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We study the SU(3) gluon propagator in renormalizable Rξ gauges implemented on a symmetric
lattice with a total volume of (3.25 fm)4 for values of the gauge fixing parameter up to ξ = 0.5. As
expected, the longitudinal gluon dressing function stays constant at its tree-level value ξ. Similar
to the Landau gauge, the transverse Rξ gauge gluon propagator saturates at a nonvanishing value
in the deep infrared for all values of ξ studied.

I. INTRODUCTION

During the last decade, ab-initio lattice gauge compu-
tations have been instrumental for advancing our under-
standing of the infrared (IR) sector of QCD. In fact, once
discretization and finite volume artefacts are accounted
for, these calculations provide nonperturbative results
that are regarded as benchmark tests for the available
continuum approaches. In particular, large volume SU(2)
and SU(3) lattice simulations of the gluon and ghost
propagators have been carried out by different groups, us-
ing quenched and unquenched configurations gauge fixed
in the Landau gauge [1–9]. These simulations have un-
equivocally established that in the deep IR the gluon
propagator and the ghost dressing function (defined as q2
times the propagator) saturate to a nonvanishing value.

The finding of these so-called massive (or decoupling)
solutions, has in turn spurred an intense activity in the
continuum formulation of the theory, in order to deter-
mine a reliable picture of the fundamental QCD dynam-
ics capable of predicting their emergence. The most suc-
cessful proposals that have been developed include: (i)
Schwinger-Dyson studies [10–14], in which the saturation
is due to the (dynamical) generation of an effective gluon
mass scale [15–18]; (ii) the refined Gribov-Zwanziger pic-
ture [19–21], in which the effect is due to a mass scale
generated through dimension 2 condensates induced by
the presence of the Gribov horizon; (iii) functional and
renormalization group studies [22, 23], in which decou-
pling solutions appear when special boundary conditions
are imposed to the relevant equations.

On the other hand, given the gauge variant nature of
the objects under scrutiny, it is clearly very important
to perform simulations in as many gauges as possible,
in order to discern which aspects of the nonperturbative
behavior of the function at hand are (or are not) affected
by a gauge choice. From the continuum perspective, this
is also extremely important as the results obtained can
be used to further test the aforementioned proposals.

Indeed, while the gluon two-point function has been
studied in covariant and non-covariant gauges [24–27]
(for continuum studies in non-covariant gauges see,
e.g., [28–34] and references therein), reliable calculations
in renormalizable-ξ (Rξ) gauges [35] have not been sys-

tematically pursued so far. While this class of gauges
is the only one completely under control at the pertur-
bative level, its lattice implementation has nevertheless
proven to be quite complicated due to poor numerical
convergence of the corresponding GF algorithm [36–41].
A GF procedure with an improved convergence rate was
finally implemented in [42]; however, one still encoun-
tered significant problems, which unfortunately become
more severe as the GF parameter ξ and/or the lattice vol-
ume become larger, and the number of colors Nc and/or
the lattice coupling β become smaller [43–45]. As a re-
sult, there have been only preliminary studies of the Rξ
gluon propagator [41, 42, 45].

In this paper, we present the SU(3) gluon propagator
in Rξ gauges for a relatively large lattice volume (3.25
fm)4 and GF parameter up to ξ = 0.5. This allows us to
address in some detail the IR behavior of the Rξ gluon
propagator, showing, in particular that, similarly to what
has been found in the Landau gauge, the gluon propaga-
tor saturates in the IR.

The paper is organized as follows. in Sect. II we briefly
review the Rξ gauges framework, both in the continuum
and in its lattice discretized version. In Sect. III we dis-
cuss the algorithm we employ to successfully implement
the Rξ GF procedure for a relatively large lattice volume
(3.25 fm)4 and GF parameter up to ξ = 0.5. We present
our simulation results for the SU(3) gluon propagator in
Rξ gauges in Sect. IV. Our conclusions are finally drawn
in Sect. V.

II. THE Rξ GAUGES FRAMEWORK

In the continuum, gauge fixing is achieved by adding to
the SU(Nc) Yang-Mills gauge invariant action the term
(in Minkowski space),

SGF =

∫
d4x

[
bmΛm − ξ

2
(bm)2

]
. (1)

Here ξ is a (non-negative) GF parameter, bm are the so-
called Nakanishi-Lautrup multipliers and Λm = Λm[A]
is the GF condition. For all fields we write Φ = Φmtm,
where tm are the SU(Nc) generators.
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It is usually convenient to adopt an on-shell formalism,
eliminating the bm fields through their (trivial) equation
of motion; this yields the (gauge) condition ξbm = Λm,
and the GF action

SGF =
1

2ξ

∫
d4x (Λm)2. (2)

Rξ gauges are obtained when choosing the linear GF con-
dition Λm = ∂µAmµ . In this case the (non-perturbative)
gluon propagator ∆mn

µν = δmn∆µν can be decomposed
according to

∆µν(q) =

(
gµν −

qµqν
q2

)
∆T(q2) +

qµqν
q2

∆L(q2). (3)

Slavnov-Taylor identities ensure that q2∆L = ξ to all or-
ders. Therefore, all the dynamical information is carried
by the transverse form factor ∆T alone.

