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Universitat de Barcelona, Mart́ı Franquès 1, E08028-Spain
6 Department of Physics, The City College of New York, New York, NY 10031, USA

7Graduate School and University Center, The City University of New York, New York, NY 10016, USA
8RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, NY 11973, USA
9Department of Physics, University of Washington, Box 351560, Seattle, WA 98195, USA

Lattice QCD with background magnetic fields is used to calculate the magnetic moments and
magnetic polarizabilities of the nucleons and of light nuclei with A ≤ 4, along with the cross-section
for the M1 transition np → dγ, at the flavor SU(3)-symmetric point where the pion mass is mπ ∼
806 MeV. These magnetic properties are extracted from nucleon and nuclear energies in six uniform
magnetic fields of varying strengths. The magnetic moments are presented in a recent Letter [1]. For
the charged states, the extraction of the polarizability requires careful treatment of Landau levels,
which enter non-trivially in the method that is employed. The nucleon polarizabilities are found

to be of similar magnitude to their physical values, with βp = 5.22
(

+0.66
−0.45

)
(0.23) × 10−4 fm3 and

βn = 1.253
(

+0.056
−0.067

)
(0.055)×10−4 fm3, exhibiting a significant isovector component. The dineutron

is bound at these heavy quark masses and its magnetic polarizability, βnn = 1.872
(

+0.121
−0.113

)
(0.082)×

10−4 fm3 differs significantly from twice that of the neutron. A linear combination of deuteron scalar
and tensor polarizabilities is determined by the energies of the jz = ±1 deuteron states, and is found

to be βd,±1 = 4.4
(

+1.6
−1.5

)
(0.2) × 10−4 fm3. The magnetic polarizabilities of the three-nucleon and

four-nucleon systems are found to be positive and similar in size to those of the proton, β3He =

5.4
(

+2.2
−2.1

)
(0.2) × 10−4 fm3, β3H = 2.6(1.7)(0.1) × 10−4 fm3, β4He = 3.4

(
+2.0
−1.9

)
(0.2) × 10−4 fm3.

Mixing between the jz = 0 deuteron state and the spin-singlet np state induced by the background
magnetic field is used to extract the short-distance two-nucleon counterterm, L̄1, of the pionless
effective theory for NN systems (equivalent to the meson-exchange current contribution in nuclear
potential models), that dictates the cross-section for the np→ dγ process near threshold. Combined
with previous determinations of NN scattering parameters, this enables an ab initio determination
of the threshold cross-section at these unphysical masses.

PACS numbers: 11.15.Ha, 12.38.Gc, 13.40.Gp
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I. INTRODUCTION

The charge, magnetic moment and magnetic polarizability of a composite system describe its linear and quadratic
response to a uniform, time-independent magnetic field. These properties are determined by the distribution of the
constituents of the system and by the currents induced by the field. As such, measurements of the magnetic properties
of the nucleons and nuclei provide important information about their internal structure. Furthermore, these quantities
also serve to parameterize the cross-section for low-energy Compton scattering on such targets. Historically, the
magnetic moments of nucleons and light nuclei provided some of the first indications of substructure, and by now
they are well known. The primary focus of this article is on the magnetic polarizabilities and the cross-section for
the radiative capture process np→ dγ at low energies which is dominated by the M1 multipole. While the magnetic
polarizability of the proton1, βexp

p = (3.15±0.35±0.20±0.30)×10−4 fm3, is well determined experimentally [3–8], the

magnetic polarizability of the neutron βexp
n = (3.65± 1.25± 0.20± 0.80)× 10−4 fm3 remains quite uncertain [6, 7, 9–

11]. This uncertainty is largely a consequence of the lack of a free neutron target; the neutron polarizability must be
determined from that of light nuclei, primarily the deuteron (see Ref. [11] for a recent summary). The smallness of
the nucleon polarizabilities, compared with their spatial volumes, ∼ 1 fm3, indicates that they are quite magnetically
rigid, with the spins and currents of their constituents influenced only at a modest level by external fields. The
uncertainty in βexp

n is large enough so that a significant isovector polarizability remains a possibility. For a recent
review, see Ref. [12].

From a theoretical standpoint, the leading contributions to the nucleon magnetic polarizabilities result from both
pion-loop effects and ∆-resonance pole contributions [12–18]. The ∆-pole contribution is O(e2/[M2

N (M∆ −MN )])
and is considerably larger than the experimentally determined polarizabilities. At the physical light-quark masses,
significant cancellations between the paramagnetic (∆-pole) and diamagnetic (loop) contributions are in effect. As
the various contributions depend differently on the light-quark masses (the leading pion-loop contributions scales as
∼ m−1

π while the ∆-pole contribution is only weakly dependent on the quark masses), it is expected that βp and βn will
vary reasonably rapidly near the physical point.2 Because it is relatively mass independent, the ∆-pole contribution
provides an estimate of the expected size for polarizabilities at any quark mass and it will be used to assess the
naturalness of the polarizabilities extracted from the present Lattice QCD (LQCD) calculations.

The leading contributions to the magnetic polarizabilities of light nuclei are determined by the nucleon charges,
magnetic moments and polarizabilities. At a sub-leading level, the forces between nucleons, both those responsible
for nuclear binding and meson-exchange currents (MECs), modify these one-body contributions and produce short-
distance contributions that are unrelated to the electromagnetic interactions of single nucleons. Accounting for this in
a consistent manner is non-trivial and requires a well-controlled power-counting. This has been investigated in detail
for the deuteron [20] and light nuclei [21]. Experimentally, the polarizabilities of the deuteron have been measured
through Compton scattering (leading to extractions of the neutron magnetic polarizability) and further measurements
will be performed with increased precision at the HIγS facility [22], MAX-Lab at Lund [23] and at MAMI in Mainz [24].
Plans for a new generation of Compton scattering experiments on other light nuclei are also being developed (see, for
example, Refs. [25–27]).

The radiative capture process, np → dγ, and the inverse processes of deuteron electro- and photo-disintegration,
γ(∗)d→ np, are important in early universe cosmology and have led to critical insights into the interactions between
nucleons, and in particular, interactions with photons. At very low energies, the M1 magnetic multipole transition
amplitude is dominant and is determined primarily by the isovector nucleon magnetic moment. The short distance
contributions (equivalently, MECs) are sub-leading and modify the cross-sections at O(10%) [28, 29] and are well
determined by experiment in this particular case. Given the phenomenological importance of this and other related
processes, it is important to understand these contributions from first principles.

In this work, we present lattice QCD (LQCD) calculations of the magnetic moments and polarizabilities of the
proton, neutron and s-shell nuclei up to atomic number A = 4. Further, the jz = Iz = 0 np systems are used
to investigate the short-distance two-nucleon contributions to the cross-section for np → dγ. The methods and
calculations that are presented are an extension of those used to calculate the magnetic moments of light nuclei in
Ref. [1] and the result for the capture cross-section have been recently highlighted in Ref. [30]. In Section II, the
methodology of using background magnetic fields in LQCD calculations to determine hadron magnetic moments and
polarizabilities and magnetic transition amplitudes is presented. Section III discusses the results of our calculations,

1 The experimental polarizability reported here is defined with Born terms subtracted; the total O(B2) shift in the energy of the proton
is larger by (16πM3)−1 = 0.15× 10−4fm3 [2].

2 Recent chiral effective field theory calculations support this expectation [18] and the expectations are not substantially altered in the
case of partially-quenched chiral perturbation theory [19].
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by first discussing the general analysis methods used to extract the magnetic properties from energy shifts before
turning to a discussion of each of the nucleons and nuclei that are studied. Our results are summarized in Section IV,
and opportunities for possible extensions of this work are also outlined. Finally, Appendix A is dedicated to defining
the formalism underpinning the LQCD methodology used in the present calculations. Explicit examples centered on
the behavior of point-like charged particles are explored.

II. METHODOLOGY

In order to calculate the magnetic structure of nucleons and light nuclei, and the low-energy cross-section for
np→ dγ, it is sufficient to perform LQCD calculations of these systems in uniform time-independent magnetic fields.
In sufficiently weak background fields, the quantities of interest can be extracted directly from the energy eigenvalues
of the spin states of these systems.

A. Background Magnetic Fields

In this work, lattice QCD calculations are performed using one ensemble of QCD gauge-field configurations with
Nf = 3 degenerate dynamical flavors of light quarks on a L3 × T = (323 × 48) a4 discretized spacetime. This
ensemble was generated using a Lüscher-Weisz gauge action [31] and a tadpole-improved clover-fermion action [32] at
a coupling corresponding to a lattice spacing of a = 0.110(1) fm [33] (further details of this ensemble can be found in
Refs. [34, 35]). All three light-quark masses in this ensemble are equal to that of the physical strange quark, producing
a pion of mass mπ ∼ 806 MeV. In the present set of calculations, O(103) gauge-field configurations separated by 10
Hybrid Monte-Carlo trajectories were used from this ensemble.

Background electromagnetic fields have been used extensively in previous calculations of the electromagnetic prop-
erties of single hadrons, such as the magnetic moments of the lowest-lying baryons [1, 19, 36–43], the polarizabilities
of mesons [39, 41, 44–46] and the electric polarizabilities of baryons [46, 47]. In addition, the magnetic moments of
light nuclei have been recently calculated in Ref. [1]. In order for the quark fields, with electric charges qq (qu = + 2

3

and qd,s = − 1
3 for the up-, down- and strange-quarks, respectively), to encounter uniform magnetic flux throughout

the lattice, the field strength is quantized according to the condition [48]

eB =
6π

L2
ñez , ñ ∈ Z , (1)

where e is the magnitude of the electron charge and we consider explicitly fields in the x3 ≡ z direction as indicated
by the unit vector ez. Neglecting the electric charges of the sea-quarks, a quantized, time-independent and uniform
background magnetic field oriented in the positive x3-direction can be implemented by multiplying the QCD gauge

link variables by UQ(1) link fields, U
(Q)
µ (x), of the form

U
(Q)
1 (x) =

{
1 for x1 6= L− a
exp

[
−iqqñ 6πx2

L

]
for x1 = L− a ,

U
(Q)
2 (x) = exp

[
iqqñ

6πax1

L2

]
,

U
(Q)
3 (x) = 1 ,

U
(Q)
4 (x) = 1 , (2)

where ñ is an integer satisfying |ñ| ≤ 1
4L

2/a2 (in Euclidean space, x4 corresponds to the Wick-rotated time coordinate).

In physical units, the background magnetic fields used in this work are quantized in units of eB ∼ 0.059 ñ GeV2ez;
in comparison to the nucleon mass, the dimensionless ratio e|B|/M2

N ∼ 0.013 for the smallest field suggesting the

deformations arising from the magnetic field are perturbatively small compared to QCD effects for |ñ|<∼ 10. As
mu = md = ms in these calculations, the up-quark propagator in the ñ = 1 field is the same as the down- or strange-
quark propagator in the ñ = −2 field, with similar relations for the other magnetic field strengths. To optimize
the re-use of light-quark propagators in the calculation, different quark electric charges were implemented by using a
different magnetic field (with the same charge). Consequently, the UQ(1) fields that are used in this work correspond to

ñ = 0,+1,−2,+3,+4,−6,+12, corresponding to magnetic fields of eB ∼ 0, 0.06,−0.12, 0.18, 0.24,−0.36, 0.71 GeV2ez,
respectively.
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In the presence of a time-independent and uniform magnetic field, the energy eigenstates of a structureless charged
particle with definite angular momentum along the field direction are described by Landau levels and plane waves,
rather than by three-momentum plane waves alone. One of the subtle finite-volume (FV) effects introduced into this
calculation is the loss of translational invariance in the interaction of charged particles with the background gauge field.
We give a brief description of this problem, and relegate the more technical aspects of the discussion to Appendix A.
For the implementation of the magnetic field using the links in Eq. (2), the lack of translational invariance is made
obvious by the Wilson loops,

W1(x2) =

L/a−1∏
j=0

U
(Q)
1 (x+ jax̂1) = exp

[
−iqqñ

6πx2

L

]
,

W2(x1) =

L/a−1∏
j=0

U
(Q)
2 (x+ jax̂2) = exp

[
iqqñ

6πx1

L

]
, (3)

which wrap around the x1 and x2 directions of the lattice geometry, respectively. These exhibit explicit spatial
dependence. Further, there are additional effects for charged-particle correlation functions arising from their gauge
dependence.

Because of the lack of translational invariance, the links employed in Eq. (2) define a spatial origin x = 0, where
the gauge potential vanishes, A(x) = 0. In performing the present calculations, the source points for the correlation
functions are not restricted to x = 0 but instead are randomly distributed within the lattice volume, approximately
restores translational invariance. In the case of charged-particle correlation functions, this averaging leads to non-
trivial effects, because the overlap of a given hadronic operator onto the various Landau levels depends on the
source location. This is explicated in Appendix A, where additional methods of restoring translational invariance are
discussed in the context of a structureless charged particle.

