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We propose a universal form for quark and lepton mass matrices, which applies in a “leading order”
approximation where CP -violating phases are ignored. Down-quark mass ratios are successfully
predicted in our scheme using the measured CKM mixing angles as input. Assuming an additional
discrete symmetry in the neutrino sector, we obtain the “golden ratio” pattern in the leading-order
PMNS mixing matrix; in addition we predict an inverted neutrino mass hierarchy with m1 ' m2 '
74 meV , m3 ' 55 meV , and neutrinoless double beta decay mass parameter m0νββ ' 33 meV .
When CP -violating phases are included, our scheme suggest a residual Z2 antiunitary symmetry of
the neutrino mass matrix, in which the interchange of µ and τ neutrinos is accompanied by a time
reversal transformation, thus predicting that the CP -violating angle in the neutrino sector is close
to the maximal value δ = ±π/2, and that the diagonal phases in the PMNS matrix are α1 ' 0,
α2 ' π.
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I. INTRODUCTION

The masses and mixing angles of quarks [1–4] and lep-
tons [5–16], fundamental parameters of our universe, are
utterly mysterious. Many attempts have been made to
explain or relate the quark and lepton mass matrices,
for example by invoking quark-neutrino complementarity
[17, 18] or (discrete) flavor symmetry [19–21], but with
limited success. In the discrete flavor symmetry approach
in particular, symmetries enforce constraints on neutrino
mixing angles which are in reasonable agreement with
experimental observations [22, 23], but neutrino mass ra-
tios are not constrained, and these symmetries are not
respected in the quark sector.

In this paper, we propose an Ansatz for quark and
lepton mass matrices that accounts well for all observed
quark and lepton masses and mixing angles in terms of a
small number of free parameters, and also makes predic-
tions which can be tested in future neutrino oscillation
experiments. We assume that in each of four sectors (up
quarks, down quarks, charged leptons, and (very heavy)
right-handed neutrinos), the mass matrix has the same
universal form. For quarks, ignoring CP -violating phases
and overall mass scales, this universal matrix has two free
parameters in each of the up and down sectors. These
parameters are fixed by observed mass ratios, so that all
Cabibbo-Kobayashi-Maskawa (CKM) mixing angles are
predicted. CP violation can also be accommodated, and
the predicted CKM matrix is actually quite insensitive
to the mass ratios in the up sector. For leptons, ignor-
ing CP -violating phases, there are two free parameters in
the charged sector, again fixed by observed mass ratios,
but no free parameters in the neutrino sector, so that all
neutrino masses and mixing angles are predicted. In the
presence of CP violation, our scheme strongly suggest
an unbroken µ − τ Z2 antiunitary symmetry for neu-
trino sector(a µ − τ exchange symmetry accompanied
by a time reversal symmetry[24, 25]),and the CP vio-
lation phase in lepton sector can also be predicted up

to a sign ambiguity. The predicted Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) mixing matrix is insensitive
to the charged-lepton mass ratios.

Aside from its predictive power, our approach is ap-
pealing because it provides a unified description of the
quark and lepton sectors. Our Ansatz was inspired by re-
cent speculations regarding the origin of the three genera-
tions of neutrinos and their mass mixing matrix [26], but
this paper is logically independent of that earlier work.
Our Ansatz is purely phenomenological; for now we offer
no deeper justification for our assumptions.

II. A UNIVERSAL MASS MATRIX

In the quark sector, our predicted CKM mixing an-
gles are not very sensitive to the values of CP -violating
phases or to the form of the up-quark mass matrix.
Therefore, we will begin by considering a “leading order”
(LO) approximation in which the unitary matrix that di-
agonalizes the up-quark mass matrix is assumed to be the
identity transformation, and in which the down-quark
mass matrix is assumed to be real. Later, we will discuss
how the predicted CKM matrix is “corrected” when CP -
violating phases are included and the diagonalization of
the up-quark mass matrix is treated properly.

