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Observed enhancements in the forward and backward directions for φ meson photoproduction off
nucleons are shown to be explainable by the production of a nonresonant recoiling (su) diquark,
(s̄ud) triquark pair. We show that the necessity of maintaining approximate collinearity of the
quarks within these units constrains configurations with the minimum momentum transfer, and
hence maximal amplitudes, to lie preferentially along the reaction axis.
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I. INTRODUCTION

LHCb has recently observed [1] two exotic states,
P+
c (4380) and P+

c (4450), at high significance in the J/ψ p
spectrum of Λb → J/ψK−p. In addition to extracting
the state masses and widths, the collaboration also mea-
sured the phases of the production amplitude and found
them to be compatible with genuine resonant behavior.
Such properties strongly support the assertion that true
pentaquark states have at last been revealed. Should
the P+

c states be confirmed at another experiment, they
will join X , Y , and Z exotic mesons (widely believed to
have valence tetraquark structure) as the first hadrons
observed at high significance to lie outside of the text-
book qq̄-meson, qqq-baryon paradigm.

Of particular note is that all of the observed exotic
states contain cc̄ (or bb̄) pairs. The possibility of light-
flavor (u, d, s) tetraquarks or pentaquarks has been dis-
cussed for decades, but despite intense experimental ef-
forts, no unambiguous signal of such a state has ever sur-
vived scrutiny. Nor has a singly-heavy hadron (Ds, Λb,
etc.) been identified as unambiguously exotic. One possi-
ble explanation for this first appearance in doubly-heavy
channels, as argued implicitly in Ref. [2] and explicitly in
Refs. [3, 4], is that the exotic consists of two components,
each of which contains a heavy quark and therefore is
fairly compact, and which are separated from each other
in the sense of having a suppressed large wave function
overlap. Such a configuration is much more difficult to
realize with light quarks. While this scenario could be
achieved by hadronic molecules (for instance, if the fa-
mous X(3872) tetraquark candidate has a cc̄uū valence-
quark structure organized into a D0D̄∗0 molecule), in
this paper we use the innovation of Ref. [2] to assert the
existence of hadrons formed of separating colored compo-
nents that are individually held together by the attractive
3 ⊗ 3 ⊃ 3̄ color interaction, and collectively prevented
from separating asymptotically far due to color confine-
ment.

If the existence of observable exotics is contingent upon
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each of its components containing a heavy quark, then
one may hope that some vestige of the exotic behavior
persists in analogous production mechanisms with va-
lence ss̄ rather than cc̄ (bb̄) quark pairs. In Ref. [2], the
observed tetraquark states were argued to arise from a
rapidly separating diquark-antidiquark pair, (cq)3̄(c̄q̄

′)3
(q in the following generically indicates u or d quarks)
that subsequently hadronizes only through the large-r
tails of meson wave functions stretching from the quarks
in the diquarks to the antiquarks in the antidiquarks.
This picture was extended in Ref. [4] to explain the pen-
taquark states as an analogous diquark-antitriquark pair
(this combination having been first proposed for lighter-
quark pentaquarks in Ref. [5]), (cu)3[c̄(ud)3̄]3, where the
(ud) diquark is inherited from the parent Λb baryon, and
the triquark is seen to assemble from a further 3̄⊗ 3̄ ⊃ 3

attraction. A short review of these papers appears in
Ref. [6]. If this mechanism produces such prominent ef-
fects in the cc̄ system as pentaquark resonances, then one
may hope to see at least a remnant of the mechanism in
the ss̄ system, in the form of peculiar features appearing
in the data.

Shortly after the LHCb announcement, multiple theo-
retical papers appeared discussing various interpretations
of the P+

c states and advocating for experiments in which
to study them. Among the latter, three separate col-
laborations [7–9] proposed using γN → Pc → J/ψN (∗)

photoproduction of nucleons N as sensitive tests of the
internal structure of the Pc states. In each case, the cc̄
pair arises through the dissociation of the incoming pho-
ton. By the reasoning of the previous paragraph, one
may therefore ask if any unusual features have arisen in
the analogous ss̄ process of φ photoproduction, γp→ φp.