Post-multiplication of UQ(1) links onto the QCD gauge links omits the effects of the external magnetic field on
the gluonic degrees of freedom through the fermion determinant. The present calculations therefore correspond to
a partially-quenched theory in which the sea quark charges are set to zero while the valence quark charges assume
their physical values [19, 49–51]. For a SU(3) symmetric choice of quark masses, as used herein, this does not affect
the magnetic moments or the np→ dγ transition (linear responses to the field) because the Nf = 3 charge matrix is
traceless [1, 19] and couplings to sea quarks explicitly cancel at this order (indeed the isovector nature of the np→ dγ
transition make it insensitive to disconnected contributions even away from the SU(3) symmetric point). However,
the magnetic polarizabilities receive contributions from terms in which the two photons associated with the magnetic
field interact with zero, one or two sea quark loops. The terms involving zero and two sea quark loops are correctly
implemented, however the square of the light-quark electric-charge matrix is not traceless and terms involving the two
photons interacting with one sea quark loop will contribute to isoscalar quantities for any non-zero charge matrix.
In the present work, these terms are omitted for computational expediency.3 Generally, it has been found that the
related disconnected contributions to analogous single-hadron observables are small for the vector current [52, 53],
and we expect that this behavior persists in nuclei. It is important to remember that this systematic ambiguity
is restricted to the case of the isoscalar polarizabilities, and that the isovector and isotensor combinations, such as
βp − βn, will be correctly calculated for the SU(3) symmetric case.

B. Interpolating Operators and Contractions

In order to probe the energy eigenstates of the systems under consideration, interpolating operators are constructed
with the desired quantum numbers. In principle, any choice of operator that has a overlap onto a given eigenstate
is acceptable. However, poor choices will have small overlaps onto the state of interest and hence will give rise to
“noisy” signals with significant contamination from other states with the same quantum numbers. For a vanishing
background magnetic field, the energy eigenstates are also momentum eigenstates, and in order to access the ground
state energy, it is simplest to choose interpolating operators that project onto states with zero three-momentum. In
this work, this approach is followed for both the neutron and proton (despite the proton carrying a positive electric

3 Several approaches to these terms have been considered recently [46, 47] and may be investigated in future studies of nuclei, although
significant computational resources are required.
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charge). The proton correlation functions are of the form

C(P,S)
p (t; xi) = 〈0|Õ(P,S)

p (t; 0)O(S)

p (xi, 0)|0〉B , (4)

with interpolating operators that are given by

O(S)
p (x, t) = εijk[ũi+(x, t)Cγ5d̃

j
+(x, t)]ũk+(x, t) ,

Õ(P )
p (t; p) =

∑
x

eip·xεijk[ui+(x, t)Cγ5d
j
+(x, t)]uk+(x, t) ,

Õ(S)
p (t; p) =

∑
x

eip·xεijk[ũi+(x, t)Cγ5d̃
j
+(x, t)]ũk+(x, t) =

∑
x

eip·x O(S)
p (x, t) , (5)

where 〈. . .〉B indicates ensemble averaging with respect to QCD in the presence of the UQ(1) links corresponding to a
uniform background magnetic field B = Bez, and where the spin indices of the operators, carried by the third quark,
are suppressed. In Eq. (5), q̃(x) corresponds to a quark field of flavor q = u, d that has been smeared [54] in the
spatial directions using a Gaussian form, while q(x) corresponds to a local field. Additionally, the subscript + on the
quark fields implies that they are explicitly projected onto positive energy modes, that is ui+(x, t) = (1 + γ4)ui(x, t).
The superscript (P, S) on an interpolating operator (and hence the correlation function) indicates a point or smeared

form, respectively, C = iγ4γ2 is the charge conjugation matrix, and O(S)

p = O(S)†
p γ4. Neutron correlation functions are

constructed from those of the proton by interchanging u↔ d. The correlation functions with the quantum numbers
of nuclei, constructed using the methods discussed in detail in Refs. [34, 55], are built recursively using sink-projected
nucleon “blocks” that involve either smeared or local fields. For the present calculations, zero momentum states are
built from zero-momentum blocks, although more complicated constructions can also be considered.

As suggested in Ref. [56], in order to study the proton in a magnetic field, it would be more appropriate to use
interpolating operators that project onto the lowest-lying Landau level, rather than projecting onto three-momentum
plane-waves. This would enhance the overlap of the interpolating operator onto the lowest, close-to-Landau energy
eigenstate and suppress the overlap onto higher states. However, it is unclear how to generalize such a framework
to nuclei constructed from nucleon blocks. While single-hadron blocks provide a good basis for the construction of
correlation functions of nuclei in the absence of background fields, this will not necessarily be the case in a magnetic
field. The problem is exemplified by 3He, a j = 1

2 nucleus comprised of two protons and a neutron. Assuming a
compact state (which it has been shown to be at the quark masses used in this work through calculations in multiple
lattice volumes [34]), the wavefunction of the nucleus is a Landau level determined by its electric charge of Q = 2e,
while that of the proton is a Landau level determined by Q = e, and that of the neutron is a momentum eigenstate.
Proton blocks could be constructed by projection onto a given Landau level at the sink, leading to presumably
improved signals for the proton correlation functions. However, combining Landau-projected proton blocks and
momentum-projected neutron blocks will not necessarily produce interpolating operators that couple well to the 3He
Landau levels. For larger nuclei, this problem becomes even more severe. There are interesting directions that could
be pursued in this regard, for example constructing single hadron blocks that are projected onto the Landau levels
of the “target” nucleus. However, a priori it is difficult to ascertain how efficacious such approaches will be. In the
current work the same interpolating operators used for zero-field calculations are used for calculations in the presence
of background magnetic fields. Although these are not ideal interpolating operators, they are not orthogonal to the
expected eigenstates, and the results extracted from this naive approach serve as a benchmark for more sophisticated
methods that can be explored in future investigations.

The correlation functions investigated in this work with the quantum numbers of nuclei are of the form

Ch;jz (t; B) = 〈0|f̃h;jz

[
Õ(S,P )
p,n (t;~0)

]
fh;jz

[
O(S)

p,n(t; xi)
]
|0〉B . (6)

The exact source and sink interpolating functions, fh;jz and f̃h;jz , depend on the quantum numbers of the nucleus,
and are defined implicitly through the recursive procedures of Ref. [55]. For nuclei with non-zero total spin j, the
z-component of spin, jz, is made explicit as each magnetic sub-state is studied individually. On each QCD gauge
configuration, up- and down-quark propagators are generated for each of the seven magnetic field strengths from
48 uniformly distributed Gaussian-smeared sources. The position of the first source was randomly chosen and the
remaining sources were placed on a regular, three-dimensional grid relative to that location. The sources locations
were selected after the background magnetic field was applied and hence there was no correlation between the source
location and the position of the zero of the vector potential. As the calculations from the different source locations
on each gauge field are averaged over, the dependence of Ch;jz (t; B) on the source location xi is suppressed. This
location averaging effectively projects the source interpolating operator onto zero momentum and is discussed in detail
in Appendix A. In most cases, two correlation functions are constructed for each nuclear state using the smeared and
point sink interpolators, although for larger nuclei there are more possibilities than are calculated.
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C. Magnetic Field Strength Dependence of Energies

In a uniform background magnetic field, the energy eigenvalues of a hadron, h, either a nucleon or nucleus, with
spin j ≤ 1 polarized in the z-direction, with magnetic quantum number jz, are of the form

Eh;jz (B) =
√
M2
h + P 2

‖ + (2nL + 1)|QheB| − µh ·B− 2πβ
(M0)
h |B|2 − 2πβ

(M2)
h 〈T̂ijBiBj〉+ . . . ,

(7)

where Mh is the mass of the hadron, P‖ is its momentum parallel to the magnetic field, Qh is its charge in units of e,

and nL is the quantum number of the Landau level that it occupies. For a nucleon or nucleus with spin j ≥ 1
2 , there

is a contribution from the magnetic moment, µh, that is linear in the magnetic field. The magnetic polarizability

is conveniently decomposed into multipoles, with βh ≡ β
(M0)
h denoting the scalar polarizability and β

(M2)
h denoting

the tensor polarizability (the latter contributes for hadrons with j ≥ 1). T̂ij is a traceless symmetric tensor operator
which, when written in terms of angular momentum generators, is of the form

T̂ij =
1

2

[
ĴiĴj + Ĵj Ĵi −

2

3
δij Ĵ

2

]
, (8)

and 〈...〉 in Eq. (7) denotes its expectation value.4 Note that the polarizabilities defined here represent the full
quadratic response to the field and differ from other conventions used in the literature where Born terms are explicitly
removed (for a discussion, see e.g. Ref. [57]). The ellipses denote contributions that involve three or more powers of
the magnetic field. The spin-averaged energy eigenvalues project onto the scalar contributions,

〈Eh(B)〉 ≡ 1

2j + 1

j∑
jz=−j

Eh;jz (B) =
√
M2
h + P 2

‖ + (2nL + 1)|QheB| − 2πβ
(M0)
h |B|2 + ... , (9)

where the ellipsis denotes contributions of O(|B|4) and higher. For spin-j states, the energy difference between jz = ±j
isolates the magnetic moment at lowest order in the expansion. Other combinations of the energy eigenvalues of the
individual spin components can be formed to isolate higher multipoles.

III. RESULTS

A. Extraction of Energy Levels

With the background magnetic field given in Eq. (2), well-defined energy levels exist for each value of the magnetic
field strength. In order to determine the magnetic polarizabilities, energy eigenvalues are determined from the appro-
priate correlation functions, the Ch;jz (t; B) defined in Eq. (6). The individual correlation functions associated with
each state in each magnetic field are examined, and the time intervals over which they are consistent with single ex-
ponential behavior are determined. Effective mass plots (EMPs) associated with representative correlation functions
obtained in the magnetic fields with ñ = 0, 1,−2, 3 are shown in Fig. 1. Having identified these time intervals, the
main analysis focuses on ratios of these correlation functions constructed as

Rh;jz (t; B) =
Ch;jz (t; B)

Ch;jz (t; B = 0)

t→∞−→ Zh;jz (B) e−δEh;jz (B)t , (10)

where δEh;jz (B) = Eh;jz (B)−Eh;jz (0) is the energy difference induced by the magnetic field, and Zh;jz (B) is a time-
independent, but field-dependent, overlap factor. To be specific, h = p, n, nn, d, pp, 3He, 3H and 4He are considered
in all magnetic substates. It is advantageous to work with ratios of correlation functions because fluctuations present
in the energies extracted from individual correlation functions cancel to a significant degree in the ratio.5 The energy

4 For a magnetic field aligned in the z-direction, it follows that 〈T̂ijBiBj〉 = 〈T̂zzB2〉 =
(
j2z − 1

3
j(j + 1)

)
B2. This vanishes for both the

j = 0 and j = 1
2

states, and takes the values 〈T̂ijBiBj〉 = 1
3
B2 for j = 1, jz = ±1 states and 〈T̂ijBiBj〉 = − 2

3
B2 for j = 1, jz = 0

states.
5 Note that such ratios are formed after averaging over an ensemble of measurements.
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FIG. 1: EMPs obtained from the smeared-smeared nucleon and nuclear correlation functions for the lowest-four magnetic field
strengths. The jz = ±j states are shown for each hadron.
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shifts are extracted from these ratios in the time regions in which the contributing individual correlation functions
show single state dominance by either directly fitting the ratio or, alternatively, by fitting the effective mass resulting
from the double ratio

δEh;jz (B; t, tJ) =
1

tJ
log

(
Rh;jz (t; B)

Rh;jz (t+ tJ ; B)

)
t→∞−→ δEh;jz (B) , (11)

where tJ represents a temporal offset that can be chosen to optimize energy extractions. The fits are performed
using the correlated χ2-minimization procedure, with the covariance matrix determined using jackknife or bootstrap
resampling. A systematic fitting uncertainty is estimated by performing fits over multiple fitting intervals within the
region of single-exponential dominance for a given system. The primary analysis in this work is based on fitting the
ratios of correlation functions obtained from binning source-averaged measurements into Nb = 100 blocked samples
and generating NB = 200 bootstrap samples from these blocked samples. Alternate analyses are also undertaken
in which differences include varying the statistical procedures and also performing constant fits to effective mass
functions formed from different values of tJ and other possible variations. Consistent results are obtained.

