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We demonstrate that the entirety of the data on proton–proton and antiproton–proton for-
ward scattering between 6 GeV and 57 TeV center-of-mass energy is sufficient to show that
σelas/σtot → 1/2, and that 8πB/σtot → 1 at very high energies, where B the forward slope pa-
rameter for the differential elastic scattering cross sections. The relations demonstrate convincingly
that the asymptotic pp and p̄p scattering amplitudes approach those of scattering from a black disk.
This result obviously has implications for any new physics that modifies the forward scattering
amplitudes.

PACS numbers: 13.85.Dz, 13.85.Lg, 13.85.-t

I. INTRODUCTION

Proton–proton (pp) and antiproton–proton (p̄p) scattering have been studied for many decades. A persistent
question since the advent of high-energy accelerators has concerned the behavior of the cross sections at very high
energies. They are bounded theoretically to increase no more rapidly than ln2 s, the Froissart bound [1–3], where
s = W 2 is the square of the total energy in the center-of-mass system. Block and Halzen [4] and Igi and Ishida [5, 6]
showed convincingly that the ln2 s behavior in fact held for the pp and p̄p cross sections measured up to Tevatron
energies, with this behavior leading to successful predictions for the cross sections at the Large Hadron Collider (LHC).
For a review, see [7].
Block and Halzen [8, 9] and Schegelsky and Ryskin [10] also presented tentative evidence that the pp and p̄p

scattering amplitudes may asymptotically approach those for scattering from a completely absorptive or “black”
disk—the “black-disk” limit—at ultra-high energies, but the results of those analyses were not definitive. This result,
and the common assumption that hadronic scattering is dominated at high energies by the interactions between gluons
in the two hadrons, together imply that all hadron-hadron cross sections should approach a common black-disk limit
as s → ∞, a very interesting result.
In the present paper, we present the results of a comprehensive analysis of the forward pp and p̄p scattering data

for center-of–mass energies from 6 GeV to 57 TeV. We discuss various constraints on the cross sections which are

essential in tying down the parametrizations of the low-energy cross sections, and present a fit to the data on σ
pp(p̄p)
tot ,

σ
pp(p̄p)
elas , and σ

pp(p̄p)
inel , the forward slope parameters Bpp and Bp̄p, and the ratios of the real to imaginary parts of the

forward scattering amplitudes ρpp and ρp̄p, using parametrizations which reflect the established ln2 s behavior of the
cross sections at high energies.
We find that the fit to the entirety of the data gives convincing evidence that the pp and p̄p scattering amplitudes

approach the black-disk limit at very high energies. We use this result to obtain a final, essentially identical, fit with
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the black-disk constraints σelas/σtot → 1/2, and 8πB/σtot → 1 imposed from the outset. The results give predictions
with only small uncertainties for the cross sections, ρ, and B at the higher energies which may become accessible in
the future. The present results agree well with the predictions of earlier fits

II. PARAMETRIZATIONS AND CONSTRAINTS

A. Parameterization of the cross sections, the real-to-imaginary ratio ρ, and the slope parameter B

We will be concerned here with global fits to the high-energy total, elastic, and inelastic pp and p̄p scattering
cross sections, the ratios ρ = Ref(s, 0)/Imf(s, 0) of the real to the imaginary parts of the forward elastic scattering
amplitudes f(s, t), and the forward slope parameter B = d(lnσ(s, t))/dt

∣

∣

t=0
for the differential cross sections dσ/dt.

We will use the parametrizations of σtot and ρ introduced by Block and Cahn [11] and used by Block and Halzen [4, 7]
in their earlier fit to the pp and p̄p data up to a center-of-mass energy W =

√
s = 1800 GeV. That fit was excellent

and gave successful predictions of the more recent, higher energy data from the Large Hadron Collider (LHC) and
cosmic ray experiments [8, 9].
The Block-Cahn analysis assumed a ln2 s bound on the growth of the cross sections at high energy as implied

by the Froissart bound [1–3] and parametrized σpp
tot and σp̄p

tot as quadratic expressions in the s−dependent variable
ν/m = (s − 2m2)/2m2 with additional falling Regge-like terms important at lower energies. The phase of the
scattering amplitude at high energies and the corresponding expression for ρ then followed from the constraints
imposed by analyticity and crossing symmetry under the transformation ν → −ν [7, 11].
We will extend the parametrizations here to the elastic and inelastic cross sections and the B parameter, with
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where the upper and lower signs are for pp and p̄p scattering, respectively. Here ν is the laboratory energy of the
incident particle, with 2mν = s− 2m2 = W 2 − 2m2 where W is the center-of-mass energy and m is the proton mass.
The inelastic cross sections are given by the differences between the total and elastic cross sections, σ±

inel = σ±
tot−σ±

elas.
They are therefore parametrized simply as the differences of the expressions in Eqs. (2) and (3); no new parameters
appear.
It is not obvious that the very simple parametrizations above should be adequate to describe the cross sections,

