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Abstract

In this paper we obtain an analytical solution of the relativistic Boltzmann equation under

the relaxation time approximation that describes the out-of-equilibrium dynamics of a radially

expanding massless gas. This solution is found by mapping this expanding system in flat spacetime

to a static flow in the curved spacetime AdS2 ⊗ S2. We further derive explicit analytic expressions

for the momentum dependence of the single particle distribution function as well as for the spatial

dependence of its moments. We find that this dissipative system has the ability to flow as a perfect

fluid even though its entropy density does not match the equilibrium form. The non-equilibrium

contribution to the entropy density is shown to be due to higher order scalar moments (which

possess no hydrodynamical interpretation) of the Boltzmann equation that can remain out of

equilibrium but do not couple to the energy-momentum tensor of the system. Thus, in this system

the slowly moving hydrodynamic degrees of freedom can exhibit true perfect fluidity while being

totally decoupled from the fast moving, non-hydrodynamical microscopic degrees of freedom that

lead to entropy production.
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I. INTRODUCTION

The Boltzmann equation describes the underlying microscopic dynamics of dilute classical

gases [1]. It is widely employed to model a variety of nonequilibrium phenomena in several

areas of physics such as the dynamics of the hot hadronic matter produced in the late stages

of ultrarelativistic heavy ion collisions [2, 3], some aspects of the expansion of our universe

in cosmology applications [4], the description of micro and nano-flows [5], among others.

In addition to these applications, exact solutions of the relativistic generalization of the

Boltzmann equation [6, 7] in the relaxation time approximation [8, 9] have been recently

employed to improve our understanding of the domain of applicability of relativistic dissi-

pative fluid dynamics in the context of relativistic heavy ion collisions [10–14]. Even though

less complete, the Anderson-Witting-Boltzmann (AWB) equation and its solutions can be

used to understand certain properties of solutions of the Boltzmann equation itself, as well

as its hydrodynamic limit.

Analytic solutions of the relativistic Boltzmann equation are extremely rare (see [15]

for the first analytical solution in an expanding background). The same can be said even

for simplified versions of the relativistic Boltzmann equation, such as the AWB equation.

Recently, an exact solution of the AWB equation [9] was derived for a conformal system

undergoing simultaneously longitudinal and transverse expansion in [13, 14] (for an extension

involving anisotropic hydrodynamics see [16]). The remarkable agreement between these

solutions and those of relativistic dissipative fluid dynamics (under the same symmetries) has

brought great insights about the validity of the hydrodynamic description of the evolution of

the quark-gluon plasma. However, even in this case the solutions of the AWB equation were

obtained using iterative numerical methods and it was not known how to obtain analytic

expressions for the momentum dependence of the single particle distribution function, f ,

and the spatial dependence of its moments.

In this paper, we expand on the arguments developed in Ref. [13, 14] to obtain a new

fully analytical solution for the single particle distribution function of the AWB equation for

conformal kinetic systems. The key difference with respect to the exact solutions previously

derived in [13, 14] involves the global symmetries imposed on the conformal system. The

symmetry assumptions [17–19] previously employed in [13, 14] were more applicable to the

matter created in ultracentral relativistic heavy ion collisions while in this work we broaden
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our focus and consider symmetries more appropriate for conformal systems undergoing three

dimensional radial expansion, such as the early universe1. We note that the same set of

symmetries has already been imposed to conformal fluids in [20, 21] in order to find the first

analytical solutions of second order conformal fluid dynamics.

The possession of an analytical solution for f allowed us to directly explore here impor-

tant technical aspects in kinetic theory such as the imposition of matching conditions, the

decomposition of f in its moments in a nontrivial setting as well as its positivity. More im-

portantly, this analytical solution has also revealed a new feature of conformally invariant,

radially expanding systems described by the AWB equation: the ability to flow as a perfect

fluid even though the overall dynamics is intrinsically dissipative (e.g., the non-equilibrium

entropy component is nonzero). In fact, we show that in this solution the energy-momentum

tensor is exactly that of an ideal fluid at any spacetime point (even though the shear viscosity

coefficient is nonzero) while the entropy density, computed directly using the full distribu-

tion function, is different than its ideal limit. In this case, this non-equilibrium contribution

to the entropy density is due to higher order scalar moments (which possess no hydrody-

namical interpretation) of the Boltzmann equation [22] that remain out of equilibrium while

the energy-momentum tensor retains its local equilibrium form. Therefore, in the system

considered here, slowly moving hydrodynamic degrees of freedom can exhibit true perfect

fluidity while being totally decoupled from the fast moving, non-hydrodynamical microscopic

scalar degrees of freedom that lead to entropy production.