In order to extract the magnetic polarizabilities, ratios of the correlation functions associated with the maximally-
stretched spin states can be formed such that the leading magnetic-moment contributions cancel,

Rh(t; B) =
Ch;jz=j(t; B)

Ch;jz=j(t; 0)

Ch;jz=−j(t; B)

Ch;jz=−j(t; 0)
→ Z̃ e−2δ〈Eh(B)〉t , (12)

where δ〈Eh(B)〉 = 〈Eh(B)〉 −Mh is the spin-averaged energy shift. Similarly, the spin difference between maximal
jz = ±j states eliminates the spin-independent terms, leaving only the magnetic-moment contribution and O(|B|3)
and higher terms. This has been used to extract magnetic moments in Refs. [1, 43] using the ratio

∆Rh(t; B) =
Ch;jz=j(t; B)

Ch;jz=j(t; 0)

Ch;jz=−j(t; 0)

Ch;jz=−j(t; B)
→ ∆Z̃ e−(Eh;j(B)−Eh;−j(B))t . (13)

In the present work, the individual spin states are used to extract the magnetic moments and polarizabilities in a
coupled fit as the latter quantities are the primary target of this study. However, the magnetic moments have also
been extracted from the spin-difference ratios, Eq. (13) [1], and that approach is found to lead to consistent, but more
precise results and remains the preferred method for extracting the magnetic moments. Given the more complicated
nature of the fits we perform here in order to obtain sensitivity to the polarizabilities, it is unsurprising that the
uncertainties on the lower order terms are larger. In what follows, we present the magnetic moments that result from
the coupled fits for completeness, but use the previous fits to spin-difference ratios as the best estimates of these
quantities.

Figures 2 and 3 show the ratios of correlation functions used in the extraction of energy shifts for each magnetic
field strength and spin component. Results from all six nonzero magnetic field strengths are shown. In each case, the
associated single exponential fit to the ratio of correlation functions is shown, along with the associated statistical
uncertainty. Fits over all time ranges in [tmin, tmax] are considered, where tmax = 24 and tmin is set by requiring
consistency with single exponential behavior of the individual correlators that form a given ratio. The central fit is
identified as that over the time range with tmax−tmin > 3 with the lowest correlated χ2/d.o.f . The standard deviation
of all fits over subsets of time ranges in the interval [tmin− 1, tmax] that have a χ2 within one unit of the minimum χ2

(χ2 → χ2
min + 1) is taken as the fitting systematic uncertainty. The extracted energy shifts are tabulated in Table I.

The correlation functions associated with the nucleons and nuclei are highly correlated, and therefore differences
between the energies of two given states can be more accurately determined than those of each state individually. Of
particular interest is the difference between the magnetic properties of a nucleus and that of its constituent nucleons.
To highlight these differences, further ratios are constructed,

δRA,jz (t; B) =
RA(t; B)∏

h∈A
Rh(t; B)

t→∞−→ δZA(B) exp

[
−

(
δEA(B)−

∑
h∈A

δEh(B)

)
t

]
, (14)

where the nucleus A contains a set of nucleons, h, and the spin indices have been suppressed for brevity. Figure 4
shows this ratio of correlation functions for the nn, jz = ±1 deuteron, and pp systems.

As discussed previously, the momentum-projected interpolating operators are not expected to provide particularly
good overlap onto the low-energy eigenstates of the proton and charged nuclei in magnetic fields, which are expected to
more closely resemble Landau wavefunctions. Indeed, the interpolating operators are found to overlap most strongly
with states other than the lowest Landau level, as will be discussed below and in detail in Appendix A. In Fig. 5,
the ratio of overlap factors of the extracted state at nonzero and zero background field strengths are shown. For the
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FIG. 2: The ratio of correlation functions associated with the p, n, nn and pp systems. Results are shown for all six field
strengths for the smeared-smeared correlators and for both |jz| = j states for states with j > 0. The shaded bands correspond
to the statistical uncertainties of the given fit.

neutral states, the overlap is only weakly dependent on the field strength, but for charged states, the overlap rapidly
decreases with increasing magnetic field strength. This indicates that care must be taken in interpreting the extracted
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FIG. 3: The ratio of correlation functions associated with the d, 3He, 3H and 4He states. Results are shown for all six field
strengths for the smeared-smeared correlators and for both |jz| = j states for states with j > 0. The shaded bands correspond
to the statistical uncertainties of the given fit.
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State a δEh;jz (ñ)

h jz ñ = 1 ñ = −2 ñ = 3 ñ = 4 ñ = −6 ñ = 12

p 1
2

0.0032(11)(17) 0.0839(24)(0) −0.0324(22)(19) −0.0581(26)(12) 0.1288(51)(65) −0.2495(17)(13)

p − 1
2

0.05372(63)(68) −0.0073(16)(7) 0.1035(34)(23) 0.1087(37)(42) −0.1045(57)(41) 0.142(4)(16)

n 1
2

0.01297(32)(19) −0.03741(12)(8) 0.0249(12)(19) 0.0184(21)(12) −0.12694(35)(27) −0.02318(91)(64)

n − 1
2

−0.01711(7)(17) 0.01749(75)(46) −0.0584(10)(11) −0.0831(17)(6) −0.0027(23)(24) −0.24212(63)(25)

nn 0 −0.00321(15)(32) −0.0146(8)(12) −0.0285(31)(21) −0.0488(32)(36) −0.1147(24)(99) −0.2793(27)(26)

d 1 0.0190(16)(74) 0.0588(34)(44) −0.0009(54)(31) −0.0262(72)(61) 0.033(7)(15) −0.337(22)(19)

d -1 0.0398(8)(33) 0.0169(59)(79) 0.0523(58)(62) 0.041(8)(13) −0.039(47)(28) −0.114(7)(20)

pp 0 0.0490(19)(82) 0.0679(36)(56) 0.0536(55)(88) 0.062(5)(12) 0.001(11)(34) −0.114(5)(15)
3He 1

2
0.067(3)(24) 0.0408(38)(53) 0.123(8)(10) 0.126(8)(22) −0.028(7)(27) 0.01(1)(69)

3He − 1
2

0.034(3)(16) 0.112(4)(13) 0.023(7)(16) 0.0045(85)(94) 0.112(15)(77) −0.262(11)(89)
3H 1

2
0.007(1)(16) 0.100(4)(19) −0.027(7)(25) −0.058(7)(39) 0.06(2)(11) −0.31(8)(12)

3H − 1
2

0.058(2)(27) −0.0025(35)(67) 0.125(7)(29) 0.138(8)(38) −0.152(11)(35) −0.02(2)(70)
4He 0 0.056(4)(69) 0.086(7)(30) 0.090(14)(35) 0.098(15)(74) 0.09(1)(11) −0.10(3)(62)

TABLE I: Extracted energy shifts of the nucleons and nuclei, where the first uncertainty is statistical and the second corresponds
to the systematic uncertainty obtained from variation of fitting ranges. The jz = 0 deuteron state is studied separately.

states. It does not mean that unrelated states (those that are not continuously related as a function of the magnetic

field) are being extracted for different field strengths, but instead the overlap onto the given state is decreasing.6

B. The Coupled jz = Iz = 0 Two-Nucleon Channel

The jz = Iz = 0 channel is special in that the presence of the magnetic field breaks isospin symmetry through the
charge matrix and also introduces explicit spin dependence to the low-energy effective Hamiltonian. Consequently, the
background magnetic field couples the jz = 0 deuteron and Iz = 0 dinucleon states, and a more complicated analysis
is required to extract the essential physics. The energy eigenvalues of this system result from diagonalizing a 2 × 2
truncated Hamiltonian in the basis formed from the 1S0 and the 3S1 states.7 For non-vanishing magnetic fields, the
off-diagonal elements of this truncated Hamiltonian receive contributions from magnetic transitions between the 3S1

and 1S0 channels induced by the nucleon isovector magnetic moment and short-distance two-nucleon interactions with
the magnetic field resulting from meson-exchange currents in the context of potential models or local two-nucleon
current couplings in effective field theory (EFT). As the nucleon isovector magnetic moment is large, the energy
splittings between these states are significant for the magnetic field strengths employed.

The pionless EFT (EFT(π/)) can be used to describe the low-energy strong and electroweak interactions of two-
nucleon, three-nucleon and multi-nucleon systems [62, 63]. It provides a systematic way to include the gauge-invariant
electroweak interactions that are not related to strong-interaction S-matrix elements through local multi-nucleon
operators. While conventionally formulated in terms of four-nucleon interactions with insertions of derivatives (as
well as higher body interactions), EFT(π/) can be fruitfully defined in terms of dibaryon fields, permitting a dramatic
simplification in calculations beyond leading order (LO) in the expansion [64]. The Lagrange density describing the
two-nucleon electromagnetic interactions at LO and next-to-leading order (NLO) in EFT(π/) using dibaryon fields

6 Similar effects have been seen in constructing multi-pion correlation functions from combinations of pion interpolating operators built
with differing momenta. Exponentially smaller overlaps were observed, although a consistent energy could be extracted [58, 59]. In
background electric fields, the overlap factors of momentum projected interpolating operators were also seen to decrease significantly
with the applied field strength [41, 42].

7 For the small magnetic field strengths considered in this work, the gap to excitations is significant, and such excitations can be neglected.
Additionally, due to the tensor interaction, the j = 1 state involves both S-wave and D-wave contributions. The 3S1-3D1 coupled channels
are truncated down to the 3S1 channel because the deuteron and dineutron are close in energy in the absence of a magnetic field, and
the deuteron is predominantly S-wave (at least at the physical pion mass). For a more detailed discussion of the deuteron in a FV, see
Refs. [60, 61].
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FIG. 4: The ratios of correlation functions defined in Eq. (14) for the nn, d(jz = ±1) and pp systems. Results are shown for all
six magnetic fields for the smeared-smeared correlation functions. The shaded bands correspond to the statistical uncertainties
of the given fit. The deuteron spin states are averaged for simplicity.

is [64]

L =
e

2MN
N†
[
κ0 + κ1τ

3
]
Σ ·BN − e

MN

(
κ0 −

l̃2
r3

)
iεijkt

†
i tjBk

+
e

MN

l1√
r1r3

[
t†js3Bj + h.c.

]
, (15)

where ti are the SO(3) vector components of the 3S1 dibaryon field and s3 is the Iz = 0, 1S0 dibaryon field, MN is the
nucleon mass and Σ is the spin operator. The effective ranges in the 1S0 and 3S1 channels are denoted as r1 and r3,
respectively while κ0 and κ1 are the isoscalar and isovector magnetic moments of the nucleon. The NLO interactions,
described by dibaryon operators coupled to the magnetic field, are accompanied by the coefficients l1,2 in Eq. (15).8

8 In this expression, l2 has been replaced by l̃2 − r3κ0 to make explicit the deviation of the deuteron magnetic moment, µd =
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both spin states are shown as the different colored points offset slightly for clarity.

In Ref. [65], it was recognized that LQCD calculations employing background magnetic fields could be used to
extract the deuteron magnetic moment, and the rate for low-energy np → dγ radiative capture, by determining the
energy eigenvalues of the two-nucleon systems [65, 66]. The deuteron magnetic moment is extracted from the energies
of the jz = ±1 states in the background fields, while the np→ dγ radiative capture cross-section is determined from
the nucleon isovector magnetic moment and the value of l1 determined from the energies of the two jz = 0 states in
the coupled 1S0–3S1 np sector. This latter combination is probed through the determinant condition [65][

p cot δ1 −
S+ + S−

2πL

] [
p cot δ3 −

S+ + S−
2πL

]
=

[
|eB|l1

2
+
S+ − S−

2πL

]2

, (16)

where δ1,3 are the phase-shifts in the 1S0 and 3S1 channels, respectively. Solutions to this equation correspond to the
energy eigenvalues of the system, with the functions S± given by

S± ≡ S
(
L2

4π2
(p2 ± |eB|κ1)

)
, (17)

where

S(η) =

|n|<Λ∑
n6=0

1

|n|2 − η
− 4πΛ (18)

e
M

(
κ0 + γ0

1−γ0r3
l̃2
)

, from the single nucleon contribution.



