the tuning of this algorithm are provided in Appendix A. Note that the strategy we
take here of keeping the trajectory length fixed, rather than scaling it inversely with the lattice spacing, differs from
that of [6] and [7]. The algorithmic implementations we consider are chosen to provide a relatively simple benchmark
for comparison with the multiscale approach. More sophisticated and efficient implementations exist and could be
used in both the traditional and multiscale approach, but require significant tuning and optimization. We do not
pursue these directions in this initial quenched investigation.

Integrated autocorrelation times were determined for various observables using the methods described in Ap-
pendix B. Errors on the autocorrelation times were estimated using a highly efficient implementation of the jackknife
method, with jackknife blocks of size N;. Obtained errors were consistent with those obtained with analytic ap-
proximations described in [31] and based on [32, 33]. In Table III, we provide details of the ensembles generated for
these estimates, including the ensemble size N, jackknife block size N;, and measurement frequency of observables
A7. Note that the total number of trajectories per ensemble is given by NA7T. In the same table, we report the
autocorrelation times for the topological charge, topological susceptibility and the quantity 2 E(t) at flow time ¢, all
of which are long distance observables. Note that the choice of N;AT exceeds 27y, estimated for each observable,
suggesting a self-consistency in our error estimates. For the finer lattice spacings, we find that the integrated auto-
correlation time for Wilson loops of all sizes were significantly less than that of the Wilson flow quantities provided
in Table III. For 24% and 323 ensembles, our sampling resolution was insufficient to obtain reliable estimates of the
integrated autocorrelation times for Wilson loops, and therefore such estimates for all 3 are omitted. The integrated
autocorrelation times for each observable were fit to the functional form

Zin
Tint = const. x (T—O) ' , (34)
a

and the fit results are provided in Table IV. Note that at fixed physical volume, the computational cost to obtain
decorrelated measurements of an observable is proportional to T X (19/a)? for HB, and 7y % (19/a)P*t for HMC,
where D = 4 powers of ro/a arise from trivial scaling of the number of lattice sites. The latter has an additional power
of rg/a due to the fact that the number of steps per trajectory needed to attain constant acceptance probability is
roughly inversely proportional to the lattice spacing (see Appendix A for details). Fig. 11 shows the autocorrelation
times as a function of the inverse lattice spacing, exhibiting the expected critical slowing down as the continuum limit
is approached at large 5. Results are shown for both HB and HMC evolution.
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FIG. 9. Plot of Qfine verses Qrefined determined at the maximum flow time extent for each ensemble pair. Dashed ellipse
indicates 95% confidence interval centered about the mean. The skewed nature of the ellipses with respect the diagonal,
suggests that the refined topological charge distribution is broader than the fine distribution.

F. Thermalization and rethermalization

With autocorrelation times for conventional gauge evolution at hand, we are finally in a position to assess the
utility of the multiscale strategy proposed in Sec. I. In order to make the analysis quantitative, we proceed by
studying the equilibration properties of both conventionally prepared initial configurations (thermalization) and initial
configurations prepared by prolongation (rethermalization). For these studies, we consider ensembles of size Ny = 24
under Markov evolution using the same action and algorithms as in the previous section, and the two gauge couplings,
B =15.96 and 8 = 6.17, corresponding to a ~ 0.1 fm and a ~ 0.07 fm, respectively. Thermalization studies were
performed using initial configurations drawn from an ordered delta-function distribution (i.e., a cold start) and from
a random distribution (i.e., hot start). Rethermalization studies were performed using initial configurations which



16

10 O ST R
1 E 3 |”||l:" i |||III:I:::IIIIIII:I:II:IIIII!!" AR
82 B=5.626 _of III:‘I ||~||I Iy i :
04 ~4f]
0.2} il ) _
0.0F -6 B=5.626
-0.2 -8
(1)3 3 E O |I|i||l||m' |||III|IIIII:l||II|||||||III|||||||||||||||lIII||||IIII||||||II”|“
o6t B=5.78 ] - -2F I ||||”"u”ununl 0
> 0.4} 3 —4F
£ 0.2§ £ ,
OE 0.0 g -6t B=5.78
~ -0.2 _E -8
2 =
S o S
£ B=5.96 o
o 0.6} ’ =]
0.2F KS) i
0.0 B=5.96
-0.2
1.0
0.8} ]
0.6} B=6.17
0.4H
0.2F —
0.0 $=6.17
0% 10 20 30 40 & 10 20 30 40
t/t; t/t;
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TABLE III. Integrated autocorrelation times for various observables obtained from N measurements performed on every Arth
update.