This paper is organized as follows. In the next section we briefly review how AdS2 ⊗ S2

invariant solutions of fluid dynamics were obtained in Refs. [20, 21]. In Sec. III we derive

the main results of this paper and solve the Anderson-Witting-Boltzmann equation for a

conformal system in AdS2 ⊗ S2 geometry. We show in Sec. IV how these solutions appear

from the perspective of the method of moments. We then conclude with a summary of our

results. Throughout this paper, we use natural units ~ = c = kB = 1.

1 An important distinction with respect to the physics of the early universe is that here we still consider an

underlying flat spacetime.
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II. RELATIVISTIC HYDRODYNAMICS IN AdS2 ⊗ S2

We follow [21] and consider the out-of-equilibrium dynamics of a conformal system in

AdS2 ⊗ S2 geometry. This curved geometry is conformally equivalent to 4-dimensional

Minkowski spacetime (in spherical coordinates),

dŝ2 =
−dt2 + dr2 + r2dΩ2

r2
= − cosh2 ρ dτ 2 + dρ2 + dΩ2 , (1)

where dΩ2 = dθ2 + sin2 θ dφ2 is the usual angular piece involving the angles θ ∈ [0, π] and

φ ∈ [0, 2π] while τ and ρ are global AdS2 coordinates defined using the Minkowski time, t,

and 3-dimensional spatial radius, r, in the following way [21]

tan τ =
L2 + r2 − t2

2Lt
, cosh ρ =

1

2Lr

√

(L2 + (r + t)2) (L2 + (r − t)2) , (2)

with L being the radius of AdS2. In this curved space, quantities evolve in τ while ρ plays

the role of a spatial radial coordinate. In this Weyl rescaled coordinate system the nonzero

Christoffel symbols are

Γφ
θφ =

1

tan θ
, Γθ

φφ = − cos θ sin θ , Γρ
ττ = cosh ρ sinh ρ , Γτ

τρ = tanh ρ . (3)

The energy-momentum tensor, T µν , of a relativistic conformal fluid is usually decomposed

in terms of the time-like (normalized) local velocity field, uµ, as

T µν = εuµuν + P∆µν + πµν .

Above, we introduced the energy density ε ≡ uµuνT
µν , the thermodynamic pressure P (ε) =

ε/3, and the shear stress tensor πµν ≡ ∆µν
αβT

αβ. We further defined the projection operator

onto the space orthogonal to uµ, ∆µν = gµν + uµuν , and the double, symmetric, traceless

projection operator ∆µν
αβ =

(

∆µ
α∆

ν
β +∆ν

α∆
µ
β

)

/2 − ∆µν∆αβ/3. Our convention is to define

the fluid velocity using the Landau picture, T µνuν = −εuµ, which implies that the energy

diffusion is always zero. The bulk viscous pressure of a conformal fluid is always zero, which

means that the dissipative processes involving energy and momentum in such systems are

solely governed by the shear stress tensor.

The main equations of motion satisfied by this fluid are given by the conservation laws

of energy-momentum, which we decompose in the following form,

uνDµT
µν = uµDµ lnT +

1

3
Dµu

µ +
1

3

πµν

Ts
Dµuν = 0, (4)

∆λ
νDµT

µν = uµDµu
λ +∆λµ∂µ lnT +∆λ

νDµπ
µν = 0, (5)
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where Dµ is the general relativistic covariant derivative. The equations above are then

complemented by the equations of motions for the shear-stress tensor, πµν , which, at second

order in gradients [22–24], correspond to a relaxation-type equation

τπ∆
µ
α∆

ν
βu

λDλπ
αβ +πµν = −2ησµν − 4

3
τππ

µνDλu
λ+

10

7
τππ

λ〈µσ
ν〉
λ +higher-order terms , (6)

where η is the shear viscosity and τπ is the shear relaxation time. For a conformal fluid,

the shear viscosity must be proportional to the entropy, η ∼ s, while the shear viscosity

relaxation time must be inversely proportional to the temperature, τπ ∼ 1/T . Above, we

introduced the shear tensor of the fluid, σµν = D〈µu ν〉. The brackets 〈〉 denote the transverse
and traceless projection of a tensor A〈µν〉 = ∆µν

αβA
αβ.