In fact, a detailed experimental study of φ photopro-
duction was also published fairly recently by the CLAS
Collaboration at Jefferson Lab [10]. Data in the neutral
(KLKS) mode is presented in Ref. [11] The most inter-
esting feature in the cross section data is a forward-angle
“bump” structure at

√
s ≈ 2.2 GeV (about 250 MeV

above threshold) that rises about a factor 2–3 above a
more mildly varying curve in

√
s. However, this struc-

ture appears only at the most forward angles (in which φ
lies in the same direction as γ in the center-of-momentum
[c.m.] frame), and as argued in Ref. [12], such a unidi-



2

rectional structure almost certainly does not indicate a
resonance. In addition, the cross section data indicate
a small but clear increase at the most backward angles
(a factor of perhaps 50 smaller than the forward peak1);
while Ref. [10] mentions a possible origin for backward
enhancement in the u-channel exchange of a nucleon,
they also comment that such a direct φ-p coupling would
require a nucleon strangeness content or a violation of
OZI suppression surprisingly larger than expected.

Here we argue that both features can be explained
in a very simple way: A fraction of φ photoproduc-
tion events proceed through a constituent exchange be-
tween the γ (dissociated into an ss̄ state) and the nucleon
[treated as a bound state of a (ud) diquark and a light
quark q] (Fig. 1). The scattering products are a diquark-
antitriquark pair, (sq)3̄[s̄(ud)3̄]3, completely analogous
to the construction proposed for the P+

c resonances, but
as experiment indicates, nonresonant in this case. That
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FIG. 1: The constituent exchange for φ photoproduction via
creation of an (sq)3̄ diquark-[s̄(ud)3̄]3 antitriquark pair.

is, the anomalies correspond to “would-be” pentaquarks.
The enhancement in the forward and backward direc-
tions, with the forward direction favored, is explained by
the preference of the diquark and triquark to minimize
momentum transfer by aligning with the γp process axis.

This paper is organized as follows: In Sec. II we discuss
the forward-backward enhancement of hadronic cross sec-
tions driven by constituent-exchange momentum trans-
fers. A simple model based upon minimal gluon ex-
changes is presented in Sec. III, and the calculation and
results are presented in Sec. IV. Section V summarizes
and concludes.

1 M. Dugger, private communication.

II. MOMENTUM TRANSFER ENHANCEMENT

One of the quintessential triumphs of quantum field
theory is its natural prediction of a Rutherford-type dif-
ferential scattering cross section, in which the invariant
amplitude M for the process p1p2 → p′1p

′

2 (using mo-
menta to label the particles) scales as the inverse of the
4-momentum transfer t = q2 = (p′1 − p1)

2 = (p2 − p′2)
2.

A dependence M ∝ 1/(q2 −m2) arises from the virtual
exchange of a quantum of mass m of the mediating inter-
action. For example, in pp elastic scattering the quantum
(at least at low energies) may be considered a single neu-
tral virtual meson, such as π0. At higher energies, the rel-
evant degrees of freedom exchanged become quarks and
gluons.
Elastic scattering via mediators of negligible mass also

features the characteristic Rutherford angular depen-
dence 1/q2 ∝ 1/sin2(θ/2), where θ is the c.m. scattering
angle. Inelastic 2 → 2 scattering (and scattering with
heavier mediators) also contains this factor, although the
relation is then no longer a strict proportionality, and
the effect is muted. In either case, however, the sin2(θ/2)
factor indicates strong peaking of M in the forward di-
rection, and for precisely the reason that Rutherford un-
derstood: Greater particle deflections demand stronger
forces, requiring scattering events that, for given fixed
initial-particle energies, are comparatively rarer. If the
scattered particles p′1, p

′

2 cannot be unambiguously asso-
ciated with the initial particles p1, p2, respectively—as
occurs either if p1, p2 represent identical particles, or if
the reaction is sufficiently inelastic that the association
is less than perfect—then one also expects an enhance-
ment in M corresponding to the minimization of the
4-momentum transfer u = (p′2 − p1)

2 = (p2 − p′1)
2. u

contains the factor cos2(θ/2), which means that M also
peaks in the backward direction.
A prominent and historically important example of

this forward-backward peaking occurs in pn elastic scat-
tering. Indeed, the strong backward peak, now under-
stood to be due to the charge-exchange reaction p↔ n in
which charged mesons are traded between the nucleons,
is one of the best pieces of evidence for strong interac-
tions respecting fundamental isospin symmetry, partic-
ularly the equivalence of p and n under strong interac-
tions: In pn scattering the backward peak is almost as
high as the forward peak, because p turns into n and vice
versa but remains otherwise undeflected. It is interest-
ing to note (as discussed, e.g., in Ref. [13]) that simple
one-pion exchange, which one might naively expect to be
responsible for the full peak, is actually well known to
lead to a zero differential cross section at 180◦. At the
constituent level, a quark exchange u↔ d occurs.

