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Nucleon-nucleon systems are studied with lattice quantum chromodynamics at a pion mass of
mπ ∼ 450 MeV in three spatial volumes using nf = 2 + 1 flavors of light quarks. At the quark
masses employed in this work, the deuteron binding energy is calculated to be Bd = 14.4+3.2

−2.6 MeV,

while the dineutron is bound by Bnn = 12.5+3.0
−5.0 MeV. Over the range of energies that are studied,

the S-wave scattering phase shifts calculated in the 1S0 and 3S1-3D1 channels are found to be similar
to those in nature, and indicate repulsive short-range components of the interactions, consistent with
phenomenological nucleon-nucleon interactions. In both channels, the phase shifts are determined at
three energies that lie within the radius of convergence of the effective range expansion, allowing for
constraints to be placed on the inverse scattering lengths and effective ranges. The extracted phase
shifts allow for matching to nuclear effective field theories, from which low energy counterterms are
extracted and issues of convergence are investigated. As part of the analysis, a detailed investigation
of the single hadron sector is performed, enabling a precise determination of the violation of the
Gell-Mann–Okubo mass relation.

PACS numbers: 11.15.Ha, 12.38.Gc,

I. INTRODUCTION

Calculating the interactions between nucleons and the properties of multi-nucleon systems directly from quantum
chromodynamics (QCD) will be an important milestone in the development of nuclear physics. While Lattice QCD
(LQCD) calculations of simple hadronic systems are now being performed at the physical light-quark masses and the
effects of quantum electrodynamics (QED) are beginning to be included (see, e.g. Ref. [1]), such calculations have
not yet been presented for more complex systems such as nuclei. However, remarkable progress has been made in
the ongoing efforts to calculate the lowest-lying energy levels of the simplest nuclei and hypernuclei (with A ≤ 4)
and the nucleon-nucleon scattering S-matrix elements [2–22]. The magnetic moments and polarizabilities of the light
nuclei have recently been calculated [23, 24], and by determining the short-range interaction between nucleons and
the electromagnetic field, the first LQCD calculation of the radiative capture process np → dγ [25] was recently
performed and the experimentally measured cross section was recovered within the uncertainties of the calculation
after extrapolation to the physical quark masses. These calculations represent crucial steps toward verifying LQCD
as a useful technique with which to calculate the properties of nuclear systems. However, it will take significant
computational resources to reduce the associated uncertainties below those of experiment. Near term advances in
the field will come from calculations of quantities that are challenging or impossible to access experimentally, such as
multi-nucleon forces, hyperon-nucleon interactions, rare weak matrix elements and exotic nuclei, such as hypernuclei
and charmed nuclei, that are of modest computational complexity. Further, performing calculations specifically to
match LQCD results to low-energy effective field theories (EFTs) will provide a means to make first predictions at the
physical quark masses and to make predictions of quantities beyond those calculated with LQCD. Such calculations
are now underway, using the results of our previous works and those of Yamazaki et al., with the first efforts described,
for example, in Ref. [26] for hyperon-nucleon interactions and Ref. [27, 28] for nucleon-nucleon interactions and light
nuclei.

In this work, we present the results of LQCD calculations of two-nucleon systems performed at a pion mass of
mπ ∼ 450 MeV in three lattice volumes of spatial extent L = 2.8 fm, 3.7 fm and 5.6 fm at a lattice spacing of
b ∼ 0.12 fm. As only one lattice spacing has been employed, extrapolations of the results to the continuum limit
have not been performed, although the uncertainties that we finally present encompass the expected effects of these
extrapolations. In Section II, we introduce the LQCD methods that are used to determine correlation functions
and Section III reports the results of precision studies of the single hadron systems. Section IV explores the 3S1-3D1
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TABLE I: Parameters of the ensembles of gauge-field configurations and of the measurements used in this work. The
lattices have dimension L3 × T , a lattice spacing b, and a bare quark mass b mq (in lattice units). Nsrc light-quark
sources are used (as described in the text) to perform measurements on Ncfg configurations in each ensemble.

Label L/b T/b β b ml b ms b [fm] L [fm] T [fm] mπL mπT Ncfg Nsrc

A 24 64 6.1 -0.2800 -0.2450 0.1167(16) 2.801(29) 7.469(77) 6.390 17.04 4407 1.16× 106

B 32 96 6.1 -0.2800 -0.2450 0.1167(16) 3.734(38) 11.20(12) 8.514 25.54 4142 3.95× 105

C 48 96 6.1 -0.2800 -0.2450 0.1167(16) 5.602(58) 11.20(12) 12.78 25.49 1047 6.8× 104

coupled-channel systems in detail, while the 1S0 channel is discussed in Section V. In Section VI, these channels are
further investigated in the context of nucleon-nucleon effective field theory (NNEFT) before the conclusions of the
study are presented in Section VII.

II. METHODOLOGY

A. Calculational Details

LQCD calculations were performed on three ensembles of nf = 2 + 1 isotropic gauge-field configurations with
L = 24, 32 and 48 lattice sites in each spatial direction, T = 64, 96, 96 sites in the temporal direction, respectively, and
with a lattice spacing of b = 0.1167(16) fm [29]. The Lüscher-Weisz gauge action [30] was used with a clover-improved
quark action [31] with one level of stout smearing (ρ = 0.125) [32]. The clover coefficient was set equal to its tree-level
tadpole-improved value, a value that is consistent with an independent numerical study of the nonperturbative cSW

in the Schrödinger functional scheme [33–35], reducing discretization errors from O(b) to O(b2). The L = 24, 32 and
48 ensembles consist of 3.4 × 104, 2.2 × 104, and 1.5 × 104 HMC evolution trajectories, respectively. Calculations
were performed on gauge-field configurations taken at uniform intervals from these trajectories, see Table I. The
strange-quark mass was tuned to that of the physical strange quark, while the selected light-quark mass gave rise to a
pion of mass mπ = 449.9(0.3)(0.3)(4.6) MeV and a kaon of mass mK = 595.9(0.2)(0.2)(6.1) MeV. Many details of the
current study mirror those of our previous work at the SU(3) symmetric point, which can be found in Refs. [14, 17]. In
each run on a given configuration, 48 quark propagators were generated from uniformly distributed Gaussian-smeared
sources on a cubic grid with an origin randomly selected within the volume. The parameters of the Gaussian smearing
are the same as those used in Refs. [14, 17]. Multiple runs were performed to increase statistical precision and the
total number of measurements is recorded in Table I. Specifics of the ensembles and the number of sources used in
each ensemble can also be found in Table I. Quark propagators were computed using the multigrid algorithm [36] or
using GPUs [37, 38] with a tolerance of 10−12 in double precision. In the measurements performed on the L = 24
and 32 ensembles, the quark propagators, either unsmeared or smeared at the sink using the same parameters as used
at the source, provided two sets of correlation functions for each combination of source and sink interpolating fields,
labeled as SP and SS, respectively. In contrast, for the measurements performed on the L = 48 ensemble only SP
correlation functions were produced. The propagators were contracted into baryon blocks that were projected to a
well-defined momentum at the sink, that were then used to form the one- and two-nucleon correlation functions. 1

The blocks are of the form

BijkN (p, t;x0) =
∑
x

eip·xS
(f1),i′

i (x, t;x0)S
(f2),j′

j (x, t;x0)S
(f3),k′

k (x, t;x0)b
(N)
i′j′k′ , (1)

where S(f) is a quark propagator of flavor f = u, d, and the indices are combined spin-color indices running over
i = 1, ..., NcNs, where Nc = 3 is the number of colors and Ns = 4 is the number of spin components. The choice of the
fi and the tensor b(N) depend on the spin and flavor of the nucleon under consideration, and the local interpolating
fields constructed in Ref. [39], restricted to those that contain only upper-spin components (in the Dirac spinor basis)
are used. This choice results in the simplest interpolating fields that also have good overlap with the nucleon ground

1 As such, the same Gaussian smeared quark propagators were used to generate the single-nucleon and two-nucleon correlation functions.
We have employed a small number of different source and sink structures, as described in Ref. [39], and have presented optimal
combinations for each hadron. The ground state energies extracted from the correlation functions for a given species of hadron are
consistent within uncertainties.
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states (from localized sources). Blocks are constructed for all lattice momenta |p|2 < 5 allowing for the study of
two-nucleon systems with zero or nonzero total momentum. In the production on the L = 32 ensemble, correlation
functions were produced for all of the spin states associated with each nuclear species. However, only one spin state
per species was calculated on the L = 24 and L = 48 ensembles.