The hydrodynamical solution studied in [21] was constructed using a static though non-

uniform local velocity, uµ = (− cosh ρ, 0, 0, 0) in AdS2⊗S2 space with coordinates (τ, ρ, θ, φ).

This implies that the system is undergoing a certain type of spherically symmetric radial

flow in the usual Minkowski coordinates that is equivalent to the conformal soliton flow

that was first introduced in [25] in the context of the gauge/gravity duality [26] (see, e.g.,

[21] for more details about our flow velocity in Minkowski coordinates). With this static

flow configuration in AdS2 ⊗ S2, the expansion rate of the fluid vanishes, i.e., Dµu
µ = 0,

and so does the shear tensor, σµν = 0. Thus, Eqs. (4) and (5) can only be satisfied if the

temperature and πµν depend solely on the spatial coordinate ρ, e.g., T (τ, ρ, θ, φ) → T (ρ).

Moreover, note that in this space πµν is trivial: a quick look at Eq. (6) (and its gener-

alization including terms involving higher order derivatives of the flow) reveals that in this

problem πµν is identically zero. In fact, since here the flow is static and σµν = 0, Dµu
µ = 0,

and πµν = πµν(ρ), in our conformal theory there are no dynamical sources available to induce

a nontrivial spatial profile for the shear stress tensor, which must then vanish in all space. If

nonlinear terms quadratic (or of higher-order) in πµν were present in (6), nontrivial solutions

of these homogeneous algebraic equations for πµν could be found [20, 21] but those would

necessarily assume that πµν must be nonzero for any value of ρ. Therefore, this nontrivial

branch of solutions is not smoothly connected to the usual hydrodynamic gradient expansion

for which, in this problem, the first-order Navier-Stokes contribution vanishes. In any case,

this type of solutions is not going to play a role in our discussion since the nonlinear terms

in πµν cannot appear in an effective hydrodynamic theory obtained from the Boltzmann

equation with a linearized collision term [27] such as in AWB. Therefore, one can safely set
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πµν = 0 in the following. Also, since πµν transforms covariantly under Weyl transformations

[24], the fact that this quantity vanishes in AdS2 ⊗ S2 implies that it will also vanish in

Minkowski coordinates.

In this case, the momentum equation (5) leads to an equation of motion for the temper-

ature that can be easily solved [21]

∂ρ lnT = − tanh ρ =⇒ T (ρ) ∼ (cosh ρ)−1 . (7)

The interesting feature of this solution is that it corresponds to the solution of an ideal fluid.

This happened without making any assumptions about the magnitude of the shear viscosity

coefficient – it simply appeared as a feature of this highly symmetrical flow configuration.

That is, even though the system in principle has a nonzero shear viscosity coefficient, its

hydrodynamic degrees of freedom cannot dissipate since all gradients are exactly zero in

AdS2 ⊗ S2 (note that dissipation via bulk viscosity is forbidden due to exact conformal

invariance). In Minkowski space, the temperature evolves in time as it would in a genuine,

dissipationless fluid.

In the next sections we investigate the same problem of out-of-equilibrium AdS2 ⊗ S2

dynamics from a kinetic theory perspective using the AWB equation. We then clarify which

non-hydrodynamic degrees of freedom of the microscopic theory are responsible for dissi-

pation in this case and why such degrees of freedom do not couple with the hydrodynamic

modes.

III. ANDERSON-WITTING-BOLTZMANN EQUATION

The on-shell AWB equation in curved spacetime is [13, 14]

pµ∂µf + Γλ
µipλp

µ ∂f

∂pi
=

pµuµ

τrel
(f − feq) , (8)

where the distribution function f = f(xµ, pi) is defined in a 7-dimensional phase space [28] in

which each point is described by seven coordinates, i.e., the AdS2⊗S2 spacetime coordinates

xµ = (τ, ρ, θ, φ) and the three spatial covariant momentum components pi = (pρ, pθ, pφ). The

zeroth component of the momentum is obtained from the on-shell condition for massless par-

ticles pµp
µ = 0. Moreover, feq = exp (pµuµ/T ) is the local equilibrium distribution function

for massless particles with Boltzmann statistics, T is the local temperature, uµ is the local
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velocity of the system, and τrel is the relaxation time associated with the collision operator.

Conformal invariance imposes that the relaxation time must be inversely proportional to the

temperature, τrel = c/T , with c being a constant that is directly related to the shear viscosity

to entropy density ratio, η/s = 5c [27, 29] (thus, the free streaming limit corresponds to

c → ∞).