14

is the three-dimensional Riemann-zeta function associated with the A+
1 irreducible representation of the cubic

group [67–69].
At the quark masses used in these calculations, the deuteron and bound dineutron are approximately degenerate [34],

and have scattering lengths, a1,3, and effective ranges, r1,3, that are numerically close to each other (a1 ∼ a3 = a and
r1 ∼ r3 = r) [35] and hence δ1 ∼ δ3 = δ.9 Because of this, Eq. (16) simplifies to

p cot δ =
1

πL
S± ±

|eB|l1
2

, (19)

where both signs should be taken together for the two solutions. Expanding this for small |eB|, the shifts in the
energies of the two eigenstates are

∆E3S1,1S0
= ∓Z2

d (κ1 + γ0l1)
|eB|
M

+ ... = ∓
(
κ1 + L1

) |eB|
M

+ ... , (20)

where Zd = 1/
√

1− γ0r is the square-root of the residue of the deuteron propagator at the pole and the ellipsis
denotes terms that are higher order in the strength of the magnetic field. In Eq. (20), the deviations of the energy
shifts from their naive single-particle values are defined using

L1 = γ0Z
2
d (l1 + rκ1) . (21)

To numerically study this coupled system, it proves useful to first construct the correlation matrix

C(t; B) =

(
C3S1,3S1

(t; B) C3S1,1S0
(t; B)

C1S0,3S1
(t; B) C1S0,1S0

(t; B)

)
, (22)

where the matrix elements CA,B(t; B) are generated from source and sink operators associated with the A,B ∈
{1S0,

3S1} channels (which are orthogonal in the absence of the magnetic field). The generalized eigenvalue problem,
defined by this correlation matrix, can be solved to extract the (diagonalized) principal correlation functions [70],
energies and energy differences. That is, solutions of the system

[C(t0; B)]−1/2C(t; B)[C(t0; B)]−1/2v = λ(t; B)v (23)

are sought, where the eigenvalues are the principal correlation functions λ±(t; B) = exp[−(Ē ± ∆E3S1,1S0
)t] with

average energy Ē and energy difference ∆E3S1,1S0
. The parameter t0 can be chosen to stabilize the extraction but has

little numerical effect in the current results. To extract the response to a background magnetic field, the ratio of the
principle correlation functions

R3S1,1S0
(t; B) =

λ+(t; B)

λ−(t; B)

t→∞−→ Ẑ exp
[
2 ∆E3S1,1S0

t
]
, (24)

permits a refined determination of the energy difference ∆E3S1,1S0
, significantly reducing correlated fluctuations, where

Ẑ is a t-independent constant.
Figure 6 shows the EMPs of the original correlation functions of the coupled-channel system in Eq. (22) according

to their source and sink type. This figure also shows the EMPs constructed from the principal correlation functions
that are determined by solving the generalized eigenvalue problem, Eq. (23), for t0 = 5. The diagonalization of the
matrix of correlation functions in Eq. (22) is particularly effective in this case because the states are orthogonal in
the limit of vanishing magnetic field. In most cases, plateau behavior is visible in both principal correlation functions,
indicating that the lowest two eigenvalues of the system can be extracted. Given this, focus is placed on the ratios
R3S1,1S0

(t; B) in the region where the principal correlation functions are consistent with single exponential behavior.
Figure 7 shows the ratios for all magnetic field strengths along with the associated single exponential fits. Analysis
of these ratios in the coupled system is performed with the same methods used to analyze the ratios in the unmixed
channels.

As in Eq. (14), the calculated correlation functions associated with nucleons and nuclei share the same quantum
fluctuations, to a large degree. This makes it possible to determine differences between properties of the np system

9 The difference in binding energies is ∆3S1,1S0
= E1S0

− E3S1
= 5.8(1.4) MeV [34]; provided the difference in energies is small compared

to the shifts induced by the magnetic field, it can be neglected. If it cannot be neglected, the determinant condition must be solved
numerically.
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FIG. 6: Results from nucleon-nucleon smeared-smeared correlation functions in the mixed jz = Iz = 0 sector. The left panels
show the effective masses of the elements of the 2× 2 matrix of correlation functions, with each quartet of plots corresponding
to a different magnetic field strength. In the right panels, the EMPs of the principal correlation functions resulting from solving
the associated generalized eigenvalue problem are shown.

and those of a free neutron and proton with more precision than the individual properties. In the current context,
the ratio

δR3S1,1S0
(t; B) =

R3S1,1S0
(t; B)

∆Rp(t; B)/∆Rn(t; B)
, (25)

decays with a characteristic exponent 2∆E3S1,1S0
(B)−(Ep,↑−Ep,↓)+(En,↑−En,↓) = 2|eB|L1/M+O(|B|3), permitting

direct access to deviations from single nucleon physics, where the ∆Rh(t; B) are given in Eq. (12). Figure 8 shows
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FIG. 7: The ratio of correlation functions, R3S1,1S0
(t;B) determined from the principal correlation functions for t0 = 5 for all

six magnetic field strengths used in this work. Fits to the correlation functions are also shown with uncertainties represented
by the shaded region.

these ratios for each field strength, from which the energy shifts can be extracted with remarkable precision.

�=�

��

���

��

δ�
� �
�
��
�
�
(�
�
�
} �=-� �=�

�=�

� � �� �� ��

��

���

��

�/�

δ�
�
�
�
��
�
�
(�
�
�
} �=-�

� � �� �� ��

�/�

�=��

� � �� �� ��

�/�

FIG. 8: The ratio δR3S1,1S0
(t;B) computed from the principal correlation functions with t0 = 5, divided by the appropriate

isovector combination of the spin differences of the single nucleon correlation functions are shown for all six magnetic field
strengths used in this work. Fits to these ratios, and the associated uncertainties (the bands), are also shown.

C. Magnetic Field Strength Dependence: General Strategies

Having extracted the energies and energy differences as a function of the magnetic field strength, the remaining
task is to use them to determine the magnetic properties of the nucleons and nuclei through fits to the expected forms
shown in Eq. (7). The fits and extracted properties of each nucleon and nucleus are presented individually in the
following subsection. Here, the general features of the analysis, and the difficulties encountered in confronting Landau
levels, are discussed.

In dimensionless units, the form used for the fits to the ground states (B = Bez and P‖ = 0) is

a δEh;jz =
√
a2M2

h + (2nL + 1)Qha2|e B| − aMh −
2e

aMN
µ̂hjza

2|e B|

− 2π

a3M2
N (M∆ −MN )

[
β̂h + β̂

(2)
h (j2

z −
1

3
j(j + 1))

] (
a2|e B|

)2
+jz γ̂h

(
a2|e B|

)3
+ δ̂h

(
a2|e B|

)4
, (26)



17

where the fit parameters are

nL, µ̂h = µh
MN

2e
, γ̂h, δ̂h

β̂h =
M2
N (M∆ −MN )

e2
β

(M0)
h , β̂

(2)
h =

M2
N (M∆ −MN )

e2
β

(M2)
h , (27)

and a2|e B| = 6π|ñ|
L2 is the dimensionless field strength. This extends to higher orders in |e B| than the form given

in Eq. (7), providing for estimates of fitting systematic uncertainties in the extraction of the magnetic moments and
polarizabilities resulting from the choice of fit form. The hadron masses, aMh, are taken from our previous studies
on this ensemble of gauge-field configurations [34] and are known precisely (aM∆ = 1.3321(10)(19) on this ensemble).

For uncharged states, nL does not enter the fit, and for states with j = 0, the parameters µ̂, β̂
(2)
h and γ̂ are absent.

As in Ref. [1], the extracted magnetic moments are expressed in terms of “natural nuclear magnetons” (nNM) defined
with respect to the nucleon mass at the quark masses used in the calculation. The polarizabilities are given in terms
of the natural dimensionless polarizability e2/M2

N (M∆−MN ) (given the expected dominance of the ∆-resonance, this
is the appropriate scale for the magnetic polarizabilities), but are also presented in physical units in the conclusion. A
physical interpretation of the higher order parameters is not provided, and they are used only to control the systematic
uncertainties in the magnetic moments and polarizabilities extracted from the fit.

In performing fits, the same bootstrap sets of extractions of the energy shifts are used at each magnetic field strength
in order to exploit the correlations between them. The ensemble averages of the energy shifts are used to obtain the
central values of fit parameters describing the magnetic field strength dependence. An ensemble of fits to the bootstrap
data set is used to obtain the associated statistical uncertainties. To propagate the systematic uncertainties from the
fits to the ratios of correlation functions into the field dependence analysis, the bootstrap sets of energy shifts are
spread away from their mean by the ratio of the quadrature-combined statistical and systematic uncertainties to the
statistical uncertainty. That is, for an energy variable E with an ensemble of extracted bootstrap values {Ei}, mean

value E = 1
NB

NB∑
b=1

Eb, and statistical and fitting systematic uncertainties δEstat and δEsys, the spreaded bootstrap

ensemble values {Ẽi} are taken to be

Ẽi = E +

√
δE2

stat + δE2
sys

δEstat
(Ei − E) , (28)

and it is these quantities that are used in subsequent analyses. The highly correlated nature of the results obtained
at different field strengths (that is, results obtained at different magnetic field strengths on a given configuration have
correlated statistical fluctuations) makes this approach essential.

An important aspect of the present analysis is to address the range of magnetic field strengths for which the fit
forms in Eq. (26) describe the energy shifts. This is addressed by varying the number of magnetic field strengths
used in the fits, fitting results obtained at |ñ| ≤ ñmax with ñmax = 2, 3, 4, 6, 12. The complexity of the fit form is also

varied by either using the full form or by setting δ̂ = 0, δ̂ = γ̂ = 0 or δ̂ = γ̂ = β̂ = 0. Further, either the smeared-sink
or point-sink correlation functions are selected for fitting. For j = 0 states, a total of 4 × 2 × 2 = 16 different fits
are considered for each bootstrap ensemble. For the j > 0 states, coupled fits were performed to the magnetic field
strength dependence of the jz = ±j spin states and 5 × 4 × 2 = 40 different fits are considered for each bootstrap
ensemble. A large number of fits successfully described the results with an acceptable χ2/d.o.f., although some did
not. The central values and uncertainties in the extracted parameters are evaluated from the distribution of the
results for the acceptable fits, and are taken as the 50th quantile and the 17th–83rd range of quantiles, respectively.
As an additional check, we have used the Bayes information criterion for a given fit to assess those that are acceptable
and find uncertainties that are consistent with those defined from the χ2.

A further complication arises from the Landau-level nature of the eigenstates and the sub-optimal projection of the
interpolating operators onto them. In every case, correlation functions that have single exponential behavior over a
significant range of time-slices are found. However, it is clear that these states do not correspond to the lowest Landau
level. Expanding the field dependence in the non-relativistic limit, the magnetic moment contribution cancels in the
spin-averaged energy shift, but a linear contribution survives with a coefficient determined by nL,

a [Eh;jz (B) + Eh;−jz (B)] =
a2Qh|e B|

2aMh
(2nL + 1) +O(|B|2) , (29)

where the masses are precisely known from previous studies [34]. From examining the small field shifts for charged
states, it is found that nL 6= 0 in all cases. Thus, the interpolating operators overlap strongly onto excited states of
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the system and presumably will relax to the ground state only at large Euclidean times. Because of this, nL is treated
as a fit parameter and the fits themselves are used to determine which Landau levels are dominating the various
correlation functions. In the limit of vanishing lattice spacing, and neglecting structure effects, the allowed values of
nL are integers and a somewhat complicated approach to fitting is required. Two alternate procedures are considered.
In the first approach, the lowest magnetic field strengths are used to determine the linear term in the field-strength
dependence, which is used to identify the integer value of nL that is most consistent with the numerical results. This
value is held fixed and then used in further fits utilizing the full form of Eq. (26). In the second approach, nL is
first treated as a real-valued fit parameter and the full fits are performed. Then, after considering the different fits,
the integer n̂L closest to the mean of successful fits is chosen and held fixed in the final set of fits.10 An additional
systematic is assessed by combining sets of fits (varying fit forms, data ranges, and types of correlation functions)
with n̂L → n̂L ± 1 into the full suite of fits (for charged, j > 0 states, a total of 120 different fits are considered for
each bootstrap ensemble). Both choices of Landau-level procedures lead to consistent results after these systematic
uncertainties are taken into account.

A related systematic uncertainty that is considered is the potential ambiguity in identifying the Landau level
associated with the plateau at each magnetic field strength. In the fitting forms, it is implicit that the energies of
a nucleon or nucleus result from a single Landau level for the range of magnetic fields that are considered. This is
expected to be the case at small magnetic fields, but might not be valid at larger magnetic fields. To explore this issue,
fit forms with different n̂L for different magnetic fields are considered. Keeping only the results from the lowest four
magnetic fields, and allowing different values of n̂L for each magnetic field does not result in acceptable fits except
when the n̂L’s are all the same. This leads to confidence in the assumption that the same Landau state is providing
the energies that are dominating the fits.

D. The Magnetic Properties of Nucleons and Nuclei

1. The Neutron

The neutron correlation functions and their ratios for each spin component and magnetic field strength used in this
analysis, along with the associated fits, are shown in Figs. 1 and 2, and the energy shifts extracted from these functions
are presented in Table I. Figure 9 shows the energy shifts of a spin-up and spin-down neutron as a function of the
background magnetic field strength. The two spin states behave quite differently in the presence of the magnetic field.
The energy shift of the spin-down state (negatively shifted as the neutron magnetic moment is negative) responds
almost linearly to the magnetic field, even out to |eB| ∼ 0.71 GeV2 (ñ = 12), while the response of the spin-up state
exhibits significant nonlinearities even for modest magnetic fields. The behavior of the spin-up state is reminiscent of
the lower level in a two-state system with an avoided level crossing. Given the expected tower of QCD excitations of the
nucleon, the observed behavior of the spin-up state is consistent with the magnetic field inducing mixing between the
spin-up neutron and higher-lying states. Such mixing is expected from quark-hadron duality, and LQCD calculations
that also probe the response of excited states to the magnetic field could be used to investigate this further. This
behavior implies that spin-dependent polarizabilities are highly correlated with spin-independent polarizabilities, and
it will be interesting to learn if this pattern persists as the quark masses are brought closer to their physical values.