ρ, and B over the entire energy range we will consider. It is also not clear that the coefficients of these terms can
be determined well enough from fits in the extant energy range to extrapolate properly into the ultra-high energy
region where the ln2(ν/m) terms become dominant. We have studied these questions quantitatively using a detailed
eikonal model which provides a very good description of the data from 4 GeV to 57 TeV [12]. In that analysis, we
used the expressions above to fit “data” for the cross sections, ρ, and B derived from the eikonal model. The fits are
excellent, with errors typically smaller than the real experimental uncertainties, and those fits over the “experimental”
region continue to hold to ultra-high energies. Small correction terms would certainly be present analytically in the
expressions in Eqs. (1)–(5), but these are clearly unimportant in the fitting and extrapolation.
We emphasize also that the presence of the ln2(ν/m) terms in the parametrizations is not connected directly with

the Froissart bound: these terms are consistent with the bound, but follow in the eikonal model from the power-law
growth of the imaginary part of the eikonal function coupled with its exponentially bounded behavior in impact
parameter space. This leads to a effective radius of interaction between the nucleons that grows logarithmically
with increasing energy, and within which the scattering is nearly completely absorptive. As a result, the scattering
approaches the “black-disk” limit at very high energies, with consequences we discuss below. Finally, as noted in [12],
the coefficients of the ln2(ν/m) terms depend on properties of the eikonal function that are not well determined. We
therefore argued that the best extrapolations of cross sections and other parameters to ultra-high energies are those
based on direct fits to the data using the parametrization above. We carry out those fits here.
We turn next to a discussion of the known constraints on the parameters in Eqs. (1)–(5).
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B. Constraints

1. Low-energy constraints

There are nominally 18 parameters (a0, a1, a2, b0, b1, b2, c0, c1, c2, β, βe, βB, δ, δe, δB, α, µ, and f+(0)) in the model,
but these are not all independent and must satisfy certain constraints. When these are imposed, we will end up with
only 12 independent parameters in our final fit.
Both the “analyticity constraints” of Block and Halzen, derived in [13] and discussed in detail in [4], and the finite

energy sum rule (FESR2) of Igi and Ishida [5, 7], impose constraints on the parameters. The first requires that the
fits reproduce the values of the total cross sections at a transition point ν0 far enough above the resonance region
that the high-energy parametrizations may be expected to hold, but where the cross sections can still be evaluated
accurately using the dense low-energy data. The second approach obtains equivalent results through a matching of
the FESR integrals at ν0. Following [4], we take ν0 = 7.59 GeV corresponding to W =

√
s = 4 GeV. Their low-energy

analysis gives σpp
tot = 40.18 mb, σp̄p

tot = 56.99 mb.
In the case of the crossing-even combination of cross sections σ0 =

(

σpp
tot + σp̄p

tot

)

/2 =
(

σ+
tot + σ−

tot

)

/2 this matching
gives the constraint

c0 + c1 ln(ν0/m) + c2 ln
2(ν0/m) + β(ν0/m)µ−1 = σ0(ν0) = 48.58 mb. (6)

An essentially equivalent result numerically follows from the finite-energy sum rules of Igi and Ishida [5–7] relating
the low- and high-energy regions [7].
A second constraint holds for the crossing-odd combination of cross sections ∆σ =

(

σ+
tot − σ−

tot

)

/2. Matching the
theoretical and experimental results, we find that

δ (ν0/m)
α−1

= ∆σ(ν0) = −8.405 mb. (7)

Two further analyticity constraints hold if one matches the derivatives of the cross sections with respect to ν/m
to their experimental values at ν0 [4]. We will not use these because they are less reliable numerically and are more
sensitive than the cross sections themselves to small deviations of the high-energy expressions in Eqs. (1) and (2) from
the actual cross sections at the rather low matching energy of 4 GeV.
A rather subtle constraint holds for the coefficients β, βe, δ, δe of the Regge-like terms. These cannot be entirely

independent since a descending power-law term in the eikonal function in a general impact-parameter representation
of the scattering amplitudes f±(s, t) affects σ±

elas and σ±
inel as well as σ

±
tot. We have investigated these aspects of the

scattering using our detailed eikonal model for pp and p̄p scattering [12], which gives an accurate description of the
data over the region where the Regge-like effects are important.
The cross sections are described in the eikonal model in terms of the integrals

σtot(s) = 4πImf(s, 0) = 4π

∫ ∞

0

db b
(

1− cosχR e−χI
)

, (8)
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0
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∣

∣1− eiχ
∣

∣

2
= 2π

∫ ∞

0

db b
(

1− 2 cosχR e−χI + e−2χI
)

, (9)

σinel(s) = σtot − σelas = 2π

∫ ∞

0

db b
(

1− e−2χI
)

