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Abstract

The energy spectrum of high-energy neutrinos reported by the IceCube collaboration shows a

dip between 400 TeV and 1 PeV. One intriguing explanation is that high-energy neutrinos scatter

with the cosmic neutrino background through a ∼ MeV mediator. Taking the density matrix

approach, we develop a formalism to study the propagation of PeV neutrinos in the presence of

the new neutrino interaction. If the interaction is flavored such as the gauged Lµ − Lτ model

we consider, the resonant collision may not suppress the PeV neutrino flux completely. The new

force mediator may also contribute to the number of effectively massless degrees of freedom in the

early universe and change the diffusion time of neutrinos from the supernova core. Astrophysical

observations such as Big Bang Nucleosynthesis and supernova cooling provide an interesting test

for the explanation.
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I. INTRODUCTION

The IceCube experiment has recently reported the observation of neutrinos in the energy

range of TeV-PeV [1–4], which provides the first evidence for extraterrestrial high-energy

neutrinos. An interesting feature of the observed spectrum is a null detection of high-

energy neutrinos in the energy range of 400-800TeV. Although at present statistics have

not been sufficient enough to confirm the existence of the dip in the spectrum, there have

been investigations whether it can be explained by some new physics [5–16]. One possibility

is that the high-energy neutrinos may scatter with the cosmic neutrino background (CνB)

and lose their energy, resulting in the dip-like feature in the spectrum [9, 11–13, 15, 17].

This scenario has several interesting implications. To suppress the neutrino flux in the

range of 400-800TeV as indicated by the IceCube observation, the scattering cross sec-

tion between the high-energy and CνB neutrinos must be significantly large, which can be

achieved by the Breit-Wigner resonance. Since the resonance mass mR is close to the center-

of-mass energy, it can be estimated as mR ≃
√
2mνEν ∼ O(1) MeV, where neutrino energy

Eν ∼ PeV and neutrino mass mν ∼ 0.01 eV. Therefore, it predicts a new interaction in

the neutrino sector with a force mediator much lighter than the weak scale. Because the

resonant cross section is sensitive to Eν andmν , the IceCube neutrino spectrum may contain

rich information about neutrino mass and redshift of the source [11, 12].

From the perspective of particle physics model building, it is quite challenging to extend

the lepton sector of the Standard Model (SM) with an additional interaction. For example,

if the light mediator couples to the three generations of leptons universally, there are strong

constraints on the interaction strength from such as electron beam-dump experiments [18]

and rare decays of mesons [19]. Therefore, it is reasonable to consider models in which the

new interaction is not flavor-blind. In this case, it is important to treat the propagation of

the high-energy neutrinos properly, in order to calculate the neutrino flux at IceCube. In this

paper, we use the density matrix approach to study propagation of PeV neutrinos from the

source to the IceCube detector in the presence of a new flavored neutrino self-interaction. To

illustrate our main point, we consider an extension of the SM with a gauged Lµ−Lτ [20–28].

This model has several attractive features: it is gauge anomaly-free; it explains the nearly

maximum mixing angle between the second and third generations; the model also evades

severe constraints from electron beam-dump experiments.
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We also study cosmological and astrophysical implications of the model. Since the me-

diator mass is close to the temperature of the Big Bang Nucleosynthesis (BBN) era, the

presence of the mediator in the early universe can potentially contribute to the number of

effectively massless degrees of freedom. In addition, the light mediator may also be produced

in the core of supernovae. The frequent collision between neutrinos mediated by the new

force may significantly reduce the neutrino mean free path, which slows down the supernova

cooling process. We show that both BBN and supernova constraints are sensitive to the

parameter region of the model explaining the dip of the IceCube PeV neutrino spectrum.

Our result can be generalized to other models with an O(1) MeV force carrier coupled to

SM neutrinos.

The rest of the paper is organized as follows. In the next section, we discuss the generic

feature of gauged Lµ − Lτ model and experimental constraints. In Sec. III, we derive the

Boltzmann equation governing the evolution of the neutrino density matrix. Then, we dis-

cuss cosmological and astrophysical implications in Sec. IV. Sec.V is devoted to summarizing

our results. In APPENDIX, we present the derivation of the resonant scattering rate.

II. PARTICLE PHYSICS MODEL

We assume SM leptons have a new interaction with the following Lagrangian

L′
int = −g′Z ′

µ

∑

ℓ,ℓ′

[
L̄ℓγ

µ
Qℓℓ′Lℓ′ + ℓ̄Rγ

µ
Qℓℓ′ℓ

′
R

]
, (1)

where g′ is the coupling constant, Z ′
µ is the new gauge boson, Lℓ denotes the lepton doublet,

ℓR denotes the lepton singlet, and the charge matrix is Qℓℓ′ = diag(0, 1,−1) in the interaction

basis ℓ = (e, µ, τ). We furthermore assume that the gauge boson mass is mZ′ ∼ MeV.