As discussed in the previous subsection, a large number of different fits involving varying ranges of field strengths
and with a variety of functional forms are performed in order to the analyze the energy shifts and determine the
magnetic moment and polarizability. The 17th and 83rd quantile range of all successful fits to each data range are
shown as the shaded regions in Fig. 9. Separate (overlapping) regions are shown for each data range ñ ≤ nmax for
which successful fits were found. Note that the figure shows the results from smeared-smeared correlation functions
only, but the fits that are considered also include those involving the energies extracted from smeared-point correlators.
The figure also shows the probability density functions (PDFs) generated from combining the central values of all
successful fits (considering fits over the energy shifts extracted from each of the bootstrap ensembles) for the two

relevant parameters, µ̂ and β̂. For fits involving additional parameters, these are integrated over, while for linear fits

just involving the magnetic moment, these are ignored in determination of the PDF for β̂. Analysis of the suite of

10 The extractions of magnetic moments and the np → dγ cross-section are independent of these complications as the Landau-level
contributions cancel in the energy differences between spin states.
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FIG. 9: Results for the energy shifts of a spin-up (upper points) and a spin-down (lower points) neutron in a background
magnetic field. The central 68th quantile of successful fits is shown as the shaded bands. Different overlapping bands are shown
for fits over the different ranges of ñ. The lower panel shows the probability-density functions for the relevant fit parameters µ̂
and β̂, with the vertical lines indicating the central value and uncertainties.

fits that are detailed in the previous subsection yields a neutron magnetic moment and polarizability of

µ̂n = −1.972
(

+0.027

−0.033

)
(0.059) , (30)

β̂n = 0.198
(

+0.009

−0.011

)
(0.010) , (31)

where the first uncertainties combine the statistical and systematic uncertainties from the extraction of the energy
shifts, as well as the systematic uncertainty from the fit to the magnetic field strength. The second uncertainty
estimates the effects of discretization and finite volume effects; as discussed in the conclusion this is assessed to be a
3% multiplicative uncertainty on magnetic moments and a 5% multiplicative uncertainty on polarizabilities. The above
results are presented in the natural dimensionless units, and the values of the magnetic moment and polarizability
in physical units are subject to additional uncertainties from the lattice scale-setting procedure, which are discussed
in the conclusion. The magnetic polarizability and magnetic moment of the neutron have been calculated previously
with LQCD over a range of light-quark masses [39, 43] albeit with large uncertainties. The calculated magnetic
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FIG. 10: The energy shifts of the dineutron as a function of the background magnetic field strength, ñ. The details of the
figure are as in Fig. 9. The lower panel shows the PDF for the dineutron polarizability.

moment is consistent with previous calculations at similar quark masses, and the value of βn is also consistent with
previous calculations [43].11

2. The dineutron

At these unphysical quark masses, the dineutron (in the 1S0 channel) is a bound state, with a binding energy of
Bnn = 16(5) MeV [34]. As it is electrically neutral, comprised of two neutrons in the 1S0 channel with positive parity,
the dineutron provides the simplest nuclear system with which to explore the effects of binding on magnetic properties.
This system is discussed before proceeding to states that are electrically charged and therefore complicated by the
presence of Landau levels.

11 The authors of Ref. [43] report difficulties in identifying ground states.
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Figures 1 and 2 show the dineutron correlation functions and the ratios of correlation functions for each field strength,
along with fits to the time dependence of the ratios. The energy shifts extracted from the ratios of correlation functions
are given in Table I for each field strength, and Figure 10 shows these shifts. Combining all of the attempted fits to
the energy shifts, as described in detail for the neutron, yields a magnetic polarizability of

β̂nn = 0.296
(

+0.019

−0.018

)
(0.015) , (32)

where the uncertainties are as for the case of the neutron, and the result is presented in the dimensionless natural
units of the system, defined in Eqs. (26) and (27).

This polarizability is significantly smaller than twice the single neutron polarizability with δβ̂nn ≡ β̂nn−2β̂n ∼ 0.1.
This difference can also be obtained from the ratio δRnn,0(t; B) in Eq. (14) that probes the difference directly in a
correlated manner. In the large time limit, the exponential decay of this ratio is governed by the energy difference
δEnn(B) − δEn, 12 (B) − δEn,− 1

2
(B). These ratios are displayed in Fig. 4 for the different field strengths and the

extracted energy shifts are shown in Fig. 11 as a function of the field strength. In turn, δβ̂nn is the coefficient of
the quadratic term in the field strength dependence of this energy difference. Analyzing these energy shifts using the
same methods as above, leads to

δβ̂nn ≡ β̂nn − 2β̂n = −0.070
(

+0.006

−0.009

)
(0.004) . (33)

As discussed above, the neutron spin-down state is magnetically rigid and remains undeformed even at large
magnetic fields, while the spin-up state is strongly deformed. For the dineutron, the overall energy is lowered in a
magnetic field, driven largely by the spin-down neutron. As this also lowers the energy of the spin-up neutron, it has
a reduced mixing with other states and, therefore, becomes more rigid. From Fig. 11, it is apparent that the binding
energy of the dineutron (the energy required to separate the spin-up and spin-down neutron) is reduced for ñ<∼ 8,
but is larger for ñ = 12, than at B = 0. If this behavior persists at the physical quark masses, it would indicate that
it is energetically disfavored for neutron matter (or near-neutron matter) in dense stellar objects to spontaneously
generate a magnetic field through the formation of dineutron pairs. It is also interesting to note that at intermediate
field strengths, the dineutron system is nearing a Feshbach resonance in which the binding energy is approaching zero
and the scattering length is approaching infinity.

3. The proton

The analysis of the proton in a magnetic field is more complicated than that of the neutron and dineutron. As
discussed previously, the interpolating operators used in this work project onto plane waves in all three spatial
directions rather than Landau levels which we expect to be closer to the eigenstates of the system, so the quality of
the correlation functions for charged systems is expected to be significantly worse than that for electrically neutral
systems. This is indeed the case, as can be seen from the EMPs shown in the first row of Fig. 1; in comparison to
the neutron, the proton correlation functions are of lower quality with plateaus setting in at later times and with
significantly larger uncertainties. Further, the presence of Landau levels significantly complicates the spectrum of
charged system and it is clear that the plateaus that are evident do not correspond to the lowest Landau level,
as discussed above. The Landau level associated with the plateau is identified through systematic analysis of the
field-strength dependence, as discussed in Section III C.

In Fig. 2, the ratio of correlation functions associated with each spin component and field strength, and associated
fits, are shown. The energy shifts resulting from these fits are given in Table I for each magnetic field strength and
are shown in Fig. 12. The suite of fits that are performed lead to a proton magnetic moment and polarizability of

µ̂p = 3.17
(

+0.10

−0.09

)
(0.09) , (34)

β̂p = 0.83
(

+0.10

−0.07

)
(0.04) , (35)

where the uncertainties are as discussed for the case of the neutron, and the results are presented in the dimensionless
natural units defined in Eqs. (26) and (27). The Landau level makes a contribution to the O

(
B2
)

term that is
suppressed by the mass of the proton, and its main contribution is to the term linear in B where it can be well
constrained by the coupled analysis of the two spin states. Consequently, the uncertainty in identifying the correct
Landau level of the system does not lead to a particularly large uncertainty in the extracted value of its magnetic
polarizability (although the neutron polarizability is considerably more precise).
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FIG. 11: Results for the difference between the energy shifts of the dineutron and a spin-up and spin-down neutron as a function
of the background magnetic field strength. The green shaded regions are the result of the suite of fits to the field strength
dependence. The horizontal red-shaded region shows the breakup threshold for the dineutron, above which the ground state of
the system would be two neutrons in the continuum in the 1S0 channel.

The magnetic polarizability of the proton is found to be considerably larger than that of the neutron, β̂p − β̂n =
0.63(10)(4), indicating a significant isovector component at this unphysical pion mass. Currently, there are no other
LQCD calculations of the proton magnetic polarizability with which to compare, however, it can be compared with
the experimental value. As quoted previously, βphys

p = 3.15(0.35)(0.2)(0.3) × 10−4 fm3 [3–8] which corresponds

to β̂phys
p = 0.116(13)(7)(11) in dimensionless units. The physical value results from cancellations between pion-loop

(chiral physics) and ∆-pole contributions that are both O(10×10−4 fm3). Since the pion-loop contribution is strongly
suppressed at heavy quark masses and the ∆-pole contribution depends less strongly on mass, the size of the magnetic
polarizability determined at the SU(3) point is in line with expectations.
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FIG. 12: Results for the energy shifts of a spin-up (lower points) and a spin-down (upper points) proton in a uniform background

magnetic field. The details of the figure are as in Fig. 9. The lower panel shows the PDFs for the fit parameters µ̂ and β̂.

4. The diproton

The diproton is in the same 1S0 isotriplet as the dineutron and, neglecting the electroweak interactions and the
difference in mass between the up- and down-quarks, it would have the same properties as the dineutron at zero
magnetic field. However, the presence of the background magnetic field breaks isospin symmetry through the light-
quark electric charges, so the diproton magnetic properties are expected to be quite different from the dineutron, even
neglecting the issue of Landau levels.

Extracting energy differences from fits to the ratios of correlation functions shown in Fig. 2 leads to the results shown
in Fig. 13. Fitting the energy shifts, as discussed previously, allows for an extraction of the diproton polarizability of

β̂pp = 0.84
(

+0.41

−0.36

)
(0.04) . (36)

As in the case of the dineutron, the correlated ratios of the diproton and the spin-up and spin-down proton correlation
functions directly determines the difference of energy splittings. Figure 4 shows these ratios, leading to the energy
shifts shown in Fig. 14. The figure also shows the envelopes of the ensemble of acceptable fits that were performed
using polynomials of up to quartic order.
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FIG. 13: Results for the energy shifts of the diproton as a function of the background magnetic field strength. The details are
as those in Fig. 10. The lower panel shows the PDFs for the fit parameter β̂.

It is clear from Fig. 14 that the magnetic field strengthens the binding of the diproton by a significant amount that
rapidly increases until ñ ∼ 3 and then remains constant for larger field strengths. This behavior is interesting in the
context of the suggestion that at the physical quark masses, the diproton can overcome the Coulomb repulsion and
form a bound state [71] in a strong enough magnetic field, although this argument requires the system to be near
unitarity. However, the form of the difference is more complicated in this case than for the dineutron because the
contributions of Landau levels in the diproton and spin averaged protons may be different. The difference in magnetic
polarizabilities is therefore estimated in the naive way, giving

δβ̂pp = −0.82
(

+0.42

−0.37

)
(0.04) , (37)

where the uncertainties of the diproton and proton polarizabilities are combined in quadrature.
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FIG. 14: Results for the difference between the energy shifts of the diproton and a spin-up and spin-down proton as a function
of the background magnetic field strength. The red-shaded region corresponds to the breakup threshold, above which the
ground state of the system would be two protons in the continuum in the 1S0 channel.

5. The deuteron : jz = ±1

The deuteron is a bound state in the positive parity 3S1-3D1 coupled channels. In a background magnetic field,
while the jz = ±1 states remain isolated in the 3S1-3D1 coupled channels (in infinite volume), the jz = 0 state mixes
with the positive parity 1S0 isotriplet np channel. Here, the focus is on the jz = ±1 states which are used to and
extract the magnetic moment and a combination of the scalar and tensor polarizabilities. The jz = Iz = 0 coupled
states are addressed in the following subsection.