At first glance, it may appear that the AWB equation is a linear equation in f . However,

we note that Eq. (8) must be solved simultaneously with the equations of motion for the

temperature and velocity, Eqs. (4) and (5). In these, one must also use the definition of the

shear stress tensor of a dilute single component gas,

πµν = T 〈µν〉 =

∫

d3p

(2π)3
p〈µpν〉

pτ
√−g

f.

In the end, one has a coupled set of nonlinear integro-differential equations for f , T , and

uµ. It is commonly very challenging to solve these types of equations even numerically.

However, as mentioned above, exact solutions of this system of equations have been recently

obtained using iterative numerical methods [10, 13, 14]. For the type of flow and symmetries

considered in this paper, we demonstrate in the following sections that it is possible to obtain

analytic solutions of this system of equations. We note that the collisionless limit of a system

with a flow equivalent to ours in Minkowski space was previously studied in [30] using very

different techniques than the ones used below.

A. Analytic Solution

As mentioned in the previous section when we discussed the fluid dynamical equations,

the symmetry for the static flow imposes that uµ = (− cosh ρ, 0, 0, 0). Also, for this type of

static flow f may depend only on the spatial coordinates ρ, θ, and φ (though we shall see

that f does not depend on this coordinate in the end) and their corresponding momenta.

Since in the AWB equation the collision term is approximated to be linear in f −feq, it is

impossible for terms quadratic or quartic in πµν to appear in the equation of motion for πµν

at any order in the hydrodynamic series [22, 27]. Such terms can only originate from the

nonlinear terms of the collision operator and, assuming that higher order tensorial moments

[22] initially vanish, the shear stress tensor constructed using the solution f of Eq. (8) must

be zero. Therefore, since the bulk viscous pressure has to be zero due to the underlying
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conformal invariance, the temperature that enters the AWB equation will satisfy Eq. (7)

with solution

T (ρ) =
T0

cosh ρ
, (9)

where T0 is a constant. Note that this is not usually the case and in general the temperature

has to be solved simultaneously with the AWB equation [13, 14]. The fact that the velocity

profile is static and the temperature profile can be solved analytically will be extremely

useful here since it will allow us to find analytical solutions of the AWB equation for this

system. These solutions for T and uµ serve to considerably simplify the expression for the

local equilibrium distribution function and the relaxation time, which take the following

form

feq = exp [−pτ cosh ρ/T (ρ)] , (10)

τrel =
c

T (ρ)
=

c

T0

cosh ρ , (11)

where pτ =
√

p2ρ + p2θ +
(

p2φ/ sin
2 θ
)

/ cosh ρ.

The AWB equation then becomes

pρ∂ρf − tanh ρ

(

p2ρ + p2θ +
p2φ

sin2 θ

)

∂f

∂pρ
+ pθ∂θf

+
1

tan θ

p2φ
sin2 θ

∂f

∂pθ
= −T0

c

1

cosh ρ

√

p2ρ + p2θ +
p2φ

sin2 θ
(f − feq) , (12)

where we used Eq. (11). We note that feq itself satisfies this equation, as is expected for a

stationary solution (see also the collisionless study of [30]). We also remark that there are no

terms including ∂f/∂pφ, which is consistent with spherical symmetry in these coordinates

and, thus, f does not depend on φ. It is then easy to see that the general solution of this

equation can be written as a sum of an equilibrium piece and a non-equilibrium part as

follows: f(ρ, θ; pρ, pθ, pφ) = feq + feqΦ(ρ, θ; pρ, pθ, pφ) where the non-equilibrium piece is

Φ(ρ; pρ, pΩ) = J





√

p2ρ + p2Ω cosh ρ

T0



 exp

[

−T0

c

pρ
|pρ|

arctan

(

sinh ρ

√

1 +
p2Ω
p2ρ

)]

. (13)

Here, J (γ) is an arbitrary function of its argument γ and we have defined the short-hand

notation p2Ω ≡ p2θ+
(

p2φ/ sin
2 θ
)

. By taking c → ∞, one can see that J is actually the solution

of this equation in the free-streaming limit, J = Φfree−streaming. As will be discussed in the
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following, the functional form of J can be determined by using the matching condition for

the energy density while requiring that f is positive-definite at any point of phase space. As

far as we are aware, this is the first analytical solution of the AWB equation that describes

a radially expanding system.