There are several experimental constraints on this model. The existence of the light Z ′
µ

opens up new decay channels for W and Z bosons such as three-body decays W+ → µ+νZ ′.

These new processes change W/Z-boson decay branching ratios by ∆Γ/Γ = 3g′ 2/16π2 in

the limit of mZ′ ≪ mW/Z [29]. To achieve ∼ 1% precision of measured W/Z-boson decay

branching ratios [30], we estimate g′ < 0.7.

One of the most stringent constraints on g′ is from the precise measurement of muon

anomalous magnetic moment aµ = (g−2)/2. The leading contribution from Z ′-exchange to
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aµ can be evaluated as [20, 27, 31]

∆aZ
′

µ =
g′ 2

8π2

∫ 1

0

dx
2m2

µx
2(1− x)

x2m2
µ + (1− x)m2

Z′

. (2)

In fact, several experiments have reported the measured value deviates from the SM predic-

tion at the level of ∆aexpµ = (42.6± 16.5)× 10−10 [32, 33]. While the hadronic uncertainty is

still in debate, we require ∆aZ
′

µ to be less than ∆aexpµ , which gives rise to g′ . 5× 10−4.

The measurements of neutrino-electron interactions also put stringent constraints on

the model. Although the Z ′ boson does not couple to electrons directly in our model, it

contributes to neutrino-electron scattering through photon-Z ′ mixing radiatively induced by

vacuum polarization with µ and τ in the loop. Ref. [34] analyzed data from Borexino (solar

neutrino) [35] and GEMMA (reactor neutrino) [36] experiments to put constraint on the

gauge coupling constant gB−L of a gauged B−L model, which is flavor-blind. To apply their

result to our model, we first relax Borexino constraint on gB−L by a factor of (1/0.66)1/4,

because the Z ′ boson couples only to νµ and ντ , but not νe, which accounts for about 34% of

the total solar neutrino flux [30]. We then impose the scaled upper bound on
√
ǫeg′, where e

is the electric charge of the electron, and ǫ is the photon-Z ′ mixing parameter. We calculate

the mixing parameter ǫ as

ǫ = − eg′

2π2

∫ 1

0

dx x(1− x) ln

[
m2

τ − x(1− x)q2

m2
µ − x(1− x)q2

]
, (3)

where mµ and mτ are the masses of µ and τ , respectively. We take a typical value of

momentum transfer in neutrino-electron scattering, q2 = −1MeV2. Note the choice of q2

does not change ǫ as long as |q2| ≪ m2
µ. We find that constraint from Borexino experiment

is more stringent than that from muon anomalous magnetic moment in the light Z ′ boson

region of mZ′ . 10MeV. Since the GEMMA experiment looks for reactor ν̄e’s before they

oscillate (the distance from reactor is 13.9m), it is not applicable to our model because Z ′

does not couple to νe.

The realization of the observed neutrino masses and mixing angles in the gauged Lν −Lτ

model has been discussed in the literature [23–28]. In this paper, we assume that neu-

trino masses are quasi-degenerate, which can be achieved with a proper choice of the

symmetry breaking pattern [27]. In this case, we can translate the cosmological limit
∑

i mνi < 0.25 eV [37–39] to an upper bound on the individual neutrino massmνi < 0.083 eV.

On the other hand, the observed atmospherical neutrino mass is
√

∆m2
atm ≃ 0.048 eV,
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which leads to a lower bound on mνi ∼ 0.05 eV for a degenerate neutrino mass spec-

trum. Since the dip of the PeV neutrino spectrum at IceCube is in the energy range of

4 × 102 . Eν . 8 × 102TeV [3, 4] and the resonance condition for neutrino scattering is

m2
Z′ ≃ 2Eνmνi , we obtain a preferred range of Z ′ mass 5MeV . mZ′ . 10MeV. If scattering

occurs at a high redshift, we can shift this mass range by a factor of
√
1 + z accordingly.

III. NEUTRINO PROPAGATION

We first estimate the coherence length of PeV neutrinos as follows [40–42]. For any two of

the neutrino mass eigenstates composing a flavor state, the velocity difference of their wave

packets is |vi− vj | ≃ |∆m2
ij |/2E2

ν , where ∆m2
ij ≡ m2

i −m2
j . After they travel distance L, the

wave packets are ∼ L|∆m2
ij |/2E2

ν apart. If L|∆m2
ij |/2E2

ν is larger than the uncertainty in

their spatial location, the wave packets do not overlap and lose coherence.1 Therefore, the

coherence length can be estimated as [41]