, (10)

where χ = χR + iχI is the complex eikonal function written in terms of crossing-even and crossing-odd parts.
Writing χ as χ = χ0 + χRegge, we can isolate the contributions of the Regge-like terms to the crossing-even and

crossing-odd cross sections σ0(ν) and ∆σ(ν) by subtracting the expression for the cross section for χRegge = 0 from
the full result. The effect of the factor cosχR in Eq. (2) is small enough that we can neglect it for this purpose. If we
do so, the contribution of the crossing-even Regge term to the total cross section σ0(ν) is given by the expression

4π

∫ ∞

0

db b cosh
(

χRegge,odd
I

)

e−χ
0,even

I

(

1− e−χ
Regge,even

I

)

. (11)

We note that the contribution of χRegge,odd
I through the cosh function is second order in that quantity and can be

dropped without significant loss of accuracy. Similar expressions hold for the other cross sections.
Despite the somewhat different effects of the energy-dependent eikonalization in the different cross sections, we find

that the input power in a Regge-like term (m/ν)γ in the eikonal function χRegge is reproduced to a percent or better
in output power-law fits to the various integrals over the energy interval 6–1000 GeV, where those outputs are to be
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identified with the Regge-like terms in Eqs. (1)–(5). The powers are therefore stable across the expressions in Eqs.
(1)–(5), as assumed.
Importantly, we find that the ratios of the crossing-even and crossing-odd Regge-like contributions to σinel to the

corresponding contributions to σtot vary only slowly over the most important important energy range, 6 to 100 GeV
(and beyond), with the even ratio in the range 0.684–0.657 and the odd ratio in the range 0.802–0.787. Averages
weighted by the even- and odd cross sections give ratios 0.678 and 0.797.
Converting these results on the Regge-like terms to the elastic and total cross sections Eq. (2) and Eq. (3), we find

that

βe = 0.302 β, δe = 0.203 δ (12)

as averaged over the interval 6–100 GeV, with only very small variations from these values. These relations give our
new, and not-very-obvious, constraints on the β and δ parameters in Eqs. (1) and (3). The smallness of the elastic-
to-total ratios is easily understood: the Regge-like terms enter the elastic cross section in Eq. (3) only in second order
in χRegge, but appear to first order in σtot and σinel.
With the imposition of the 4 low-energy constraints in Eqs. (6), (7), and (12), 14 parameters are left to fit all data

using the parametrizations introduced above. These constraints are quite important: the results anchor the total cross
sections accurately at the starting energies and in the Regge region, removing extra parameters which can otherwise
mix with and affect the values of the high-energy parameters of primary interest. We note that only 9 of the remaining
parameters appear in the expressions for the total, elastic, and inelastic cross sections and ρ; the remaining 5 are in
the expression for B.

2. High-energy constraints

As noted above, we expect the pp and p̄p scattering amplitudes to approach the black-disk limit at ultra-high
energies, with the scattering amplitudes approaching those for scattering from a completely absorbing disk with a
radius R which increases logarithmically with energy. In that limit, χR → 0 while e−χI vanishes for impact parameters
0 ≤ b ≤ R and is equal to 1 for b > R. As a result, from Eq. (8), σtot → 2πR2 up to edge effects of order R [12], while
from Eq. (9), σelas → πR2, also up to edge effects, and σelas/σtot → 1/2.
The real part of the forward scattering amplitude f(s, 0) is associated at high energies with peripheral scattering

outside the region of strong absorption and, as an edge effect, is proportional to R for finite-range forces. It therefore
decreases as 1/R relative to the imaginary part which is proportional to σtot ∝ R2, and ρ ∝ 1/R ∝ 1/ lnW → 0 at
high energies.
Finally, for Re f(s, 0) ≪ Im f(s, 0), the slope parameter B can be written as [12]

B =
1

2

∫ ∞

0

db b3
(

1− e−χI
)

/
∫ ∞

0

db b
(

1− e−χI
)

. (13)

With the conditions above, the integrals can be evaluated simply in the black-disk limit, and we find that

B → R2/4 = σtot/8π. (14)

The same result for B can be derived less rigorously if it is assumed that the differential scattering cross section is
purely exponential in t, with dσelas/dt = π |f(s, 0)|2 eBt. Integrating over t from −∞ to 0, then using the the relation

|f(s, 0)|2 = 16π2
(

1 + ρ2
)

σ2
tot and rearranging, we find that [11] B = σ2

tot

(

1 + ρ2
) /

16π2σelas, or, with ρ → 0 and
σelas/σtot → 1/2, B → σtot/8π.
It is an important question as to whether there is evidence of an approach to the black-disk limit in present data.