The lattice formulation of Yang-Mills theories is ob-
tained in terms of the Wilson gauge action, in which the
dynamical variables are the gauge links Uµ, related to the
gauge fields (in lattice units) through,

Uµ(x) = exp[ig0Aµ(x+ êµ/2)] ,

Aµ(x+ êµ/2) =
Uµ(x)− U†µ(x)

2ig0

∣∣∣∣∣
traceless

, (4)

where êµ is the unit vector along the direction µ, and
β = 2Nc/g

2
0 is the lattice coupling which determines the

lattice spacing a. Physical quantities are then obtained
by the evaluation of the Euclidean path integral through
Monte Carlo techniques, with a probability distribution
given by the exponential of the action.

In Rξ gauges, besides the usual integration over the
link variables, one has to integrate over the Λ fields.
Eq. (2) implies that the integration measure is a Gaussian
distribution, with variance ξ, i.e.,

P [Λm(x)] ∝ exp

{
− 1

2ξ

∑
m

[Λm(x)]
2

}
. (5)

The numerical difficulty of implementing theRξ gauges
lies in enforcing the GF condition. In fact, the stan-
dard procedure for GF requires to gauge rotate all link
variables through the gauge transformation Uµ(x) →
g(x)Uµ(x)g†(x+ êµ), where g are elements of the SU(Nc)
gauge group that minimizes a suitable functional imple-
menting the desired GF condition. In the Landau gauge
case, which is the ξ → 0 limit of the gauges studied here,
the simplest possible functional of the gauge links Uµ(x)
leading, upon a suitable minimization procedure, to the
condition ∇·Am = 0 is

ELG[U, g] = −ReTr
∑
x,µ

g(x)Uµ(x)g†(x+ êµ). (6)

Contrary to this simple limit, the general case of a non-
vanishing ξ was proven to have no simple GF functional

suitable for minimization [36]. Nevertheless, in [42] it
was shown that the functional

ERξ [U, g] = ELG[U, g] + ReTr
∑
x

ig(x)Λ(x) , (7)

yields the correct condition ∇·Am = Λm, provided that
the following convergence algorithm is implemented. The
gauge transformation g is built as a product of a sequence
of infinitesimal gauge transformations g =

∏
j δgj . For

each infinitesimal transformation δgj one minimizes the
functional (7); however when moving on to the next in-
finitesimal transformation δgj+1, the Gaussian distribu-
tion Λm is maintained unchanged and the link Uµ is up-
dated through a gauge rotation.

Writing δgj = 1 + i
∑
m w

m
j tm, the variation of the

functional (7) with respect to the coefficients wmj then
reads

ERξ [U, δgj ]− ERξ [U, 1] = Tr
∑
x,m

wmj (x) tm ∆(x), (8)

∆(x) =
∑
µ

g0

[
Aµ(x+ êµ/2)−Aµ(x− êµ/2)

]
− Λ(x).

Choosing wmj = αj∆
m, with αj a relaxation parameter

to be optimized, will reduce ∆. Our goal is to converge
to a vanishing ∆ in all lattice points x, which in turn
implies [36]

θ =
1

NcL4

∑
x

Tr [∆(x)∆†(x)]→ 0. (9)

Whenever this condition is fulfilled (which, based on the
experience of Landau GF [46], means to have θ < 10−15),
then the configuration can be considered to be Rξ gauge
fixed.

III. LATTICE SETUP AND ALGORITHM

In order to study the gluon propagator we use 50 con-
figurations generated through importance sampling of
the SU(3) Wilson action [47]. We opt for a symmetric
lattice of size L = 32 and β = 6.0, with associated lattice
spacing a = 0.1016(25) fm measured from the string ten-
sion [48]. The simulated volume is therefore (3.25 fm)4,
large enough to resolve the onset of nonperturbative ef-
fects in the propagator’s transverse form factor. The val-
ues of ξ chosen are ξ = 0.1, 0.2, 0.3, 0.4, and 0.5. For
comparison, we also report the Landau gauge, obtained
as the ξ → 0 limit of the gauges studied.