For inelastic processes, the rule of thumb for estimating
the relative height of the forward and backward peaks ap-
pears to follow from the similarity of the initial and final
particles. Taking p1 (p′1) to be the lighter initial (final)
particle, one expects the forward peak to be generically
higher. As an explicit example, consider KΛ photopro-
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duction; here, p1 = γ → ss̄, p′1 = K+, p2 = p, and
p′2 = Λ. The recent CLAS data for this process [14] shows
a backward peak in the differential cross section that is
a factor of a few smaller than the forward peak (the ra-
tio depending strongly upon

√
s, reaching a maximum

of about 1/2 around 2.1 GeV), supporting the general
dynamical picture described here. Indeed, a small mod-
ification of Fig. 1 provides a simple quark-exchange pic-
ture for KΛ photoproduction: Just exchange s↔ s̄. The
preference of forward (θ → 0) scattering indicates the rel-
ative dynamical preference for not diverting the (heavier)
baryon line. Alternately, at the constituent level for KΛ
one sees that the lightest constituent q (and s) suffers a
backward scattering for θ → 0, while the heavier (ud)
diquark (and s̄) remains undeflected. Nevertheless, one
expects a smaller enhancement for θ → π as well, where
the momentum transfers of q and s are minimized.

III. A SIMPLE DIQUARK-TRIQUARK MODEL

Once the scattered particles in a 2 → 2 process are re-
solved into constituents, the overall momentum transfer
q2 is no longer the only independent kinematical quantity
contributing to angular dependence. The dominant dia-
gram for γN → φN is generally attributed to Pomeron
exchange [15, 16], in which the γ dissociates into the ss̄
pair.2 At the level of fundamental QCD, the correspond-
ing Feynman diagrams include as their most simple rep-
resentative Fig. 2, although the full Pomeron would in-
clude many more gluons, particularly those cross-linking
the exchanged gluon pair in this figure. The gluon ex-
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2 Alternate diagrams are possible in which γ couples directly to
the N , and the ss̄ pair is created from gluons emitted from the
struck N . At high energies, the latter diagram actually appears
to be dominant [17].

FIG. 2: One of many gluon-exchange Feynman diagrams con-
tributing to the Pomeron exchange mechanism for γN → φN .

changed between the final-state ss̄ pair merely indicates
that, in order for the four constituents to interact, share
momentum, and be diverted to their final directions, a
minimum of three gluons must be exchanged3. In fact,
the complete diagrams are even more complicated than
indicated because we have represented the nucleon N as
a bound pair of a light quark q and a diquark (ud); in-
deed, the gluons can couple separately to either of the
quarks in (ud), the nucleon can contain both scalar and
vector diquarks, and the quark q must be properly an-
tisymmetrized with the identical quark in (ud) to sat-
isfy Fermi statistics [18]. Nevertheless, Fig. 2 illustrates
the central point that the Pomeron carries the entirety
of the momentum transfer q2 in the t-channel, suggesting
(as is observed) strong forward peaking of the differential
cross section, while a u-channel backward peak would re-
quire a complicated intermediate state carrying not only
a Pomeron, but also nonzero baryon number and hidden
strangeness.

We propose an additional mechanism for φ photopro-
duction, namely, the production of an (sq) color-3̄ bound
diquark δ and an [s̄(ud)] color-3 bound antitriquark θ̄, as
in Fig. 1. In this case, (ud) truly does refer to a diquark
component in N , which at first blush can be either of
the “good” (scalar-isoscalar) or “bad” (vector-isovector)
variety, although data from charge and magnetic nucleon
radii prefer the “good” component [18], once proper anti-
symmetrization of the wave function between q and (ud)
is performed. In comparison, in the case of KΛ pho-
toproduction described above, the Λ contains only the
“good” (ud) diquark. The importance of including di-
quark baryon substructure in AdS/QCD models to ob-
tain Regge trajectories matching those of mesons (as is
observed), is emphasized in Refs. [19, 20].