In the LO approximation we propose that the down-
quark mass matrix (up to an overall mass scale) has the
form

m(λ, λ′) =

 1 −2 −
√

2

−2 λ −λ
√

2

−
√

2 −λ
√

2 λ′

 , (1)

where the two adjustable parameters λ > 0 and λ′ > 0
are determined by the down-quark mass ratios. In gen-
eral, the down-quark mass matrix need not be real or
Hermitian, and is diagonalized by applying different uni-
tary transformations acting on the left and right, i.e., can

be expressed as VLdiag(md,ms,mb)V
†
R. In our Ansatz,
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though, m(λ, λ′) is real and symmetric so that VL =
VR = V . When CP violation is included, we continue
to assume the left-right symmetry VL = VR ≡ V in the
down-quark sector, thus mCP (λ, λ′) is a Hermitian ma-
trix [27, 28]. We assume that the up-quark mass ma-
trix also has the form Eq.(1), with the values of λ, λ′

determined by up-quark mass ratios. Since these up-
quark mass ratios are large compared to the correspond-
ing down-quark mass ratios, CKM mixing angles are not
much affected by the up-quark corrections.

Likewise, in the lepton sector we will first consider an
LO approximation in which the mass matrix for heavy
right-handed neutrinos is real and the transformation
diagonalizing the charged-lepton mass matrix is triv-
ial; later we discuss how the PMNS mixing matrix is
corrected by CP -violating phases and proper diagonal-
ization of the charged-lepton mass matrix. In the LO
approximation we propose that the right-handed neu-
trino mass matrix (up to an overall mass scale) has
the form Eq.(1), but where now λ = λ′ = 1, so
that the mass matrix has an enhanced symmetry which
we will discuss below. This is a Majorana mass ma-
trix, which must be symmetric, and can be expressed
as Udiag(M1,M2,M3)UT , where U is unitary and the
eigenvalues are the right-handed neutrino masses. The
light left-handed neutrinos acquire mass via the seesaw
mechanism, and to enhance predictive power we assume
that the off-diagonal Dirac mass matrix coupling heavy
and light neutrinos is maximally symmetric, i.e., pro-
portional to the identity matrix. We assume that the
charged-lepton mass matrix also has the form Eq.(1),
with the values of λ, λ′ determined by charged-lepton
mass ratios. Since these mass ratios are large compared
to the corresponding neutrino mass ratios, PMNS mix-
ing angles are not much affected by these charged-lepton
corrections.

III. QUARK SECTOR

A. LO approximation for CKM matrix

To find the CKM quark mixing matrix in the
LO approximation, we may express m(λ, λ′) as
V diag(md,ms,mb)V

†, and fix the values of λ and λ′ us-
ing the experimentally observed mass ratios ms/md and
mb/ms. But since the observed quark mass ratios have
larger uncertainties than the CKM matrix itself, it may
be preferable to use the opposite strategy — fitting λ, λ′

to the CKM matrix, thereby predicting the quark mass
ratios (defined at the electroweak symmetry-breaking en-
ergy scale).

Choosing λ = 10 and λ′ = 350, we find the absolute
values of the entries in the CKM matrix

|V | =

 |Vud| |Vus| |Vub||Vcd| |Vcs| |Vcb|
|Vtd| |Vts| |Vtb|

 '
 .974 .225 .004
.225 .973 .041
.013 .040 .999

 ,(2)

which are reasonably close to the experimental values [4]:

|VCKM| '

 .974 .225 .004
.225 .973 .041
.009 .040 .999

 . (3)

Up to three digits, the only deviation is the matrix ele-
ment |Vtd|, which is .013 rather than the measured .009.
With these choices of λ and λ′, we find ms/md ' 19
and mb/ms ' 35.5, close to the measured values 17 ≤
ms/md ≤ 22 and 42 ≤ mb/ms ≤ 47 [4].