If so, it is reasonable to impose the black disk constraints σinel/σtot → 1/2 and B → σtot/8π in a final fit to the data.
This leads in the parametrization above to the constraints

b2 = c2/2, a2 = c2/0.3894× 8π (15)

where the numerical factor arises from the conversion of c2 in mb to units of GeV−2. This leaves 12 free parameters.
The approach to the black-disk limit was investigated for σtot and σinel in [9] using a hybrid approach in which the

parametrization for σinel was determined from that for σtot by multiplying the latter by the ratio σinel/σtot found in
an earlier eikonal model [14] and fitting the result to an expression of the form in Eq. (2). The result agreed very
well with the measured high-energy inelastic cross sections. The ratio of the coefficients of the ln2(ν/m) terms gave
a value 0.509±0.021 in agreement with the expectation 1/2 for black-disk scattering, and was interpreted as evidence
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for this limit. This result can be questioned because the ratio σinel/σtot has the asymptotic value 1/2 automatically
in the eikonal model used to get the parametrization for σinel from that for σtot. However, the excellent agreement
of the predicted and measured inelastic scattering cross sections suggests that the same ratio should be found in a
free fit to the data using the parametrization which follows from Eqs. (2) and (3). We will examine this in the next
section.
The asymptotic behavior of B was studied by Schegelsky and Ryskin [10] who used a simple a+ b ln2(s/s0) form

with s0 = 1 GeV2 to fit the high-energy data. The coefficient in their result, equivalent to a2 = 0.0286 ± 0.0005
GeV−2 in Eq. (5), and the relation in Eq. (15) predicted the value c2 = 0.294 ± 0.005 mb for the leading coefficient
in σtot, closely matching the value c2 = 0.2817± 0.0064 mb found in the analysis of [4]. This is again evidence for
the expected black disk behavior of the scattering at high energies. We note, however, that the fit in [10] is not tied
down at low energies, with the result that those authors had to drop a more flexible parametrization to get their final
result, even then with a χ2 per degree for freedom of 1.5, not a remarkably good fit. We will reexamine the fit to B
in the following section.

III. FITS TO HIGH ENERGY PROTON - PROTON AND ANTIPROTON-PROTON DATA

A. Data and method of fitting

The data we will use in our analysis consists of results on σtot for W ≥ 6 GeV, σinel for W ≥ 540 GeV, σelas for
W ≥ 30 GeV, and ρ and B for W ≥ 10 GeV. The energy ranges for σtot, σinel, and ρ are the same as used in the
Block-Halzen fits [4, 7, 8], but we include the newer data at very high energies from the LHC [15–17] and the Auger
[18] and HiRes [19] collaborations. As noted, we include the extensive data on σelas and B in our fits; these quantities
have not been used before in fits of this type.The data on σelas can be extended to 10 GeV or below without changing
the final results significantly, but the data are somewhat less accurate in that region, and we prefer to emphasize the
higher energies given our focus on the behavior of the cross sections and B at ultra-high energies.
We used the sieve algorithm [4, 20] to identify outlying points and remove them from the data set used in the final

fits. There are two underlying assumptions in this procedure. We assume, first, that the parametrization used in the
fit, with the parameter set α = {a0, a1, . . . , f+(0)}, can give a good description of theory, a point checked theoretically
in [12] for the present case. Second, we assume that the complete data set consists mostly of datum points which
have a normal Gaussian distribution with respect to the actual theoretical distribution, plus some outlying points
which have a much broader distribution than reflected in their quoted (Gaussian) uncertainties, the result of unknown
experimental problems. These outlying points can unduly influence a χ2 fit based on Gaussian statistics, but have
much-reduced impact in a fit based on a broader statistical distribution.
The sieve procedure is based on a Lorentzian probability distribution adjusted to give results that agree very well

with those from a Gaussian distribution in the absence of outliers, but which still eliminates the latter efficiently when
they are present. The details of the analysis are given in the appendix to [20].
We first make a fit to the complete data set by minimizing Λ2

0, the Lorentzian squared with respect to the parameter
set α in the fit function over the datum points yi at the set W of center-of-mass energies Wi at which the observations
are made,

Λ2
0(α,W ) =

N
∑

i=1

ln
[

1 + 0.179∆χ2
i (Wi;α)

]

. (16)

Here ∆χ2
i (Wi;α) = [yi − yi(Wi,α)]

2
/σi(W ) where yi is the value of the quantity of interest measured at energy Wi,

yi(Wi,α) is the theoretical value of that quantity for the parameters α, and σi is the experimental error. Because of
the intrinsically long tails of the Lorentzian distribution, this fit should be robust in the sense that points that lie far
from the fitted distribution are accorded relatively little weight in the fitting, and do not influence the fit unduly.
We next eliminate datum points for which ∆χ2

i (Wi;α) is “too large,” with a value larger than a chosen ∆max, taken
here as ∆max = 6 [20]. These points lie well away from the theoretical fit and are presumed to be outliers relative to
the “good” Gaussian-distributed data. We then make a conventional Gaussian χ2 fit to the remaining points. If our
assumptions about the nature of the distribution are correct, the parameters α should not change significantly in this
second fit, and the points identified as outliers should not change relative to the fit except possibly for those on the
boundary with ∆χ2

i (Wi;α) ≈ ∆max.
We note that 98.6% (99.7%) of the points in a normal Gaussian distribution would survive cuts with ∆max = 6 (9).