Since both δ and θ̄ are colored objects, hadronization
of the pair is accomplished as in Refs. [2, 4], by means
of the hadron wave functions stretching across the space
between the colored bound states. One can obtain in
this way not only a φ = (s̄s), N = q(ud) final state,
but also a contribution to the final state K = (s̄q), Λ =
s(ud) expected to be smaller than the one discussed in
the previous section, due to the smaller strength of the
3⊗ 3 ⊃ 3̄ attraction compared to that of 3⊗ 3̄ ⊃ 1.

Our purpose is not to calculate the complete amplitude
for this entire process (e.g., the techniques of Ref. [21] are
useful for the large-θ region), but only to demonstrate
that a natural physical mechanism exists to provide an
interaction producing an enhanced cross section in both
the forward and backward directions. We can therefore
make a number of simplifying assumptions. First, we ne-

3 Note that the (ud) is treated as a single unit in the scattering.
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glect Fermi motion within the δ and θ̄, so that the con-
stituents within each bound state move with the same
velocity (this assumption can be lifted by folding in ap-
propriate distribution functions; e.g., in the light-front
formalism, see Ref. [22]). Then it is clear from Fig. 1
that forward (θ → 0) scattering of (sq) also produces a
forward-scattered φ, since in the c.m. (sq) and [s̄(ud)]
have the same momentum magnitude, but the former is
lighter and therefore has a larger speed. In turn, s has a
larger speed than s̄. Since ms = ms̄, the net momentum
of φ = (ss̄) then points in the same direction as s, and
hence, as (sq).
This strategy has much in common with the “hard

scattering approach” (HSA) developed in Refs. [23, 24],
in that both take all constituents to move collinear with
their parent hadrons, include the minimal necessary num-
ber of gluon exchanges to accomplish the process, and re-
quire folding in appropriate distribution amplitudes. The
HSA approach applied to φ photoproduction at high en-
ergy scales (with genuinely hard gluons) has been studied
in Ref. [17], although using older data than here.
Since the diagrams again have four constituents, the

minimum number of gluon exchanges necessary for the
process remains three. Unlike in Pomeron exchange,
however, the δ-θ̄ production mechanism provides natural
alternatives that produce enhancements in the forward
and backward directions. Consider first Fig. 3; here, the
scattering process is driven by the lightest constituent (q)
from either of the initial particles (N) exchanging a gluon
with the s̄ constituent of the other initial particle (γ). As
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FIG. 3: As in Fig. 1, but including a minimal gluon exchange
that naturally explains the enhancement of φ production in
the θ → 0 direction, as described in the text.

just discussed, the δ-θ̄ configuration favored for forward
φ production is the one in which (sq) is also produced
in the forward direction, recoiling against [s̄(ud)]. Since
the lightest constituent (here, q) is the easiest to deflect
through large angles, this particular exchange diagram
provides a natural mechanism for backward scattering of

the q, as well as that of the s̄.
Once the q and s̄ are deflected through a large an-

gle, the s and (ud) must each be deflected (through a
generically smaller angle) to become bound to into their
respective (sq) and [s̄(ud)] combinations. This binding
is accomplished in our crude picture by the exchange of
a gluon between s and q, and between s̄ and (ud), as
depicted in Fig. 3. As promised, the minimal number
of gluon exchanges required to achieve the desired final
states is precisely three. One therefore naively expects
this diagram to peak in the forward direction, and in the
next section we see this expectation indeed to be realized.
A natural exchange diagram producing a backward

peak is depicted in Fig. 4. Here, the interaction gluon
connects the heaviest component [(ud)] to the s, and is
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FIG. 4: As in Fig. 1, but including a minimal gluon exchange
that naturally explains the enhancement of φ production in
the θ → π direction, as described in the text. The angle θ

exhibited here is identical to the one in Fig. 3, for the purpose
of ease of comparison.

expected to produce an enhancement when both of them
are deflected in the backward direction, the θ → π limit of
Fig. 4. In that case, in order to form the [s̄(ud)] and (sq)
combinations, the s̄ and q deflect through a smaller an-
gle, and binding is accomplished through gluon exchanges
between (ud) and s̄, and between s and q, respectively.
Again, a minimum of precisely three gluon exchanges is
necessary to obtain the desired final state. And since
backward deflection of the heavier (ud) is not as easy as
backward deflection of the lighter q, one expects the size
of the enhancement in the backward direction produced
by Fig. 4 to be smaller than the enhancement in the for-
ward direction produced by Fig. 3, which is verified in
the next section to be true.
Before proceeding to a calculation, we hasten to em-