B. CP -violation correction in down-quark sector

Continuing to assume that the down-quark mass ma-
trix is Hermitian, we now include CP -violating phases:

mCP (λ, λ′) =

(
1 −2eiΘds −

√
2eiΘdb

−2e−iΘds λ −λ
√

2eiΘsb

−
√

2e−iΘdb −λ
√

2e−iΘsb λ′

)
. (4)

Because we have the freedom to redefine the phases of
the right-handed and left-handed down-quark fields, the
CP -violating angle and the down-quark masses depend
on only the invariant linear combination of phases

Φ = Θdb −Θsb + Θds + π (mod 2π). (5)

The best fit to the CKM mixing angles is obtained by
choosing λ = 9.66, λ′ = 341 and Φ = 1.25 rad(with the
gauge choice Θdb = −1.89 rad, Θds = Θsb = π), we find

VCP '

 .9743 .2253 .0042e−i(1.20)

−.2252 .9734 .0411
.0088e−i(.48) −.0404 .9991

 , (6)

which is consistent with Eq.(3) and predicts the CP -
violating angle δ13 ' 1.2 rad.

For these choices of λ and λ′ we find the mass ratios
ms/md ' 18 and mb/ms ' 36; this value of mb/ms ' 36
is slightly smaller than the current experimental value
[4].

C. Up-quark sector correction

We do somewhat better by including the correction
to the CKM matrix coming from the diagonalization of
the up-quark mass matrix. Because mc/mu ' 500 is
nearly 30 times larger than ms/md ' 18, this correc-
tion has little effect on the predicted value of ms/md,
but it does notable modify the prediction for mb/ms.
We assume the up-quark mass matrix has the form
m(λ̄, λ̄′) = V̄ diag(mu,mc,mt)V̄

†. Using the experimen-
tal mass ratios mc/mu ' 554 and mt/mc ' 136 [4], we
fix λ̄ = 555 and λ̄′ = 75000. By choosing Θdb = −1.86
rad, Θds = Θsb = π, λ = 9.7 and λ′ = 457, the predicted
CKM matrix is

V̄ †VCP '

 .9743 .2253 .0012− .0030i
−.2252 .9734 .0412

.0081− .0031i −.0404 .9992

 , (7)
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in four-digit agreement with the experimental data [4]:

VCKM '

 .9743 .2253 .0013− .0033i
−.2252 .9734 .0412

.0080− .0032i −.0404 .9992

 . (8)

For this best-fit up-quark mass matrix we obtain
ms/md ' 18 and mb/ms ' 47, consistent with current
experimental observations [4]. The sensitivity of the pre-
dicted CKM matrix to the phases in the up-quark mass
matrix, which we have ignored so far, will be discussed
below.

D. CP -violating phases in the up-quark sector

When CP -violating phases are included, our Ansatz
for the up-quark mass matrix takes the form

mCP (λ̄, λ̄′) =

(
1 −2eiΘuc −

√
2eiΘut

−2e−iΘuc λ̄ −λ̄
√

2eiΘct

−
√

2e−iΘut −λ̄
√

2e−iΘct λ̄′

)
. (9)

By choosing λ̄ = 555 and λ̄′ = 75000, we fit the ex-
perimentally observed mass ratios mc/mu ' 554 and
mt/mc ' 136 [4].

Because the mass ratios mc/mu and mc/mu are quite
large, our predicted CKM mixing matrix V̄ †VCP is nearly
independent of the phases Θuc and Θut, but somewhat
more sensitive to Θct (because mt/mc ' 136 is not so
much larger than mb/ms ' 47).