Figure 1 shows the effective masses resulting from the jz = ±1 deuteron correlation functions and Fig. 3 shows the
ratios of these correlation functions, along with fits to their time dependence. The energy shifts extracted from these
ratios are shown in Fig. 15. Analysis of the field strength dependence through a suite of coupled fits to the two spin
states, as discussed above, leads to a magnetic moment and polarizability of

µ̂d = 1.41
(

+0.28

−0.25

)
(0.04) , (38)

β̂
(M0)
d +

1

3
β̂

(M2)
d = 0.70

(
+0.24

−0.23

)
(0.04) . (39)

As the deuteron has j = 1, both the scalar and tensor polarizabilities contribute to the quadratic dependence on the
magnetic field strength, as presented in Eq. (7).12

The sum of the proton and neutron magnetic polarizabilities at this pion mass is β̂p + β̂n ∼ 1.02
(

+0.10

−0.07

)
(0.05),

so the deuteron in the jz = ±1 states is somewhat more magnetically rigid than the sum of its constituents. While
they cannot be separated from this result alone, the nuclear forces and gauge-invariant electromagnetic two-nucleon
operators are responsible for this difference. It will be interesting to learn whether this difference persists at the
physical quark masses. Figure 16 shows the splitting between the jz = ±1 spin states of the deuteron and the
breakup threshold as a function of the field strength. As in the case of the dineutron, the magnetic field pushes the
jz = ±1 spin states of the deuteron towards threshold and at ñ ∼ 5, the deuteron becomes potentially unbound before
rebinding at larger field strengths. The figure also shows the envelopes of the ensemble of acceptable fits that we
perform using polynomials of up to quartic order. As for the case of the diproton, the presence of Landau levels that

12 With further analysis, the O(|eB|2) shifts in the jz = 0 np coupled system should determine an orthogonal combination of the scalar

and tensor polarizabilities, β̂
(M0)
d − 2

3
β̂

(M2)
d as given in Eq. (7), but this extraction is not pursued in the present study.
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FIG. 15: Results for the energy shifts of the deuteron in the jz = ±1 states as a function of the background magnetic field
strength (the lower points correspond to the jz = +1 state). The details of the figure are as in Fig. 10. The lower panel shows

the PDFs for the fit parameters µ̂ and β̂.

may differ between the deuteron and proton complicates the analysis of the field strength dependence and we do not
report a value of δβd.

6. 3He

At the physical quark masses, 3He can be thought of, to a large degree, as two protons spin-paired in the 1S0 channel
and a single unpaired S-wave neutron. The ground state is positive parity with spin-half and is an isospin partner
with the ground state of the triton, 3H. A naive shell-model prediction is that the magnetic moment of the ground
state of 3He is that of the neutron (with the spin-paired protons not contributing) and that the magnetic moment of
the ground state of the triton is that of the proton (with the spin-paired neutrons not contributing). The experimental
values of both magnetic moments deviate only slightly from these naive predictions. Recent calculations have shown
that this feature persists even at heavier quark masses [1], in particular, at the pion mass employed in the present
analysis.
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FIG. 16: Results for the difference between the energy shifts of the jz = +1 spin states of the deuteron and that of a spin-
up neutron and spin-up proton as a function of the background magnetic field strength. The red-shaded horizontal band
corresponds to the breakup threshold, above which the ground state of the system would be a proton and a neutron in the 1S0

continuum. The green shaded regions correspond to the envelopes of the fits discussed in the main text.

The EMPs obtained from the 3He correlation functions in the background magnetic fields are shown in Fig. 1 and
the ratios of correlation functions for each spin state are shown in Fig. 3, along with fits to their time dependence.
The quality of these ratios is inferior to those obtained in the one-nucleon and two-nucleon sectors, but strong signals
are still evident. The energies that are extracted from these ratios, are shown in Fig. 17. Analysis of the field strength
dependence of the two spin states allows the magnetic responses to be determined, leading to a magnetic moment
and polarizability of 3He of

µ̂3He = −2.28
(

+0.59

−1.04

)
(0.07) , (40)

β̂3He = 0.85
(

+0.34

−0.32

)
(0.04) , (41)

in natural dimensionless units. Within the uncertainties of the calculations, the polarizability of 3He is consistent
with the sum of polarizabilities of its constituent diproton and neutron. This is somewhat surprising given that the
magnetic polarizability of such a state would be determined in part by its binding energy and not is not expected to be
a simple sum over constituent polarizabilties. The uncertainties in the magnetic polarizabilities of 3He are sufficiently
large that statistically significant deviations from the contributions from the one-body contribution are not obtained,
and hence we have no meaningful constraint on the MEC contributions.

7. The triton

As in the case of 3He, the ratios of the triton correlation functions are significantly less well-defined than those in the
one-body and two-body sectors. The energy shifts extracted from the correlation functions are shown in Fig. 18. Fits
to the magnetic field strength dependence of the energies of the two spin states enable an extraction of the magnetic
moment and polarizability of the triton of

µ̂3H = 3.32
(

+0.79

−0.59

)
(0.10) , (42)

β̂3H = 0.40
(

+0.27

−0.27

)
(0.02) . (43)

The value of the triton polarizability is considerably smaller than the naive expectation of the sum of the polarizability

of the dineutron and of the proton, βp + βnn = 1.12
(

+0.11

−0.07

)
and this difference could potentially be used to provide

a constraint on two- and three-nucleon electromagnetic interactions.
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FIG. 17: Results for the energy shifts of 3He as a function of the background magnetic field strength along with the fit envelopes.
The details of the figure are as in Fig. 10. The lower energy points correspond to the jz = − 1

2
state, while the upper points

correspond to jz = + 1
2
. The lower panel shows the PDFs for the fit parameters µ̂ and β̂.

8. 4He

The 4He nucleus has the quantum numbers of two protons and two neutrons in a spin-zero, even-parity configuration.
The energy of the ground state has been determined at unphysical quark masses in previous LQCD calculations [34, 72–
74], and at this pion mass it is bound by B4He = 107(24) MeV [34]. While it has no magnetic moment, it can be
polarized by electromagnetic fields.

The EMPs obtained from 4He correlation functions in the background magnetic fields are shown in Fig. 1, and
the ratios of correlation functions are shown in Fig. 3, along with fits to their time dependence. The energy shifts
extracted from fits to these ratios are given in Table I and are shown in Fig. 19. Analysis of the magnetic field strength
dependence of the 4He energies enables an extraction of the magnetic polarizability, giving

β̂4He = 0.54
(

+0.32

−0.31

)
(0.03) . (44)
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FIG. 18: Results for the energy shifts of 3H as a function of the background magnetic field strength, along with envelopes of
fits. The details of the figure are the same as in Fig. 10. The lower energy points correspond to the jz = + 1

2
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. The lower panel shows the PDFs for the fit parameters µ̂ and β̂.

E. The jz = Iz = 0 np states and the np→ dγ transition

The two energy eigenvalues of the coupled jz = Iz = 0 np channels are shown in Fig. 6 for each magnetic field
strength. In order to extract the 3S1-1S0 mixing, and hence the short-distance two-nucleon (MEC) contribution to
np → dγ, the ratios of correlation functions R3S1,1S0

(t; B) in Eq. (24) are constructed, and shown in Fig. 7, along
with fits to the time dependence. The energy shifts extracted from these ratios are shown in Fig. 20, along with the
envelope of the ensemble of successful fits, from which the linear coefficient is found to be

κ1 + L1 = 2.74
(

+0.07

−0.05

)
(0.07) nNM , (45)

where the result is presented in dimensionless units determined by the natural nuclear magneton at this pion mass.
Fits of up to quadratic order are considered in this analysis.

To further isolate the short-distance two-nucleon contribution, the ratios δR3S1,1S0
(t; B), defined in Eq. (25), are

formed. By design, the energy shifts extracted from these ratios (see Fig. 8) have the form 2|eB|L1/M + O(|eB|2).
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FIG. 19: Results for the energy shifts of 4He as a function of the background magnetic field strength. The details of the figure
are as in Fig. 10. The lower panel shows the PDF for the fit parameters β̂.

These shifts are shown in Fig. 21, and performing polynomial fits to the dependence on the magnetic field strength
leads to

L1 = 0.207
(

+0.020

−0.020

)
(0.006) nNM . (46)

Given the isovector magnetic moment and the short-distance two-nucleon contribution, the cross-section for the
process np→ dγ can be determined near threshold at mπ ∼ 806 MeV. Even though the LQCD calculations determines
these parameters from mixing between bound states, the EFT(π/) framework is valid for low-energy scattering states
and can be immediately applied. It is conventional to use a multipole expansion to define the cross-section for the
radiative-capture process np→ dγ at low energies [63, 75, 76],

σ(np→ dγ) =
e2(γ2

0 + |p|2)3

M4
Nγ

3
0 |p|

[
|X̃M1|2 + |X̃E1|2 + ...

]
, (47)

where X̃M1 is the M1 amplitude and X̃E1 is the E1 amplitude for the process, γ0 is the binding momentum of the
deuteron and p is the momentum of each incoming nucleon in the center-of-mass frame. The ellipsis denotes higher-
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FIG. 20: Results for the differences in energy shifts between the two jz = Iz = 0 np energy eigenstates as a function of the
background magnetic field strength. The details of the figure are the same as in Fig. 10. The lower panel shows the PDF for
the coefficient of the linear field dependence, κ1 + L1.

order amplitudes, suppressed by powers of the photon momentum. Following Refs. [64, 65], it is straightforward to
show that the amplitudes at NLO, with the dibaryon parameterization of Eq. (15), are

X̃E1 = − 1√
1− γ0r3

|p|MNγ
2
0

(|p|2 + γ2
0)2

X̃M1 =
Zd

− 1
a1

+ 1
2r1|p|2 − i|p|

[
κ1γ

2
0

γ2
0 + |p|2

(
γ0 −

1

a1
+

1

2
r1|p|2

)
+
γ2

0

2
l1

]
, (48)

where the quantities appearing in this expression are defined in Section III B. Near threshold, the E1 amplitude is
sub-leading and will be ignored. Inserting the extracted values for κ1, L1, the binding energy from Ref. [34], and the
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those of the isovector nucleon (see Eq. (25)) as a function of the background magnetic field strength. The details of the figure
are the same as in Fig. 10.

scattering lengths and effective ranges from Ref. [35], leads to a radiative capture cross-section at the SU(3) symmetric
point of

σ(np→ dγ)|mπ∼806 MeV = 17
(

+101

−16

)
mb , (49)

for an incident neutron speed of v = 2200 m/s, accurate up to NLO in EFT(π/). Because of the non-linear nature of the
dependence of the cross-section on the inputs, the distribution is extremely non-Gaussian; the central value is reported
as the 50th quantile and the uncertainty bounds as the 17th and 83rd quantiles of the full distribution. Improving on
this uncertainty requires significantly better determinations of the scattering parameters and the binding momentum.
At the physical point, the cross-section is known to be σ(np→ dγ) = 334.2(0.5) mb [77] at this relative velocity,
which is significantly larger. The short-distance two-body contribution in the calculated cross-section (Eq. (49)) is
about 10%, just as in the phenomenological determinations. Accounting for the significantly different phase space
available at the SU(3) point, and the greatly different scattering parameters in both channels. The discrepancy in
the cross-section is unsurprising. In Ref. [30], this result is combined with an analogous result at mπ ∼ 450 MeV to
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extrapolate to the physical point and postdict a cross-section of σlqcd(np→ dγ) = 332.4
(

+5.4
−4.7

)
mb.

IV. SUMMARY

The magnetic moments and magnetic polarizabilities of the lightest few nuclei have been calculated at a pion mass
of mπ ∼ 806 MeV using LQCD in the presence of background magnetic fields. In addition, by considering the mixing
of two-nucleon states with jz = Iz = 0, the L1 counterterm of EFT(π/) that governs short-distance two-nucleon
contributions to the radiative-capture process np→ dγ has been determined. This has then been used to predict the
near threshold capture cross-section at this pion mass. The success of the calculations presented in this work, and in
Refs. [1, 30], demonstrate the feasibility of studying the structure of nuclei directly from QCD and open the way to
a variety of additional QCD calculations of the structure and interactions of light nuclei.

The LQCD calculations have been performed at a single lattice spacing and in one lattice volume, and the lack of
continuum and infinite-volume extrapolations introduces systematic uncertainties into the results. The effects of the
FV used in this work on the binding energies of the light nuclei have been explicitly quantified in previous works [34]
and found to be small. It is expected that such effects in the moments and polarizabilities are of comparable size.
An additional uncertainty of e−γL is assigned to the extracted values of nuclear moments and polarizabilities and for
simplicity, we conservatively use γ = γd ∼ 190 MeV for the binding momentum, leading to a ∼ 3% uncertainty. For
the single nucleons, the expected volume effects of O(e−mπL) are negligibly small. Calculations with multiple lattice
spacings have not been performed and this systematic uncertainty remains to be quantified. The electromagnetic
contributions to the action are perturbatively improved as they are included as a background field in the link variables.
Therefore, the lattice-spacing artifacts are expected to be small, appearing at O(Λ2

QCDa
2, α2ΛQCDa) ∼ 3% for ΛQCD =

300 MeV. To account for these effects in dimensionless quantities, an overall multiplicative systematic uncertainty
of 3% is assigned to the extracted magnetic moments and L1, and an uncertainty of 5% is assessed on all of the
polarizabilities, where more complicated effects that compound these uncertainties may be possible. For nuclei, these
contributions are small compared to the other systematic uncertainties. The main results are presented in terms of
dimensionless quantities, but in Table III, we also convert the polarizabilities to physical units using the lattice spacing
a = 0.110(1); since the units of polarizabilities are fm3, the scale-setting uncertainty corresponds to an additional
3% uncertainty that is added in quadrature. Unfortunately, the calculations of the individual polarizabilities are
incomplete because of the omission of the disconnected contributions (the coupling of the external field to the sea
quarks), however empirical evidence [47, 52, 53] suggests that the omitted contributions will lead to only small
modifications that lie within the current uncertainties. Confirming this expectation is left to future work. We
stress that the magnetic moments and the M1 transition amplitude for np → dγ are not afflicted by the absence of
disconnected diagrams (and nor are isovector differences such as βp − βn at the SU(3) point).