phasize its extremely rudimentary nature. First, we are
investigating a particular production mechanism (δ-θ̄)
that has never been demonstrated unambiguously to oc-
cur in any process. The (sq) and [s̄(ud)] are assumed
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to act as bound quasiparticles, allowing for analysis as
a 2 → 2 process. Second, we suppose that the reaction
proceeds through a “good” diquark component of the nu-
cleon, which interacts as a unit and maintains its identity
throughout the process. Third, we neglect the Fermi mo-
tion of each composite particle and assume that each ini-
tial and final state consists of two collinear components
moving at the same velocity. Fourth, we use the mini-
mum required number of gluons for each process, despite
the fact that the reaction and binding interactions are
most certainly nonperturbative. No hard scale is present
to justify a perturbative treatment, and the gluons here
should be thought of only as quasiparticles that accom-
plish momentum transfer among the components; in real-
ity, these gluons simply represent collections of multiple
gluon exchanges that accomplish the same overall scat-
tering. In fact, the specific choices of topology for the
diagrams in Figs. 3, 4, even with the minimal gluon ex-
change number, are not unique. For example, while it is
tempting to apply the above narrative that the interac-
tion between some of the constituents occurs first, and
then the remaining constituents exchange gluons with the
scattered components to form bound states, it is just as
tenable from a quantum field-theory point of view that
the initial constituents γ and N come unbound by gluon
exchange first, and then the interaction occurs. Or, the
binding and unbinding gluons can stretch across the in-
teraction4. In real QCD, one expects all such gluons to
appear—copiously—in a typical diagram.

To establish a systematic calculation, we consider all
12 diagrams that have the minimum three planar gluons,
such that each of the constituents must couple at least
once to a gluon. Figures 3 and 4 may be considered as
representatives of diagram classes [with amplitudes M(1)

and M(2), respectively], as defined by the placement of
the central interaction gluon that connects initial and fi-
nal states. The members of each class are defined by
which two external states have their constituents con-
nected by a gluon. In a third allowed class represented
by Fig. 5 [amplitudes M(3)], the constituents of each of
three of the external states are connected by a gluon.
The definition of the 12 diagrams is summarized in Ta-
ble I; thus, for example, the amplitude corresponding to

the literal diagrams of Figs. 3, 4, and 5 are M(1)
1 , M(2)

1 ,

and M(3)
1 , respectively. It is also simple to check that

each of these 12 diagrams also has exactly two internal
constituent propagators.

4 Such gluons would be nonplanar, and give contributions formally
suppressed byO(1/N2

c ) relative to diagrams without them, where
Nc = 3 is the number of QCD colors.
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FIG. 5: As in Fig. 1, but including a minimal gluon exchange
that does not have a natural central interaction gluon con-
necting initial and final states.

TABLE I: Amplitudes based on the classes defined by Figs. 3,
4, 5 [defined as M(1),(2),(3), respectively]. Each amplitude is
defined by its class and the listed subset of initial and fi-
nal states, each member of which exchanges a single binding
gluon.

M(1)
1 (δ, θ̄) M(2)

1 (δ, θ̄) M(3)
1 (γ, δ, θ̄)

M(1)
2 (γ, N) M(2)

2 (γ, N) M(3)
2 (N , δ, θ̄)

M(1)
3 (δ, N) M(2)

3 (δ, γ) M(3)
3 (γ, N , δ)

M(1)
4 (γ, θ̄) M(2)

4 (N , θ̄) M(3)
4 (γ, N , θ̄)

IV. CALCULATION AND RESULTS

We estimate the relative size of the diagrams in Table I
by establishing kinematics and definitions of momenta,
and then by calculating the angular dependence origi-
nating from the product of momentum transfer factors
forming the denominators of the three gluon propagators
and two constituent propagators appearing in each dia-
gram. Spin structures in the form of Dirac matrices or
Lorentz tensors are also ignored; indeed, the issue of how
to parametrize the coupling of a gluon to the (ud) diquark
is avoided with this assumption. The precise recipe for
treating masses appearing in these factors is described
below. In short, we estimate the relative sizes and an-
gular dependences of the 12 amplitudes M in Table I by
using just a few of the factors appearing in each of them.