As explained above, to gauge fix the configurations, we
need to minimize the functional ERξ [U, g] through a suit-
able succession of gauge rotations of the link variables.
In practice, for every lattice site x, 8 real valued numbers
Λm(x) are generated with the Gaussian probability dis-
tribution (5) and combined in the SU(3) algebra element
Λ (for the generation of the Gaussian distribution we rely
on the standard Box-Muller algorithm). Then, for each
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Figure 1: Number of iterations required to meet our
convergence goal θ < 10−15 with a FFT steepest

descent minimization procedure (similar results hold for
the OVR and STR minimization procedures). We

illustrate the case of 200 uncorrelated configurations for
the value ξ = 0.3. Notice that at 50000 iterations the

minimization is considered to have failed.

link and Λ field, the GF functional (7) is minimized over
the link gauge orbit. For the Λ integration, we consider
50 different Λ’s for each configuration. Furthermore, to
reduce the correlations in the evaluation of the path inte-
gral, the Λ’s are generated independently for each gauge
configuration.

For each combination of link/Λ’s one expects the func-
tional ERξ [U, g] to have several minima and that the
problem of the Gribov copies is, for the linear covari-
ant gauges, at least as complicated as for the Landau
gauge. Given the exploratory nature of this work (and
that the Rξ GF problem is computationally much more
demanding than the corresponding Landau GF problem,
see below), possible Gribov copies effects will be simply
neglected, and a single minimum (or copy) will be stud-
ied.

The GF procedure represents clearly the hardest and
most time consuming part of the whole calculation. In
fact, while in Landau gauge the minmization over the
gauge orbit is similar to finding the energy minimum of a
spin glass system, in linear covariant gauges the minmiza-
tion resembles finding the energy minimum of a spin glass
in a Gaussian random distributed external field (our Λ).
From the computational point of view the latter problem
is much harder than the first one. In addition, minimiza-
tion in the Landau case happens in a compact space,
whereas for linear covariant gauges the contribution of
the “external field” Λ is unbounded; therefore for suffi-
ciently large ξ (recall that the width of the distribution
of the Gaussian distributed Λ increases with ξ), it can
happen that the minima of the energy is at the bound-
ary of the SU(3) group and not necessarily at a point
where the derivative of the energy vanishes.

For minimization purposes we first tried to apply three

Figure 2: (Top) The 324 values of ∇·A4 evaluated for a
configuration gauge fixed at ξ = 0.5, grouped in 5000

bins, compared with a Gaussian with standard
deviation

√
ξ ' 0.316. (Bottom) Plot of d = ∇·A4 − Λ4;

the two distributions coincide within
√
θ precision.

different standard optimized techniques used in the Lan-
dau case [46]: the Fast Fourier Transform - acceler-
ated steepest descent (FFT), Over Relaxation (OVR)
and Stochastic Relaxation (STR). Each one of the tech-
niques we have employed shows some convergence prob-
lems when minimizing the functional θ. A typical case is
shown in Fig. 1 for the FFT algorithm, where one can see
a convergence rate of around ∼ 75% for ξ = 0.3 and up
to 50 thousand iterations. A similar behavior is seen for
OVR and STR, with the convergence rate dropping to ∼
40% for ξ = 0.5 in all three cases. Thus we opted to cycle
through all convergence techniques when the procedure
stalls. Indeed, by cycling through FFT, OVR and STR,
for our hardest case of ξ = 0.5, we increase the conver-
gence success rate up to ∼90%; for the remaining 10%
cases, restarting the combined algorithm, after perform-
ing finite random gauge transformations, leads to con-
vergence for all cases (technical details will be presented
elsewhere [49]).

In Fig. 2 we compare the distribution obtained from
the values of ∇·Am with the one expected for Λm for
a given configuration and a given color index (m = 4)
after GF has succeeded; as one can appreciate the GF is
within the precision defined above.

IV. SIMULATION RESULTS

The lattice gluon two-point correlation function reads

〈Amµ (q̂ )Anν (q̂ ′)〉 = δmn∆µν(q)L4δ(q̂ + q̂ ′), (10)

where ∆µν is given in Eq. (3). The lattice momenta q̂
(used for Fourier transforms) and q, are defined according
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Figure 3: (Left) The Rξ longitudinal dressing function q2∆L ≡ ξ; a fit of the data to a constant yield ξ = 0.103(2),
0.203(2), 0.302(3), 0.402(3) and 0.502(3) respectively. (Right) The Rξ gluon transverse dressing function q2∆T.
Landau gauge results obtained for a symmetric lattice of L = 80 and β = 6.0 (gray crosses) are also plotted [9].

to [9, 50]

qµ =
2

a
sin

q̂µ
2

; q̂µ =
2πnµ
L

, nµ = 1, 2, . . . , L. (11)

From Eqs. (3) and (10) it follows that the transverse
and longitudinal SU(3) propagator form factors can be
estimated using,