However, the normal points eliminated would contribute significantly to the Gaussian χ2, and we must renormalize
the result χ2

fit found for the fit by a factor R = 1.110 (1.027) for ∆max = 6 (9) to get the expected Gaussian result
χ2 = R× χ2

fit. This renormalized χ2 has the usual statistical interpretation.
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Our original data set contained 167 datum points. In the analyses discussed in the next sections, we found the
same 8 outlying points in fits performed with and without the high-energy constraints in Eq. (15). Only 2.3 points
with ∆χ2

i (Wi;α) > 6 would be expected for a Gaussian distribution of the data. The contribution of the outlying
points to the total χ2 was essentially the same in the two cases. These outliers, if included, would increase the final
χ2 of the fits by about 57% relative to that of the points retained. For example, for the final 12 parameter fit using
the high-energy constraints, χ2

fit = 161.2 with an average χ2 per point of 1.01. The extra contribution of the outlying
points in the original Lorentzian fit was 91.5, an average χ2 per point of 11.4 with actual values ranging from 6.6,
slightly above the cutoff, to 28. We note finally that the outlying points are not concentrated in a way likely to affect
our conclusions about high-energy scattering, with one point each in ρ for pp and p̄p scattering and three points in
Bpp distributed over the range 6.9 ≤ W ≤ 62.5 GeV, one in σp̄p

tot at 8.76 GeV, one in σp̄p
elas at 900 GeV, and one in

σpp
inel at 1800 GeV.

B. Fit without high-energy constraints

We first consider the results of a global fit to the data on σtot, σelas, σinel, ρ, and B which is not constrained by the
black-disk conditions in Eq. (15) at very high energies. We did use the low-energy constraints on the cross sections in
Eqs. (6) and (7), and the new ratio constraints on the coefficients of the Regge-like terms in Eq. (12); these constraints
are essential in tying down the cross sections at low energies. The sieve algorithm was used to filter the data resulting
in the elimination of 8 outliers among 167 datum points as noted above. Combined plots of the cross sections from
the fit are shown in Fig. 1. We do not show the fits to ρ and B; the curves are nearly indistinguishable from those in
Fig. 4 shown later.
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FIG. 1: Fits, top to bottom, to the total, inelastic, and elastic scattering cross sections using the low-energy analyticity
constraints in Eq. (6) and Eq. (7) and the ratio constraints on the Regge-like contributions to the low-energy cross sections
in Eq. (12): σp̄p

tot and σp̄p

elas (red) squares and dashed (red) line; σpp
tot and σpp

elas (blue) dots and solid (blue) line; σp̄p

inel (black)
diamonds and line; σpp

inel (purple) triangles. The fit used only data on σtot for W ≥ 6 GeV, σelas for W ≥ 30 GeV, and σinel for
W ≥ 540 GeV. The curve for σelas includes data down to 10 GeV to show how the cross section is tied down at lower energies.
Outlying points not used in the fit are shown with large open symbols surrounding the central points; the size of those symbols
does not reflect the quoted errors of the measurement.

Table I shows the results of this 14-parameter χ2 fit. As seen from the table, the raw χ2 per degree of freedom
is 1.11, while the renormalized χ2 per degree of freedom is 1.23. This is a very good fit, especially considering the
amount of data used.
It is very interesting to use the results from this fit, constrained only at low energies, to examine the very-high-energy
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Parameters ∆χ2
i max = 6

c0 (mb) 23.54 ± 4.94

c1 (mb) 0.2043 ± 1.023

c2 (mb) 0.2328 ± 0.0381

b0 (mb) 7.436 ± 2.330

b1 (mb) −1.036 ± 0.354

b2 (mb) 0.1230 ± 0.015

a0 (GeV−2) 10.38 ± 1.27

a1 (GeV−2) 0.1304 ± 0.2190

a2 (GeV−2) 0.02356 ± 0.0091

β (mb) 45.05 ± 6.42

βe (mb) 14.51 ± 2.07

βB (GeV−2) 0.4634 ± 2.110

f(0) (mb GeV) 2.095 ± 0.569

δ (GeV−2) −29.05± 0.90

δe (GeV−2) −5.897 ± 0.182

δB (GeV−2) −8.115 ± 0.513

α 0.4069 ± 0.006

µ 0.6593 ± 0.0449

χ2
min 160.864

R× χ2
min 178.483

Degrees of freedom (d.o.f). 145

R× χ2
min/d.o.f. 1.231

TABLE I: The results for our 14-parameter χ2 fit to the p̄p and pp total, elastic, and inelastic cross sections, ρ values and slope
parameters B using expressions in Eqs. (1)–(5), the low-energy constraints in Eqs. (6), (7), and (12), and the cut ∆χ2

i max = 6
in the sieve analysis of the data. The renormalized χ2

min/d.o.f., taking into account the effects of the ∆χ2
imax cut, is given in

the row labeled R× χ2
min/d.o.f., with R(6) = 1.110.