B. Robust Estimators: The Mean with Jacknife and the Hodges-Lehmann Estimator with Bootstrap

The correlation functions are estimated from calculations performed from many source locations on many gauge-
field configurations. On any given configuration, these results are correlated and, because they become translationally
invariant after averaging, they can be blocked together to generate one representative correlation function for each
configuration. More generally, because of the correlation between nearby configurations produced in a Markov chain,
the results obtained over multiple gauge-field configurations are blocked together to produce one representative cor-
relation function from any particular subsequence of the Markov chain. In this work, there are a large number of
independent representative correlation functions which, by the central limit theorem, tend to possess a Gaussian-
distributed mean. As computational resources are finite, only a finite number of calculations of each correlation
function can be performed. The underlying distributions of the nuclear correlation functions are non-Gaussian with
extended tails, and therefore outliers are typically present in any sample which lead to slow convergence of the mean.
This can then lead to significant fluctuations in estimates of correlation functions when resampling methods, such
as Bootstrap and Jacknife, are employed using the mean to estimate average values (for a discussion of the “noise”
associated with these and other such calculations, see Ref. [40–42]). Dealing with outliers of distributions is required
in many areas beyond LQCD, and there is extensive literature on robust estimators that are resilient to the presence of
outliers, such as the median or the Hodges-Lehmann (HL) estimator [43]. The vacuum expectation values of interest
in quantum field theory are defined by the mean value of a (generally non-Gaussian) distribution. Nevertheless, with
sufficient blocking, the mean of the distribution will be Gaussian distributed, for which the mean, median, mode and
HL estimator coincide. It therefore makes sense to consider such robust estimators for large sets of blocked LQCD
correlation functions.

While the median of a sample {xi} is well known, the HL-estimator is less so. It is a robust and unbiased estimator
of the median of a sample, and is defined as [43]

HL({xi}) = Median [{(xi + xj)/2}] , (2)

where the sample is summed over all 1 < i, j < N , where N is the sample size. The uncertainty associated with the
HL-estimator is derived from the Median Absolute Deviation (MAD), defined as

MAD({xi}) = Median [{|xi −Median [{xi}] |}] . (3)

For a Gaussian distributed sample, 1σ = 1.4826 MADs. The median, HL-estimator and other similar estimators
cannot be computed straightforwardly under Jackknife, and instead such analyses are performed with Bootstrap
resampling.

In the present work, the correlation functions, and their ratios, are analyzed using both the mean under Jackknife
and HL under Bootstrap, from ∼ 100 representative correlation functions constructed by blocking the full set of
correlation functions. In almost all cases, the HL with Bootstrap gives rise to smaller statistical fluctuations over
the resampled ensembles and, consequently, to smaller uncertainties in estimates of energies, as seen in our previous
investigation into robust estimators [44]. It is found that outlying blocked correlation functions cause a significant
enlargement of the estimated variance of the mean, while the robust HL-estimator is insensitive to them.

III. SINGLE MESONS AND BARYONS

Precision measurements of the single hadron masses, their dispersion relations and their volume dependence are es-
sential for a complete analysis of multi-nucleon systems, in particular for a complete quantification of the uncertainties
in binding energies and S-matrix elements. Single hadron correlation functions for the π±, ρ±, K±, K∗,±, the octet
baryons and the decuplet baryons were calculated in each of the three lattice volumes at six different momenta (in each
volume), from which ground-state energies for each momentum were extracted. The hadron energies were extracted
from plateaus in the effective mass plots (EMPs) derived from linear combinations (in the L = 24 and 32 ensembles)
of the SP and SS correlation functions calculated at each lattice momentum. The EMPs associated with the π± and
K± are shown in Fig. 1 and Fig. 2, respectively, while the EMPs for the octet baryons are shown in Figs. 3, 4, 5 and
6. It is clear from the EMPs that extended ground-state plateaus exists for all hadrons at all momenta, and as such



4

0 5 10 15 20 25
0

0.2

0.4

0.6

t (l.u.)

m
π

(l
.u
.)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

t (l.u.)

m
π

(l
.u
.)

0 5 10 15 20 25 30 35 40 45
0

0.2

0.4

0.6

t (l.u.)

m
π

(l
.u
.)

FIG. 1: Cosh EMPs for the π± in the L = 24 (left), L = 32 (center), L = 48 (right) lattice volumes, respectively. In ascending
order, the momenta are P = 2πn/L with |n|2 = 0, 1, 2, 3, 4, 5.
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FIG. 2: Cosh EMPs for the K± in the L = 24 (left), L = 32 (center), L = 48 (right) lattice volumes, respectively. In ascending
order, the momenta are P = 2πn/L with |n|2 = 0, 1, 2, 3, 4, 5.
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FIG. 3: EMPs for the nucleon in the L = 24 (left), L = 32 (center), L = 48 (right) lattice volumes, respectively. In ascending
order, the momenta are P = 2πn/L with |n|2 = 0, 1, 2, 3, 4, 5.
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FIG. 4: EMPs for the Λ in the L = 24 (left), L = 32 (center), L = 48 (right) lattice volumes, respectively. In ascending order,
the momenta are P = 2πn/L with |n|2 = 0, 1, 2, 3, 4, 5.

relatively precise hadron masses and dispersion relations can be determined. As only SP correlation functions were
calculated for the L=48 ensemble, the ground state plateaus set in at larger times for each hadron in this ensemble
than in the L=24 and L=32 ensembles. A correlated χ2-minimization fit of the plateau region in combinations
of correlation function to a constant energy was performed over a range of fit intervals to determine the energy, its
statistical uncertainty and the systematic uncertainty due to the selection of the fitting range. The energies of the



5

0 5 10 15 20

0.8

0.9

1.0

t (l.u.)

m
Σ
(l
.u
.)

0 5 10 15 20

0.8

0.9

1.0

t (l.u.)

m
Σ
(l
.u
.)

0 5 10 15 20

0.8

0.9

1.0

t (l.u.)

m
Σ
(l
.u
.)

FIG. 5: EMPs for the Σ in the L = 24 (left), L = 32 (center), L = 48 (right) lattice volumes, respectively. In ascending order,
the momenta are P = 2πn/L with |n|2 = 0, 1, 2, 3, 4, 5.
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FIG. 6: EMPs for the Ξ in the L = 24 (left), L = 32 (center), L = 48 (right) lattice volumes, respectively. In ascending order,
the momenta are P = 2πn/L with |n|2 = 0, 1, 2, 3, 4, 5.

pseudoscalar mesons and octet baryons are are shown in Table II and Table III, respectively.

TABLE II: The pion and kaon energies (l.u.) as a function of momentum (l.u.), |P| =
(
2π
L

)
|n|, calculated on each

ensemble of gauge-field configurations. The infinite-volume meson masses, determined by fitting expressions of the
form in eq. (4), are also given. The first uncertainty associated with each extraction is statistical and the second is
the fitting systematic. In the case of the extrapolated values, the systematic uncertainty also contains the estimated
uncertainty due to the extrapolation (which is small in both cases).

meson ensemble |n| = 0 |n|2 = 1 |n|2 = 2 |n|2 = 3 |n|2 = 4 |n|2 = 5

243 × 64 0.26626(36)(14) 0.37184(28)(34) 0.45341(30)(45) 0.5204(07)(13) 0.5812(10)(17) 0.6329(09)(12)

π± 323 × 96 0.26607(23)(09) 0.33006(20)(14) 0.38330(21)(16) 0.43042(26)(28) 0.47156(43)(93) 0.5093(05)(12)

483 × 96 0.26607(17)(11) 0.29624(14)(05) 0.32365(13)(10) 0.34895(16)(10) 0.37221(22)(18) 0.39404(31)(35)

L =∞ 0.26606(14)(08)

243 × 64 0.35239(30)(16) 0.43749(24)(25) 0.50810(22)(25) 0.56947(35)(50) 0.6224(07)(13) 0.67109(52)(55)

K± 323 × 96 0.35248(18)(08) 0.40259(16)(17) 0.44725(17)(09) 0.48782(24)(49) 0.52357(45)(60) 0.55727(46)(88)

483 × 96 0.35236(16)(25) 0.37559(13)(06) 0.39744(13)(06) 0.41814(13)(06) 0.43760(17)(05) 0.45628(21)(09)

L =∞ 0.35240(11)(03)

The energies determined at zero momentum are used to extrapolate the hadron masses to infinite volume, and
are combined with the other energies to determine their dispersion relations. With the large values of mπL in the
ensembles of gauge configurations, it is sufficient to use the leading-order (LO) finite-volume (FV) corrections to the
hadron masses to extrapolate from the volumes of the calculations to infinite volume. The LO modifications to the
pseudoscalar masses, mM , and baryon masses, MB , are given by

m
(V )
M (mπL) = m

(∞)
M + cM

e−mπL

(mπL)3/2
+ ...