∆T(q2) =
1

24L4

∑
µ,ν,m

(δµν − qµqν/q2)〈Amµ (q̂ )Amν (−q̂ )〉,

∆T(0) =
1

32L4

∑
µ,m

〈Amµ (0)Amµ (0)〉,

∆L(q2) =
1

8L4

∑
µ,ν,m

qµqν/q
2〈Amµ (q̂ )Amν (−q̂ )〉. (12)

In the case of the transverse form factor, renormalization
is performed by fitting the bare lattice propagator to the
one-loop inspired result

∆T(q2) =
K

q2

(
ln
q2

Λ2

)−γ
, (13)

where γ = 13/22 is the gluon anomalous dimension. The
fits, performed using the largest momentum range start-
ing around 2.5 GeV and going up to 5 GeV, provide the
constants K and Λ, which are then used to compute the
renormalization constant ZA via

∆T(q2) = ZA∆T
lat(q2), (14)

after requiring that the renormalized propagator is such
that ∆T (µ2) = 1/µ2. Our renormalization scale has been
set to µ = 4.317 GeV.

To begin with, we show in Fig. 3 the gluon dressing
functions. Within statistical fluctuations, the longitu-
dinal dressing function q2∆L(q2) should be a constant
function, coinciding with the variance ξ of the Λ prob-
ability distribution. This is evidently true for all cases

analyzed. In the right panel of Fig. 3 we plot the renor-
malized transverse dressing function q2∆T(q2) for the dif-
ferent ξ values studied. Clearly, no significant deviation
from the Landau gauge case is observed; in particular,
we find no evidence of the effects reported in the recent
continuum study [51], where a dressing function in which
the height of the peak rapidly increases and its location
moves towards higher q2 values with increasing ξ was
observed.

Next, we turn our attention to the transverse form
factor ∆T. The left panel of Fig. 4 shows the renor-
malized ∆T(q2) for the various ξ values. As was already
the case in the Landau gauge, one can see that the Rξ
transverse propagators show an inflection point, implying
that the associated spectral density is not positive defi-
nite. Indeed, the associated (Euclidean) Schwinger func-
tion violates the property of reflection positivity [52, 53],
which could be interpreted as a manifestation of confine-
ment [54–58]. In addition, they have a marked tendency
to flatten towards the small momentum region, thus pro-
viding strong evidence that also in the ξ 6= 0 case the be-
havior of the zero-momentum modes of the lattice gluon
field are tamed by some non-trivial IR dynamics. The
data confirms an IR hierarchy such that ∆T (slightly)
decreases for increasing values of the gauge fixing pa-
rameter [40, 42]. This is better seen in Fig. 4 (right)
where we plot the ratio of the transverse propagator to
the Landau gauge propagator ∆ξ=0

T as a function of the
momentum for the two values ξ = 0.1 and ξ = 0.5; ob-
serving a maximum difference of about 10%.

In order to estimate the finite volume effects on ∆T,
we included in the corresponding plot the Landau gauge
(ξ = 0) transverse form factor computed from an 804

lattice with β = 6.0 and a physical volume of about 8.1
fm [9] (gray crosses). These data show that simulations
on larger physical volumes have the tendency to suppress
the gluon propagator in the infrared region. This effect
is clearly seen for momenta about 300 MeV and smaller.
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Figure 4: (Left) The Rξ transverse propagator ∆T renormalized at µ = 4.317 [GeV]. The gray crosses (same as Fig.
3 right [9]) provide an estimate for the volume effects expected at q2 = 0. (Right) The ratio ∆T(q2)/∆ξ=0
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For the Rξ gauges studied here, a similar scaling with
lattice volume is expected. This suggests a systematic
overall decrease of ∼ 10 − 15% for ∆T in the small mo-
mentum region.

V. CONCLUSIONS

In this paper the lattice SU(3) gluon propagator in Rξ
gauges has been computed for values of the GF parameter
ξ up to 0.5 and a lattice volume large enough to access
its IR region. From the numerical point of view, the
most intensive task turned out to be the gauge fixing,
due to the large number of GF’s required and convergence
issues. Nevertheless, at least within the set of parameters
simulated here, a proper combination of various methods
(FFT, OVR and STR) solved the minmization problem
associated with the GF in Rξ gauges.

Our Rξ propagators show very similar characteristics
to the one found in the Landau gauge, being character-
ized by an inflection point in the few hundreds MeV re-
gion followed by a rapid saturation to a finite nonvan-
ishing value in the IR. In particular, we find qualitative
agreement with the recent continuum analysis of [59],
where predictions for the behavior of the Rξ gauge gluon

propagator were derived within the context of a dynam-
ically generated gluon mass scenario.

Our study suggests that the IR saturation of the gluon
propagator represents a remarkable generic feature of all
Yang-Mills theories quantized in Rξ gauges, which every
model of the underlying IR dynamics ought to be able to
explain.
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