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We present a hydrodynamical description of the QCD Dirac spectrum at finite chemical potential
as an uncompressible droplet in the complex eigenvalue space. For a large droplet, the fluctuation
spectrum around the hydrostatic solution is gapped by a longitudinal Coulomb plasmon, and exhibits
a frictionless odd viscosity. The stochastic relaxation time for the restoration/breaking of chiral
symmetry is set by twice the plasmon frequency. The leading droplet size correction to the relaxation
time is fixed by a universal odd viscosity to density ratio ηO/ρ0 = (β − 2)/4 for the three Dyson
ensembles β = 1, 2, 4.
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I. INTRODUCTION

QCD breaks spontaneously chiral symmetry with the
emergence of an octet of light mesons that permeate most
of the hadronic processes at low energies [1]. Dedicated
lattice simulations are now in full support of this spon-
taneous breaking [2]. Fundamental light quarks become
constitutive and heavy producing most of the mass of the
elements around us.

A remarkable feature of the spontaneous breaking of
chiral symmetry is the large accumulation of the eigen-
values of the Dirac operator near zero-virtuality with the
formation of a finite vacuum chiral condensate [3]. Small
eigenvalue virtuality translates to large proper time, as
light quarks travel very long in proper time and delocal-
ize. The zero virtuality regime is ergodic, and its neigh-
borhood is diffusive [4]. This behavior is analogous to
disordered electrons in mesoscopic systems [5].

The ergodic regime of the QCD Dirac spectrum with
its universal spectral oscillation is described by a chi-
ral random matrix model [6]. In short, the model sim-
plifies the Dirac spectrum to its zero-mode-zone (ZMZ).
The Dirac matrix is composed of hopping between N-zero
modes and N-anti-zero modes because of chirality, which
are sampled from gaussian ensembles thanks to the cen-
tral limit theorem. The model was initially suggested as
a null dynamical limit of the instanton liquid model [7].

QCD at finite chemical potential µ is notoriously dif-
ficult to sample on a lattice due to the sign problem [8].
A number of chiral models have been proposed to de-
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scribe the effects of matter in QCD with light quarks [1].
In vacuum, the chiral random matrix model simplifies
the QCD Dirac spectrum to its ZMZ. In matter, the
light quark zero modes are involved. Their chiral and
cross-hopping in the ZMZ is suppressed exponentially,
and the corresponding Dirac matrix is banded and not
random. However, large matter effects reduce the banded
matrix to its diagonal, localizing the quark zero modes
into molecules. In the 1-matrix model the chiral random
ensemble is deformed by a constant matrix, leading to
a gapped spectrum at large µ [9, 10]. In the 2-matrix
model the deformation is still random and only generic
for moderate µ with no strict banding at large µ [11, 12].
The 1-matrix approach to QCD at finite µ has been dis-
cussed by many [1, 13, 14].

The purpose of this paper is to show that the 2-matrix
model eigenvalue droplet is emenable to a hydrodynam-
ical description. We will show that the droplet is char-
acterized by a plasmon excitation branch which defines
the stochastic relaxation time of the softest modes in the
ZMZ. We suggest that this time is dual to the relaxation
time for the breaking/restoration of chiral symmetry at
finite µ. The difference in details between the matrix
models is not important, as we will show that the plas-
mon branch only depends on the mean density in the
droplet and the quark representation at large N .

The chief idea of the paper is to combine the ergodic
character of the chiral random matrix model for the low-
lying modes, with the universal character of the hydrody-
namics approach for the description of the softest modes
of a fluid, to describe the relaxation of the QCD Dirac
eigenvalues in the ZMZ as a fluid at finite µ. We will
obtain the following new results: 1/ a hydrodynamical
description of the Dirac eigenvalues as a droplet in the
complex 2-plane; 2/ small amplitude deformations in the
droplet that are gapped by the emergence of a plasmon
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with an odd viscosity; 3/ an estimate of the stochastic
relaxation time for breaking/restoring chiral symmetry
in matter.

In section 2 we briefly review the 2-matrix model at
finite µ. In section 3, we show that the joint eigenvalue
distribution of the 2-matrix model maps onto a perti-
nent many-body Hamiltonian in the complex 2-plane. In
section 4, we use the collective coordinate method, to re-
write the many-body Hamiltonian in terms of the particle
density and velocity as collective and canonically conju-
gate variables. The ensuing equations of motion are that
of a 2-dimensional fluid. In section 5 and 6 we show that
the small amplitude fluctuations in the fluid are plasmons
with a frictionless viscosity. In section 7, we identify a
tunneling minimum or instanton to the fluid equation.
We use it to characterize the stochastic relaxation time
of an initial droplet with a gapped spectrum to a final hy-
drostatic droplet with ungapped spectrum. We suggest
that this stochastic time is dual to the physical relaxation
time from a phase with unbroken chiral symmetry to a
phase with broken chiral symmetry. Our conclusions are
in section 8.