Algorithm Lattice N AT Ny Tint (E(£5)) Tint (Q(15)) Tint (X(t5))
B 12° x 24 5000 1 50 16.0(2.1) 3.8(0.3) 1.9(0.2)
16% x 36 12000 1 100 33.2(4.4) 19.7(3.2) 6.5(0.7)
243 x 48 8000 4 100 65.2(8.1) 79.4(11.1) 40.3(6.0)

323 x 72 9000 8 300 166.2(22.7) 504.4(103.9) 212.6(32.2)
HMC 12° x 24 9000 1 50 28.2(3.0) 7.1(0.6) 3.9(0.4)
16% x 36 24000 1 100 44.2(4.7) 26.0(2.9) 12.7(2.0)
243 x 48 12000 4 100 88.8(12.7) 130.0(16.7) 50.5(7.8)

323 x 72 9000 8 300 227.3(28.5) 1307.5(322.8) 378.4(139.4)

had been prepared in two ways, in each case utilizing a subset of the decorrelated target ensembles described in
Table I. In the first case (r-I), configurations were prepared by restriction and prolongation of 8 = 5.96 and S = 6.17
configurations, similar to the analysis of topological charge correlations in Sec. IVD. In the second case (r-II), initial
configurations were prepared via prolongation of RG-matched coarse ensembles generated using the Wilson action.
The matching was performed via the Sommer scale, with coarse couplings corresponding to § = 5.626 (a ~ 0.2 fm)
and 8 =5.78 (a ~ 0.14 fm).

Each (re)thermalization study was performed using both HB and HMC algorithms. In the latter case, acceptance

TABLE IV. Integrated autocorrelation time fit results for zi,¢ for various observables.
Algorithm Zint (E(t5)) 2int (Q(t5)) zint (X(%5))

HB 2.3(2) 1702) 17(2)
HMC 2.1(2) 5.2(2) 4.5(4)
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FIG. 11. Integrated autocorrelation times for Wilson flow observables as a function of ro/a using HB (left) and HMC (right)
algorithms.

probabilities were found to be exponentially small at the start of (re)thermalization. For both lattice spacings, we
therefore initially evolved the ensembles for 24 trajectories without an accept/reject step in order to achieve reasonable
acceptance probabilities; beyond that, evolution was performed with an accept/reject step. In all cases, the warm-up
period necessary to achieve reasonable acceptance probabilities was significantly shorter than the (re)thermalization
time.

We begin by considering the (re)thermalization properties of the average displaced 2 x 2 Wilson loops, defined in
Eq. 28. Recall from Fig. 7 (right), that initially, the displaced Wilson loops vary widely with the degree of displacement,
d. For example, at 8 = 6.17, the average value ranges from approximately 0.2 at d = 0 to 0.8 at d = 4. As illustrated
in Fig. 12 (top, center) for HB and Fig. 13 (top, center) for HMC, despite this wide initial variation, the displaced
plaquettes converge to a single value for all d after several Monte Carlo updates. This holds true for both r-I (top)
and 1-II (center) ensembles, and indicates that the translational symmetry of the fine ensemble is restored rapidly as
a function of the rethermalization time. In the same figures, we show the total Wilson loop (bottom) obtained by
an appropriately weighted average over the five displaced loops. Here we see that the r-I ensemble “overshoots” the
thermalized average, whereas the r-II ensemble converges more rapidly, and without overshooting. Although further
investigation is needed to better understand these differences, it is encouraging to see that the case r-II converges so
well, given that that is the case where coarse ensembles had been generated (as they would be in practical applications)
rather than produced artificially by restriction.

In Fig. 14 and Fig. 15, we show (re)thermalization curves for the topological susceptibility, (t§)?x(t), and Wilson
flow quantity t2E(t), for the flow times ¢ = t%/4,t% and 4t5. Recall from the previous section that the topological
charge distributions for these ensembles are well preserved upon prolongation. Consequently, observables derived
from topology, such as the susceptibility, are by construction thermalized up to lattice artifacts. From studies of the
topological susceptibility, this indeed appears to be the case. Furthermore, for non-topological quantities measured
on ensembles obtained by prolongation, we find that rethermalization times appear significantly shorter than the
thermalization times of either hot and cold starts.