Lcoh,ij ≃
4πE2

ν

|∆m2
ij |
σx, (4)

where σx is the spatial uncertainty of PeV neutrinos. Assuming that IceCube PeV neutrinos

are produced by decays of high-energy pions, we expect the spatial uncertainty of PeV

neutrinos is of the order of the distance that the pion travels before it decays, i.e., σx ≃
mπτπ/(4Eν) [41], where mπ/(4Eν) is the Lorentz contraction factor, and the pion lifetime

and mass in the rest frame are τπ ≃ 2.6 × 10−8 s, and mπ ≃ 140MeV, respectively. Taking

Eν=1 PeV and |∆m2
ij | = 10−3 eV2, we can estimate the spatial uncertainty σx ≃ 2.7× 10−5

cm and the coherence length Lcoh,ij ≃ 100 Gpc. Therefore, if PeV neutrinos are produced

by decay of free pions, the coherent length can be larger than the particle horizon size of the

universe ∼ 14 Gpc. However, the environmental effects of the PeV neutrino source, such

as collisions of the parent particle with particles in medium and the presence of magnetic

fields, may shorten the coherence length significantly [41, 43, 44]. Furthermore, even if

the coherent oscillation is maintained during the propagation, it may not be detected due

to uncertainties of source distance and limitations of detector resolution. In our analysis,

we first assume that PeV neutrinos are coherent and derive the probability matrix in the

presence of the new interaction, and then take time-averaging over the oscillatory terms to

1 In this case, the density matrix defined in Eq. (5) is diagonal in the mass basis.
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include the possible decoherence effects. Therefore, the formalism we will develop below is

valid even if PeV neutrinos have a coherent length shorter than the propagation distance.

To describe propagation of the PeV neutrinos from the source to the IceCube detector,

we consider evolution of the following density matrix

Fℓℓ′(~k, t) ∝ 〈a†ℓ(~k)aℓ′(~k)〉 , (5)

where aℓ(~k) is an annihilation operator of lepton νℓ neutrino with momentum ~k. We normal-

ize the density matrix such that the number density is given by nℓ(t) =
∫
d3~k/(2π)3Fℓℓ(~k, t).

The evolution equation of the density matrix can be derived from nonequilibrium field the-

ory [45–47],

∂

∂t
F (~k, t)−H~k

∂

∂~k
F (~k, t) = −i[H (~k),F (~k, t)] + C [F ] , (6)

where H is the Hubble expansion rate, [·, ·] denotes the commutator, H (~k) is the Hamilto-

nian, and C [F ] represents the collision term. The Hamiltonian is

H (~k) =
√

k2 + M ∗
ν Mν ≃ ω(k) +∆M

∗
ν Mν/(2ω(k)) , (7)

where k = |~k|, ω(k) =
√

k2 +m2
ν , m

2
ν = tr(M ∗

ν Mν)/3, and ∆M ∗
ν Mν = M ∗

ν Mν −m2
ν . Since

mass-squared differences are small, we have ∆m2 ≪ ω(k).

We write the collision term as

C [F ] = −Γs(~k, t)

2
{F (~k, t),R} , (8)

and the total scattering rate is given by

Γs(~k, t) = 9ζ(3)T 3
ν (t)

1

mν

ΓZ′

mZ′

δ
[
k −m2

Z′/(2mν)
]
, (9)

where ζ(s) is Riemann zeta function. We present the derivation of Eq. (9) in APPENDIX.

Taking redshift z and incoming momentum ~k0 as time and momentum coordinates instead

of cosmic time t and physical momentum ~k, respectively, we obtain the density matrix

evolution of PeV neutrino,

− ∂

∂z
F̃ (~k0, z) = −i[∆H̃ (~k0, z), F̃ (~k0, z)]−

Γ̃s(~k0, z)

2
{F̃ (~k0, z),R} (10)

where

F̃ = F (~k, t), ∆H̃ =
∆M ∗

ν Mν

2k0(1 + z)2H(z)
, Γ̃s = τ̃s(z)δ

[
1 + z − m2

Z′

2mνk0

]
, (11)
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and the optical depth τ̃s(z) is

τ̃s(z) = 18ζ(3)T 3
ν,0(1 + z)3

1

H(z)m2
Z′

ΓZ′

mZ′

. (12)

Integrating both sides of Eq. (10) from zi to zf , we obtain a formal solution for F̃

F̃ (~k0, zf) = P̃(~k0, zf , zi)F̃ (~k0, zi)P̃(~k0, zf , zi)
† (13)

with non-unitary operator

P̃(~k0, z
′, z) = P

{
exp

(
−i

∫ z

z′
dz′′

[
H̃ (~k0, z

′′)− iΓ̃s(~k0, z
′′)R/2

])}
, (14)

where P is the propagation order operator defined such that P {Q(z)Q′(z′)} = Q(z)Q′(z′)

for z < z′ and Q′(z′)Q(z) for z′ < z. Substituting Eq. (11) into Eq. (14), we obtain