M
(V )
B (mπL) = M

(∞)
B + cB

e−mπL

mπL
+ ... , (4)
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TABLE III: The baryon energies (l.u.) as a function of momentum (l.u.), |P| =
(
2π
L

)
|n|, calculated on each ensemble

of gauge-field configurations. The infinite-volume masses, determined by fitting the expression in eq. (4), are also
given. The first uncertainty is statistical and the second is the fitting systematic. In the case of the extrapolated
values, the systematic uncertainty also contains the estimated uncertainty due to the extrapolation (which is small
in all cases).

baryon ensemble |n| = 0 |n|2 = 1 |n|2 = 2 |n|2 = 3 |n|2 = 4 |n|2 = 5

243 × 64 0.7251(04)(11) 0.7699(10(13) 0.8108(10)(13) 0.8497(13)(21) 0.8944(16)(23) 0.9311(17)(23)

N 323 × 96 0.72546(47)(31) 0.75160(60)(47) 0.77657(75)(89) 0.80098(62)(81) 0.8238(07)(11) 0.8467(07)(10)

483 × 96 0.7245(10)(13) 0.7359(21)(34) 0.7471(23)(35) 0.7556(20)(36) 0.7661(21)(40) 0.7771(22)(42)

L =∞ 0.72524(46)(35)

243 × 64 0.77609(42)(66) 0.8165(14)(18) 0.8533(14)(21) 0.8918(23)(34) 0.9336(14)(22) 0.9709(12)(16)

Λ 323 × 96 0.77633(45)(48) 0.80059(60)(48) 0.82435(75)(51) 0.84687(78)(54) 0.8680(10(14) 0.8900(08)(10)

483 × 96 0.77650(94)(80) 0.7858(14)(20) 0.7963(14)(21) 0.8066(15)(23) 0.8166(16)(27) 0.8268(16)(29)

L =∞ 0.77638(42)(48)

243 × 64 0.79520(70)(65) 0.83608(73)(62) 0.87550(75)(87) 0.9147(07)(13) 0.9485(07)(10) 0.9855(10)(24)

Σ 323 × 96 0.79634(31)(49) 0.82033(60)(61) 0.84320(63)(75) 0.86502(71)(51) 0.88575(60)(57) 0.90755(65)(63)

483 × 96 0.7958(12)(13) 0.8050(14)(23) 0.8152(15)(24) 0.8253(16)(26) 0.8351(16)(28) 0.8451(17)(30)

L =∞ 0.79638(33)(54)

243 × 64 0.83646(63)(49) 0.87594(60)(58) 0.91318(58)(54) 0.9487(06)(10) 0.9828(06)(11) 1.01668(60)(95)

Ξ 323 × 96 0.83715(53)(58) 0.85886(49)(59) 0.88044(50)(57) 0.90201(51)(36) 0.92261(62)(89) 0.94276(66)(89)

483 × 96 0.83643(68)(72) 0.8460(11)(10) 0.8557(12)(11) 0.8652(12)(13) 0.8744(13)(14) 0.8837(14)(17)

L =∞ 0.83690(45)(50)

where the forms are those of p-regime chiral perturbation theory (χPT) and heavy-baryon χPT (HBχPT [45]). The

infinite-volume masses, m
(∞)
M and M

(∞)
B , and the coefficients of the LO volume dependence, cM and cB , are quantities

determined by fits to the LQCD calculations, and will, in general, be different for each hadron.
The zero-momentum energies of the pseudoscalar mesons and their infinite-volume extrapolation are given in Table II

and shown in Fig. 7. The energies of both mesons are found to be independent of the lattice volume within the

FIG. 7: The volume dependence of the π+ (left panel) and K± (right panel) masses. Energies (l.u.) in the L = 24, 32 and 48
lattice volumes are shown as the blue, yellow and red points, respectively, while the results of fits to these results of the form
given in eq. (4) are shown by the shaded regions with the inner (outer) band denoting the statistical (statistical and systematic
combined in quadrature) uncertainties.

uncertainties of the calculations. Despite the larger number of correlation functions in the L = 24 ensemble, the
uncertainties in the meson masses are larger than those extracted from the L = 32 ensemble. The zero-momentum
energies of the octet baryons and their infinite-volume extrapolation are given in Table III and shown in Fig. 8.
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As with the mesons, there is no statistically significant volume dependence observed for any of the octet-baryon

FIG. 8: The volume dependence of the N , Λ, Σ and Ξ masses. Energies (l.u.) in the L = 24, 32 and 48 lattice volumes are
shown as the blue, yellow and red points, respectively, while fits to these results are shown by the gray, shaded regions with
the inner (outer) band denoting the statistical (statistical and systematic combined in quadrature) uncertainties.

masses. Two-parameter χ2-minimization fits of the form given in eq. (4) were performed to the volume-dependence
of each hadron to extract its infinite-volume mass. Because of the negligible volume dependence in the LQCD results,
limited constraints can be placed on the cM,B coefficients. In addition to the π±, K± and octet baryons, analogous
extrapolations were performed with the results obtained for the ρ±, K∗± and decuplet baryons, the combined results
of which are shown in Table IV (in both l.u. and MeV).

TABLE IV: The infinite-volume hadron masses obtained by extrapolating zero-momentum ground-state energies
with the volume dependence given in eq. (4). The first and second uncertainties are the statistical and systematic,
respectively, while the third for values in units of MeV results from the uncertainty in the scale setting.

hadron Mass (l.u.) Mass (MeV) hadron Mass (l.u.) Mass (MeV)

π± 0.26614(15)(15) 449.9(0.3)(0.3)(4.6) K± 0.35241(12)(11) 595.9(0.2)(0.2)(6.1)

ρ± 0.5248(14)(15) 887.3(2.4)(2.5)(9.1) K∗± 0.56923(89)(51) 962.4(1.5)(0.9)(9.9)

N 0.72524(46)(35) 1226(01)(01)(12) Λ 0.77638(42)(48) 1312(01)(01)(13)

Σ 0.79638(33)(54) 1346(01)(01)(14) Ξ 0.83690(45)(50) 1415(01)(01)(15)

∆ 0.8791(14)(17) 1486(02)(03)(15) Σ∗ 0.9211(17)(19) 1557(03)(03)(16)

Ξ∗ 0.9637(09)(17) 1629(02)(03)(17) Ω 1.0059(06)(12) 1700(01)(02)(17)

Deviations of the single hadron dispersion relations from that of special relativity lead to modifications to Lüscher’s
quantization conditions (QCs) in two-body systems. To address this, the dispersion relations have been precisely
determined, and the deviations from special relativity are propagated through the extraction of S-matrix elements



8

using the QCs. In each of the ensembles, single hadron correlation functions were calculated for each of the hadrons of
interest with momenta |p| ≤

√
5 (2π/L), the results of which are given in Table II and Table III. Energy-momentum

relations that are fit to the results obtained for each hadron, h, are of the form

E2
h = M2

h + v2
h|p|2 + ηh

(
|p|2

)2
, (5)

where the hadron speed of light, vh, and the higher-order deviation from special relativity, parameterized by ηh, are
determined by fits to the results of the LQCD calculations. With this parameterization, the vh are consistent with
unity and the ηh are consistent with zero (for all hadrons). There is a Lorentz-breaking term that could be considered
at this order in a momentum expansion,

∑
j

p4
j , but this is also found to be consistent with zero. The energies of
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FIG. 9: Dispersion relations of the π±, K± . The results in the L = 24, 32 and 48 lattice volumes are shown as the blue,
yellow and red points, respectively, while fits to these results are shown by the gray curves.

the π±, K± and octet baryons as a function of momentum are given in Table II and Table III and shown in Fig. 9
and Fig. 10. χ2-minimization fits to the energy-momentum dispersion relation are performed to extract the speed of
light for each hadron, the results of which are shown in Table V. In the low-energy regime relevant to the two-nucleon

TABLE V: The speed of light of each hadron determined from fits to the energy-momentum results.

hadron vh hadron vh

π± 1.0025(18)(08) K± 1.0038(20)(12)

N 1.010(16)(07) Λ 1.018(15)(01)

Σ 1.010(12)(03) Ξ 1.0102(61)(13)

systems, the dispersion relation of special relativity is found to hold at the ∼ 1% level.

A. The Gell-Mann-Okubo Mass Relation

Given the precise determinations of the single hadron spectrum, it is important to test relations between baryon
masses that are predicted to hold in particular limits of QCD. The Gell-Mann–Okubo mass relation [46, 47] arises
from SU(3) flavor symmetry and its violation, quantified by

TGMO = MΛ +
1

3
MΣ −

2

3
MN −

2

3
MΞ , (6)

results from SU(3) breaking transforming in the 27-plet irreducible representation (irrep) of flavor SU(3) which can
only arise from multiple insertions of the light-quark mass matrix or from non-analytic meson-mass dependence
induced by loops in χPT. Further, it has been shown that TGMO vanishes in the large-Nc limit as 1/Nc [48]. In
previous work [49], we performed the first LQCD determination of this quantity, after which more precise LQCD
determinations [50] were performed. In this work, by far the most precise determination of TGMO was obtained from the
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FIG. 10: Dispersion relations of the octet baryons. The results in the L = 24, 32 and 48 lattice volumes are shown as the blue,
yellow and red points, respectively, while fits to these results are shown by the gray curves.