behavior projected for the cross sections and B. We find from Table I that

σelas

σtot
→ b2

c2
=

0.1230

0.2328
= 0.528± 0.108, as s → ∞. (17)

The deviation of this value of the ratio from the expected value 1/2 for for black-disk scattering at infinity energy is
well within the uncertainty of the fit.
We find that the ratio of the fitted value of the ratio of B to its black-disk value σtot/8π also agrees very well with

its expected value of 1 at high energies,

(0.3894)8π
a2
c2

= 0.990± 0.415, as s → ∞. (18)

We conclude that these results, obtained from a fit which used only the low-energy constraints in Eqs. (6), (7), and
(12), give strong evidence both that pp and p̄p scattering can be described asymptotically as black-disk scattering,
and that the limiting ln2 s behavior is already evident at present energies. The use of the constraints ties down the
low-energy part of the fit, fixing the values of the total cross sections at 4 GeV and the ratios of the coefficients of the
Regge-like terms in the cross sections. The low energy fit is excellent, and gives slopes of the total cross sections with
respect to ν/m at 4 GeV which agree reasonably well with those estimated from lower energy data [7] even though
the data used in the fit was confined to energies above 6 GeV.

C. Fit using the black disk constraints

We have used the general parametrizations in Eqs. (2)–(5), with the low-energy constraints in Eqs. (6), (7) and
(12), and the high-energy black-disk constraints Eq. (15) all imposed, to fit the combined pp and p̄p data over the
same energy ranges as above. The sieve algorithm was again used to eliminate the same 8 outliers among 167 datum
points. There are now only 12 parameters.
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The result of the fit is excellent as seen in the last lines in Table II, with a χ2 of 161 for 147 degrees of freedom
for a raw χ2 per d.o.f. of 1.10, and a renormalized χ2/d.o.f. of 1.22. As would be expected, the parameters of the fit
have smaller uncertainties than in the previous fit using only the low-energy constraints, and with the exception of
a1, change only within the previous uncertainties.
We give combined plots of the total, inelastic, and elastic cross sections at high energies in Fig. 2 and show the

lower-energy behavior of σtot in Fig. 3. The fitted curves for ρ and B are compared with those data in Fig. 4. All the
data are shown, including the two cross section points, the two values of ρ, and the three values of B dropped in the
sieve analysis. We also show the statistical error bands for the fit; these show that the fit is very tightly constrained
over the region of the data. The consistency with the fit without the high-energy constraints and the rather small
11% uncertainty in c2 = 0.2425± 0.0268 mb indicate that the asymptotic cross sections are also well-determined.
As shown in Fig. 3, we fit the total cross sections very well at energies down the 6 GeV, the lower limit used in

our analysis. The curves match the data and extend smoothly to the fixed values at 4 GeV used in the low-energy
constrains in Eq. (6) and Eq. (7). Even though the slopes dσtot/d(ν/m) = (m2/W )dσtot/dW at ν0 = 7.59 GeV or
W0 = 4 GeV were not used in the fitting by imposing the second set of analyticity constraints in [4, 13], the calculated
slopes, respectively -1.38 (-0.169) mb for p̄p (pp), match well with the slopes -1.45 (-0.231) determined from the dense
data around 4 GeV [7].
The present fits agree well with those of earlier work based on more limited data. The results of Block and Halzen

[4, 9] used only the total cross sections and ρ values up to 1.8 TeV, without including the elastic or inelastic cross
sections or measured values of B. Their results gave c2 = 0.2817 ± 0.0064 mb and predicted total cross sections of
95.4± 1.1 mb, 97.6± 1.1 mb, and 134.8± 4.5 mb at W = 7, 8, and 57 TeV, in substantial agreement with the values
98.6 ± 2.2, 101 ± 2.1 mb, and 133 ± 13) (stat) + 17(−20) (sys) ± 16 (Glauber)) mb found by TOTEM [16, 21] and
AUGER [18].
Our results for the completely constrained fit using the total, elastic, and inelastic cross sections, ρ, and B give

c2 = 0.2425± 0.0268 mb, σtot = 97.27± 0.86 mb and 99.49± 0.97 mb at 7 and 8 TeV, and 136.1± 5.2 mb at 57 TeV.
We conclude that the fits are consistent and stable. An important reason for this stability is our imposition of the
low-energy constraints: the non-leading terms in the parametrizations in Eqs. (1)-(5) are less well determined if the
constraints are ignored, indirectly affecting the high-energy terms and the asymptotic behavior for W large.
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FIG. 2: Fits, top to bottom, to the total, inelastic, and elastic scattering cross sections using high-energy black-disk constraints
in Eq. (15) as well as the the low-energy analyticity constraints in Eq. (6) and Eq. (7) and the ratio constraints on the Regge-like
contributions to the low-energy cross sections in Eq. (12): σp̄p