II. THE MODEL

The random matrix approach has proven to be a use-
ful tool for understanding aspects of chiral symmetry di-
rectly from the QCD Dirac spectra both in vacuum and
in matter [1, 13, 14]. The chief idea is the following:
for the purpose of analyzing the spontaneous breaking
and/or restoration of chiral symmetry, only the low lying
eigenmodes of the QCD Dirac operator are important.
For this, the fluctuations of the Dirac operator in the
gauge background can be approximated by purely ran-
dom matrix elements which are chiral (paired spectrum)
and fixed by time-reversal symmetry (Dyson ensembles).

Specifically, at finite µ the Dirac spectrum on the lat-
tice is complex [15]. The matrix models at finite µ [9, 11]
capture this essential aspect of the lattice spectra and
the nature of the chiral phase transition [1, 13, 14]. For
a 2-matrix model, the partition function is [11, 12]

Z2[mf ] =

∫
dAdB e−aNTr(A†A) e−aNTr(B†B)

×det

(
−imf A− iµB

A† − iµB† −imf

)Nf
(1)

for equal quark masses mf in the complex representation.

Here A,B are C(N+ν)×N valued. ν accounts for the dif-
ference between the number of zero modes and anti-zero
modes. At µ = 0 the parameter

√
a = |q†q|0/n is fixed

by the massless quark condensate in with n = N/V4 the
density of zero modes, by the Banks-Casher formula [3].

The Dirac matrix in (1) has ν unpaired zero modes
and N paired eigenvalues ±izj in the massless limit.
The paired eigenvalues delocalize and are represented by
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FIG. 1: Eigenvalue distribution from a 2-matrix model.
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FIG. 2: Eigenvalue distribution from a 1-matrix model.

(1). The unpaired zero-modes decouple. In terms of the
paired eigenvalues and at large N , (1) simplifies [11]

Zβ [mf ] =

∫ N∏
i=1

d2zi|zi|α
N∏
i<j

|z2
i − z2

j |β

×(z2
i +m2

f )Nf e−W (zi) (2)

with β = 2 and α = β(ν + 1)− 1. The potential is

W (z) =
Naβ

2l2

(
|z|2 − τ

2
(z2 + z2)

)
(3)

with l2 ≡ 1− τ = 2µ2/(1 + µ2). For µ → 0, τ ≈ 1
and l2 ≈ 2µ2, so that W (z) ≈ −(N/µ2)(z − z)2, which
restricts the eigenvalues to the real axis. Throughout the
dimensionfull scale a will be set to 1 and re-instated when
needed.

In Fig. 1 we display the distribution of eigenvalues fol-
lowing from the 2-matrix model with A and B sampled
from a gaussian ensemble of 200×200 matrices with ν = 0
and µ = 0.3. The boundary curves follow from the analy-
sis in [13, 16]. The domain is an ellipse x2/a2

++y2/a2
− = 1

with semi-axes a2
±/2l

2 = 1± τ/1∓ τ as shown in Fig. 1.
The ellipse remains un-split with areaA = πa+a− = 2πl2

for all values of µ. For the other quark representations
with β = 1, 4 the joint distribution in the 2-matrix model



3

is more subtle [12]. Throughout, (2) will be assumed for
β = 2, but all results extend to β = 1, 2, 4 for large N .

For comparison, Fig. 2 shows the distribution of the
eigenvalues from the 1-matrix model with B = 1 and the
same gaussian sampling for A. The boundary curves are
from [9, 10]. The eigenvalues form a connected droplet in
the z-plane for µ < µc, and split to 2 symmetric droplets
for µ > µc restoring chiral symmetry [9, 10]. Similar
droplets follow from the QCD Dirac spectra at finite µ
on the lattice [15]. In the spontaneously broken phase, all
droplets are connected and symmetric about the real-axis

III. MANY-BODY SYSTEM

(2) expressed in terms of the complex eigenvalues zi
can be thought of as the partition function of N charged
particles in the complex 2-plane trapped in a harmonic
potential (Gaussian weight) with Coulomb-type repul-
sions (Vandermonde term). Alternatively, (2) can be
written as

Zβ [mf ] =

∫ N∏
i=1

d2zi (z2
i +m2

f )Nf |Ψ0[z]|2 (4)

which is now viewed as the normalization of an N-particle
wave-function Ψ0[z] with a complex measure. Ψ0[z]
is the zero-mode solution to the Schrodinger equation
H0Ψ0 = 0 with the self-adjoint Hamiltonian

H0 ≡
1

2m

N∑
i=1

|∂i + ai|2 (5)

Here ∂i ≡ ∂/∂zi and the potential is ai ≡ ∂iS with
S[z] = −lnΨ0[z]. In (5) the mass parameter is m = 1/2.
We note that the canonical dimensions of (5) and m fol-
low through a pertinent rescaling by re-instating the di-
mensions of a.