L = 32 ensemble, where we find TGMO = +0.000546(51)(81) l.u. = +0.92(09)(14)(01) MeV (compared with TGMO =
+0.00056(19)(38) l.u. = +0.96(33)(64)(01) MeV and TGMO = +0.00104(27)(29) l.u. = +1.76(46)(49)(02) MeV, from
the L = 24 and 48 ensembles, respectively). It is conventional to form the dimensionless quantity δGMO = TGMO/M0,
where M0 is the centroid of the octet baryons masses. In the present calculations, the centroid is found to be M0 =
0.78658(51)(36) l.u. = 1329(01)(01)(14) MeV, from which δGMO = 0.00069(06)(10). This value is consistent with our
previously published result close to this pion mass and is also consistent with other subsequent determinations [50],
but far more precise. However, as the present calculations have been performed at only one lattice spacing, there is a
systematic uncertainty associated with extrapolating to the continuum that is not directly quantified, but which we
have estimated to be small. It is worth noting that the experimental value, T expt

GMO = +8.76(08) MeV, is an order of
magnitude larger than the value we have determined at this heavier pion mass.

IV. THE 3S1-
3D1 COUPLED CHANNELS AND THE DEUTERON

The phenomenology of the 3S1-3D1 coupled J = 1 channels in finite volumes has been explored recently using
the experimentally constrained phase shifts and mixing angles in an effort to understand what might be expected in
future LQCD calculations [51]. One goal of that study was to estimate the lattice volumes, and identify the correlation
functions, required to extract the phase shifts and mixing parameter describing these channels in infinite volume. It
was found to be convenient in those FV studies [51] to use the Blatt-Biedenharn (BB) [52] parameterization of the
2× 2 S-matrix (below the inelastic threshold),

S(J=1) =

 cos ε1 − sin ε1

sin ε1 cos ε1

  e2iδ1α 0

0 e2iδ1β

  cos ε1 sin ε1

− sin ε1 cos ε1

 , (7)

from which the QCs associated with these channels can be determined. For the two-nucleon system at rest in a cubic
volume, embedded in the even parity T1 irrep of the cubic group, the QC in the limit of vanishing δ1β , D-waves and
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higher phase shifts becomes [51]

k∗T1
cot δ1α(k∗T1

) = 4πc
(0,0,0)
00 (k∗T1

;L) , (8)

where k∗T1
is the magnitude of the momentum in the center-of-momentum (CoM) frame, and the function c

(0,0,0)
00 (k∗T1

;L)
is proportional to the Lüscher Z00 function, as given in Ref. [53, 54]. The phase shift δ1α is evaluated at k∗T1

. The
three jz-substates are degenerate and their energies are insensitive to the mixing parameter ε1.

In contrast, for the two-nucleon system carrying one unit of lattice momentum along the z-axis, Ptot. = 2π
L d with

d = (0, 0, 1), the three substates are embedded into two distinct even-parity irreps of the cubic group - the one-
dimensional A2 representation and the two-dimensional E representation, containing the jz = 0 and jz = ±1 states,
respectively. In the same limit as taken to derive eq. (8), the QCs for these two irreps are [51]

k∗A2
cot δ1α(k∗A2

) = 4πc
(0,0,1)
00 (k∗A2

;L) − 1√
5

4π

k∗2A2

c
(0,0,1)
20 (k∗A2

;L) sε1(k∗A2
) ,

k∗E cot δ1α(k∗E) = 4πc
(0,0,1)
00 (k∗E;L) +

1

2
√

5

4π

k∗2E
c
(0,0,1)
20 (k∗E;L) sε1(k∗E) , (9)

where

sε1(k∗) =
√

2 sin 2ε1(k∗)− sin2 ε1(k∗) . (10)

The difference in energy between the A2 and E FV eigenstates provides a measure of ε1, but this is complicated by
the fact that they are evaluated at two slightly different energies. This analysis can be extended to other lattice
momenta [51], but the QCs in eq. (8) and eq. (9) are sufficient for the present purposes.

Correlation functions for two nucleons in the T1, A2 and E irreps are straightforwardly constructed from the nucleon
blocks we have described previously. In fact, multiple correlation functions are constructed in each irrep. In the L = 24
and 48 ensembles, the spin projections were not performed to permit construction of the A2 irrep, and so only L = 32
correlation functions can be used to constrain ε1.

A. The Deuteron

In nature, the deuteron is the only bound state in the two-nucleon systems, residing in the 3S1-3D1 coupled channels,
and it has a special position in nuclear physics. The deuteron has always provided a benchmmark when deriving phe-
nomenological interactions between nucleons, and it will play a critical role in verifying LQCD as a viable calculational
tool. Correlation functions for two nucleons in the even-parity T1 irrep of the cubic group were constructed, from
which, after a correlated subtraction of twice the energy of a single nucleon, the EMPs shown in Fig. 11 were derived 2.
As with the single hadrons, correlated χ2-minimization fits of a constant to the plateau regions were performed to
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FIG. 11: EMPs for the energy difference between the deuteron and twice the nucleon in the L = 24 (left), L = 32 (center)
and L = 48 (right) ensembles, along with fits to the plateau regions. The extracted binding energies are given in Table VI.

2 The single nucleon correlation function, the square of which is divided out of two-nucleon correlation functions to yield a plateau on
the energy difference, have been temporally displaced, in some instances, to enhance the plateau region in the difference. Further, due
to the nature of the HL estimator, the first few time-slices in the difference correlation function have been removed, leading to temporal
displacements of the EMPs. The EMPs defining energy differences in this work correspond to both the one-nucleon and two-nucleon
correlation functions being in their respective ground states (as defined by plateaus in their respective individual EMPs).
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TABLE VI: The deuteron binding energies extracted from plateaus in the EMPs shown in Fig. 11, along with the
infinite-volume extrapolated value. The size of the FV effects is characterized by e−κL, shown in the last column.
The first uncertainty corresponds to the statistical uncertainty associated with the fit, the second corresponds to the
systematic uncertainty associated with the selection of the fitting interval (determined by varying this range). In
the case of dimensionful quantities, the third uncertainty is associated with scale setting. For the infinite-volume
values of the binding energy, the last uncertainty is introduced by the finite-volume extrapolation in eq. (11), and is
estimated by considering the effect of omitted terms scaling as e−2κ0L/L.

Ensemble ∆E (l.u.) Bd (MeV) e−κL

243 × 64 -0.01157(73)(96) 19.6(1.2)(1.6)(0.2) 0.111

323 × 96 -0.01037(89)(96) 17.5(1.5)(1.6)(0.2) 0.063

483 × 96 -0.0078(12)(19) 13.3(2.0)(3.2)(0.2) 0.027

L =∞ −0.0085
+(10)(16)(01)

−(10)(11)(01) 14.4
+(1.6)(2.7)(0.2)(0.2)

−(1.8)(1.8)(0.2)(0.2)

estimate the deuteron binding energy, Bd, and associated uncertainties. The deuteron binding energies extracted from
each ensemble are given in Table VI, along with the values of e−κL, where κ =

√
MNBd is the binding momentum of

the deuteron. As e−κL is seen to change from ∼ 3% in the largest volume to ∼ 11% in the smallest, an extrapolation
in volume is desirable.

Inspired by the FV contributions to the binding of a shallow bound state resulting from short-range interactions [55–
57], the extrapolation to infinite volume was performed by fitting a function of the form,

Bd(L) = B
(∞)
d + c1

[
e−κ0L

L
+
√

2
e−
√

2κ0L

L
+

4

3
√

3

e−
√

3κ0L

L

]
+ ... , (11)

to the results obtained in the three lattice volumes, where κ0 =

√
MNB

(∞)
d (with B

(∞)
d the deuteron binding energy

in infinite volume) and c1 are the fit parameters. The ellipsis denote terms that are O(e−2κ0L) and higher. A χ2-

minimization fit to the deuteron binding energies in Table VI generates the region in c1-B
(∞)
d parameter space shown

in Fig. 12, defined by χ2 → χ2
min + 1. The deuteron binding energy found from extrapolating to infinite volume is

FIG. 12: The region in c1-B
(∞)
d parameter space defined by χ2 → χ2

min + 1. The inner region is defined by the statistical
uncertainty, while the outer region is defined by the statistical and systematic uncertainties combined in quadrature.