We begin with kinematical conventions. The external
composite particle masses, not only mγ = 0 and mp, but
also the diquark m(sq) and antitriquark m[s̄(ud)] masses,
are assumed known, uniquely determining the c.m. en-
ergy and momenta of the external particles in terms of
the total c.m. energy

√
s of the process, as in any 2 → 2
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process:

√
s = Ec.m.

tot =
√

mN(2Elab
γ +mN ) ,

Ec.m.
γ =

s−m2
N

2
√
s

,

Ec.m.
N =

s+m2
N

2
√
s

,

pc.m.
γ = pc.m.

N = Ec.m.
γ ,

Ec.m.
(sq) =

s−m2
[s̄(ud)] +m2

(sq)

2
√
s

,

Ec.m.
[s̄(ud)] =

s−m2
(sq) +m2

[s̄(ud)]

2
√
s

, (1)

and

pc.m.
(sq) = pc.m.

[s̄(ud)] =
√

[

s−
(

m[s̄(ud)]+m(sq)

)2
] [

s−
(

m[s̄(ud)]−m(sq)

)2
]

2
√
s

.

(2)

Since the constituents of each composite particle are
assumed to move with the same velocity, the fraction of
the total momentum carried by each is assumed to be the
ratio of its mass to the total mass of the constituents. In
particular, if we define

r1 ≡ ms

ms +ms̄

,

r2 ≡ mq

mq +m(ud)
,

r3 ≡ mq

ms +mq

,

r4 ≡ ms̄

ms̄ +m(ud)
, (3)

and denote initial and final constituent momenta with
primes on the latter and not on the former, then

ps = r1 pγ ,

ps̄ = (1− r1)pγ ,

pq = r2 pN ,

p(ud) = (1− r2)pN ,

p′s = (1− r3)p(sq) ,

p′s̄ = r4 p[s̄(ud)] ,

p′q = r3 p(sq) ,

p′(ud) = (1− r4)p[s̄(ud)] . (4)

This simple apportionment of momenta among con-
stituents is completely analogous the result in light-front
quantum field theory [25]. Conservation of 4-momentum
at each vertex then completely determines the momen-
tum transfers in terms of the ri factors and scalar prod-
ucts between the external momenta, which in turn are

completely determined by the external particle masses
and the scattering angle θ.

Out of the 12 diagrams, only six distinct gluon mo-
menta appear:

qs ≡ p′s − ps ,

qs̄ ≡ p′s̄ − ps̄

qq ≡ p′q − pq ,

q(ud) ≡ p′(ud) − p(ud) ,

q(sq) ≡ p(sq) − ps − pq = ps̄ + p(ud) − p[s̄(ud)] ,

qss̄ ≡ p′s + p′s̄ − pγ = pN − p′q − p′(ud) , (5)

which satisfy between them three simple identities:

q(sq) = qs + qq = −qs̄ − q(ud) ,

qss̄ = qs + qs̄ = −qq − q(ud) ,

0 = qs + qs̄ + qq + q(ud) , (6)

so that only three of them are linearly independent, ex-
actly as one expects for momentum transfers between
four independent external momenta. Compared to the
full Feynman calculation with gluons in the amplitudes
M, we treat the gluon propagator factors q2j as the only
relevant ones for this analysis (i.e., we neglect polariza-
tion tensor structures). However, using skeletal diagrams
such as Figs. 3, 4, 5 to model much more complicated di-
agrams with extensive gluon and internal qq̄ exchanges
introduces the potential for artificial kinematic singular-
ities to arise when some of the internal lines go on mass
shell. Part of this problem is caused by the assumption
of zero transverse constituent momenta, but much of it
simply is due to the usual soft-gluon infrared singularities
one expects in a perturbative treatment. Physically, an
on-shell gluon corresponds to an infinite-range interac-
tion between the constituents, which does not comport
with the finite range associated with confinement. To
account for this important dynamics, we provide the glu-
ons with a finite mass scale mconf (with a specific value
chosen below), and introduce dimensionless gluon prop-
agator factors

Qj ≡ − m2
conf

q2j −m2
conf

, (7)

where the sign makes Qj positive in the usual case of
scattering four-momenta.

