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Abstract

The effect of the pion exchange on the line shape of near threshold bottomoniumlike

resonances decaying into an S wave pair of B(∗) mesons is considered. It is pointed

out that this effect, parametrically enhanced by the heavy meson mass, can be of a

practical significance in determining the parameters of the bottomoniumlike resonances

such as the known Zb(10610) and Zb(10650) states.



Experimental studies of the charm and bottom threshold regions have uncovered a num-

ber of quarkoniumlike peaks with mass very near a threshold of a heavy meson-antimeson

pair. In particular, the bottomoniumlike Zb(10610) and Zb(10650) [1] peaks are located at

the respective thresholds, BB∗ and B∗B∗, and within the present accuracy of a few MeV it is

impossible to reliably conclude whether the mass of each of this peaks is below, at, or above

the corresponding threshold. These structures, being isotopic vectors, definitely contain a

light quark-antiquark pair in addition to the heavy pair bb̄. Their properties agree well [2]

with the molecular [3] picture where the Zb resonances are considered as shallow bound states

of the corresponding meson-antimeson pair, and also alternative models for these states are

being discussed in literature, e.g. a tetraquark scheme [4] has been used [5, 6] for description

of hidden-beauty states, including the Zb resonances. Other bottomoniumlike resonances of

similar nature are expected at meson-antimeson thresholds. In particular, in the molecular

scheme two or four additional isovector states are expected [7] that were not yet observed

due to their opposite, relative to Zb, G-parity. In either model of the internal four-quark

dynamics within such resonances, these peaks present a major feature, a bound state or a

virtual state near-threshold pole, in the S wave scattering of a heavy meson and antimeson.

For the Zb resonances a strong coupling between the Zb states and the meson pairs has

been in fact observed experimentally [8] with the spectral density in the B∗B̄ + BB̄∗ chan-

nel displaying a peak corresponding to the Zb(10610) and that in the B∗B̄∗ channel has a

peak corresponding to the Zb(10650). Clearly, a study of the line shape in these open-flavor

channels as well as in the decay channels with bottomonium and light meson(s) is necessary

for determining the masses and widths of the resonances precisely enough for clarifying the

type of the features that these resonances correspond to in the meson-antimeson dynamics

and, possibly, for understanding the internal structure of these states. This however requires

also a refined theoretical description of the relation between the observed line shapes and

the parameters of the interaction between the heavy mesons.

Most recently a practical improvement on a straightforward summation of Breit-Wigner

amplitudes has been suggested [9], which accounts for the coupling between channels and its

effect on the interference of the Zb(10610) and Zb(10650) resonances. The energy scale for

the modification of the line shapes of the resonances considered in Ref. [9] is set by the gap

between the thresholds ∆ = M(B∗)−M(B) ≈ 46MeV, or equivalently by the mass difference

between the two Zb resonances. The present paper addresses a different type of modification

of the line shape within each individual peak which modification significantly changes at an

energy scale δ ∼ µ2/M set by the pion mass µ and the meson mass M , and is induced by the
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interaction between the mesons through pion exchange. The latter correction to the yield

of the meson pairs produced with the center of mass (c.m.) momentum p is proportional

to the ratio M/p if p is larger than µ (this is similar to the 1/v behavior of the well known

Coulomb correction to the yield of charged particles) and this ratio is replaced by M/µ at p

being smaller than µ. The discussed effect is determined by the interaction at characteristic

distances of order 1/p or 1/µ respectively, and thus is sensitive to only the pion exchange.