For Θct = 0, we can fit the measured CKM matrix
well by choosing λ = 9.7 and λ′ = 458 as in Eq.(7) in
the main text, finding for these values the down-quark
mass ratios ms/md ' 18 and mb/ms ' 47, also in good
agreement with experiment. To illustrate the sensitivity
of the results to the value of Θct, consider Θct = π; then
by choosing λ = 9.97 and λ′ = 281 (and choosing the
gauge Θdb = −1.84 rad, Θds = Θsb = π), we obtain the
best fit to the CKM matrix:

V̄ †VCP '

 .9743 .2253 .0019− .0049i
−.2252 .9734 .0412

.0075− .0050i −.0405 .9991

 .(10)

This choice of λ and λ′ implies ms/md ' 18 and
mb/ms ' 29.

When Θct = π/2, we choose λ = 9.83 and λ′ = 348
(and the gauge choice Θdb = −1.84, Θds = Θsb = π), to
obtain the best fit to the CKM matrix:

V̄ †VCP '

 .9743 .2253 .0015− .0039i
−.2252 .9734 .0410

.0077− .0064i −.0403 .9992

 .(11)

This choice for λ and λ′ implies ms/md ' 18 and
mb/ms ' 36.

As Θct varies continuously from 0 to ±π, we find that
the mass ratio ms/md ' 18 is nearly constant, while
mb/ms ranges from 47 to 29. Thus the experimentally
observed mb/ms (42 ≤ mb/ms ≤ 47) favors small Θct,
and we also find a notably better fit to Vtd and Vub for
small Θct.

IV. LEPTON SECTOR

A. LO approximation for PMNS matrix

We assume that the small left-handed neutrino masses
result from the see-saw mechanism [29–33], the complete
6× 6 mass matrix can be expressed as

Mtotal =

(
0 mD

mT
D M

)
, (12)

where mD is the 3 × 3 Dirac mass matrix and M is
the 3 × 3 Majorana mass matrix for the heavy right-
handed neutrinos. (Majorana masses for the left-handed
neutrinos vanish due to electroweak gauge symmetry.)
For mD comparable to the electroweak symmetry break-
ing scale (250 GeV ) and M of order the GUT energy
scale(1015 GeV ), left-handed neutrino masses are of or-
der 0.01−0.1 eV .

For a proper basis choice, mD is diagonal. Following
[26], we assume that mD = diag(m,m,m) and that M
in the LO approximation has the form (up to an overall
scale)

M =

 1 −
√

2 −
√

2

−
√

2 1 −2

−
√

2 −2 1

 = U

 √5 0 0

0 −
√

5 0
0 0 3

UT ,(13)

where

U =


√

5+
√

5
10

√
5−
√

5
10 0

−
√

5−
√

5
20

√
5+
√

5
20 − 1√

2

−
√

5−
√

5
20

√
5+
√

5
20

1√
2

 . (14)

Here M matches Eq.(1) for λ = λ′ = 1, except that we
have swapped the 12 and 23 entries by relabeling the
generations. The corresponding LO mixing angles are
consistent with the so-called golden ratio (GR) pattern
[34, 35]

θ23 = −45◦, θ13 = 0, θ12 = arctan

√
5− 1

2
' 31.7◦, (15)

which is reasonably close to current observations (the mi-
nus sign in θ23 can be eliminated with an appropriate
gauge choice).

In the limitm�M , the PMNS mixing matrix for light
neutrinos also takes the form Eq.(14) in the LO approx-
imation. However, for the light neutrinos the mass hier-
archy is inverted, with m1/m3 = m2/m3 = 3/

√
5. Us-

ing the measured difference of masses squared |∆m2
23| '

2.4×10−3 eV 2, we then obtain m1 = m2 ' 0.074 eV and
m3 ' 0.055 eV in the LO approximation. We can also
estimate the effective mass scale for neutrinoless double
beta decay m0νββ ≡ |

∑3
i=1 U

2
eimi| ' 0.033 eV . The neg-

ative eigenvalue of Eq.(13), which is not a mere gauge
choice, significantly suppresses this quantity.