tot and σp̄p

elas (red) squares and dashed (red) line; σpp
tot and σpp

elas

(blue) dots and solid (blue) line; σp̄p

inel (black) diamonds and line; σpp

inel (purple) triangles. The fit used only data on σtot for
W ≥ 6 GeV, σelas for W ≥ 30 GeV, and σinel for W ≥ 540 GeV. The curve for σelas includes data down to 10 GeV to show
how the cross section is tied down at lower energies. Outlying points identified in the sieve analysis and not used in the fit are
shown with large open symbols surrounding the central points; the size of those symbols is not connected to the quoted errors.
The statistical error bands determined by the error analysis are shown.
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FIG. 3: Curves showing the fits to σpp
tot, (blue) dots and solid (blue) line, and σp̄p

tot, (red) squares and dashed (red) line, at
low energies, extending the curves for the total cross sections in Fig. 2. The fits used the low-energy analyticity constraints
in Eqs. (6) and (7), the ratio constraints on the Regge-like contributions to the low-energy cross sections in Eq. (12), and the
black-disk high-energy constraints in Eq. (15). The p̄p outlier eliminated in the sieve analysis is shown with a large open symbol
surrounding the central point; the size of the symbol does not reflect the quoted accuracy of the measured value. The fixed
values of the cross sections at 4 GeV from the low-energy data are also shown.

The crossing-even high energy inelastic cross section σ0
inel(ν), valid in the energy domain

√
s ≥ 100 GeV where the

odd Regge-like terms are very small and σpp
tot and σp̄p

tot are essentially equal, is given by

σ0
inel(ν) = (19.20± 4.03) + (0.9729± 0.784) ln

( ν

m

)

+(0.1212± 0.0300) ln2
( ν

m

)

+ (29.49± 3.66)
( ν

m

)−0.3514

mb, (19)

the difference of the expressions for σtot and σelas with the coefficients in Table II.
For the convenience of the reader, we give the numerical predictions from the fit for the high energy pp (or p̄p)

total, inelastic, and elastic cross sections, ρ, and B in Table III.
We remark finally that, although the pp and p̄p scattering amplitudes approach the black-disk limit at very high

energies in the sense that σelas/σtot → 1/2 and B → σtot/8π, there is not a sharp cutoff in those distributions in
impact parameter space as in the classic black-disk model with unit amplitudes for b < R and zero amplitudes for
b > R, R =

√

σtot/2π. Rather, as observed in [22] and studied in detail in [12], the scattering amplitudes have a
smooth edge region of approximately constant width tedge ≈ 1 fm in impact parameter space, with

tedge ≈ (2σinel − σtot)/
√

πσtot/2. (20)

We show this in Fig. 5 using the parameters in Table II for the fit with the black-disk constraints imposed. Given the
accuracy of the fit, we conclude that there is no evidence in the present data that the edge width shrinks significantly
at very high energies, with tedge → 1.018 fm for s → ∞.

IV. CONCLUSIONS

We have shown that we can obtain a very good fit to all the high-energy data on the total, elastic, and inelastic pp
and p̄p scattering cross sections, the ratios ρ of the real to the imaginary parts of the forward scattering amplitudes,
and the logarithmic slopes B of the elastic scattering cross sections, using expressions quadratic in ln s with added
falling Regge-like terms at low energies. The use of these expressions, introduced in [11] on the basis of the Froissart
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FIG. 4: Top panel: fits to the ratios ρ of the real to the imaginary parts of the forward scattering amplitudes for pp (blue dots
and solid blue line), and p̄p scattering (red squares and dashed red line). Lower panel: fits to the logarithmic slope parameters
for the elastic differential scattering cross sections dσ/dt for pp (blue dots and solid line) and p̄p (red squares and dashed line)
scattering. The fits to ρ and B used only data above 6 GeV, and imposed the low-energy constraints on the parameters in
Eqs. (6), (7), and (12), and the high-energy asymptotic black-disk constraints in Eq. (15). In both cases, the datum points
eliminated in the sieve analysis are shown with large open symbols surrounding the central point; the size of the open symbols
does not reflect the quoted accuracy of the measurement. The error bands estimated from the uncertainties in the parameters
are too narrow to show in the figure.

bound, was justified in [12] for detailed eikonal descriptions of the scattering in which the eikonal function grows as
a power of s. The Froissart bound is satisfied but is not an input in that analysis, nor is it directly a motivation for
the forms chosen here for the cross sections, ρ, and B in Eqs. (1)–(5).
The initial fit we presented here used constraints on the values of the cross sections at W = 4 GeV, and new relations

for the ratios of coefficients of the the Regge-like terms in the cross sections, to fix the fit at low energies. The results
show that the cross sections and values of B obtained using the present data satisfy the conditions σelas/σtot → 1/2
and B → σtot/8π expected for black-disk scattering within the uncertainties in the fit. We regard these results as,
first, a demonstration that data at the energies currently accessible already reflect the asymptotic ln2 s behavior of
the cross sections, and second, as convincing evidence for black-disk behavior of the pp and p̄p scattering amplitudes
at very high energies.
We then presented a second fit in which we imposed the black-disk behavior as a constraint at high energies. This
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Parameters ∆χ2
i max = 6