Following [18, 19], we observe that the Vandermonde
determinant ∆ =

∏
i<j |z2

ij |β with zij ≡ zi − zj , induces
a diverging 2-body part in H0. Using a similarity trans-
formation, we can re-absorb it in Ψ = Ψ0/

√
∆, and the

new many-body Hamiltonian is

H =
1√
∆
H0

√
∆ (6)

We will refer to (6) as the ′′quenched′′ Hamiltonian fol-
lowing from the omission of the Nf contribution in de-
riving (6) from (4), which is not to be confused with the
standard denomination. The ′′phase-quenched′′ Hamil-
tonian follows a similar reasoning by rewriting (4) as

Zβ [mf ] =

∫ N∏
i=1

d2zi

(
z2
i +m2

f

z2
i +m2

f

)Nf
2

|Ψf [z]|2 (7)

Below, we will note that the difference between Ψ0[z] and
Ψf [z] are sub-leading terms of order NfN

0 in comparison
to the leading contribution of order N .

IV. HYDRODYNAMICS

In the limit of a large number of eigenvalues N , the in-
teracting and quantum many-body system described by
(5-6), is characterized by collective as well as single par-
ticle excitations. In the spirit of the liquid drop model in
nuclear physics [17], we can describe the low-lying collec-
tive excitations of this many-body system by using the
collective coordinate method in [17, 18]. The idea is to
map the Hamiltonian (6) onto the paired eigenvalues as

a collective variable ρ(z) =
∑N
i=1 δ

2(z − zi) and its con-
jugate velocity π(z). The result is a semi-classical fluid
description of the low-lying collective excitations of (6).

The details of the mapping of (6) onto the collective
variables following the construction in [18] are given in
Appendix A. The result for the collective Hamiltonian is

H =

∫
d2z ρ(z)

1

2m

(
(~∇π)2 + (~A)2

)
≡
∫
d2z h (8)

with the pair π, ρ canonically conjugate. Defining the
even density ρχ(z) = ρ(z) + ρ(−z), we have

~A = ~A+
1

2
~∇ (βρχL(z) + (β − 2)ln

√
ρ) (9)

Here ρL is the logarithmic transform of ρ

[ρ]L ≡ ρL(z) =

∫
dz′ ln|z − z′| ρ(z′) (10)

and the vector potential (τ± = 1± τ)

~A ≡ −Nβ
2l2

(τ−x, τ+y) +
α

2|z|2
(x, y) (11)

We will restrict our discussion to the semi-classical
limit with the pair π, ρ obeying the Poisson brackets
{π(z), ρ(z′)} = δ2(z − z′). The semi-classical limit is
exact in leading order in 1/N , and re-sums a class of
sub-leading order effects in 1/N . Quantum corrections
follow by expanding around the semi-classical solution
say in 1-loop.

The equation of motion for ρ yields the current con-
servation law and the Euler equation for ~v. Defining

m~v = ~∇π, they are specifically given by

∂tρ+ ~∇ · (ρ~v) = 0

∂tπ +
1

2
m~v2 +

~A2

2m

−β − 2

4mρ
~∇ · (ρ~A)− β

2m
~∇ · [ρχ ~A]L = 0 (12)
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Current conservation follows from ∂tρ = {ρ,H}. Euler
equation follows from ∂tπ = {π, ,H}, using

{H,π(z)} =
(~∇π)2 + |~A|2

2m
(13)

+

∫
d2z′

ρ(z′)

2m
2~A(z′) · {~A(z′), π(z)}

and the commutation rule

{~A(z′), π(z)} =
β

2
~∇z′ ln|z′ − z|+

β − 2

4
~∇z′

δ2(z − z′)
ρ

(14)

The steady state flow from (12) corresponds to
Bernoulli law with ∂tπ = C a fixed constant. The hy-
drostatic solution is A(z) = 0 and π = 0. Using the
formal identity ρL = (2π/∇2) ρ, we have

ρ(z) =
κN

A
− α

2β
δ2(z)− β − 2

8πβ
∇2 ln ρ (15)

where the integration constant κ = 1 + α/(2Nβ) is fixed
by the density in leading order, and A is the area of the
eigenvalue density. The re-summed semi-classical contri-
butions in (15) are of order N0.