4

B. Symmetries of mass matrix

The mass matrix Eq.(13) is invariant under the three
symmetry operations

P =

 1 0 0
0 0 1
0 1 0

 ,

S =
1√
5

 1 −
√

2 −
√

2

−
√

2 − (
√

5+1)
2

(
√

5−1)
2

−
√

2 (
√

5−1)
2 − (

√
5+1)
2

 ,

R =
1√
2

 0 i i
−i 1√

2
− 1√

2

−i − 1√
2

1√
2

 , (16)

which satisfy

PTMP = M, STMS = M, RTMR = M, (17)

and

P 2 = 1, S2 = 1, R2 = 1,

PS = SP, PR = RP, SR = −PRS. (18)

The relations Eq.(18) define the group D4 (symmetry
of the square), where we regard −P as a rotation by
π, R as a reflection about an axis through the square’s
diagonal, and S as a reflection about an axis that bisects
opposite sides of the square. The most general right-
handed neutrino mass matrix with this D4 symmetry is

MGeneral =

 1 −
√

2 −
√

2

−
√

2 α −(1 + α)

−
√

2 −(1 + α) α

 . (19)

The corresponding mixing angles do not depend on α,
while the mass eigenvalues become

√
5,−
√

5, 1 + 2α.
The first and second generation neutrinos transform as a
two-dimensional irreducible representation of D4; hence
the degenerate masses. Compatibility with the Ansatz
Eq.(1), after swapping the first and third generations,
requires α = 1. The symmetries P and S were discussed
in [34, 35], but the complex transformation R was in-
troduced in [26]. Due to the additional symmetry R,
MGeneral can not be derived from the usual A5 family
symmetry, despite the same golden ratio pattern of U .

We note that the operations P , S, and R are assumed
to be symmetries of the right-handed Majorana mass ma-
trix M in a particular basis such that the Dirac mass ma-
trix mD is diagonal. A further symmetry, invariance of
mD under P and S acting simultaneously on the right-
handed and left-handed neutrinos in this basis, would
justify our assumption that mD is proportional to the
identity matrix.

(a) (b)

FIG. 1: (Color online) (a) Contour plot for the mass splitting
ratio |∆m2

32|/|∆m2
21| as a function of Θ and Θ′ for Φ = 0.

Only in white regions this ratio can be larger than 2(this ratio
is infinite at origin due to ∆m2

21 = 0). (b) θ13 as a function
of Θ and Θ′.

C. CP -violation correction in neutrino sector

In the LO approximation, where M is real, symmetries
enforce the degeneracy m1 = m2. Now we relax the sym-
metry, allowing phases in M which split the degeneracy
and generate a nonzero θ13. Hence within our scheme the
observed nonzero ∆m2

21 and θ13 already provide evidence
for CP violation in the lepton sector.

In general the symmetric Majorana mass matrix
MCP for the right-handed neutrinos has six independent
phases, but three can eliminated by gauge fixing. Thus
we now assume that MCP has the form

MCP =

 1 −
√

2 −
√

2

−
√

2 eiΘ −2eiΦ

−
√

2 −2eiΦ eiΘ
′

 . (20)

By diagonalizing the 6×6 mass matrix Eq.(12), assuming
Eq.(20) and mD = diag(m,m,m), we may derive the
three mass eigenvalues m1,m2 and m3 for the light left-
handed neutrinos and the corresponding PMNS mixing
matrix.

We find that the large observed mass splitting ratio
|∆m2

32|/|∆m2
21|(' 30− 33) and the relatively small mix-

ing angle θ13(' 0.15 rad are consistent with Eq.(20) only
for Θ ∼ −Θ′ and Φ ∼ 0. This constraint is illustrated in
Fig. 1 and Fig. 2, where we plot |∆m2

32|/|∆m2
21| and θ13

as a function of Θ, Θ′ for Φ fixed, and as a function of Θ
and Φ for Θ = −Θ′.