A quantitative comparison of the (re)thermalization times for each observable requires determination of both the
exponents and overlap factors for each (re)thermalization curve. For each observable, we therefore perform a combined
multi-exponential fit to all four (hot, cold, r-I, and r-II) (re)thermalization curves, as a function of (re)thermalization
time. We include in these fits estimates of the observable obtained from the much larger thermalized target ensemble
(therm), effectively corresponding to 7 = oo, We considered fits of the functional form:

(35)

where a labels the ensemble, and impose the constraints: Ey = 0, 2§ = 2o for all a and Ztherm — () for 2 > n > 0. The
least squares fits were performed using the variable projection method [34]. A brief description of how the constraints
were imposed in this approach is provided in Appendix C. Reliable correlated multi-exponential fits to the data
were difficult to achieve due to the small ensemble sizes; consequently uncorrelated fits to data were performed, with
errors estimated via a bootstrap analysis. Our aim is to obtain estimates of the relevant evolution timescales rather
than precise values, so this simplified analysis is sufficient. With larger ensembles and more frequent measurements,
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FIG. 12. Top: HB rethermalization of average displaced 2 x 2 Wilson loops (r-I). Center: HB rethermalization of average
displaced 2 x 2 Wilson loops (r-II). Bottom: HB rethermalization of 2 x 2 Wilson loops.

coupled fits to multiple observables could be performed, potentially constraining higher states in the evolution. The
leading exponents 7, = 1/E,, (n = 1,2) determined from each fitted observable are provided in Table V at flow time
to. Note that generally 7| # Texp, since the observable under study may not couple strongly enough to the slowest
mode, and furthermore, the statistics may be insufficient to resolve the effects of that mode. Nonetheless, we expect
the bound 7,1 < 71 to hold for each observable that is considered. A comparison of these time scales can be made
from the data provided in Table IIT and Table V, and suggests that this is indeed the case.

Finally, in Fig. 16 we plot extracted values for 7,, and 2z as a function of the Wilson flow time for the observable
t?E(t), for 323 x 72 ensembles (re)thermalized via HMC. For this illustrative case, the fitted exponents are insensitive
to the flow time, with 71 /75 ~ 2.5. This stability suggests that the fits are picking out the true exponents governing
the evolution dynamics. The overlap factors, on the other hand, need not be independent of the flow time. For flow
times t/t§ > 1 we find 21 /29 2 O(1) and 22/2p 2 O(1) for hot and cold ensembles. The ensemble R-I has significantly
reduced overlaps by comparison, with z9/zo consistent with zero over the full range of flow times. The ensemble R-II
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exhibits the most impressive behavior, with both z1/z9 and z2/z consistent with zero over the full flow time range.
The result suggests a lower bound on the rethermalization time scale, given by 73. It would be particularly interesting
in this example to determine with higher precision the number of low lying states that have been eliminated, thus
further constraining this bound.

From analysis of the autocorrelation times in the preceding section, and the (re)thermalization time scales de-
termined here, we may draw several conclusions. First, the rethermalization times for prolongated ensembles are
significantly shorter than the thermalization times for hot and cold starts. This result implies that the simulation
strategy advocated in Fig. 2 (b) is more efficient than that of Fig. 2 (a). Second, the rethermalization times for
non-topological long-distance observables are significantly shorter than the decorrelation time scale for fine evolution,
which is bounded from below by twice the integrated autocorrelation time for topological charge. An explicit com-
parison of these time scales can be made from Table IIT and Table V. For example, in the case r-1I (HMC, a ~ 0.07
fm), where 73 (which was undetermined from fits) appears to be the dominant rethermalization time scale, rether-
malization to quarter-percent levels can be achieved in the time Tyetherm ~ 673 < 675 ~ 600. The decorrelation time
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TABLE V. Fit results for (re)thermalization curves.