In the ′′phase-quenched′′ approximation for β = 2, the
vector potential (11) is shifted,

~A→ ~A+
Nf
2
~∇ ln|z2 +m2

f | (16)

with the hydrodynamical equations (12) unchanged.
The corresponding ′′phase-quenched′′ hydrostatic density
(15) is modified

ρ(z)→ ρ(z)− Nf
8πβ
∇2 ln|z2 +m2

f | (17)

As indicated earlier, the correction is of order NfN
0.

V. PLASMONS

To characterize the low-lying collective excitations of
the hydrostatic droplet of eigenvalues, it is useful to an-
alyze the small deformations in the density and veloc-
ity profile by linearizing the current conservation law in
(12), i.e. ∂tδρ + ρ0∇2δπ = 0, which is readily solved
using δρ = −ρ0∇2φ and δπ = ∂tφ. Inserting the latter
in the canonical action S =

∫
d2z dt (π∂tρ− h) yields in

the quadratic approximation

S ≈
∫
d2zdt

ρ0

2m

(
(∂t~∇φ)2 −W [φ]2

)
(18)

with

W [φ] =

∣∣∣∣~∇(β2 [δρ]χL +
β − 2

4

δρ

ρ0

)∣∣∣∣2 (19)

Using again the formal identity fL = (2π/∇2)f and

defining the small longitudinal field ~ϕ ≡ ~∇φ, we obtain

S ≈ N

∫
d2zdt

ρ0

2m
(20)

×

(
(∂t~ϕ)2 −

(
πβρ0

N
~ϕχ +

β − 2

4
∇2~ϕ

)2
)

after the rescaling Nt → t. The small longitudinal
excitations in ~ϕ are gapped by the plasmon frequency
ωp = 2πβρ0/N . The emergence of a plasmon branch
was expected since the Vandermonde contribution in (2)
gives rise to Coulomb law in 2-dimensions.

For an elliptic droplet of large area A, (20) by Fourier
transform, leads to the quadratic dispersion law

ω(k) ≈ ±
∣∣∣∣ωp − β − 2

4
~k2

∣∣∣∣ (21)

Here |k| is conjugate to |z|. The gapped spectrum means
that the droplet is uncompressible. For β = 1, 2 with
quarks in the real and complex representation the branch
(21) describes a plasma fluid. For β = 4 with quarks in
the quaternion representation, (21) shows the start of
a roton-like branch a possible indication of superfluid-
ity [20].

VI. ODD VISCOSITY

There is an interesting analogy between the droplet
of Dirac eigenvalues at finite chemical potential, and the
quantum Hall effect as a fluid of neutralized charged elec-
trons in the plane [21, 22]. To illustrate the analogy, we
first note that (11) sources the magnetic field B(z) ≡
~∇ × ~A? ≈ Nβ/l2, with the dual notation V ?i = εijVj
subsumed. Amusingly, (5) describes a Coulomb fluid in
a magnetic field. In large N the density of eigenvalues is
uniform

ρ(z) ≈ N

2πl2
≈ νB

2π
(22)

which is the density of a quantum Hall droplet with filling
fraction ν = 1/β. The plasmon frequency is the cyclotron
frequency ωp ≡ B/M with M = N the analogue of the
effective mass. l identifies with the magnetic length.

The k2-contribution in (21) is reminiscent of the odd
viscosity in the fractional quantum Hall effect. To show
this, let π̃ ≡ iπ and define the collective velocity mṽ =
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~∇π̃+ ~A?, then (8) is a free flow-like Hamiltonian modulo
ultra-local terms,

H →
∫
d2z ρ(z)

m

2
ṽ+ · ṽ (23)

In our case ṽ+ 6= ṽ but in the fractional quantum Hall
effect they are equal, making A? a real gauge-field and
~̃v a real and gauge-invariant flow velocity for flux-riding
quasi-particles [21, 22]. In the semi-classical limit π̃ and ρ
are canonical and after some algebra, the Euler equation
following from (23) yields the momentum conservation
law ∂t(ρmṽi) +∇jTij = 0, with the stress tensor

Tij = mρ ṽiṽj +
β − 2

4
ρ
(
∇iṽ?j +∇?i ṽj

)
(24)

This result is checked in details in Appendix B using ex-
plicitly the equations of motion. The first contribution is
the classical free fluid part. The second contribution is
the odd viscosity contribution following from the break-
ing of parity in 2-dimensions [23], with

ηO
ρ

=
β − 2

4
→ −1

4
, 0,

1

2
(25)

which is the coefficient of the k2 term in (21). A recent
and direct calculation confirms this interpretation [20].
We do not have a physical interpretation for why ηO = 0
for β = 2.