c0 (mb) 26.76 ± 3.49

c1 (mb) −0.049 ± 0.715

c2 (mb) 0.2425 ± 0.0268

b0 (mb) 7.565 ± 2.011

b1 (mb) −1.022 ± 0.322

b2 (mb) 0.1213 ± 0.0134

a0 (GeV−2) 10.55 ± 0.44

a1 (GeV−2) 1.013 ± 0.069

a2 GeV−2) 0.02478 ± 0.0027

β (mb) 43.49 ± 3.49

βe (mb) 14.00 ± 1.12

βB (GeV−2) −0.1632 ± 0.8759

f(0) (mb GeV) 2.137 ± 0.561

δ (mb) −29.05± 0.90

δe (mb) −5.897 ± 0.182

δB (GeV−2) −8.157 ± 0.511

α 0.4068 ± 0.0060

µ 0.6486 ± 0.0353

χ2
min 161.15

R× χ2
min 178.80

Degrees of freedom (d.o.f). 147

R× χ2
min/d.o.f. 1.216

TABLE II: The results for our 12-parameter χ2 fit to the p̄p and pp total, elastic, and inelastic cross sections, ρ values and slope
parameters B using expressions in Eqs. (1)–(5), the low-energy constraints in Eqs. (6), (7), and (12), the black-disk constraints
in Eq. (15), and the cut ∆χ2

i max = 6 in the sieve filtering of the data which eliminated 8 outlying points. The renormalized
χ2
min/d.o.f., taking into account the effects of the ∆χ2

imax cut, is given in the row labeled R×χ2
min/d.o.f., with R(6) = 1.110.

√
s (GeV) σtot,pp (mb) σinel,pp (mb) σelas,pp (mb) ρpp Bpp (GeV/c)−2

540 61.81 ± 0.10 48.83 ± 0.10 12.99 ± 0.03 0.140 ± 0.000 15.34 ± 0.01

900 67.78 ± 0.15 52.80 ± 0.15 14.99 ± 0.05 0.141 ± 0.000 16.08 ± 0.01

1,800 76.78 ± 0.26 58.65 ± 0.24 18.13 ± 0.09 0.140 ± 0.000 17.17 ± 0.02

7,000 97.27 ± 0.86 71.57 ± 0.52 25.70 ± 0.32 0.133 ± 0.000 19.57 ± 0.04

8,000 99.49 ± 0.97 72.94 ± 0.56 26.54 ± 0.36 0.132 ± 0.000 19.82 ± 0.04

13,000 107.8 ± 1.5 78.08 ± 0.72 29.75 ± 0.56 0.129 ± 0.000 20.78 ± 0.05

14,000 109.2 ± 1.6 78.89 ± 0.75 30.26 ± 0.60 0.128 ± 0.000 20.93 ± 0.06

57,000 136.1 ± 5.2 95.16 ± 1.63 40.95 ± 1.87 0.119 ± 0.000 23.99 ± 0.127

100,000 148.0 ± 7.8 102.2 ± 2.21 45.77 ± 2.77 0.115 ± 0.000 25.32 ± 0.173

TABLE III: Predictions of high energy pp total, inelastic, and elastic cross sections, ρ-values and B, using the parameters of
Table II in the expressions in Eqs. (1)–(5).

gives nearly identical results, provides predictions for the cross sections at energies higher than those accessible now,
and sharpens the analysis of results on the soft edge region in the scattering amplitudes discussed earlier [12, 22].
It is known from the proton structure functions of deep inelastic scattering, and theoretically, that the proton

interactions at high energies are determined mainly by the gluonic and associated flavor-independent sea quark
structure of the proton. We expect the same asymptotic structure for other hadrons, with a universal color confinement
volume, implying that all hadronic cross sections, e.g., the π±p and K±p cross sections, should approach the same
black-disk limit as found for the pp and p̄p cross sections. This picture is supported by the analysis of Ishida and
Barger [23] who fit the π±p and K±p cross sections and ρ values using a parametrization equivalent to that used here,
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FIG. 5: Solid curve: plot of the width tedge of the soft edge in the crossing-even part of the pp and p̄p scattering amplitudes as
a function of energy from 10 to 1010 GeV. The horizontal dashed line is a tedge = 1 fm.

and with the fitted cross sections similarly constrained to agree with the low-energy data through continuous moment
sum rules. Their results and those here are consistent with the existence of a universal black-disk limit. For extensive
references on the possible theoretical origin of the universality, beginning with L.L. Jenkovszky, B.V. Struminsky and
A.N. Vall [24], see [23, 25].
These results could be modified with the advent of new physics at higher energies which significantly changes the

nature of the hadronic interactions. There is no evidence of such changes in the present scattering data.
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