The magnetic moments and polarizabilities that have been determined in this work and in Ref. [1] are summarized
in Tables II and III and are shown in Figs. 22 and 23 (the magnetic moments calculated from spin splittings in Ref. [1]
are the most precise determinations). The electrically neutral systems are found to be by far the most precise because
the electrically charged systems are defined by Landau levels, which have less than ideal overlap with the interpolating
operators used to form the correlation functions.

State µ[nNM]

n −1.981(05)(18)

p +3.119(33)(64)

d(jz = ±1) +1.218(38)(87)
3He −2.29(03)(12)
3H +3.56(05)(18)

TABLE II: The results of our previous calculations of the nucleon and nuclear magnetic moments [1] from spin splittings at
a pion mass of mπ ∼ 806 MeV. The first uncertainty is statistical while the second is the complete systematic. As discussed
in the text, these values are more precise than those determined from the more complex analysis required to extract the
polarizabilities.

These results, while not obtained at the physical values of the light-quark masses, are interesting in their own right
and suggest important features of these systems. First, our calculations are sufficiently precise to determine that
the strong interactions between neutrons are such that when placed into a magnetic field, the two-neutron system is
more magnetically rigid than the sum of the individual neutrons. This is consistent with expectations at the physical
quark masses based upon phenomenological nuclear interactions [78], and indicates that it is energetically disfavored
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State β̂ = M2
N (M∆ −MN )/e2 × β β [10−4fm3]

n 0.198

(
+0.009

−0.011

)
(0.010) 1.253

(
+0.056

−0.067

)
(0.055)

p 0.83

(
+0.10

−0.07

)
(0.04) 5.22

(
+0.66

−0.45

)
(0.23)

nn 0.296

(
+0.019

−0.018

)
(0.015) 1.872

(
+0.121

−0.113

)
(0.082)

pp 0.84

(
+0.41

−0.36

)
(0.04) 5.31

(
+2.59

−2.27

)
(0.23)

d(jz = ±1) 0.70

(
+0.24

−0.23

)
(0.04) 4.4

(
+1.6

−1.5

)
(0.2)

3He 0.85

(
+0.34

−0.32

)
(0.04) 5.4

(
+2.2

−2.1

)
(0.2)

3H 0.40

(
+0.27

−0.27

)
(0.02) 2.6(1.7)(0.1)

4He 0.54

(
+0.32

−0.31

)
(0.03) 3.4

(
+2.0

−1.9

)
(0.2)

TABLE III: The magnetic polarizabilities calculated in this work at a pion mass ofmπ ∼ 806 MeV. An additional 5% uncertainty
is associated with each polarizability as an estimate of discretization and finite volume effects. For the polarizabilities presented
in physical units, an additional scale setting systematic uncertainty (3%) is included in quadrature in the second uncertainty.
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FIG. 22: A summary of the magnetic moments of the nucleons and light nuclei calculated with LQCD at SU(3) symmetric
quark masses corresponding to a pion mass of mπ ∼ 806 MeV. The results are presented in units of natural nuclear magnetons.
The red dashed lines correspond to the experimental magnetic moments.

for a neutron star to lower its energy by spontaneously generating a large magnetic field. Second, a large isovector
component to the nucleon magnetic polarizability is found. The proton polarizability is found to be considerably
larger than that in nature while the neutron polarizability is consistent with the phenomenological value, but much
more precise. Third, analysis of the jz = Iz = 0 np system leads to a precise extraction of the coefficient, L1, of
the short-distance two-body magnetic current operator connecting the 3S1 and 1S0 states in the context of EFT(π/).
This operator provides an important contribution to the np → dγ capture cross-section near threshold, which is a
critical input for calculations of the production of elements in big-bang nucleosynthesis and in other environments as
is discussed further in Ref [30].
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FIG. 23: A summary of the magnetic polarizabilities of the nucleons and light nuclei calculated with LQCD at a pion mass of
mπ ∼ 806 MeV. The upper panel presents the dimensionless quantity β̂ = M2

N (M∆−MN )β/e2 obtained from the fits with the
inner shaded region representing the total uncertainty arising from statistical and fitting systematic uncertainties. The outer
shaded region assesses additional systematic uncertainties from discretization effects and FV effects, combined in quadrature
and applied multiplicatively. The lower panel presents the polarizabilities in physical units; in this case, the outer shaded region
also includes the effect of the scale setting uncertainty.

These calculations are the first of their kind and are the initial steps in a comprehensive program to determine the
electromagnetic properties of the light nuclei as well as the response of nuclei to electroweak currents. The next steps



36

will include calculations of axial matrix elements in the various light nuclei, as these are of significant phenomenological
interest in neutrino-nucleus scattering experiments. Further, this points the way to calculating matrix elements of
interactions required in laboratory searches for dark matter and other potential beyond the Standard Model scenarios
which involve nuclear matrix elements of a variety of currents. Calculations at smaller lattice spacings and in other
volumes, as well as for lighter quark masses where direct connection to experiment can be made are important to this
program. Finally it is important to include the presently omitted couplings of sea quarks to the background fields.
Calculations addressing these goals are planned for the future.
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Appendix A: Charged-Particle Correlation Functions: Source Location and Gauge Origin

1. General discussion

In addition to a uniform magnetic field, the Abelian gauge links in Eq. (2) lead to two further gauge-invariant
quantities that are finite volume artifacts. These quantities are the Wilson loops W1(x2) and W2(x1) appearing in
Eq. (3), which express the non-vanishing holonomies of the background gauge field. A major consequence of these
non-vanishing holonomies is the breaking of discrete translational invariance down to a smaller subgroup, which is
referred to as the magnetic translation group, see Ref. [80]. The size of this subgroup depends on the magnetic-flux
quantum, ñ, as

W1

(
x2 +

j

3qqñ
L

)
= W1(x2), and W2

(
x1 +

j

3qqñ
L

)
= W2(x1) , (A1)

for j = 0, 1, . . . , 3|qq|ñ−1. Consequently lattice translational invariance for down-type quarks coupled to U
(Q)
µ (x), for

example, is reduced to Zñ ×Zñ ×ZL
a

. This is to be contrasted with the infinite-volume case, where full translational

invariance in a uniform magnetic field is maintained due to gauge invariance. On a torus, gauge invariance is more
restrictive due to the additional specification of Wilson loops, and translational invariance is consequently reduced.

For charged-particle correlation functions, the reduced translational invariance can lead to subtle effects. For

example, consider electromagnetic gauge links that are unity at the origin, U
(Q)
µ (0) = 1, such as those in Eq. (2), and

the hadronic source to be at the spatial position xi. The electromagnetic gauge links can be altered so that they
become unity at the source location, however, this cannot be achieved by a gauge transformation because the Wilson
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loops would be modified by13

W1(x2)→W1(x2)W †1 (xi,2), and W2(x1)→W2(x1)W †2 (xi,1) . (A2)

Similarly, translational invariance cannot be used to relocate the hadronic source to the origin without altering
the correlation function. Consequently charged-particle correlation functions depend on the the origin of the gauge
potential, and the location of the source. Even when xi is related to the origin of the gauge potential by a discrete
magnetic translation, which corresponds to the special case where the required translation is equivalent to a gauge
transformation, the charged-particle correlation function will not be identical due to gauge dependence.14 As the
degree to which lattice translational invariance is reduced depends on the strength of the magnetic field, steps are
required to ameliorate this situation.

One way to deal with the problem is to fix the background field entirely including the holonomies. This approach

can be implemented by randomly choosing a source location before including the U
(Q)
µ (x) links. The hadron source

location must still be chosen relative to the gauge potential, and a convenient choice is to make them coincident. This
method does not introduce constant shifts of the gauge holonomy, and was employed in [43] to investigate magnetic
properties of the nucleon. The choice of a coincident location, however, is not required; and, other choices for the
relative separation that are not related by a magnetic translation could be averaged over to mitigate FV effects.

An alternative approach to reduce FV effects consists of varying the holonomies. One way to achieve this consists of
introducing a constant shift in the gauge potential, which is equivalent (after field redefinition) to implementing twisted
BCs on the quarks.15 These are flavor dependent BCs due to the difference in quark electric charges. Ultimately to
remove the arbitrariness of this choice, all non-equivalent shifts should be averaged over. The resulting twist average
removes the FV effect associated with translational invariance, and related proposals have recently been suggested
more generally to reduce FV effects in other lattice QCD computations [81, 82].16

The present calculations were performed with the following approach to handle the lack of lattice translational
invariance. The source locations were varied relative to the origin of the gauge potential, rather than varying the
gauge holonomies. Varying the source locations allows for the restoration of lattice translational invariance in two
equivalent ways: averaging over all sources on a given configuration, and then performing the ensemble average;
or performing the ensemble average with a fixed source location, and then averaging over all locations. In this
work, a hybrid approach was chosen because of limited computational resources. Each QCD gauge configuration was

post-multiplied by the Abelian gauge links U
(Q)
µ (x), and then a random offset was introduced. The random offset

was the same for each value of the magnetic flux quantum, ñ, in order to maximize correlations between differing
field strengths. On each configuration, quark propagators were calculated using 48 symmetrically distributed source
locations. In addition to improving statistics, the source averaging partially restores lattice translational invariance
on each configuration. Translational invariance is further improved in the ensemble average, because a random offset
is chosen for each configuration.

While quark propagators are subject to finite-size effects owing to the reduction in translational invariance, hadronic
correlation functions for neutral particles are less susceptible. Using the neutron as an example, the non-vanishing
holonomies of the gauge field show up only in exponentially small FV corrections to the neutron energy [84]. These
corrections arise primarily from charged pion fluctuations that wind around the torus. For charged particles, however,
the reduction in translational invariance has a direct effect on the coordinate dependence of their correlation functions.
In turn, the overlap of a given hadronic interpolating field onto Landau levels depends on the hadron source location

13 The electromagnetic gauge links are accordingly modified in the form U
(Q)
µ (x) → U

(Q)
µ

[
(x− xi) mod L

a

]
. The new links

U
(Q)
µ

[
(x− xi) mod L

a

]
are related to U

(Q)
µ (x−xi) through a gauge transformation, however, such a transformation alters the functional

dependence of charged-particle correlation functions. Because the Wilson loops are gauge invariant, there is no difference, for example,

between W1

[
(x2 − xi,2) mod L

a

]
and W1(x2 − xi,2) = W1(x2)W †1 (xi,2), which appears above.

14 The definition of the charged particle two-point function could be altered to include an electromagnetic gauge link between the source
and sink locations. The resulting correlation functions would be gauge invariant; but, the cost is the introduction of a path for the gauge
link. Because magnetic flux threads closed loops that are oriented transverse to the magnetic field, the resulting correlation function is
then path dependent.

15 Shifting the source and shifting the gauge potential are equivalent up to a gauge transformation, however, this leads to different
expectations for charged particle correlation functions, as shown below.

16 In the analogous case of time-varying gauge potentials which lead to electric fields, a variant of this procedure was carried out for the
neutron [83]. In that study, results at second order in the gauge potential, Aµ, were directly isolated by perturbatively expanding
external field correlation functions, and enforcing temporal Dirichlet BCs. While twist averaging does not eliminate the FV effect in
that case, it was shown that the neutron electric polarizability can nonetheless be separated from finite-size effects by efficacious shifts
of the gauge potential.
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and gauge holonomy in a field-dependent way. To make this discussion more concrete, the simplified case of a point-like
charged particle subject to the same method utilized in the present LQCD calculation is explored.

2. Expectations for a Point-Like Charged Particle

To illustrate the dependence of charged particle correlation functions on the source location and gauge holonomy, a
point-like particle propagating in an external magnetic field on a torus is considered. In the point-like approximation,
the spin-projected hadron propagator can be derived following the arguments in [56, 84]. Various ways to reduce
finite-size effects by shifting the gauge potential and/or shifting the source location are considered.

In practice, the point-like approximation is valid only when the typical hadronic size cannot be resolved in a given

Landau level. For example, higher-lying Landau levels have a larger (rms) radius, ∝
√

(nL + 1
2 )/|QheB|; hence, the

details of the hadronic state will be less relevant compared with lower Landau levels. By contrast, the lowest Landau
level is the most sensitive to hadron structure, and the most likely to be dynamically altered away from the point-like
result. With magnetic fields that are not arbitrarily weak, more dependence on hadronic structure can be expected,
and the point-like particle case may thus only provide a guide. Further study is needed to address the dynamical
Landau levels of bound states, and to design better interpolating operators for hadrons in magnetic fields.