B
(∞)
d = 14.4

+(1.6)(2.7)(0.2)(0.2)
−(1.8)(1.8)(0.2)(0.2) MeV . (12)

The first uncertainty corresponds to the statistical uncertainty, the second corresponds to the fitting systematic
uncertainty, the third is associated with scale setting, and the last uncertainty is introduced by the finite-volume
extrapolation in eq. (11), and is estimated by considering the effect of terms scaling as ∼ e−2κ0L/L. Combining the

errors in eq. (12) in quadrature leads to B
(∞)
d = 14.4+3.2

−2.6 MeV.
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1. The Mixing Parameter, ε1

For a deuteron that is moving in the lattice volume, the energy eigenvalues are sensitive to the mixing parameter ε1,
as expected from the QCs given in eq. (9) for the specific boost d = (0, 0, 1). Explicitly evaluating the cdlm functions
that appear in eq. (9) for the two irreps containing the deuteron gives the QCs,

k∗A2
cot δ1α(iκA2

) + κA2
=

2e−κA2L

L

[
1 + 2

(
1 +

3

κA2L
+

3

(κA2L)2

)
sε1(iκA2

)

]
,

k∗E cot δ1α(iκE) + κE =
2e−κEL

L

[
1−

(
1 +

3

κEL
+

3

(κEL)2

)
sε1(iκE)

]
, (13)

where sε1(k∗) is defined in eq. (10). For both irreps, the functions k∗ cot δ and sε1 are evaluated at k∗ = iκ. Iteratively
solving these QCs in terms of the infinite-volume binding momentum, κ0 (κA2 , κE → κ0 in the infinite-volume limit),
the spin-averaged binding energy of the A2 and E irreps is

B
(0,0,1)

d = B
(∞)
d +

4κ0

M

Z2
ψ

L
e−κ0L + ... , (14)

where the ellipses denote terms O(e−
√

2κ0L) and higher, which is consistent, at this order, with the binding energy
extracted from the T1 irrep for the deuteron at rest. In the above expression, Z2

ψ is the residue of the deuteron pole.
The difference in energies is

δB
(0,0,1)
d = −12κ0

M

Z2
ψ

L
e−κ0L

(
1 +

3

κ0L
+

3

(κ0L)2

)
sε1(iκ0) + ... . (15)

Calculating the exponentially small difference between the energies of these two states provides a direct measure of
ε1 evaluated at the deuteron pole. In order to extract a meaningful constraint on ε1, the FV corrections must be
statistically different from zero, otherwise the coefficient of the leading contribution to the energy difference vanishes.

In the present production, it has been only possible to decompose the d = (0, 0, 1) boosted deuteron correlation
functions into the E (jz = ±1) and A2 (jz = 0) irreps in calculations performed with the L = 32 ensemble. The EMP
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FIG. 13: EMP associated with the energy difference between the E (jz = ±1) and A2 (jz = 0) deuteron states with boost
vector d = (0, 0, 1) in the L = 32 ensemble, along with fits to the plateau region. The energy difference depends upon the
mixing parameter ε1.

associated with the difference in energies between these irreps is shown in Fig. 13, and the energy difference extracted

from fitting the plateau region is consistent with zero, δB
(0,0,1)
d (L = 32) = −0.4(4.1)(4.6) MeV. While this energy

difference is bounded in magnitude, the fact that the FV contributions to the deuteron binding energy are consistent
with zero in this lattice volume means that no useful bound can be placed upon ε1.
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2. A Compilation of Deuteron Binding Energies from LQCD

The current calculation of the deuteron binding energy adds to a small number of previous calculations over a range
of pion masses above ∼ 300 MeV [11, 14, 15, 21], 3 as shown in Fig. 14. 4 The present result is consistent, within
uncertainties, with the results at mπ ∼ 300 MeV and mπ ∼ 500 MeV from Refs. [15, 21]. Further LQCD calculations
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Yamazaki et al.
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FIG. 14: The pion mass dependence of the deuteron binding energy calculated with LQCD. The NPLQCD anisotropic-clover
result is from Ref. [11], the Yamazaki et al. results are from Refs. [15, 21] and the NPLQCD isotropic-clover results are from
this work and Ref. [14]. The black disk corresponds to the experimental binding energy.

at lighter quark masses are required to quantify the approach to the physical deuteron binding (for related NNEFT
work see Ref. [28]).

B. Scattering in the 3S1-
3D1 Coupled Channels

To recover the S-matrix in the 3S1-3D1 coupled channels, calculations must be performed that isolate the phase shifts
and mixing angle, δ1α, ε1 and δ1β , defined in eq. (7), from the FV observables accessible to LQCD calculations. The
formalism with which to perform this analysis [51, 58–60] is an extension of the seminal work of Lüscher [53, 54]. For
vanishing total momentum, assuming that the contribution from δ1β , D-waves and higher are negligible, the energies
of the T1 irreps are insensitive to ε1, as demonstrated in eq. (8). Therefore, the shifts in energies of the two nucleon
states in the T1 irrep for various total momentum from the energy of two free nucleons can be used to extract δ1α
below the inelastic threshold.

Figure 15 show the effective-k∗2 plots (Ek2Ps) associated with the first continuum T1 states in each ensemble, with
momentum near k∗ = 2π/L. These show the values of the interaction momentum k∗2 extracted from the LQCD
correlation functions as a function of Euclidean time. As with the EMPs, plateau behavior indicates the dominance
of a single state. Because of the E irrep of the cubic group that is present in the k∗ = 2π/L shell, the spectrum is

3 The deuteron and dineutron binding energies at mπ ∼ 800 MeV in the L = 24 and L = 32 ensembles presented in Ref. [14] have been
reproduced in Ref. [22], within uncertainties, on the same gauge ensembles.

4 The results of quenched calculations, and of calculations that have not been extrapolated to infinite volume [2], have not been shown.
The results from Ref. [15, 21] were obtained with a power-law extrapolation to infinite volume. This is not the correct form for a loosely
bound state, and tends to lead to significantly smaller uncertainties than from extrapolations performed with the known exponential
form.
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FIG. 15: Ek2Ps for the lowest lying continuum 3S1-3D1 NN states near k∗ = 2π/L in the L = 24 (left), L = 32 (center) and
L = 48 (right) ensembles, along with fits to the plateau regions.

expected to have a predominantly D-wave state that is close by [51]. The overlap of our sources and sinks onto this
state will be small, dictated by the small mixing between the S-waves and D-waves. Analogous states are also present
in higher-k∗ shells and in boosted systems. For an arbitrary two-body system, comprised of particles with masses
m1 and m2, with zero CoM momentum, the interaction momentum k∗2, is defined through

δE∗ = E∗ −m1 −m2 =
√
k∗2 +m2

1 +
√
k∗2 +m2

2 −m1 −m2 , (16)

where E∗ is the energy in the CoM frame, defined by E∗ =
√
E2 − |Ptot.|2 where E is the total energy, and Ptot.

is the total momentum, of the system. Figure 16 shows the Ek2Ps for states with momentum near k∗ = 2
√

2π/L,
while Fig. 17 shows the Ek2P for the system with d = (0, 0, 1) on the L = 32 ensemble. Inserting the values of k∗
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FIG. 16: Ek2Ps for the continuum 3S1-3D1 NN states near k∗ = 2
√

2π/L in the L = 32 (left) and L = 48 (right) ensembles,
along with fits to the plateau regions.
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FIG. 17: Ek2Ps for the spin-averaged continuum 3S1-3D1 NN states with d = (0, 0, 1) near k∗ = 0 in the L = 32 ensemble,
along with the fit to the plateau region.

extracted from the plateau regions of the Ek2Ps in Fig. 15 and Fig. 16 into the QC in eq. (8) gives rise to the values
of k∗ cot δ1α and δ1α given in Table VII and shown in Fig. 18. Additionally, the result of inserting the value of k∗

extracted from the plateau in Fig. 17 into the QC for the A2 and E irreps in eq. (9) is shown in Table VII and Fig. 18.
The uncertainties in each of the extractions are relatively large, magnified by their close proximity to a singularity in

the kinematic functions cd00. Even subject to these issues, a zero in the phase shift is visible near k∗ ∼ mπ ∼ 450 MeV,
indicative of an attractive interaction with a repulsive core. It is interesting to compare this phase shift, at a pion
mass of mπ ∼ 450 MeV, with that of nature, illustrated by the dashed curve in Fig. 18. The phase shift resulting
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TABLE VII: Scattering information in the 3S1-3D1 coupled channels. A “-” indicates that the uncertainty extends
across a singularity of the Lüscher function, or that it is associated with the bound state. The uncertainties in these
quantities are highly correlated, as can be seen from Fig. 18.