Furthermore, eight distinct internal constituent mo-
menta (in which the subscript refers to the particular
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constituent line) appear:

ks ≡ p(sq) − pq ,

ks̄ ≡ p[s̄(ud)] − p(ud) ,

kq ≡ p(sq) − ps ,

k(ud) ≡ p[s̄(ud)] − ps̄ ,

k′s ≡ pγ − p′s̄ ,

k′s̄ ≡ pγ − p′s ,

k′q ≡ pN − p′(ud) ,

k′(ud) ≡ pN − p′q , (8)

which are linearly independent except for the overall mo-
mentum conservation constraint. In the full amplitudes
M, the factors ūj(pf )γ

µ(/kj −mj)
−1γνuj(pi) appear for

the fermionic constituents. By treating the bosonized
propagator denominator (k2j − m2

j) as the only signifi-
cant factor for this analysis, i.e., by ignoring the effect
of the spinor algebra except to use the Dirac equation
of motion to eliminate /kj from the numerator, by using
the conventional 2mj normalization for spinors, and by
noting that scattering momentum transfers are negative,
the relevant dimensionless factors for constituent lines in
this analysis are:

K
(′)
j ≡ −

2m2
j

k
(′) 2
j −m2

j

. (9)

For convenience, we employ the same form for the
(bosonic) diquark constituent (ud). From standard rela-
tivistic kinematics using Eqs. (3)–(9), one finds that the
propagator factors Qs, Q(ud), Q(sq), Qss̄, Ks̄, Kq, K

′

s̄,
and K ′

q are enhanced in the forward direction, while Qs̄,
Qq, Ks, K(ud), K

′

s, and K
′

(ud) are enhanced in the back-

ward direction. These results for Qs, Q(ud), Qs̄, Qq were
anticipated in the last section.
The choice of appropriate constituent masses also re-

quires some care. Current quark masses would only
be appropriate in a fully perturbative analysis in which
classes of diagrams are resummed to avoid singularities
associated with particles going on shell. However, tra-
ditional constituent masses are not entirely appropriate
for this calculation either, as they are typically obtained
from static processes, not a dynamical scattering such as
photoproduction. The choice of mass parameters, as seen
below, lies somewhere in between these extremes.
Even then, the appropriate mass to choose for a given

internal constituent line suffers from ambiguity. Take,
for example, the factor kq in Eq. (8), which refers to the
momentum of a light q emerging from the breakup of the
nucleon N en route to binding into a diquark (sq). Ac-
cording to Eq. (4), should its mass be considered a frac-
tion r2 of mN , or a fraction r3 of m(sq)? Or indeed, since
the propagator lies deep in the diagram, should one use
the confinement mass scale mconf previously introduced?
We adopt the convention that the appropriate effective
constituent mass to appear in the propagators Eq. (9) is

the maximum of the two suggested by the initial (i) and
final (f) states into which it binds [according to Eqs. (3)
and (4)] plus a contribution from the confinement scale
mconf , to account for the expected off-shell behavior:

m2
j,eff = max(m2

j,i,m
2
j,f ) +m2

conf . (10)

The model amplitudes of Table I in the simplified no-
tation of Eqs. (7) and (9) read

M(1)
1 = QsQ(ud)Q(sq)Ks̄Kq ,

M(1)
2 = QsQ(ud)Qss̄K

′

s̄K
′

q ,

M(1)
3 = QsQ(ud)Qs̄KqK

′

q ,

M(1)
4 = QsQ(ud)QqKs̄K

′

s̄ ,

M(2)
1 = Qs̄QqQ(sq)KsK(ud) ,

M(2)
2 = Qs̄QqQss̄K

′

sK
′

(ud) ,

M(2)
3 = Qs̄QqQ(ud)KsK

′

s ,

M(2)
4 = Qs̄QqQsK(ud)K

′

(ud) ,

M(3)
1 = QqQ(ud)Q(sq)KsKs̄ ,

M(3)
2 = QsQs̄Q(sq)KqK(ud) ,

M(3)
3 = Qs̄Q(ud)Qss̄K

′

sK
′

q ,

M(3)
4 = QsQqQss̄K

′

s̄K
′

(ud) . (11)

The chosen input masses, all in MeV, are listed in Ta-
ble II. Again, guidance for this choice is suggested,
but not determined, by an interpolation between typ-
ical current and constituent masses used in the litera-
ture. For example, one can make an argument for (ud)
diquark masses anywhere from ≃ 30 MeV (i.e., not many
times more than the sum of current quark masses) up to
≃ 600 MeV (i.e., two-thirds of a nucleon, or the mass of a
σ meson). The most important inputs in obtaining a re-