In the fractional quantum Hall fluid, ηO originates
from a mixed gauge-gravitational anomaly [24]. We note
that the pair ṽ, ṽ? are orthogonal. This explains that the
k2-contribution in (21) acts as the even (shear) viscosity
but without the i for dissipation. No vorticity is therefore
expected.

VII. INSTANTON AND RELAXATION TIME

An interesting question regarding the droplet of Dirac
eigenvalues is the typical relaxation time for the forma-
tion or disappearance of the spontaneous breaking of chi-
ral symmetry. In this section, we answer this question
in two steps. First, we identify an instanton or tunnel-
ing configuration to the general equations of motion with
minimum energy. We then use it to estimate the time it
takes for a localized droplet to relax to its hydrostatic
limit. Since the relaxation time is a property of the fluid,
it is independent of the initial conditions. Indeed, we will
show that it is fixed by the plasmon branch.

With this in mind, we identify the zero energy config-
uration in (8) as an instanton solution with imaginary
(tunneling) velocity π → iπ, and minimum energy i.e.

h → |~∇π|2 − |~A|2 = 0, that satisfies the analytically
continued in time conservation law (t→ −itE)

−∂tEρ+ ~∇ · (ρ~∇π) = 0 (26)

Without loss of generality and for simplicity we choose
τ = 0 in (3) so that the hydrostatic droplet is circular. To
solve (26) we set ρ(0, z) = K/π � ρ0, which corresponds
to all eigenvalues localized in a small disc centered around
the origin. (26) simplifies by radial symmetry

∂rρL(r, tE) = f(r, tE) (27)

r∂tEf + r(βf − Nβr

2l2
)∂rf + f(βf − Nβr

2l2
) = 0

We note that similar non-linear equations emerge from
the diffusion of non-hermitean matrices [25].

The solution to (27) with a free boundary or large
droplet size A can be obtained using the method of char-
acteristics. Specifically

dtE
ds

= −r

dr

ds
= −r(βf − Nβr

2l2
)

df

ds
= f(βf − Nβr

2l2
) (28)

with the conditions tE(s = 0) = 0, r(s = 0) = r0 and
f(s = 0) = f(r0). For f(r, tE = 0) = Kr, we obtain by
direct integration of (28)

tE = −as+
l2

Nβ
ln

(
r0 + a− (r0 − a)e

Nβ

l2
as

2a

)

r = a
r0 + a + (r0 − a)e

Nβ

l2
as

r0 + a− (r0 − a)e
Nβ

l2
as

a =
√

2Kr2
0l

2/N

f =
Kr2

0

r
(29)

For K � ρ0 and large time, the first equation is ap-
proximated by tE ≈ −as. Inserting the latter in the
second equation and using the third equation we obtain
r0 = r0(r, tE). Substituting the result in the fourth equa-
tion in (29) we find explicitly f(r, tE). Its large time
asymptotic for s→ −∞ is

f(r, tE) ≈ Nr

2l2

1 +
√

2Kl2

N − (1−
√

2Kl2

N )e−
Nβ

l2
tE

1 +
√

2Kl2

N + (1−
√

Kkl2

N )e−
Nβ

l2
tE

2

(30)

(30) relaxes as e−2ωpNtE to f(r,∞) = Nr/2l2 leading to
the hydrostatic density ρ0 = N/(2πl2). We identify TR ≈
1/2ωp with the relaxation time after rescaling NtE → tE .
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Finally, we note that TR ≈ 1/2ωp translates to a dif-
fusive time with l2 ≡ A/2π ≈ 2βTR. The diffusion
constant is D = 2β. An estimate of the finite droplet
size corrections follow from (21) using the substitution

ωp → ω(k ≈ 1/
√
A). The leading correction is controlled

by the odd viscosity to density ratio and is small.
In so far, our description of the Dirac spectrum at fi-

nite µ is mathematical, with TR ≈ 1/2ωp a characteristic
of the relaxation of the eigenvalues from an initial and lo-
calized distribution of eigenvalues, to a final distribution
with spontaneous chiral symmetry breaking at finite µ.
The choice of initial conditions is not important as the
relaxation time is fixed by the low-lying and collective
plasmon frequency.

We now suggest that this relaxation in eigenvalue space
is dual to a relaxation in physical space under the same
conditions. The physical relaxation time for the break-
ing/restoration of chiral symmetry at finite µ in canonical
dimensions is then

TR ≈
1

2ωp
→

(
1 + Aa

2π

2β

)
√
a (31)

after re-instating 1 ≡
√
a = |q†q|0/n, and adding the 1

to reproduce the µ = 0 result in [19]. A simple extension
to finite temperature amounts to a re-definition of units
or
√
a→ √aT = |q†q|T /nT as in [19, 26].