Any effects of the interaction at shorter distances, of order 1/ΛQCD display variation at a

larger energy scale Λ2
QCD/M ∼ ∆ and can be coded in terms of the ‘short distance’ scattering

parameters for the mesons, similarly to the approach described in Ref. [9]. The separation

of the ‘long distance’ pion-mediated force and the short distance effects is thus possible as

long as p2 ≪ Λ2
QCD, i.e. in the range of excitation energy up to approximately 10MeV for

the B meson pairs [10, 11]. Numerically, the effect of the pion exchange gives a relative

correction of approximately 30% to the yield of S-wave pairs in the isovector channel at the

very threshold and rapidly falls off at the excitation energy of order δ. As will be seen from

what follows, the detailed behavior of the discussed correction also depends on the elastic

scattering amplitude for the B mesons generated by the interaction at short distances of

order 1/ΛQCD. Therefore a study of the behavior of the yield can provide an insight into the

properties of this interaction. The calculated modification of the production of S-wave pairs

of heavy mesons is also applicable in the case where there is no resonance at the threshold.

However it appears to be most interesting in the channels where such resonance exists, and

can be of significance for studying the properties of the resonance peak. In practice the effect

of a relatively rapid variation of the correction to the yield can be measured from the ratio

of the production of the threshold meson pairs and one of non-threshold inelastic channels,

such as e.g. the ratio of the final states B∗B̄ + BB̄∗ and hbπ at the Zb(10610) resonance,

or the ratio of B∗B̄∗ to B∗B̄ + BB̄∗ at the Zb(10650). The non-threshold channels are not

influenced by the rapidly varying with energy correction, and the overall variation of the

yield due to the underlying resonance cancels in such ratios.

The interaction between slow heavy mesons can be viewed as consisting of two parts:

the short distance part and the long distance one due to pion exchange. The short distance

part gives rise to both the elastic scattering and to inelastic processes, i.e. this part of the

interaction is responsible for the existence of the near-threshold resonances and also for their

decays into ‘other’ channels, such as into bottomonium plus light mesons, or annihilation

into light hadrons. It can be noted that the mixing between channels with different heavy

meson pairs, e.g. between B∗B̄∗ and B∗B̄ + BB̄∗ should be treated as an inelastic process
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induced by a short distance interaction, since the c.m. momentum (real or imaginary) for one

pair at the threshold of the other is p0 ≈
√
∆M ≈ 0.5GeV and is thus of order ΛQCD, both

numerically and parametrically. In the terminology used in the recent literature the short

distance interaction is described by contact terms in the effective Lagrangian for the heavy

mesons [12] (see also Ref. [9] and references therein). An equivalent standard approach

to treatment of a strong interaction, pursued in textbooks (e.g. in Ref. [13]), introduces

scattering parameters generated by the short range forces. For the present calculation the

relevant parameters are the diagonal (elastic) element Se of the S matrix and the effective

range a of the short distance interaction. The latter parameter separates the short and the

long distances: at r < a there is strong interaction generating the scattering matrix, while at

r > a there is only the long range force, described for the purposes of the present calculation

by the pion exchange. The modification of the scattering by the interaction at long distances

is then found by matching at r = a the ‘outer’ wave function to the scattering state wave

function described by the S matrix. Clearly, this picture of an ‘abrupt’ separation between

the short and long distances is an approximation, and the parameter a should be treated as

an effective one 1. Moreover the whole approach is applicable as long as the dependence of

the final result on precise definition of a is not critical.

The long range forces induced by the pion exchange are determined from the Lagrangian

for the interaction of the vector (V ) B∗ mesons and the pseudoscalar (P ) B mesons, as

isotopic doublets, with the pion isotopic triplet πa:

Hint =
g

fπ

{[

(V †
l τ

aP ) + h.c.
]

+ i ǫljk (V
†
j τ

aVk)
}

∂lπ
a (1)

with τa being the isospin Pauli matrices, and the nonrelativistic normalization is implied

for the heavy mesons. The charged pion decay constant fπ ≈ 132MeV is used in Eq.(1)

for normalization. The dimensionless pion coupling g can then be evaluated by using the

heavy quark symmetry and the known [14] (and recently updated [15, 16]) absolute rate of

the D∗+ → Dπ decay: g2 ≈ 0.15.