B. Matching condition and positivity

In kinetic theory it is quite common to define the temperature of the system by requiring

that the energy density of the system is solely determined by its equilibrium value,

ε = uµuνT
µν = εeq (T ) .

This condition implies that the following integral must always vanish

∫

d3p

(2π)3
pτ cosh ρ

sin θ
feq Φ(ρ, θ; pρ, pθ, pφ) = 0. (14)

Using the analytic solution derived in the previous section, Eq. (13), it is possible to reduce

this integral to a considerably simpler form

∫ ∞

0

dγ γ3J (γ) exp (−γ) = 0 . (15)

Now, the condition (15) can be used to determine J (γ). For simplicity, in this work we

consider a polynomial Ansatz

J (γ) ∼ aγ − 1 , (16)

and one can easily find that condition (15) is met as long as a = 1/4. Therefore,

J (γ) ∼ γ

4
− 1 . (17)

Note that this function is not positive-definite for γ ∈ [0, 4]. However, we still have the

freedom to fix the overall multiplicative constant. A mandatory physical constraint is that,

in the end, the distribution function must be a non-negative real-valued function of its

arguments. In fact, positivity can be obtained as follows. First, note that the sign of the

exponent in our solution for Φ, in Eq. (13), is determined by the sign of pρ: in the limit of

ρ → ∞, the solution is bounded by exp [−πT0/(2c)], when pρ > 0, and by exp [πT0/(2c)],

when pρ < 0. To make sure that f is positive-definite and, at the same time, that limc→0 f =
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feq (i.e., for a vanishing relaxation time one must recover the local equilibrium) we fix the

overall multiplicative constant to be exp [−T0π(1 + ξ)/(2c)] with ξ > 0 and, thus,

J (γ) =
(γ

4
− 1
)

exp

[

−πT0

2c
(1 + ξ)

]

. (18)

In principle, other forms of J (γ) may be used in order to achieve the same outcome, which

would then generate a class of solutions of the AWB equation. In this work, however, we

limit our discussion to the form (18) for J (γ).

It is instructive to study the dependence of f on some of its arguments. For instance, for

ρ = 0

f

feq

∣

∣

∣

ρ=0
= 1 + exp

[

−πT0

2c
(ξ + 1)

]





1

4T0

√

p2ρ + p2θ +
p2φ

sin2 θ
− 1



 (19)

while for pθ = pφ = 0

f

feq

∣

∣

∣

pθ,pφ=0
= 1 + exp

{

−T0

2c

[

π(1 + ξ) + 2
pρ
|pρ|

Gd(pρ)

]}(

1

4T0
|pρ| cosh ρ− 1

)

, (20)

where Gd(x) = 2 tan−1 (exp x)−π/2 is the Gudermannian function. One can see that these

expressions are positive-definite and that they reduce to the equilibrium distribution in the

zero mean free path limit c → 0.

C. Non-equilibrium entropy

The local entropy density is computed using the solution for f as follows [6]

s =
1

(2π)3

∫

d3p√−g pτ
uµp

µ f (ln f − 1) . (21)

It is easy to show that the equilibrium result is seq = 4T 3(ρ)/π2, which is what one would

expect for an ideal conformal gas with degeneracy factor equal to one. From the form of f

assumed in this paper, f = feq (1 + Φ), one can write the nonequilibrium correction to the

entropy as

∆s ≡ s− seq =

∫

d3p√−g pτ
uµp

µ feq {(1 + Φ) ln [1 + Φ] + Φ (ln feq − 1)} . (22)

The second term can be reduced to
∫

d3p√−g pτ
uµp

µ feqΦ (ln feq − 1) =
T 3

4π2
H(ρ)

[
∫ ∞

0

dγ γ2e−γ (1 + γ)J (γ)

]

(23)

= − T 3

8π2
H(ρ) exp

[

−πT0

2c
(1 + ξ)

]

,
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FIG. 1: (Color online) Relative entropy production ∆s/seq in Eq. (25) for different values of T0/c

(with fixed ξ = 0.01). The solid black line was computed using T0/c = 10, the dashed red curve is

for T0/c = 1, while the dotted-dashed blue curve is for T0/c = 0.1.

where

H(ρ) = 2

∫ 1

0

dx cosh

[

T0

c
arctan

(

sinh ρ

x

)]