Algorithm Lattice T range 71 (E(tp)) T2 (E(tp)) T range 71 (x(3)) T2 (x(15))

1B 24% % 48 60-400 89.1(23) 32.5(1.2) 60-400 95.9(49.9) 24.9(8.9)
323 x 72 150-1000 219.3(7.6) 72.2(4.5) 50-1000 623.6(84.9) 140.4(149.6)

HMC 243 x 48 80-500 115.6(4.0) 53.2(5.4) 80-500 187.5(117.3) 86.9(33.0)

323 x 72 150-1500 250.3(10.8) 96.5(6.2) 120-1500 511.2(227.9) 83.8(52.1)

for topological charge provides a lower bound 27, > 27(Q(t§)) ~ 2600, and therefore the efficiency of the algorithm,
as described by Fig. 2 (c), is conservatively estimated to be greater than 27t/ Tretherm ~ 4.5 The result provides
compelling evidence that an ensemble generation strategy along the lines of Fig. 2 (¢) is not only viable, but also
a superior alternative to approaches presently available. Note that this assessment becomes particularly conclusive
in the regime of ultra-fine lattice spacings, where proper sampling of topological charge is presently impractical by
conventional means due to topological freezing. As mentioned in Sec. I, the two strategies described in Fig. 2 (a)
and (c) represent only the extremes in a range of algorithms, defined by different choices of Ny and N.. In general,
the optimal choice for these parameters depends on the timescales observed for a particular target action and the
computational facilities that are available.

V. CONCLUSION

We have proposed a multiscale equilibration strategy for Yang-Mills gauge theories, which can be used to rapidly
initialize large numbers of Monte Carlo streams, thereby increasing the efficiency of simulations. This algorithm shares
many features with multigrid solvers [35-38] which have been used to dramatically decreased the computational cost
of matrix inversion, a large component of lattice QCD calculations. The effectiveness of our multilevel strategy for
equilibration was demonstrated for the case of pure SU(3) gauge theory using both heat bath and hybrid Monte-
Carlo updating procedures. In both cases, the time scales governing the rethermalization of prolongated ensembles
were measured to be considerably shorter than the decorrelation times for conventional evolution, as estimated from
the autocorrelations in topological charge. Furthermore, the ratio of these quantities decreases parametrically as
the continuum limit is approached. As a consequence, prolongation of a RG-matched coarse ensemble followed by
rethermalization provides a new way to reduce critical slowing down in lattice gauge theory simulations. In particular,
the poor sampling of topology at fine lattice spacing is ameliorated by evolving multiple fine-action streams derived
from a coarse-action ensemble with well-sampled topology. Although unexplored in this study, multiple levels of
refinement would offer additional speedups in thermalization.

The successful application of our strategy requires a nonperturbative real space renormalization group procedure
to match the physical scales at the coarse and fine levels of evolution. Generally the matching need not be precise
to realize improvements since the subsequent evolution (rethermalization) eliminates any effects of mis-tuning of the
coarse action. However, the precision with which the tuning is carried out will influence the rethermalization times
of the prolongated ensembles. A RG transformation of the fine lattice action induces many operators in the coarse
action, and these should, in principle, be included in the coarse evolution. In this study, we have ignored all but the
local plaquette coupling in the coarse action, yet still attain impressively short rethermalization times. Numerical
methods have been developed for nonperturbatively determining the induced couplings along a RG flow for simple
systems (see e.g., [39]), and their use in tuning would likely result in a further reduction in rethermalization times.

From a practical standpoint, the utility of our approach can be realized in several ways. The method can be
directly applied toward generation of very large physical volume ensembles in cases where the matching is already
known (e.g., from previous small volume studies). In this way one can avoid the long initialization time for large lattice
streams. Our expectation is that for a given target lattice spacing, rethermalization times for prolongated ensembles
will be insensitive to volume, and therefore the efficiency of the algorithm will be unaffected by the volume scaling.
Alternatively the method can be use to start random ensembles on coarse lattices to initialize a large ensemble of fully
independent streams. These streams will start with different topological charges so that together they will sample the
topological charge distribution dictated by the coarse lattice. In principle, the topological charge distribution could
be reweighted if the continuum distribution is determined by some other means.