The forces due to the pion exchange generally give rise to several effects [17]: a central in-

teraction potential, a tensor potential, and a mixing between channels related by interchange

of the vector and pseudoscalar mesons. The effect of the pion exchange is considered here for

an S-wave state of a heavy meson pair as a perturbation in the first order (an approximation

to be justified by the result). For this reason only the long range part of the central potential

1In the effective Lagrangian approach the corresponding quantities are the form factors for the contact

terms.
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is relevant for the present discussion. This part is given by [17]

V (r) = c [2I(I + 1)− 3]
g2

12π

µ2

f 2
π

e−µr

r
, (2)

where I is the isospin of the meson pair and the constant c is nonzero only if at least one

of the mesons is a vector (i.e. naturally c = 0 in a BB̄ system) and depends on the total

spin J of the pair and its symmetry under the charge conjugation: c = 1, 2, −1 and −1

respectively for JPC = 1+−, 0++, 1++ and 2++, with C standing for the charge parity of the

neutral component of the isotopic multiplet. In particular, for the case of the Zb resonances

(I = 1, JPC = 1+−) this potential is a repulsion given by

VZ(r) =
g2

12π

µ2

f 2
π

e−µr

r
. (3)

It should be also noted that in the systems made of a vector and a pseudoscalar heavy mesons

the parameter µ is not exactly the pion mass mπ but rather is µ =
√

m2
π −∆2 ≈ 127MeV

(for the exchange of π0, which is the case for the Z±
b systems) due to the transfer of the

energy ∆ between the mesons in the B∗B̄ → BB̄∗ rescattering [18, 19, 17].

The modification by a long range interaction of the yield of a final state generated by a

source localized at shot distances r < a has been considered in a general form in Ref. [20]

within the described above setting for separation between the distance scales (see also in

Ref.[21]). The rate Γ0 that would give the yield in the absence of a long range force is

replaced by Γ = RΓ0 with the correction factor R given by

R = 1−
M

p
Im

[

Se(p)
∫ ∞

a
e2ipr V (r) dr

]

, (4)

where Se is the elastic element of the S matrix in the considered channel, p is the c.m.

momentum for each component of the heavy pair, and M is twice the reduced mass (i.e. M

is approximately the mass of a heavy meson).

A substitution of the potential from Eq.(2) in the formula (4) for the correction factor

readily produces the result for the discussed modification of the yield by the pion exchange.

In order to estimate the magnitude of the effect it is instructive to consider some limiting

cases. The correction is the largest in the limit p → 0 2 where there is no uncertainty due

to the scattering matrix element, since Se(0) = 1 (see e.g. in the textbook [13]), so that one

2At this point, i.e. exactly at the threshold, the phase space for the pair also goes to zero linearly in p,

so that the consideration in this limit has to be applied to the slope of the yield of the pairs.

4



estimates

R = 1− c [2I(I + 1)− 3]
g2

12π

µ2

f 2
π

2M

µ
e−µa ≈ 1− 0.3 c [2I(I + 1)− 3] . (5)

The effective radius of the strong interaction a is formally considered small in comparison

with 1/µ, so that the deviation of the exponent from one is beyond the accuracy of the

discussed approach. One can readily see from this estimate that for the I = 1 states with

the quantum numbers 1+−, 1++ and 2++ the correction has a moderate value amounting to

about 30% exactly at the threshold, which justifies the treatment of the pion exchange at

long distances as a perturbation. This includes the currently most interesting case of the

Zb resonances, for which the correction at the threshold is negative. Clearly, the estimate

in Eq.(5) gives for the 0++ I = 1 state and for all the states with I = 0 the value of the

correction that is too large to justify its treatment in the first order of perturbation theory.