(24)

is a positive-definite function. When going from the first line to the second line above, we

replaced the form of J (γ) obtained in the previous sections. The full result is

∆s

seq
= −

∫ ∞

0

dγ

16
γ2 e−γ

∫ 1

0

dx

{

1 + J (γ) exp

[

−T0

c
tan−1

(

sinh ρ

x

)]}

× ln

{

1 + J (γ) exp

[

−T0

c
tan−1

(

sinh ρ

x

)]}

−
∫ ∞

0

dγ

16
γ2 e−γ

∫ 1

0

dx

{

1 + J (γ) exp

[

T0

c
tan−1

(

sinh ρ

x

)]}

× ln

{

1 + J (γ) exp

[

T0

c
tan−1

(

sinh ρ

x

)]}

− H(ρ)

32
exp

[

−πT0

2c
(1 + ξ)

]

. (25)

It is easy to see that ∆s(ρ) is even in ρ and that ∆s(ρ) < 0, as expected on physical

grounds. We show in Fig. 1 a plot of ∆s/seq as a function of ρ for different values of T0/c.

For small values of T0/c one can see that the full entropy density becomes different than the

equilibrium one (though by a small amount) and that this effect becomes more pronounced

for large values of ρ, where it reaches a stationary value that depends on the parameters c

and T0.

Note that ∆s/seq in Eq. (25) does not change under Weyl transformations and, thus,
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one can find its value in flat spacetime via simple substitution ∆s
seq

(ρ) = ∆s
seq

(ρ(t, r)). Also,

since large values of ρ correspond to large values of t for fixed r (see Eq. (2)), this quantity

approaches a constant at large times in flat spacetime. From the result shown in Fig. 1, one

can see that the spatial integral of ∆s in flat spacetime

128L3T 3
0

π

∫ ∞

0

dr
r2

[L2 + (r + t)2]3/2 [L2 + (r − t)2]3/2
∆s

seq

∣

∣

∣

ρ=ρ(t,r)
(26)

goes to zero when t → ∞, which indicates that the entropy approaches its equilibrium value

as time increases. The equation above was obtained using that the equilibrium entropy

density in flat spacetime is seq(t, r) = 4T 3(t, r)/(π2r3).

IV. COMPARISON TO THE METHOD OF MOMENTS

In order to better understand some features of the solution derived in the previous sec-

tions it is convenient to expand Φ = (f − feq) /feq in terms of its moments, using irreducible

tensors and a complete basis of polynomials [22]. The irreducible tensors, 1, k〈µ〉, k〈µk ν〉,

k〈µkνk λ〉, · · · , are used to expand the angular part of the single-particle distribution func-

tion. They form a complete and orthogonal set, analogously to the spherical harmonics

[6], and are defined as k〈µ1 ...k µm〉 ≡ ∆µ1...µm
ν1...νm

kν1...kνm , where the transverse, symmetric, and

traceless projectors ∆µ1...µm
ν1...νm are defined in [6]. Our solution in Eq. (13) is anisotropic in

momentum space and hence it possesses both scalar and higher rank moments. For the

sake of illustration, in this section we focus on the scalar moments of our solution. The

scalar part of the distribution function is expanded using a set of orthogonal polynomials,

P
(ℓ)
kn =

∑n
r=0 a

(ℓ)
nr (−uµk

µ)r, where the coefficients a
(ℓ)
nr were calculated so that

N ℓ

(2ℓ+ 1)!!

∫

dK√−g
(uµk

µ)2ℓ P
(ℓ)
knP

(ℓ)
km = δnm, (27)

using the Gram-Schmidt orthogonalization method as demonstrated in [22]. Here, we defined

dK = d3k/
[

(2π)3 kτ
]

andNℓ = (−1)ℓ/I2ℓ,ℓ where, for a nongenerate massless gas of particles,

Inq =
(n+ 1)!

(2q + 1)!!

T n+2

2π2
.

The irreducible tensors also satisfy orthogonality conditions,
∫

dK√−g
Fk k

〈µ1 · · · k µm〉 k〈ν1 · · · kνn〉 =
m! δmn

(2m+ 1)!!
∆µ1···µm

ν1···νm

∫

dK√−g

N ℓ

(2ℓ+ 1)!!
Fk (uµk

µ)2m ,

(28)
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where Fk is an arbitrary function of uµk
µ.