When we choose Θ = −Θ′ and Φ = 0, the mass matrix

MSCP =

 1 −
√

2 −
√

2

−
√

2 eiΘ −2

−
√

2 −2 e−iΘ

 (21)

has a residual Z2 antiunitary symmetry generated by

P̃ = PK, where K is complex conjugation; note that

P̃ may be viewed as the interchange of µ and τ neutri-
nos accompanied by a time reversal transformation. It is
important that this surviving µ-τ Z2 symmetry is antiu-
nitary; if it were unitary instead, the CP violating phase
in the mass matrix would not generate a nonzero θ13[36].
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(a) (b)

FIG. 2: (Color online) (a) Contour plot for the mass splitting
ratio |∆m2

32|/|∆m2
21| as a function of Θ(= −Θ′) and Φ. Only

in white regions this ratio can be larger than 1(this ratio is
infinite at origin due to ∆m2

21 = 0). (b) θ13 as a function of
Θ(= −Θ′) and Φ.

Assuming this unbroken symmetry in the neutrino sec-
tor, the angle Θ must be ' ±π/18 to account for the
measured value of |∆m2

32|/|∆m2
21| ' 33. With Θ fixed,

the mixing angle is predicted to be θ13 ' 4.8◦; this pre-
dicted value is smaller than the value measured by Daya
Bay [13] by about three sigma, and deviates by more
than three sigma from the best global fit to θ13 [4]. With
a proper gauge choice (see Appendix A for details), we
find the Z2 antiunitary symmetry leads to a maximal
CP -violating angle δ = ±π/2, which is consistent with
the ”best fit” value from recent T2K experiment[16]. We
also find α1 = 0, α2 = π, which may be tested in future
experiments.

We note that the agreement with the measured value
of θ13 can be improved by relaxing the D4 symmetry
of the LO neutrino mass matrix, while maintaining the
µ-τ Z2 antiunitary symmetry, and that this Z2 symme-
try alone leads to some robust predictions. For exam-
ple, if we choose the LO matrix m(λ, λ′) with λ = 1
and λ′ = 0.96, the Z2 antiunitary symmetry is pre-
served. As for Eq.(21), we then choose Θ ' ±π/9 to
fit |∆m2

32|/|∆m2
21| ' 32 and obtain θ13 ∼ 9.2◦, which is

close to the measured value [4, 13]. We emphasize that
the Z2 antiunitary symmetry alone enforces the predic-
tions δ = ±π/2, α1 = 0 and α2 = π.

D. Charged-lepton sector correction

We also parameterize the charged-lepton mass ma-

trix as m(λ̃, λ̃′) = Ũdiag(me,mµ,mτ )Ũ†, and deter-

mine λ̃ = 230 and λ̃′ = 4000 by fitting the mass ra-
tios mµ/me ' 206 and mτ/mµ ' 17(defined at the
electroweak symmetry-breaking energy scale) [4]. The

PMNS mixing matrix then becomes Ũ†UCP . This
charged-lepton correction has only a negligible effect on
θ12, θ13 and δ, because the mass ratios are large, but θ23

is slightly modified to ' 40.1◦, which is reasonably close
to the best global fit [4]. Including phase factors in the
charged-lepton mass matrix also has little effect on the
other mixing angles or the CP -violating phase, but can

change θ23, as we will discuss below.

E. The effect of phases in the charged-lepton mass
matrix

As for the down-quark and up-quark sectors, we may
relax our Ansatz for the charged-lepton mass matrix by
including phases and maintaining Hermiticity, obtaining

mCP (λ̃, λ̃′) =

(
1 −2eiΘeµ −

√
2eiΘeτ

−2e−iΘeµ λ̃ −λ̃
√

2eiΘµτ

−
√

2e−iΘeτ −λ̃
√

2e−iΘµτ λ̃′

)
. (22)

We choose λ̃ = 230 and λ̃′ = 4000 to obtain the best fit
to the experimental observed mass ratios mµ/me ' 206
and mτ/mµ ' 17[4].