Ensemble |Ptot| (l.u.) k∗/mπ k∗ cot δ1α/mπ δ1α (degrees)

All 0 i0.294
+(17)(27)

−(18)(24) −0.294
+(17)(27)

−(18)(24) -

243 × 64 0 0.9754
+(44)(98)

−(45)(99) - 3.1(1.7)(3.7)

323 × 96 0 0.702
+(10)(23)

−(10)(24) 2.3
+(1.0)(5.7)

−(0.55)(0.89) 17(5)(11)

323 × 96 0 1.065
+(07)(16)

−(08)(17) −5.4
+(1.4)(2.1)

−(2.9)(29.5) −11.1(3.8)(8.5)

323 × 96 1 0.270
+(26)(29)

−(40)(51) +0.35
+(24)(15)

−(59)(20) +38
+(13)(23)

−(11)(16)

483 × 96 0 0.426(03)(12) 0.45
+(67)(34)

−(26)(08) 44
+(21)(07)

−(21)(08)

483 × 96 0 0.662(08)(29) 0.35
+(0.14)(3.0)

−(0.09)(0.21) 26
+(07)(25)

−(07)(22)

FIG. 18: Scattering in the 3S1-3D1 coupled channels. The left panel shows k∗ cot δ1α/mπ as a function of k∗2/m2
π, while

the right panel shows the phase shift as a function of momentum in MeV, assuming that δ1β and the D-wave and higher
partial-wave phase shifts vanish. The thick (thin) region of each result correspond to the statistical uncertainty (statistical
and systematic uncertainties combined in quadrature). The black circle in the right panel corresponds to the known result
from Levinson’s theorem, while the dashed-gray curve corresponds to the phase shift extracted from the Nijmegen partial-wave
analysis of experimental data [61].

from a partial-wave analysis of experimental data is consistent, within uncertainties, with the phase shift calculated at
mπ ∼ 450 MeV over a large range of momenta. The zeros of the phase shift occur at different momenta, but they are
nearby. Without results at smaller k∗, a precise extraction of the scattering parameters, such as the scattering length
and effective range, is not feasible, and additional calculations are required in order to accomplish this. However, the
determination of the binding energy and the two continuum states that lie below the threshold of the t-channel cut
(set by the pion mass, k∗ = mπ/2) can be used to perform an approximate determination of the inverse scattering
length and effective range. A linear fit was performed, k∗ cot δ = −1/a + 1

2rk
∗2, as shown in Fig. 19. The range

of linear fits straddle k∗ cot δ = 0 at k∗ = 0, and as such allows both a(3S1) = ±∞, and it is useful to consider the

constraints on 1/a(3S1) rather than a(3S1). The correlated constraints on 1/a(3S1) and r(3S1) are shown in Fig. 19. The
inverse scattering length and effective range determined from the fit region in Fig. 19 are(

mπa
(3S1)

)−1

= −0.04
+(0.07)(0.08)
−(0.10)(0.17) , mπr

(3S1) = 7.8
+(2.2)(3.5)
−(1.5)(1.7)(

a(3S1)
)−1

= −0.09
+(0.15)(0.19)
−(0.23)(0.39) fm−1 , r(3S1) = 3.4

+(1.0)(1.5)
−(0.7)(0.8) fm . (17)

Further calculations in larger volumes (and hence at smaller k∗2) will be required to refine these extractions. There
is a potential self-consistency issue raised by the size of the effective range that is within the uncertainties that are
reported. Lüscher’s method is valid only for the interaction ranges R � L/2, otherwise the exponentially small
corrections due to deformation of the inter-hadron forces become large. Assuming the range of the interaction is of
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FIG. 19: Scattering in the 3S1-3D1 coupled channels below the start of the t-channel cut, k∗2 < m2
π/4, assuming that δ1β and

the D-wave and higher partial-wave phase shifts vanish. The left panel shows solid region corresponding to linear fits associated
with the statistical uncertainty and the statistical and systematic uncertainties combined in quadrature. The right panel shows

the scattering parameters, 1/a(
3S1) and r(

3S1) determined from fits to scattering results below the t-channel cut. The solid circle
corresponds to the experimental values.

similar size to the effective range (as expected for ”natural” interactions), this requirement is not met and deviations
from the assumed linear fitting function should be entertained. Higher precision analyses will be required to investigate
this further.

V. THE 1S0 CHANNEL AND THE DINEUTRON

The analysis of LQCD calculations in the 1S0 channel are somewhat simpler than in the 3S1-3D1 coupled channels as

scattering below the inelastic threshold is described by a single phase shift, δ(1S0). In FV, the relation between energy

eigenvalues of the system at rest in the A1 cubic irrep and δ(1S0) are given by eq. (8) with δ1α → δ(1S0) and k∗T1
→ k∗A1

.
Unfortunately, the correlation functions in this channel have larger fluctuations and excited state contamination than
those in the 3S1-3D1 coupled channels system. Consequently, the uncertainties associated with each energy level are
larger.

A. The dineutron

Unlike in nature, the dineutron is found to be bound at heavier quark masses [14, 15, 17, 19, 21] by direct calculations
of the ground-state energies of two nucleons in finite lattice volumes. 5 Plateaus identified with a negatively shifted
dineutron were found in all three ensembles, with the associated EMPs shown in Fig. 20 and the extracted energy
shifts shown in Table VIII. Performing a volume extrapolation using the form given in eq. (11) leads to a binding

5 The HAL QCD method appears not to give rise to a bound deuteron or dineutron at these heavier pion masses, e.g. Ref. [16].
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TABLE VIII: The dineutron binding energies from fitting to the EMPs shown in Fig. 20.

Ensemble ∆E (l.u.) Bnn (MeV) e−κL

243 × 64 -0.0142(09)(27) 24.1(1.5)(4.5) 0.088

323 × 96 -0.0109(09)(20) 18.4(1.5)(3.3) 0.058

483 × 96 -0.0070(11)(18) 11.8(1.9)(3.1) 0.033

L =∞ −0.0074
+(10)(15)(01)

−(11)(27)(01) 12.5
+(1.7)(2.5)(0.2)(0.2)

−(1.9)(4.5)(0.2)(0.2)
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FIG. 20: EMPs for the dineutron in the L = 24 (left), L = 32 (center) and L = 48 (right) ensembles, along with fits to the
plateau regions. The extracted binding energies are given in Table VIII.

energy of 6

B(∞)
nn = 12.5

+(1.7)(2.5)(0.2)(0.2)
−(1.9)(4.5)(0.2)(0.2) MeV . (18)

Combining the errors in eq. (18) in quadrature leads to B
(∞)
nn = 12.5+3.0

−5.0 MeV. The c1-B
(∞)
nn parameter space defined

FIG. 21: The region in c1-B
(∞)
nn parameter space defined by χ2 → χ2

min + 1. The inner region is defined by the statistical
uncertainty, while the outer is defined by the statistical and systematic uncertainties combined in quadrature.

by χ2 → χ2
min +1 determined from an uncorrelated fit to the dineutron binding energies in the three volumes is shown

in Fig. 21. This dineutron binding energy is consistent with the binding energy of the deuteron within uncertainties.
The EMPs associated with the difference between the deuteron and dineutron energies in each ensemble are shown
in Fig. 22, resulting in the energy differences given in Table IX. No significant difference has been extracted.

6 Extrapolating with a form consistent with a scattering state, which would display a volume dependence of ∆E ∼ 1/L3, results in a
poor goodness-of-fit.
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FIG. 22: EMPs for the energy difference between the dineutron and the deuteron in the L = 24 (left), L = 32 (center) and
L = 48 (right) ensembles, along with fits to the plateau regions.

TABLE IX: Energy differences between the dineutron and deuteron from fitting to the EMPs shown in Fig. 22. All
differences are consistent with zero, as is their infinite-volume extrapolation.

Ensemble Enn − Edeut (l.u.) Enn − Edeut (MeV)

243 × 64 +0.0022(16)(28) +3.7(2.8)(4.7)(0.0)

323 × 96 -0.0014(09)(15) -2.4(1.6)(2.5)

483 × 96 +0.0027(04)(31) +4.6(0.7)(5.3)

1. A Compilation of Dineutron Binding Energies from LQCD

The current calculation of the dineutron binding energy adds to a small number of previous calculations, a compi-
lation of which is shown in Fig. 23. There does not appear to be a clear pattern emerging as to how the dineutron will

0 200 400 600 800

0

5

10

15

20

mπ (MeV)

B
nn

(M
eV

)

NPLQCD, isotropic

Yamazaki et al.

NPLQCD, anisotropic

FIG. 23: The pion-mass dependence of the dineutron binding energy calculated with LQCD. The NPLQCD anisotropic-clover
result is from Ref. [11], the Yamazaki et al. results are from Refs. [15, 21] and the NPLQCD isotropic-clover results are from
this work and Ref. [14]. The black disk corresponds to the location of the near-bound state at the physical quark masses.

unbind as the pion mass is reduced. The results that have been obtained in Refs. [15, 21] have consistently smaller
uncertainties than those found in Ref. [11, 14] and in the present work. However, the results are consistent within the
uncertainties.