Using this basis, the moment expansion of Φ is

Φ =

∞
∑

ℓ=0

∞
∑

n=0

P(ℓ)
knΘ

µ1···µℓ
n k〈µ1

· · ·kµℓ〉,

where the moments can be obtained using the orthogonality relations satisfied by the basis

elements and are given by

Θµ1···µℓ
n =

∫

d3k

(2π)3
√−g

(−k · u)n
kτ

k〈µ1 · · · k µℓ〉feqΦ . (29)

For the sake of convenience, we defined above

P(ℓ)
kn ≡ Nℓ

ℓ!

∞
∑

m=n

a(ℓ)mnP
(nℓ)
k

.

We note that the scalar moments can also be calculated analytically, by replacing Eq.

(13) into Eq. (29). The solution is

Θn =
n− 2

16π2
T n+2(ρ) Γ(n+ 2)H(ρ) exp

[

−πT0

2c
(1 + ξ)

]

, (30)

where Γ(n) is the Gamma function. Note that this quantity vanishes for n = 2, as expected,

from the energy matching condition and that Θ0/T
2 = Θ1/T

3 < 0 while Θn > 0 for n > 2.

For the sake of completeness, in Fig. 2 we plot Θ3/T
5 for different values of T0/c with

ξ = 0.01.

The actual moment expansion of Φ then becomes

Φ =
∞
∑

n=0

P(0)
knΘn .

Truncating this expression at n = 2 (note that the matching condition fixes Θ2 = 0), we

obtain something analogous to the 14-moment approximation [23],

Φ = P(0)
k0 Θ0 + P(0)

k1 Θ1.

For a gas of nondegenerate massless particles, it is easy to show that

P(0)
k0 =

2π2

T 2

(

3 +
1

T
uµk

µ

)

, P(0)
k1 = −2π2

T 3

(

1 +
1

2T
uµk

µ

)

.

where we used that

a
(0)
00 = 1,

[

a
(0)
11

]2

=
1

2T 4
,

a
(0)
10

a
(0)
11

= −2T .
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FIG. 2: (Color online) Normalized scalar moment Θ3/T
5 for different values of T0/c (with fixed

ξ = 0.01). The solid black line was computed using T0/c = 10, the dashed red curve is for T0/c = 1,

while the dotted-dashed blue curve is for T0/c = 0.1.

In this truncation scheme, the distribution function is then approximated to be

Φ = −1

2
H(ρ) exp

[

−πT0

2c
(1 + ξ)

](

1− 1

4T0

√

p2ρ + p2θ +
(

p2φ/ sin
2 θ
)

)

.

For ρ = 0, this is exactly the same as our analytical solution, see Eq. (19). This shows that

a finite number of scalar moments are able to provide a reasonable description of this system

at least when ρ = 0.

V. CONCLUSIONS

In this paper we derived the first analytical solution of the Anderson-Witting-Boltzmann

equation for a radially expanding system (known as conformal soliton flow) of massless

particles. We further demonstrated how the matching conditions, commonly used to de-

fine temperature in kinetic theory, restrict the form of the solution of the single particle

distribution function.

The solution we found has some very interesting features. In this system the slowly

moving hydrodynamic degrees of freedom do not see dissipation, e.g., sound waves propagate

without any distortion from viscosity. However, faster degrees of freedom are still present

and they produce a finite amount of entropy. This may be the first example of a kinetic

14



system that does not have a viscous hydrodynamic behavior: between its ideal fluid and

free-streaming limits, there is no region in space and time where a viscous fluid dynamical

description is valid.

This conclusion regarding the perfect fluidity of the conformal soliton flow, studied here

at weak coupling in the context of kinetic theory, was also found in the case of an infinitely

coupled N = 4 Supersymmetric Yang-Mills plasma [25]. In fact, even though this strongly-

coupled system has nonzero shear viscosity η/s = 1/(4π) [31], the underlying symmetries of

the flow together with conformal invariance impose that the energy-momentum tensor of the

system retains its perfect fluid form. This shows that the exact cancellation of shear viscous

effects in the energy-momentum tensor discussed here also happens in strongly coupled

systems.

For any finite value of c in the relaxation time (11), our solution for the distribution

function does not return to local thermal equilibrium even at sufficiently large times. In fact,

one can see from (2) that large times (for fixed radius r) correspond to large ρ’s and, in this

case, the non-equilibrium contribution given by (13) and (18) does not vanish if c 6= 0. Thus,

in our system the effects of the expansion overcome the collision term and the distribution

function does not relax to its equilibrium form. We note that a similar conclusion was

found for a different type of rapidly expanding gas in [15], which went beyond the relaxation

time approximation and took into account the full nonlinearities of the collision term of the

relativistic Boltzmann equation.