Because the mass ratios mµ/me and mτ/me are quite

large, our predicted PMNS mixing matrix Ũ†UCP is
nearly independent of the phases Θeµ and Θeτ ; however,
θ23 depends significantly on Θµτ because mτ/mµ ' 17 is
not so large.

We find that as Θµτ ranges from 0 to π, the mixing an-
gle θ23 varies from 40.1◦ to 50.9◦, while the other mixing
angles and the phases in the PMNS matrix hardly vary at
all. The dependence on the neutrinoless double beta de-
cay mass scale m0νββ on the phases in the charged-lepton
mass matrix is also negligible.

V. CONCLUSIONS AND DISCUSSIONS

We have proposed a unified form for quark and lep-
ton mass matrices, which applies in a “leading order”
approximation where CP -violating phases are ignored.
Down-quark mass ratios are successfully predicted in our
scheme using the measured CKM mixing angles as in-
put. For neutrinos we predict a “golden ratio” mixing
pattern in leading order, and an inverted mass hierar-
chy with m1 ' m2 ' 74 meV , m3 ' 55 meV ; for the
neutrinoless double beta decay mass parameter we pre-
dict m0νββ ' 33 meV . By further assuming a µ − τ Z2

antiunitary symmetry when the CP -violating phases are
included, we can also predict that the CP -violating an-
gle in the neutrino sector is close to the maximal value
δ = ±π/2, and that the phases on the diagonal of the
PMNS mixing matrix are α1 = 0, α2 = π.
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Appendix A: Gauge choice for the phases in the
neutrino sector

The standard decomposition of the PMNS mixing ma-
trix is

U =

 Ue1 Ue2 Ue3
Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3

 =

 1 0 0
0 c23 s23

0 −s23 c23

 c13 0 s13e
−iδ

0 1 0
−s13e

iδ 0 c13

 c12 s12 0
−s12 c12 0

0 0 1

 eiα1/2 0 0
0 eiα2/2 0
0 0 1

 . (A1)

With this convention, the CP -violating phase δ is the phase of the Ue3 matrix element.
To enforce the gauge condition Eq.(A1), we rotate the phases in the second and third generation by eiφ and e−iφ

respectively, thus gauge transforming Eq.(18) in the main text to

MSCP =

 1 −
√

2eiφ −
√

2e−iφ

−
√

2eiφ ei(2φ+Θ) −2

−
√

2e−iφ −2 e−i(2φ+Θ)

 . (A2)

As discussed in the main text, we can fit the experimentally measured ratio of mass squared differences
|∆m2

32|/|∆m2
21| ' 33 by choosing Θ = ∓π/18 ' ∓0.174 in MSCP (recall that mi ∼ 1/Mi where M1,2,3 are the

eigenvalues of MSCP ). By choosing φ = ±0.171, we can diagonalize MSCP as:

MSCP = UCP

 M1 0 0
0 M2 0
0 0 M3

UTCP , (A3)

where

UCP '

 .851 .518i ∓.084i
−.368∓ 0.051i ±.031 + .604i .705
−.368± .051i ∓.031 + .604i −.705


=

 .851 .518 ∓.084i
−.368∓ .051i .604∓ .031i .705
−.368± .051i .604± .031i −.705

 1 0 0
0 i 0
0 0 1

 (A4)

Thus we conclude that δ = ±π/2, α1 = 0, and α2 = π.
The right-handed neutrino mass matrix MSCP also im-

plies m1 ' m2 ' 3√
5
m3; using the observed |∆m2

32| '
2.4 × 10−3 eV 2, we obtain m1 ' m2 ' 0.074 eV and

m3 ' 0.055 eV . The mass parameter for neutrinoless
double beta decay is m0νββ ≡ |

∑
i U

2
eimi| = |(0.8512 −

0.5182)× 0.074 eV − 0.0842 × 0.055 eV | ' 0.033 eV .
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