TABLE II: Input masses in MeV.
√
s mγ mN m(sq) m[s̄(ud)] m(ud) ms = ms̄ mq mconf

2200 0 938.3 680 1150 100 200 10 425

sult resembling experimental data appear to be choosing
m(sq) +m[s̄(ud)] not terribly far below the observed for-

ward peak at
√
s = 2.2 GeV, and choosing a fairly large

value for mconf . The necessary magnitude of mconf ap-
pears to arise largely due to the feature of this simplified
model that the initial s and s̄ quarks from the dissocia-
tion of γ are lightlike, as seen from the first two of Eq. (4);
presumably, introducing substantial transverse momenta
in a more realistic calculation produces the same effect
as mconf . In any case, the model presented here is so
simple that the input masses used should be viewed only
as a qualitative guide to obtaining results in accord with
experiment.
For the given inputs, the amplitudes of class M(1) are

all strongly peaked in the forward direction, while those
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of class M(2) are all strongly peaked in the backward di-
rection but possess in addition a smaller forward peak.

In particular, the amplitude M(1)
1 [M(2)

1 ] corresponding
to Fig. 3 (Fig. 4) shows preferential forward (backward)
scattering, as was anticipated from general arguments.
The diagrams of class M(3) also turn out to be forward
enhanced, but many times smaller than those in class
M(1). To illustrate the forward-backward peaking, we
present in Fig. 6 the simple coherent sum M of the 14
amplitudes. Obviously, the absence of numerous factors

FIG. 6: Coherent sum M of the 14 amplitudes of Eq. (11)
using the inputs in Table II, as a function of cos θ.

in the full Feynman amplitudes—not least of which are
relative signs leading to destructive interferences—mean
that the plot of Fig. 6 should only be taken seriously in its
coarsest features, namely, a large peak in the forward di-
rection and a small peak in the backward direction. The
particular value for the forward-to-backward ratio is sim-
ple to adjust using slightly different inputs. Furthermore,
we note that the CLAS data presented in Ref. [10] does
not extend to the most forward and backward directions;
the limitation −0.80 ≤ cos θ ≤ +0.92 is used in Fig. 6.
The literal ratio M(cos θ = +0.92)/M(cos θ = −0.8) in
Fig. 6 is about 30.
Lastly, one may ask whether the forward enhance-

ment behaves away from the particular chosen peak value√
s = 2.2 GeV similarly to its appearance in the data. To

illustrate the result, we plot in Fig. 7 the amplitudeM
(1)
1

as a function of
√
s but otherwise use the mass inputs of

Table II. The amplitude rather than its square is relevant
because its chief contribution to data would presumably
appear through interference with the dominant Pomeron
amplitude. The full width at half maximum appears to

FIG. 7: Behavior of the amplitude M(1)
1 as a function of

√
s

(in GeV), with the other inputs as in Table II.

extend from just below 2.0 GeV to about 2.4 GeV, which
is very much like the experimental result presented in
Refs. [10, 12]. In this model, the enhancement is indeed
due to a special correlated five-quark configuration, but
it is not a literal resonant pentaquark state. That is,
the anomalies may be said to correspond to “would-be”
pentaquarks.

V. CONCLUSIONS

We have seen that interesting forward-backward en-
hancements observed in recent data for the photopro-
duction process γp→ φp can easily be explained through
the production of a (su) color-3̄ bound diquark and an
[s̄(ud)] color-3 bound antitriquark, using the preferential
color couplings 3 ⊗ 3 ⊃ 3̄. Such a configuration (with
s → c) has previously been advocated as an explana-
tion of the exotic charmoniumlike states. Here, however,
no claim is made that the enhancements are the result
of true resonances, but they are predicted to create s-
dependent bumps in the data.
The model relies only on the preference of a system

with largely collinear constituents to minimize the con-
stituent momentum transfers. Essentially no dynamics
is included; the minimal set of gluon exchanges used
for each diagram does not incorporate color physics in
any fundamental way. Likewise, the constituents are as-
sumed at any point in the diagrams to carry only mo-
menta parallel to the bound state in which they oc-
cur. Nevertheless, using plausible values for constituent
masses, one obtains results in good qualitative, and even
semi-quantitative, agreement with experiment. Numer-
ous possible improvements leading to stable and predic-
tive results for this process should certainly be under-
taken.



9

The possibility that diquark/triquark structure can be
discerned in lighter quark systems has long been dis-
cussed, but the experimental signals have always been
tantalizingly vague. In the analogues to the types of
experiments already performed or proposed for heavy-
quark exotics, one can hope to find a clear indication for
these novel structures.
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