5 This accounting does not include any additional reduction in computational cost attributed to reduced communication overhead from
having multiple streams.
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A potential weakness of our multilevel approach is that its effective use requires prior knowledge of the RG matching
of actions, which in turn requires simulations at the fine level. Nevertheless, there are several ways in which to proceed.
One can exploit the fact that the tuning need not be exact at the coarse level and perform “sloppy matching” studies
using small volume ensembles with poorly sampled topology; in this case matching would proceed by considering long
distance observables which are relatively insensitive to topology. Another possibility is to use a finite volume scheme
such as the Schrodinger Functional [40] to define the gauge coupling. By requiring a fixed coupling constant for a
coarse and fine ensemble, one can then obtain a matching of the bare gauge couplings that result from calculations
at two lattice spacings with the desired ratio. Available results that could be used to obtain matched coarse and fine
ensembles, including dynamical fermions, can be found in a recent review [41]. Finally, in the ultra-fine limit, one can
make contact with perturbative calculations in order to carry out the matching.

The multilevel methods described here naturally extends to simulations of full QCD, and more generally, gauge
theories with matter fields. The presence of fermions has no impact on the details of the prolongation. The only
additional ingredient is that the RG matching must be performed for more than one physical scale (e.g., Aqcp, the
pion mass and the kaon mass for 2+ 1 flavor QCD), and therefore requires tuning of multiple parameters in the gauge
and Dirac actions. In cases where multiple physical scales are present such as this, rapid thermalization with multiple
levels of refinement may be particularly advantageous. Perfect action constructions [42] may be useful in this regard.

Although the multiscale algorithm presented here provides an efficient means for thermalization, it is important
to draw a distinction between it and a more ambitious multigrid Monte Carlo dynamics. The latter implements a
fully recursive evolution, including multiple scale evolution, while maintaining exact detailed balance on the finest
level. While there has been some success in constructing such multiscale methods for simpler field theories [8-13], it
is an open challenge to construct such an algorithm, particularly for QCD, due to the presence of a nonlocal fermion
determinant in the measure.
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FIG. 17. Left: HMC acceptance probabilities as a function of step size, d7, for a fixed trajectory of unit length. Right: Number
of steps per trajectory (1/67) as a function of lattice spacing.

TABLE VI. Fit parameters for Q'/2 in units of o, estimated HMC step size 67 and nominal HMC step size 67* required to
achieve a 70% acceptance rate, for a trajectory of unit length.

Lattice B Y2/t 1/67 1/67*
123 x 24 5.626 1044(39) 36.5(0.7) 37
16® x 36 5.78 1138(28) 53.3(0.5) 54
243 x 48 5.96 1084(27) 75.5(0.9) 75
323 x 72 6.17 1098(23) 105.1(1.1) 105

Appendix A: HMC tuning

Acceptance probabilities for each HMC step size 7 and  were estimated from 100 independent trajectories, starting
from thermalized configurations. Estimated acceptance rates are displayed in Fig. 17 (left). The estimated acceptance
rates were then fit to the expected functional form:

P,.. = erfc 191/2572 : (A1)
2

the extracted fit values for Q/2 are provided in Table VI in units of the scale ty. Fitting the extracted values of !/2
as a function of scale parameter ty, we find Q%2(tg) = 1096(14)to. For each of the HMC studies in this work, the
trajectory length is fixed to unity, and the acceptance rate is chosen to be approximately 70%. The nominal number
of steps per trajectory, d7*, used in these studies, are provided in Table VI. As a function of the lattice spacing, the
requisite number of steps per trajectory length to achieve such an acceptance rate exhibits a power-law behavior, as
demonstrated in Fig. 17 (right). Fitting the data, we find 1/§7 (ro/a)l'mg(”). In light of the fact that the HMC
algorithm is not renormalizable [44], the scaling behavior observed in this study may be regarded as empirical in
nature.

Appendix B: Autocorrelations

Consider a set of data, X, comprising arbitrarily spaced measurements ., labeled by 7 € [1, N]. The autocorrelation
function at lag-time A is defined by

_ Ia(X)
To(X) ’

where I'a(X) is the corresponding autocovariance function for X. To estimate I'a(X), first consider the set X
comprising the elements dx, = x, — Z for all 7, where

pa(X) (B1)

1 N
',E:N;x"—’ (B2)
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and the function
] N-a
Fa(0X) = Zl 02 0L in (B3)

defined on this set. If X consists of uniformly sampled data, then the autocovariance function is simply given by

N

FalX)=5—R

TaA(6X) . (B4)

Note that the computational cost of evaluating Ta(6X) is O(N log N) using standard discrete Fourier transform
methods, whereas the computational cost for evaluating I'a (X) for arbitrarily spaced samples is generally O(N?).