The essential approximations made here to find this novel many-body effect were: relax-

ation time approximation, conformal dynamics, and spherical symmetry (implemented via

the AdS2⊗S2 construction). The effects discussed in this paper may appear when describing

a perfectly radially symmetric and homogeneous droplet of quark-gluon plasma, at very high

temperatures and vanishing chemical potentials, expanding in vacuum. In this limit, QCD

is approximately conformal and the flow configuration should resemble the one discussed in

this paper.
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Applications (Birkhäuser Verlag (Basel, Switzerland), 2002).

[8] P. L. Bhatnagar, E. P. Gross, and M. Krook, Phys. Rev. 94, 511 (1954).

[9] J. Anderson and H. Witting, Physica 74, 466 (1974).

[10] W. Florkowski, R. Ryblewski and M. Strickland, Nucl. Phys. A 916, 249 (2013)

[arXiv:1304.0665 [nucl-th]].

[11] W. Florkowski, R. Ryblewski and M. Strickland, Phys. Rev. C 88, 024903 (2013)

[arXiv:1305.7234 [nucl-th]].

[12] G. S. Denicol, W. Florkowski, R. Ryblewski and M. Strickland, Phys. Rev. C 90, no. 4, 044905

(2014) [arXiv:1407.4767 [hep-ph]].

[13] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha and M. Strickland, Phys. Rev. Lett.

113, no. 20, 202301 (2014) [arXiv:1408.5646 [hep-ph]].

[14] G. S. Denicol, U. W. Heinz, M. Martinez, J. Noronha and M. Strickland, Phys. Rev. D 90,

16



no. 12, 125026 (2014) [arXiv:1408.7048 [hep-ph]].

[15] D. Bazow, G. S. Denicol, U. Heinz, M. Martinez and J. Noronha, arXiv:1507.07834 [hep-ph].

[16] M. Nopoush, R. Ryblewski and M. Strickland, Phys. Rev. D 91, no. 4, 045007 (2015)

[arXiv:1410.6790 [nucl-th]].

[17] S. S. Gubser, Phys. Rev. D 82, 085027 (2010) [arXiv:1006.0006 [hep-th]].

[18] S. S. Gubser and A. Yarom, Nucl. Phys. B 846, 469 (2011) [arXiv:1012.1314 [hep-th]].

[19] H. Marrochio, J. Noronha, G. S. Denicol, M. Luzum, S. Jeon and C. Gale, Phys. Rev. C 91,

no. 1, 014903 (2015) [arXiv:1307.6130 [nucl-th]].

[20] Y. Hatta, J. Noronha and B. W. Xiao, Phys. Rev. D 89, 051702 (R) (2014) [arXiv:1401.6248

[hep-th]].

[21] Y. Hatta, J. Noronha and B. W. Xiao, Phys. Rev. D 89, 114011 (2014) [arXiv:1403.7693

[hep-th]].

[22] G. S. Denicol, H. Niemi, E. Molnar and D. H. Rischke, Phys. Rev. D 85, 114047 (2012)

[arXiv:1202.4551 [nucl-th]].

[23] W. Israel and J. M. Stewart, Ann. Phys. 118, 341 (1979).

[24] R. Baier, P. Romatschke, D. T. Son, A. O. Starinets and M. A. Stephanov, JHEP 0804, 100

(2008) [arXiv:0712.2451 [hep-th]].

[25] J. J. Friess, S. S. Gubser, G. Michalogiorgakis and S. S. Pufu, JHEP 0704, 080 (2007) [hep-

th/0611005].

[26] J. M. Maldacena, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]

[hep-th/9711200].

[27] G. S. Denicol, T. Koide and D. H. Rischke, Phys. Rev. Lett. 105, 162501 (2010)

[arXiv:1004.5013 [nucl-th]].

[28] F. Debbasch and W. van Leeuwen, Physica A: Statistical Mechanics and its Applications 388,

1079 (2009); 1818 (2009).

[29] G. S. Denicol, J. Noronha, H. Niemi and D. H. Rischke, Phys. Rev. D 83, 074019 (2011)

[arXiv:1102.4780 [hep-th]].

[30] M. I. Nagy, Phys. Rev. C 83, 054901 (2011) [arXiv:0909.4285 [nucl-th]].

[31] P. Kovtun, D. T. Son and A. O. Starinets, Phys. Rev. Lett. 94, 111601 (2005) [hep-

th/0405231].

17