VIII. CONCLUSIONS

The hydrodynamical reduction organizes the fluctu-
ations of the eigenvalues around the low-lying collec-
tive modes. It supports an instanton that describes the
stochastic relaxation of the Dirac eigenvalues as a fluid.
The fluid is uncompressible and exhibits non-dissipative
plasmon waves that can be used to estimate the time it
takes for a chirally symmetric phase to relax to a chi-
rally broken phase in matter. The time estimate is non-
perturbative and gauge-independent.

Our starting point was a 2-matrix model of 2N paired
Dirac eigenvalues in QCD at finite µ, followed by a hy-
drodynamical reduction using the collective coordinate
method. Both the hydrostatic and hydrodynamical so-
lutions capture the large N effects exactly, and re-sum a
class of corrections in 1/N . Quantum corrections in 1/N
can be sought by expanding around these solutions say to
1-loop. In general, these corrections form a trans-series
with edge oscillating contributions.
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IX. APPENDIX A: COLLECTIVE
HAMILTONIAN

The details for the derivation of the collective Hamilto-
nian (8) follow the arguments presented in [18]. Here we
provide the details for the derivation of (8). Throughout,
we will ignore ultra-local contributions. We note that we
can recast Ψ0[z] → e−S[ρ]/2 using the density ρ(z) by
noting for instance that

∑
i

f [zi] =

∫
dz ρ(z) f(z) (32)

for which (5) is formally

H0 =
∑
i

(−∇i +∇iS/2) (∇i +∇iS/2) (33)

with

−∇ ≡ −
∑
i

d

dxi
= −

∑
k,i

dρk
dxi

δ

δρk
=
∑
k

ikρk
δ

δρk
(34)

−∇2 ≡ −
∑
i

∇2
i =

∑
k

k2ρk
δ

δρk
+
∑
k,k′

k · k′ρk+k′
δ2

δρkδρk′

(35)

and the Fourier transform of the collective density

ρk =
1

V

∑
i

e−ikxi (36)

The formal result is

H0 =
∑
i

(−∇2
i ) + V

=
∑
i

(
−(∇i)2 − ∇

2
iS

2
+

(∇iS)2

4

)
=

∫
d2zρ

(
(∇π)2 + i∇π∇ρ−∇ · A + A2

)
=

∫
d2zρ

((
∇π +

i∇ρ
2ρ

)2

+
(∇ρ)2

4ρ2
−∇ · A + A2

)

=

∫
d2zρ

(
(∇π′)2 +

(
A +

∇ρ
2ρ

)2
)

(37)

with Ai = ∂iS/2. (37) is identical to the RHS of (8) with

A = −A−∇ln
√
ρ (38)

For (6), we have instead
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H =
1√
∆

∑
i

(−∇2
i )
√

∆ + V

=
∑
i

−∇2
i − 2Bi∇i −B2

i −∇iBi + V (39)

with Bi = 1√
∆
∂i
√

∆. Using (34) we have

−
∑
i

2Bi∇i = −2i

∫
d2zρ(z)B(z) · ∇π(z) (40)

and

H =

∫
d2z

(
ρ(∇π)2 + i∇ρ · ∇π − 2iρB · ∇π

)
−
∫
d2zρ(B2 +∇ ·B) +

∫
d2z(−ρ∇ · A + A2) (41)

After completing the square we obtain

H =

∫
d2z

(
ρ(∇π′′)2 +

(∇ρ− 2Bρ)2

4ρ

)
−

∫
d2zρ(B2 +∇ ·B) +

∫
d2z(−ρ∇ · A + A2)

=

∫
d2zρ

(
(∇π′′)2 +

(∇ρ)2

4ρ2
−∇ · A + A2

)
=

∫
d2zρ

(
(∇π′′)2 +

(
−∇ρ

2ρ
− A

)2
)

(42)

again in agreement with (8) after the re-labeling π′′ → π.
We observe that when reduced to the collective variables,
both H and H0 have the same form.