Assuming X consists of uniformly spaced data, the errors on T'a(X) can be computed efficiently via the following
jackknife procedure. First partition the measurements x, into N/N; consecutive blocks of size N, where it is assumed
that N mod N equals zero. Labeling the partitions by the integers j € [1, N/N;], define the Jackknife ensemble X7
comprising the N — N elements of X, with elements x, on the interval 7 € ((j — 1)N;, jN;] omitted. Furthermore,
define the set § X7 which comprises elements

j 0 (J—1)N; <7< jNy
J — .
oz7 = { z, — T’ otherwise ’ (B5)

Note that although X7 comprises N — N elements, §X7 comprises N elements, of which N; vanish. The autocorre-

lation function on the j-th jackknife ensemble is given by

N
9a(X7)

Pa(X7) = La(6X7) (B6)

where the piece-wise function ga(X7?) quantifies the degeneracy of distances A for the ensemble X7. If the set of
integers m,, for a € [1, 5] label the quantities {N;, (j —1)N;,jN;,N — jN;, N — (j — 1)N;} in ascending order, then

N — N, —2A 0<A<m
N—-Nj;—m; —A mp <A < mo
; N —Njy—mq —msy mo < A < mg
7\ —
QA(X)— N—NJ—ml—m2+m3—A m3§A<m4 ’ (B7)
N—NJ—ml—mg+m37m4 m4§A<m5
N—-A ms <A< N

Once the jackknife estimates pa(X7) are obtained, the standard error is determined by

N N ; 2
SpA(X) = N_N, ]2—31 [PA(XJ) - PA(X)] : (B8)
The integrated correlation time is given by
1 Amaz
Tine(X) = 5 + Az::l pa(X) (B9)

where the cut-off lag-time A4, is defined as the minimum time at which
pa(X) > \[3pA (X) (B10)

following [31]. Once A4 is selected, the errors on 7i,; may be determined from the Jackknife estimates 7, (X7) via

N N/N;

(X) = m ; [Tint(Xj) - Tint(X)}

2

2
57—int

(B11)
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Appendix C: Variable projection with constraints

Assume we have a set of measurements y®(7) and covariance matrix I'*?(o, 7). Given the fit function
= szfe_E"T , (C1)
n
and the constraint ¢z = 0, we may construct
=> > " (o) V¥ (a,7) [y*(7) DI+ Y Endmmnzn (C2)
aB ot aff mn

where V = T'"! and £ are Lagrange multipliers for each constraint. Note that ¢ is generally a rectangular matrix.
Next, we may express Eq. C2 as

(2. B) = x%(0,0) =2 0 epun(B) + D e Wal(B)zg + ) ) &nonha . (C3)
a n aff mn af mn

where

E) = Z Z e Eroveb o)y (r) (C4)
B ot

and
Wb (B) = ZeiE’"”VO‘B(o, e EnT (C5)

Minimizing this function with respect to z yields

2E) = WY E)u(E) - W Y(E)¢T [¢WH(E)$T] ™ oW (E)u(E) (C6)

where indices o and n have been suppressed. One can then construct a reduced x?, which is only a function of E and
given by

XH(E) = x*(2(E), E) . (C7)

Numerical minimization of x2(E) proceeds with standard methods, yielding Fp,i,; the corresponding overlaps z(Eppin )
can be reconstructed from Eq. C6.

Appendix D: Thermalization and rethermalization of Wilson loops

(Re)thermalization curves for Wilson loops of various shapes are provided in Fig. 18 for HB and Fig. 19 for HMC.
As with the Wilson flow quantity t?E(t), we find that the rethermalization time for the r-II ensemble is significantly
shorter than that of R-I. Furthermore, both rethermalization times are shorter than their hot and cold counterparts.
The (re)thermalization times for Wilson loops generally appear to be significantly shorter than that of t2E(t), even
for physically large Wilson loops of size 0.5 fm. This is likely attributed to the fact that our prolongator preserves all
even size Wilson loops originating at sites n satisfying x(n) = 0.
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