B. Scattering in the 1S0 Channel

Correlation functions for two nucleons in the 1S0 state were constructed in the A1 irrep of the cubic group. The
Ek2Ps associated with the states near the k∗ = 2π/L and k∗ = 2

√
2π/L noninteracting levels are shown in Fig. 24 and

Fig. 25, respectively. For the lowest-lying “continuum” state, plateaus were found in all three ensembles, however,
only the L = 32 ensemble has correlation functions that were sufficiently clean to extract the next higher level.
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FIG. 24: Ek2Ps for the lowest lying continuum 1S0 NN state near k∗ = 2π/L in the L = 24 (left), L = 32 (center) and L = 48
(right) ensembles, along with fits to the plateau regions.
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FIG. 25: Ek2P for the lowest lying continuum 1S0 NN state near k∗ = 2
√

2π/L in the L = 32 ensemble, along with the fit to
the plateau region.
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FIG. 26: Ek2P for the continuum 1S0 NN states with d = (0, 0, 1) near k∗ = 0 in the L = 32 ensemble, along with the fit to
the plateau region.

A plateau was also identified in the system with one unit of total momentum, as shown in Fig. 26. The values of

k cot δ(1S0) and the phase shift are given in Table X and shown in Fig. 27. Many of the qualitative features of the
results for the scattering amplitude in this channel are similar to those in the 3S1-3D1 coupled channels. A zero of the
phase shift near k ∼ mπ ∼ 450 MeV is evident and occurs quite close to the zero of the phase shift in nature. However
for k < 100 MeV, the 1S0 phase shift at mπ ∼ 450 MeV and in nature become significantly different. In Fig. 28, a
linear fit is shown to the three results below the start of the t-channel cut, with the extracted correlated constraints
on the scattering parameters also shown. The inverse scattering length and effective range determined from the fit
region in Fig. 28 are (

mπa
(1S0)

)−1

= 0.021
+(28)(32)
−(36)(63) , mπr

(1S0) = 6.7
+(1.0)(2.0)
−(0.8)(1.3)(

a(1S0)
)−1

= 0.05
+(06)(08)
−(08)(14) fm−1 , r(1S0) = 2.96

+(43)(87)
−(34)(55) fm . (19)

The allowed region of scattering parameters is shown in Fig. 28 and is close to containing the experimentally determined
scattering length and effective range. Since the quark masses are unphysical, the physical values need not be contained
in this region and it is interesting how close the current results are to those in nature. As in the 3S1-3D1 coupled-
channels system analyzed in the previous section, there is a potential self-consistency issue raised by the region of the
extracted effective range.
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TABLE X: Scattering information in the 1S0 channel. The uncertainties are highly correlated, as can be seen from
Fig. 27.

Ensemble |Ptot| (l.u.) k∗/mπ k∗ cot δ(
1S0)/mπ δ(

1S0) (degrees)

All 0 i0.274
+(19)(26)

−(20)(44) −0.274
+(19)(26)

−(20)(44) -

243 × 64 0 0.954
+(08)(18)

−(08)(19) 5.0
+(2.0)(10.0)

−(1.1)(1.8) 10.8
+(3.0)(6.5)

−(3.0)(6.7)

323 × 96 0 0.691
+(09)(16)

−(09)(16) 1.7
+(0.5)(1.1)

−(0.3)(0.5) 22.0
+(4.2)(7.0)

−(4.2)(7.2)

323 × 96 0 1.079
+(05)(10)

−(05)(10) −3.3
+(0.4)(0.7)

−(0.6)(1.5) −18.3(2.6)(5.2)

323 × 96 1 0.220
+(28)(32)

−(32)(42) 0.13
+(10)(14)

−(08)(08) 60
+(14)(20)

−(12)(14)

483 × 96 0 0.453(11)(29) 0.89
+(39)(3.7)

−(23)(44) 27
+(07)(18)

−(07)(20)

FIG. 27: Scattering in the 1S0 channel. The left panel shows k∗ cot δ(
1S0)/mπ is a function of k∗2/m2

π, while the right panel
shows the phase shift as a function of momentum in MeV. The thick (thin) region of each result correspond to the statistical
uncertainty (statistical and systematic uncertainties combined in quadrature). The black circle in the right panel corresponds
to the known bound-state result from Levinson’s theorem, while the dashed-gray curve corresponds to the phase shift extracted
from the Nijmegen partial-wave analysis of experimental data [61].
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FIG. 28: Scattering in the 1S0 channel below the start of the t-channel cut, k∗2 < m2
π/4. The left panel shows the linear

fit with the darker and lighter shaded regions associated with the statistical uncertainty and the statistical and systematic

uncertainties combined in quadrature. The right panel shows the scattering parameters, 1/a(
1S0) and r(

1S0) determined from
fits to scattering results below the t-channel cut. The solid circle corresponds to the experimental values.
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VI. OBSERVATIONS ABOUT NUCLEON-NUCLEON EFFECTIVE FIELD THEORY ANALYSES

A modern approach to low-energy nuclear physics rests upon the chiral nuclear forces arising from a non-trivial
extension of χPT into the multi-nucleon sector (see, for instance, Refs. [62–64]). Because of the small scales in the two
nucleon systems (γd ∼ 45 MeV and |γnn| ∼ 8 MeV), the NNEFTs are more complicated than a simple expansion in
quark masses and momenta that defines χPT, and there are additional dynamics that must be considered. Following
the initial developments by Weinberg [65–67], much effort has gone in to understanding the construction and behavior
of these theories.

NNEFTs provide a powerful means with which to analyze the momentum and quark-mass dependences of the
phase shifts and it is illuminating to consider the LQCD results presented in this work in their context. As is
appropriate, we use KSW power counting [68–70] in the 1S0 channel and BBSvK power counting [71], a variant of
Weinberg’s power counting [65, 66], in the 3S1-3D1 coupled channels. There are a number of reasons to undertake this
investigation. The chiral decomposition of nuclear forces automatically requires the introduction of terms that are
only distinguishable through variation of the quark masses. Comparison of LQCD calculations at unphysical masses
allows this previously unavailable “dial” to be turned in the dual expansion that defines chiral NNEFTs. Secondly, the
full decomposition of the chiral NN forces, and thereby precise predictions for nuclear observables, requires knowledge
of the mass dependence discussed above and it is essential that such calculations be performed to maximize the
predictive power of NNEFTs. Thirdly, the current calculations enable an exploration of the convergence of NNEFTs
with pions included as explicit degrees of freedom at relatively large pion masses.

The quality and kinematic coverage of scattering results that have been presented is not yet sufficient to perform a
comprehensive analysis of NNEFT matching to LQCD. Instead, we present a simplified discussion of the two channels
to highlight some of the important features and questions that will need to be addressed in order to accomplish a
reliable determination of the chiral nuclear forces from LQCD. Related discussions in the context of pionless EFTs for
multi-nucleon systems can be found in Ref. [72, 73] and implicitly in the presentation of the effective range expansion
above.

A. KSW Analysis of the 1S0 Channel

The KSW power counting [68–70] provides a rigorous framework with which to perturbatively expand the two-
nucleon scattering amplitude in the 1S0 channel in the two small-expansion parameters, nominally p/ΛNN and
mπ/ΛNN . Here ΛNN = 8πf2

π/g
2
AMN is the natural scale of validity of the NNEFT. At the physical point

ΛNN ∼ 289 MeV, while at a pion mass of 450 MeV it is ΛNN ∼ 350 MeV. These scales should be compared
with the start of the t-channel cut from the next lightest meson, mρ/2 ∼ 385 MeV at the physical point, and
mρ/2 ∼ 443 MeV at a pion mass of 450 MeV. This power counting treats the zero-derivative two-nucleon operator
nonpertubatively, and was developed in order to correctly define a theory that is finite and renormalization group
invariant at each order in the expansion. An analysis of NN interactions at the physical point has been carried out
to NNLO in the KSW expansion [68, 69, 74–76], and we have performed the analogous analysis of the present LQCD
results. The LO, NLO and NNLO amplitudes in the 1S0 channel can be found in Refs. [68, 69, 74, 75], along with
the relevant expansion of the phase shift. At LO, there is only one fit parameter, constrained by the location of the
dineutron pole. At NLO, there are nominally two additional fit parameters, but requiring the dineutron pole remains
unchanged reduces the number to one, ξ1, while the other, ξ2, can be directly related to ξ1. Finally, at NNLO there
are three more parameters, but only one parameter, ξ4, is independent for similar reasons as at NLO. Therefore, there
are only three fit parameters for a complete analysis at NNLO. Results of fitting the LO, NLO and NNLO phase
shifts are shown in Fig. 29. The phase shifts at all momenta are utilized in the fits (a more complete analysis would
consider the effects of truncations).

Fitting the location of the dineutron bound state, the LO fit is clearly inconsistent with the phase shifts at higher
energies, as is also seen in fits at the physical point. At NLO the fit is quite reasonable at the energies near the zero
of the phase shift, but becomes somewhat deficient at lower energies. The NNLO fit is found to move closer to the
LQCD results. It appears that the KSW expansion is converging to the LQCD results, but fits beyond NNLO are
required to reproduce the LQCD results with an acceptable goodness-of-fit. The values of ξ1,4, are both of natural
size, as can be seen in Fig. 29.