In these cases the treatment of the effect of the pion exchange at energies all the way down

to the threshold should definitely be refined. However, the linear in V expression can still

be applied at p somewhat above the threshold where the correction is smaller. It can be

also noted that the isoscalar states are likely to mix with pure bb̄ bottomonium, so that it

would be a coincidence if an isoscalar bottomoniumlike resonance was found within a few

MeV from the threshold. Another remark, related to the formula in Eq.(5) is that for the

charmed mesons the effect is smaller by the factor M(D)/M(B) and appears to be of less

phenomenological significance than for the B mesons.

Proceeding to the case of a finite momentum p, the leading at small a behavior of the

correction can be found in terms of the real and imaginary parts of Se as

R = 1− c [2I(I + 1)− 3]
g2

12π

µ2

f 2
π

M

p

[

ReSe arctan
2p

µ
− ImSe log

(

a
√

µ2 + 4p2
)

]

. (6)

This expression implies that a non removable weak logarithmic dependence on the parameter

a arises as soon as ImSe is nonzero, which dependence is well known in similar problems with

S wave scattering in the presence of Coulomb force [13] 3 and a specific discussion of the

uncertainty due to the short distance cut off in unfolding the Coulomb effect in proton-proton

low energy scattering data can be found in Ref. [22].

The low-momentum behavior of the elastic scattering amplitude can be parametrized as

3One can readily notice that for Se = 1 and in the limit µ → 0 the formula in Eq.(6) reproduces the

familiar 1/v behavior for the effect of the Coulomb interaction. It can be also noted that no singularity

arises at p = 0 from the term with ImSe, since ImSe ∝ p at p → 0.
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fe = −1/(κ+ i p) with κ being the inverse of the scattering length, so that

Se = 1 + 2i p fe =
κ− i p

κ+ i p
. (7)

In the presence of absorption into inelastic channels, as is the case with the realistic bot-

tomoniumlike resonances, the parameter κ is generally complex: κ = κ0 + i κ1. A shallow

bound state corresponds to a small positive κ0 and the resonance peak is located at energy

κ2
0/M below the threshold. A small negative κ0 corresponds to a virtual state, and the peak

of the spectral density is located exactly at the threshold. Currently it is not known which

particular case applies to the observed Zb peaks. (Hopefully, a study along the lines discussed

here can help in removing this uncertainty.) Here I simply assume, for illustrative purposes,

that the real part, κ0, is small as compared to the imaginary, part κ1. In this case the

scattering parameter Se is then purely real: Se = (κ1− p)/(κ1+ p), and κ1 can be estimated

from the measured width ΓZ ≈ 15MeV of the Zb resonances: κ1 =
√

ΓZM/2 ≈ 200MeV.

The resulting behavior of the correction to the yield of B∗B̄ +BB̄∗ pairs near the threshold

at E0 = M(B∗) +M(B) ≈ 10605MeV is shown in Fig. 1.

2 4 6 8 10 12
E-E0 HMeV L
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-0.15

0.

R-1

Figure 1: An illustrative plot of the relative correction to the yield of the B∗B̄ +BB̄∗ pairs

as a function of the c.m. energy E above the threshold in the channel with the quantum

numbers of the Zb(10610) resonance.

In summary. The long range force generated by the pion exchange modifies the excitation

of S wave pairs of heavy mesons in the immediate vicinity of their thresholds. The resulting

correction to the yield, given by the first-order expression in Eq.(6), is significant and rapidly
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changes above the threshold. The detailed behavior of the correction depends on the elastic

element Se of the scattering matrix for the heavy mesons. This can be studied experimen-

tally by comparing the yield in the threshold channel with that in a non-threshold inelastic

channel. A result of such study can provide an insight into the parameters of the strong

interaction between heavy mesons, and can also be used for determining the parameters of

threshold resonances, such as the Zb peaks. In particular, the discussed modification of the

resonance shape in the elastic channel should be taken into account in future measurements

of the masses of the Zb resonances with a sub-MeV precision (as compared to the current

1.5 - 2MeV errors in the positions of the peaks).
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