X. APPENDIX B: STRESS TENSOR

Here we check that the stress tensor (24) satisfies the
conservation law using only the Euler equation following
from (23) and the classical canonical rules. Throughout
we set in this section m = 1, α = (β − 2)/4 (not to be
confused with the one used in the text) and the tilde are
omitted for convenience. We recall from section 6 that

v = ∇π +∇?(α lnρ+ βρL) (43)

Current conservation and Euler equation follow from the
same arguments presented earlier with

∂tρ+∇(ρv) = 0

∂tπ +
v2

2
− (

α

ρ
+ 2πβ4−1)∇?(ρv) = 0 (44)

with 4 = ∇2. We now need to verify the conservation
law for the stress tensor,

∂t(ρvi) + ∂k(ρvivk + αρ∂iv
?
k + αρ∂?i vk) = 0 (45)

By O(2) symmetry we only need to check it for the i=1
component. With this in mind, the first contribution in
(45) can be reduced to

∂tρv1 + ρ∂tv1 = −v1(∂1(ρv1) + ∂2(ρv2))

+ρ∂t(∂1π + α∂2lnρ+ 2πβ∂24−1∂tρ) (46)

The second line in (46) can be further transformed to

ρ∂1(−v
2

2
+ (

α

ρ
+ 2πβ4−1)∇?(ρv))

−αρ∂2
∂1(ρv1) + ∂2(ρv2)

ρ

−2πβρ4−1∂2(∂1(ρv1) + ∂2(ρv2)) (47)

The term proportional to β can be reduced to

−2πρβ4−1(∂2
1(ρv2) + ∂2

2(ρv2)) = −2πρ2βv2 (48)

so that (46) now reads

∂tρv1 + ρ∂tv1 =

−v1(∂1(ρv1) + ∂2(ρv2))− ρ∂1
v2

2

αρ∂1
∂2(ρv1)− ∂1(ρv2)

ρ
− αρ∂2

∂1(ρv1) + ∂2(ρv2)

ρ

−2πρ2βv2 (49)

This should cancel the second contribution in (45) which
is

∂1(ρv2
1) + ∂2(ρv1v2) + α∂1(ρ∂1v2)− α∂2(ρ∂1v1)

α∂1(ρ∂2v1) + α∂2(ρ∂2v2) (50)

This can be proved as follows. First , the terms without
any α or β combine to

−v1(∂1(ρv1) + ∂2(ρv2))− ρ∂1
v2

2

+∂1(ρv2
1) + ∂2(ρv1v2) = ρv2(∂2v1 − ∂1v2) (51)

By expanding v1, v2 in (51), we note that the contribu-
tions ∇π, are zero. The contributions βρL give

ρv2(∂2
1 + ∂2

2)ρL = 2πρv2ρ = 2πρ2v2 (52)
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which cancel the last term in (49). The contributions α
give αρv24lnρ, which cancel the remainder, since

αρ∂1
∂2(ρv1)− ∂1(ρv2)

ρ
− αρ∂2

∂1(ρv1) + ∂2(ρv2)

ρ

+α∂1(ρ∂1v2)− α∂2(ρ∂1v1) + α∂1(ρ∂2v1) + α∂2(ρ∂2v2)

= −α(∂2
1ρ+ ∂2

2ρ) v2 + α
(∂1ρ)2 + (∂2ρ)2

ρ
v2

(53)

Thus (45).

[1] M. A. Nowak, M. Rho and I. Zahed, Singapore, Singa-
pore: World Scientific (1996) 528 p

[2] For a recent review: See talk by L. Giusti, “quark matter
2015,” Kobe, Japan (2015).

[3] T. Banks and A. Casher, Nucl. Phys. B 169, 103 (1980).
[4] R. A. Janik, M. A. Nowak, G. Papp and I. Zahed, Phys.

Rev. Lett. 81, 264 (1998) [hep-ph/9803289];
[5] E. Akkermans and G. Montambaux, Cambridge Univer-

sity Press (2007) 582 p
[6] E. V. Shuryak and J. J. M. Verbaarschot, Nucl. Phys. A

560, 306 (1993) [hep-th/9212088]; J. J. M. Verbaarschot
and I. Zahed, Phys. Rev. Lett. 70, 3852 (1993) [hep-
th/9303012].

[7] M. A. Nowak, J. J. M. Verbaarschot and I. Zahed, Phys.
Lett. B 217, 157 (1989).

[8] A. Gocksch, Phys. Rev. Lett. 61, 2054 (1988); I. Bar-
bour, N. E. Behilil, E. Dagotto, F. Karsch, A. Moreo,
M. Stone and H. W. Wyld, Nucl. Phys. B 275, 296
(1986); I. M. Barbour, S. E. Morrison, E. G. Klepfish,
J. B. Kogut and M. P. Lombardo, Nucl. Phys. Proc.
Suppl. 60A, 220 (1998) [hep-lat/9705042].

[9] M. A. Stephanov, Phys. Rev. Lett. 76, 4472 (1996) [hep-
lat/9604003].