The resulting scattering parameters at NLO and NNLO are

a
(1S0)
NLO = 2.62(07)(16) fm r

(1S0)
NLO = 1.320(18)(38)) fm

a
(1S0)
NNLO = 2.99(07)(15) fm r

(1S0)
NNLO = 1.611(42)(83)) fm , (20)

From the differences between orders, it is clear that the systematic uncertainty introduced by the KSW expansion
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FIG. 29: The left panel shows the LQCD 1S0 scattering phase shift along with the KSW NNEFT fits at LO, NLO and NNLO.
At LO there is one parameter that is fit to recover the dineutron pole, giving the red-shaded region, at NLO there is one
additional fit parameter, giving the blue-shaded region, and at NNLO there is a further fit parameter, giving the green-shaded
region. The darker (lighter) shaded regions correspond to the statistical (statistical and systematic uncertainties combined in
quadrature). The right panel is a scatter plot of the central values of the extracted NNLO fit parameters, ξ1,4 over the 1-σ range
of the dineutron pole. The red (orange) shaded regions correspond to the statistical (statistical and systematic uncertainties
combined in quadrature).

exceeds the uncertainties of the LQCD calculations, and orders beyond NNLO are required to render the “theory
error” (from truncating the KSW expansion) small compared with the uncertainties of the calculation. As the KSW
expansion is a double expansion in both momentum and the pion mass, the threshold scattering parameters have
chiral expansions order-by-order in the expansion. The values of the scattering parameters extracted from fitting the
KSW expressions differ from those obtained by fitting a truncated ERE to the phase shifts at the lowest two momenta
and the dineutron pole, i.e. they do not lie in the region presented in Fig. 28. This may indicate that the KSW
expansion should not be applied to the phase shifts over the full range of momenta; indeed the largest two momenta
have k>∼ ΛNN . However, removing these points does not change the fit qualitatively due to the relative size of the
uncertainties. These results could also indicate that the pion mass is simply too large, as it exceeds ΛNN . However,
it does appear that the expansion is converging, albeit slowly, to the calculated phase shifts.

As the calculations have been performed at only one pion mass (previous phase shift calculations at mπ =
806 MeV [14, 17] are expected to be beyond the range of applicability of the NNEFT), it is not possible to isolate the
explicit short-distance pion-mass dependence in ξ1,4, which both receive contributions from pion-mass independent
and pion-mass dependent terms. Hence, a chiral extrapolation to the physical point is not feasible from this work
alone. Calculations that are currently underway will provide results at a lower pion mass, from which predictions at
the physical point will become possible.

B. BBSvK Analysis of the 3S1-
3D1 Coupled Channel

BBSvK power counting [71] is similar to Weinberg’s power counting [65, 66], and is an appropriate scheme to use
in the case of the 3S1-3D1 coupled channels. An NN interaction (two-particle irreducible) is derived using the familiar
rules of χPT and, due to the infrared behavior of the two-nucleon system, is iterated to all orders with the Schrödinger
equation to generate the bound-state pole(s) and scattering amplitude(s). See Ref. [77] for a review.

At LO in Weinberg’s power counting, the NN interactions are determined by momentum-independent and quark-
mass-independent two-nucleon contact interactions and by one-pion exchange (OPE). However, the short-distance
nature of the tensor force, resulting from OPE, generates renormalization-scale dependence in the D-waves that
requires the presence of a counter term at LO, and BBSvK is the simplest power counting to remedy this situation.
At NLO in the counting, there are contributions from pion-loop diagrams, from momentum-dependent two-nucleon
contact interactions, and from insertions of the light-quark mass matrix into momentum-independent two-nucleon
contact interactions. With the parameters in the meson sector, e.g. gA, fπ, fixed to the results of other LQCD
calculations at similar quark masses, there is one free parameter at LO in BBSvK counting - the coefficient of the
momentum-independent two-nucleon contact interaction. This is common to both the S-waves and D-waves.

At NLO, the expansion becomes more complicated with different interactions in the S-waves and D-waves. Without
being able to separately resolve the δ1α and δ1β phase shifts, only the common terms can be determined. To this
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FIG. 30: The 3S1-3D1 coupled channels scattering phase shift, δ1α, along with BBSvK fits at LO and NLO∗. At LO there
is one parameter that is fit to recover the deuteron pole, giving the red-shaded region, while at NLO∗ there is one additional
fit parameter, giving the blue-shaded region. The darker (lighter) shaded regions correspond to the statistical (statistical and
systematic uncertainties combined in quadrature).

end, we have defined NLO∗ to be LO with the inclusion of the leading momentum-dependent two-nucleon contact
interaction that is also common to both the S-waves and D-waves, but omitting other NLO contributions. NLO∗

introduces a single additional parameter beyond LO.
The results of fitting the LO and NLO∗ parameters to the results of our LQCD calculations are shown in Fig. 30. 7

The LO fit to the deuteron binding energy leads to phase shifts that significantly over estimate the LQCD results
(this is slso seen in analyses at the physical point). However, by including the contact-p2 interaction, relatively good
agreement is found in the NLO∗ fit to all the LQCD phase-shift extractions, with the exception of the lowest energy
point (which we attribute to a downward statistical fluctuation whose significance is likely to be reduced at higher
orders in the expansion).

The values of the scattering parameters resulting from the fits are

a
(3S1)
LO = 1.94(09)(17) fm r

(3S1)
LO = 0.674(17)(29)) fm

a
(3S1)
NLO∗ = 2.72(22)(27) fm r

(3S1)
NLO∗ = 1.43(12)(13)) fm , (21)

which are consistent, within uncertainties, with those obtained in the 1S0 channel with KSW counting. It is interesting
to note that the ratio of scattering length to effective range is a/r ∼ 2, as was found to be the case at the SU(3)
symmetric point [14, 17] .

A feature of BBSvK counting is that predictions can be made for the mixing parameter, ε1 and δ1β , or ε1 and δ
(3D1)

in the more familiar Stapp [78] parameterization of the S-matrix. These are shown in Fig. 31, and it is important
to keep in mind that the coefficients determined from the deuteron pole and S-wave phase shift, contribute to both
these quantities. While the D-wave phase shift is only slightly modified by the NLO∗ interaction, ε1 is changed
dramatically. In this initial investigation, the range of the square well interaction has not been varied and estimates
of contributions from higher orders have not been included. It is clear that the “theory error” due to truncation of
the BBSvK expansion is large for ε1, but not for the D-wave phase shift. In fact, this expansion of ε1 is found to be
less convergent at this pion mass than at the physical point [71].

VII. CONCLUSIONS

Recovering the experimentally known properties of the two-nucleon systems, such as the deuteron bound state, the
dineutron virtual-bound state and scattering observables, from QCD represents a major challenge for Lattice QCD
calculations. Once verified by comparison to known experimental extractions, LQCD calculations hold the promise of

7 A square-well with a radius of R = 0.30 fm has been used to regulate the interaction at short distances. Previous work [71] shows that
the observables have corrections that depend only on positive powers of R (after refitting coefficients), as expected from a Wilsonian
renormalization group analysis in the limit R→ 0.
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FIG. 31: The left panel shows the 3D1 scattering phase shift, δ
(3D1)

, in the Stapp Parameterization [78] along with BBSvK
fits at LO and NLO∗, while the right panel shows the mixing parameter, ε1. The darker (lighter) shaded regions correspond to
the statistical (statistical and systematic uncertainties combined in quadrature).

refining our knowledge of these systems beyond what is possible experimentally, particularly in the neutron-neutron
system and more exotic processes involving hyperons. LQCD calculations have steadily developed in recent years and
in the near future calculations of multi-nucleon systems with physical quark masses will be available [79]. Eventually
these calculations will also include the effects of isospin-breaking and QED. In this work, we report the results of
calculations of nucleon-nucleon interactions in the 3S1-3D1 coupled channels and the 1S0 channel at a pion mass of
mπ ∼ 450 MeV in three lattice volumes and at a single lattice spacing. The lattice-spacing artifacts are estimated
to be small, entering at O(Λ2

QCDb
2), and are expected to modify the binding energies and phase shifts by amounts

that are small compared with the quoted statistical and systematic uncertainties. Both the deuteron and dineutron
are found to be bound at this pion mass, consistent with expectations based upon previous calculations. The phase
shifts in both channels are determined at a few discrete momenta and, in both channels, a zero in the phase shift is
found to occur near the momentum at which a zero is observed in nature. Calculations of increased precision and
kinematic coverage will further our understanding of the two-nucleon systems at this set of quark masses. Further
calculations at other quark masses will enable direct comparison with experimental extractions and will elucidate
important features of the chiral nuclear forces that are not accessible in experiment alone.
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