Employing a uniform shift of the gauge potential transverse to the magnetic field direction, the gauge links are
modified to

U
(Q)
1 (x) = exp[−iqqθ1a/L]×

{
1 for x1 6= L− a
exp

[
−iqqñ 6πx2

L

]
for x1 = L− a

,

U
(Q)
2 (x) = exp[−iqqθ2a/L] exp

[
iqqñ

6πax1

L2

]
,

U
(Q)
3,4 (x) = 1 . (A3)

To compute the propagator analytically for a charged quark propagating in the external gauge field specified by
Eq. (A3), we find it convenient to perform a field redefinition on the quark field. The effect of this redefinition is
to trade in the periodic fields for quarks with both magnetic periodic and twisted boundary conditions [which, for
simplicity, we term magnetic-twisted BCs, see Eq. (A8)], and links that are periodic up to a gauge transformation.
The propagator for a structureless charged particle then has the form

Ch,jz (x, xi;θ,B) =
∑
ν

e−iQhθ· ν⊥ [W †2 (x1)]ν2 C
(∞)
h,jz

(x+ νL, xi;B) , (A4)

where x and xi are the spacetime locations of the sink and source relative to the origin, respectively, and ν is a triplet
of integers . Images transverse to the magnetic field direction, ν⊥ = (ν1, ν2), pick up phases arising from the constant
shift of the gauge potential. Notice the Euclidean time direction is treated as infinite in extent. The propagator

C
(∞)
h,jz

(x, xi;B) is that for a charged particle in infinite volume. Ignoring discretization effects, the continuum form of

the infinite volume propagator is employed, which in coordinate space is [84]

C
(∞)
h,jz

(x, xi;B) = W†(x, xi)C
(∞)
h,jz

(x− xi;B), (A5)

and consists of two parts. There is a spacetime translationally invariant part

C
(∞)
h,jz

(z;B) =

∫ ∞
0

ds

(4πs)2

QheBs

sinh(QheBs)
exp

{
−sẼ2

h,jz −
QheB

4 tanh(QheBs)
[z2

1 + z2
2 ]− 1

4s
[z2

3 + z2
4 ]

}
,

(A6)

which contains the hadron energy Ẽh,jz appearing in Eq. (7), however, the tilde denotes that it excludes the con-
tribution to the energy from the nL-th Landau level. Instead, contributions from all Landau levels are contained in
this propagator [85]. The remaining part W†(x, xi) is not translationally invariant, and accordingly depends on the
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gauge. It can be written as a Wilson line evaluated on the straight-line path17 between xi and x

W(x, xi) = exp

[
iQhe

∫ x

xi

dzµAµ(z)

]
= exp

[
− i

2
QheB(x1 − xi,1)(x2 + xi,2)

]
. (A7)

In writing the FV propagator in Eq. (A4), the Wilson loops have been implicitly modified to include the hadron’s
electric charge, Qhe, instead of the quark charge, qqe, and the charged hadron propagator Ch,jz (x, xi;θ,B) satisfies
the following BCs in the directions transverse to the magnetic field:

Ch,jz (x+ Lx̂1, xi;θ,B) = eiQhθ1Ch,jz (x, xi;θ,B),

Ch,jz (x+ Lx̂2, xi;θ,B) = eiQhθ2W2(x1)Ch,jz (x, xi;θ,B) . (A8)

The first is a twisted-BC, while the second emerges as a magnetic-twisted-BC. In the actual computation, periodic
quark propagators are calculated using the gauge links in Eq. (A3). The quark field redefinition leads to the BCs

in Eq. (A8). Because of the gauge shift, the gauge potential no longer vanishes at the origin, e.g., the links U
(Q)
2 (x)

are unity when x1 = θ2L/6πñ. Finally, notice the asymmetric appearance of the holonomy W2(x1) in Eq. (A4).
The Wilson loop W1(x2) does not appear explicitly in the sum over the winding number ν1, and the charged-particle
propagator is twisted in the x1-direction rather than magnetic twisted, see Eq. (A8). The effect of this Wilson loop,
however, is contained implicitly in the sum over winding number ν1 because of the x2-coordinate dependence of the
Wilson line W(x, xi). This asymmetry in the charged-particle propagator and the BCs that result from it are directly
related to the asymmetric choice of gauge.

Given the form of the propagator in Eq. (A4), a natural question to ask is whether shifting both the gauge
potential and the source location is superfluous. To answer this question, one can express the propagator in terms of
the source-sink separation, ∆x = x−xi, and attempt to absorb the remaining dependence on the source location into
a redefinition of the twist angles θ. Due to the breaking of translational invariance, this is not possible. By virtue
of the Wilson line W(x, xi), the correlation function retains explicit dependence on xi,2, which is measured relative
to the origin. The origin has no significance for gauge-invariant quantities, however, in terms of the gauge links, the
origin can readily be discerned, see Eq. (A3). As a consequence, gauge variant quantities, such as the charged-particle
propagator, can depend on positions relative to the origin.

Four scenarios are considered, denoted by Γ: i) periodic BCs with coincident origins of the gauge potential and
source for the correlation functions (Γ = 0), ii) shifting the gauge potential (Γ = θ), iii) shifting the source location
(Γ = X), and iv) varying the shift in the gauge potential and shifting the source location (Γ = θX).

a. Periodic BCs with coincident origins (Γ = 0)

Choosing the origin of the gauge potential to coincide with that of the source and not including a uniform gauge
field corresponds to specifying xi = 0, and θ = 0. The latter leads to periodic quarks (up to a gauge transformation).
This method was chosen in [43]. Additionally in that study, as in this work too, the spatial sink location is summed
over, which projects the correlator onto vanishing three-momentum. Three-momentum states do not have definite
energy eigenvalues, however, and one expects correlation functions to contain multiple low-lying Landau levels. For a
point-like particle on a continuous torus, consider the spatially-integrated correlation function,

C0(t) =

∫ L

0

dx Ch,jz (x, 0; 0,B) . (A9)

Carrying out the three-momentum projection gives,

C0(t) =
1

2

∫ ∞
0

ds√
2πs

e−
1
2 sẼ

2
h,jz− 1

4s t
2

∫ L

0

dx2

∞∑
ν2=−∞

〈x2, s|ν2L, 0〉 , (A10)

17 While the straight-line path is not the only path that can be chosen for the Wilson line, the choice of path is not completely arbitrary
with W(x, xi) implemented as in Eq. (A7) [85].
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which has been written in terms of the quantum-mechanical propagator for the simple harmonic oscillator

〈x′, t′|x, t〉 = θ(t′ − t)

√
QheB

2π sinh[QheB(t′ − t)]

× exp

{
− QheB

2 sinh[QheB(t′ − t)]
[
(x′2 + x2) cosh[QheB(t′ − t)]− 2x′x

]}
, (A11)

where t and t′ are Euclidean times. In terms of Landau levels, the correlation function can be written as

C0(t) =

∞∑
nL=0

Z(0)
nL

e−Eh,jz t

2Eh,jz
, (A12)

where the energies Eh,jz include the Landau energy, and are given in Eq. (7). The dimensionless coefficients Z
(0)
nL are

given by

Z(0)
nL =

∫ L

0

dx2 ψ
∗
nL(x2)

∞∑
ν2=−∞

ψnL(ν2L) , (A13)

and are written in terms of the coordinate wave functions, which have the standard form in terms of Hermite poly-
nomials

ψnL(x) =
1√

2nL nL!
√

π
|QheB|

HnL

(√
|QheB|x

)
e−

1
2 |QheB|x

2

. (A14)

Notice that contributions from odd-parity Landau levels are absent due to the sum over winding number. The

coefficients Z
(0)
nL are not positive; spectral positivity is not maintained due to the lack of translational invariance. For

quantized values of the magnetic field, these coefficients depend on the flux quantum ñ, but not on the size L. This
dependence on ñ, however, is exponentially suppressed.

b. Shifting the gauge potential (Γ = θ)

While shifting the gauge potential has not been pursued as a means to reduce FV effects, it is instructive to discuss
briefly point-like expectations for this method. Averaging over all possible shifts of the gauge potential is equivalent
to averaging over quarks with randomly twisted boundary conditions. As a result, the twist-averaged propagator in
Eq. (A4) receives contributions only from zero winding numbers ν⊥ = 0. While this is a desirable feature, there is
no further simplification of the charged particle correlation function. The twists can be utilized, however, to form the
infinite volume propagator via constructing the Fourier transformation in blocks [82]. The lack of lattice translational
invariance means that the magnetic periodic images, rather than periodic images, must be summed over. In effect, this

provides access to C
(∞)
h,jz

(x, xi;B), for ~x⊥ over the whole transverse plane. The resulting zero-momentum correlation
function has the form

Cθ(t) =
1

2

∫ ∞
0

ds
e−

1
2 sẼ

2
h,jz
− 1

4s t
2

√
2πs

∫ ∞
−∞

dx2 〈x2, s|xi,2, 0〉 . (A15)

In terms of Landau levels, the expected behavior is thus

Cθ(t) =

∞∑
nL=0

Z(θ)
nL

e−Eh,jz t

2Eh,jz
, (A16)

where the coefficients are given by

Z(θ)
nL =

∫ ∞
−∞

dx2 ψ
∗
nL(x2)ψnL(xi,2) , (A17)

in which there is no remaining dependence on L. When the source is located at the origin, there is no dependence
on the magnetic flux quantum, ñ. Notice that there are no contributions from odd-parity Landau levels, and further
that spectral positivity does not emerge.
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c. Shifting the source location (Γ = X)

As described previously, source-to-all propagators are calculated in the present LQCD calculation, with sources
randomly located relative to the gauge origin. A constant shift of the gauge potential is not implemented, and thus
θ = 0, but with an approximate average over xi. This leads to the following expression for the correlation function
of a point-like charged particle,

CX(t) =
1

2

∫ ∞
0

ds
e−

1
2 sẼ

2
h,jz
− 1

4s t
2

√
2πs

∫ L

0

dx2

∫ L

0

dxi,2
L

〈
x2, s

∣∣xi,2, 0〉 . (A18)

Performing the integration over source location xi,1 restricted the winding number expansion to the sector with ν2 = 0.
Using the spectral decomposition for the quantum-mechanical harmonic-oscillator propagator gives,

CX(t) =

∞∑
nL=0

Z(X)
nL

e−Eh,jz t

2Eh,jz
, (A19)

where Eh,jz includes the energy of the nL-th Landau level. The corresponding spectral weights are

Z(X)
nL =

1

L

∣∣∣∣∣
∫ L

0

dxψnL(x)

∣∣∣∣∣
2

, (A20)

and give the probability of finding the charged particle in the nL-th Landau level. Positivity of these weights arises
due to the symmetric treatment of the source and sink locations. Landau levels of both parities contribute to the
correlation function. When evaluated for quantized magnetic fields, the weights only depend on the flux quantum ñ.
Ratios of coefficients, however, depend on ñ through exponentially small terms.

d. Varying the gauge shift and source location (Γ = θX)

Despite computational requirements, it remains worthwhile to consider averaging over the shift of the gauge potential
and the source location. The former can be used to construct magnetic-periodic images and build the infinite-volume
propagator in blocks. The result of this procedure leads to

CθX(t) =

∞∑
nL=0

Z(θX)
nL

e−Eh,jz t

2Eh,jz
, (A21)

where Eh,jz includes the energy of the nL-th Landau level, and the corresponding spectral weights are

Z(θX)
nL =

1

L

∣∣∣∣∫ ∞
−∞

dxψnL(x)

∣∣∣∣2 . (A22)

This procedure eliminates all L dependence, and ñ dependence is completely absent in ratios of coefficients. Further-
more, the procedure excludes contributions from odd-parity Landau levels, and maintains spectral positivity.

3. Results for a point-like particle

Having determined the charged-particle correlation functions for four different methods of dealing with the lack
of translational invariance, the relative contributions of the lowest-lying Landau levels are compared in Fig. 24. In
plotting the coefficient ratios, the nL-dependence of the hadron energies Eh,jz appearing in the correlation functions
has been ignored. These energy denominators will lead to smaller coefficients, but only for higher-lying Landau levels.
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FIG. 24: Contributions to the correlation functions of a point-like charged particle from the first few Landau levels compared
with the contribution from the lowest Landau level. Four such coefficient ratios are considered, corresponding to different
ways of dealing with the lack of lattice translational invariance, as described in the text. These are labeled by Γ = 0, θ, X,
and θX, which correspond to: coincident origin, twist-averaged, source-averaged, and twist and source-averaged, respectively.
Values have been slightly displaced in nL to allow different ratios to be discernible. For quantized magnetic fields, all ratios
are independent of the lattice size L, and ratios are either independent of the flux quantum ñ, or depend on it only through
exponentially small terms.
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