[10] R. A. Janik, M. A. Nowak, G. Papp and I. Zahed, Phys.
Rev. Lett. 77, 4876 (1996) [hep-ph/9606329].

[11] J. C. Osborn, Phys. Rev. Lett. 93, 222001 (2004) [hep-
th/0403131].

[12] G. Akemann, J. Phys. A 36, 3363 (2003) [hep-
th/0204246]; G. Akemann, Acta Phys. Polon. B 38, 3981
(2007) [arXiv:0710.2905 [hep-th]].

[13] R. A. Janik, M. A. Nowak, G. Papp and I. Zahed, In *Za-
kopane 1997, New developments in quantum field theory*
297-314 [hep-ph/9708418]; R. A. Janik, M. A. Nowak,
G. Papp and I. Zahed, Acta Phys. Polon. B 28, 2949
(1997) [hep-th/9710103].

[14] A. M. Halasz, J. C. Osborn and J. J. M. Verbaarschot,
Phys. Rev. D 56, 7059 (1997) [hep-lat/9704007].
J. J. M. Verbaarschot, Nucl. Phys. A 642, 305 (1998)
[hep-ph/9807296]. H. Markum, R. Pullirsch and T. Wet-
tig, Phys. Rev. Lett. 83, 484 (1999) [hep-lat/9906020].
F. Basile and G. Akemann, JHEP 0712, 043 (2007)
[arXiv:0710.0376 [hep-th]]; K. Splittorff and J. J. M. Ver-
baarschot, Phys. Rev. D 75, 116003 (2007) [hep-

lat/0702011 [HEP-LAT]]; J. Han and M. A. Stephanov,
Phys. Rev. D 78, 054507 (2008) [arXiv:0805.1939
[hep-lat]]; H. Fujii and T. Sano, Phys. Rev. D 83,
014005 (2011) [arXiv:1009.5977 [hep-ph]]; G. Akemann,
T. Kanazawa, M. J. Phillips and T. Wettig, JHEP 1103,
066 (2011) [arXiv:1012.4461 [hep-lat]]; A. Mollgaard and
K. Splittorff, Phys. Rev. D 91, no. 3, 036007 (2015)
[arXiv:1412.2729 [hep-lat]].

[15] I. Barbour, N. E. Behilil, E. Dagotto, F. Karsch,
A. Moreo, M. Stone and H. W. Wyld, Nucl. Phys. B
275, 296 (1986).

[16] V. A. Kazakov and A. Marshakov, J. Phys. A 36, 3107
(2003) [hep-th/0211236]; R. Teodorescu, E. Bettelheim,
O. Agam, A. Zabrodin and P. Wiegmann, Nucl. Phys. B
704, 407 (2005) [hep-th/0401165].

[17] P. Ring and P. Schuck, “ The nuclear many-body prob-
lem,” Ed. Springer-Verlag (1980).

[18] A. Jevicki and B. Sakita, Nucl. Phys. B 165, 511 (1980);
A. Jevicki, Nucl. Phys. B 376, 75 (1992).

[19] Y. Liu, P. Warcho l and I. Zahed, arXiv:1505.02107 [hep-
ph]; Y. Liu, P. Warcho l and I. Zahed, arXiv:1506.08787
[hep-ph].

[20] Y. Liu and I. Zahed, arXiv:1509.00812 [hep-ph].
[21] M. Stone, ILL-TH-90-2.
[22] P. Wiegmann, Phys. Rev. Lett. 108, 206810 (2012)

[arXiv:1112.0810 [cond-mat.mes-hall]].
[23] J. E. Avron, J. Stat. Phys 92, 543 (1998),

[arXiv:9712050].
[24] T. Can, M. Laskin and P. Wiegmann, Phys. Rev. Lett.

113, 046803 (2014) [arXiv:1402.1531 [cond-mat.str-el]];
A. Gromov and A. G. Abanov, Phys. Rev. Lett. 113,
266802 (2014) [arXiv:1403.5809 [cond-mat.str-el]].

[25] Z. Burda, J. Grela, M. A. Nowak, W. Tarnowski,
and P. Warcho l, Phys. Rev. Lett. 113, 104102 (2014)
[arXiv:1403.7738]; Z. Burda, J. Grela, M. A. Nowak,
W. Tarnowski, and P. Warcho l, Nucl. Phys. B 897, 421
(2015) [arXiv:1503.06846]; J. Grela [arXiv:1506.05927].

[26] For comparison and in pure Yang-Mills at large number
of colors Nc, the relaxation time for the confinement/de-
confinement transition at finite temperature T , is set by
the ′′speed of sound′′ vs in the space of holonomies, i.e.
TR ≈ 1/vsT = 1/NcT [19].