P̃(~k0, z
′, z) = Ũ (~k0, z

′, zs(k0))T̃s(zs(k0), z
′, z)Ũ (~k0, zs(k0), z) , (15)

where

Ũ (~k0, z
′, z) = exp

[
−i

∆M ∗
ν Mν

2k0
L̃(z′, z)

]
with L̃(z′, z) =

∫ z

z′

dz′′

(1 + z′′)2H(z′′)
, (16)

T̃s(z
′′, z′, z) =




exp (−τ̃s(z

′′)R/2) (z′ < z′′ < z)

1 (otherwise)
,

zs(k0) = m2
Z′/(2mνk0)− 1 . (17)

U is the unitary matrix that relates the mass basis νi to a basis of interest νℓ =
∑

i Uℓiνi,

the density matrix at z = zf can be written as

F̃ℓℓ′(zf ) =
∑

ℓ′s,i′s

Uℓi3U
∗
ℓ5i3

T̃s,ℓ5ℓ3(zs, zf , zi)Uℓ3i1U
∗
ℓ1i1

F̃ℓ1ℓ2(zi)Uℓ2i2U
∗
ℓ4i2

T̃s,ℓ6ℓ4(zs, zf , zi)Uℓ6i4U
∗
ℓ′i4

× exp

[
−i

∆m2
i1i2

2k0
L̃(zs, zi)

]
exp

[
−i

∆m2
i3i4

2k0
L̃(zf , zs)

]
. (18)

For PeV neutrinos, the oscillation length Losc,ij = 4πk0/∆m2
ij is 8×10−8(k0/PeV)(eV2/m2

ij) pc,

while the propagation length L̃(z′, z) is on the order of 1/H0 = 3 × 103Mpc/h as long as

z′ and z − z′ are on the order of unity. This implies that we can take the period aver-

age of the exponential terms, which gives rise to
〈
exp[−i∆m2

ijL̃/(2k0)]
〉
≃ δij . With this

approximation, we obtain the density matrix as

F̃ℓℓ′(zf ) =
∑

ℓ′s,i′s

Uℓi2U
∗
ℓ5i2T̃s,ℓ5ℓ3(zs, zf , zi)Uℓ3i1U

∗
ℓ1i1F̃ℓ1ℓ2(zi)Uℓ2i1U

∗
ℓ4i1T̃s,ℓ6ℓ4(zs, zf , zi)Uℓ6i2U

∗
ℓ′i2 .

(19)
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For PeV neutrino detection, it is useful to take the interaction basis. Here, the unitary

matrix is called Maki-Nakagawa-Sakata (MNS) matrix [48] that is often parametrized by

UMNS =




1 0 0

0 c23 s23

0 −s23 c23







c13 0 s13e
−iδ

0 1 0

−s13e
iδ 0 c13







c12 s12 0

−s12 c12 0

0 0 0


 diag(1, eiα21/2, eiα31/2) ,(20)

with cij and sij denote cos(θij) and sin(θij), respectively. In the interaction basis, the

interaction matrix is diagonal,

T̃s(z
′′, z′, z) =




diag(1, e−τ̃s(z′′)/2, e−τ̃s(z′′)/2) (z′ < z′′ < z)

1 (otherwise)
. (21)

The elements of the probability matrix are

Pℓℓ′ = |〈νℓ(zf )|νℓ′(zi)〉|2 = F̃ℓℓ(~k0, zf) for F̃ℓ1ℓ2(
~k0, zi) = δℓ1ℓ′δℓ2ℓ′, (22)

where we do not sum over ℓ′ and ℓ. We can write Pℓℓ′ explicitly as

Pℓℓ′ =
∑

ℓ′s,i′s

Uℓi2U
∗
ℓ1i2

T̃s,ℓ1ℓ1(zs, zf , zi)Uℓ1i1U
∗
ℓ′i1

Uℓ′i1U
∗
ℓ2i1

T̃s,ℓ2ℓ2(zs, zf , zi)Uℓ2i2U
∗
ℓi2

. (23)

To evaluate P numerically, we take the following values for the MNS matrix parameters

(normal hierarchy) [30]: sin2(θ12) = 0.308, sin2(θ23) = 0.437, sin2(θ13) = 0.0234, and δ/π =

1.39. Combining Eqs. (21) and (23), we obtain

P ≃




0.30 0.13 0.12

0.13 0.06 0.05

0.12 0.05 0.04


+ e−τ̃s(zs)/2




0.07 −0.05 −0.03

−0.05 0.03 0.02

−0.03 0.02 0.01


+ e−τ̃s(zs)




0.18 0.15 0.12

0.15 0.29 0.31

0.12 0.31 0.35


 ,

(24)

for zs ≥ 0.

With the probability matrix given in Eq. (24), we check several extreme cases. In the

absence of scattering, i.e., τ̃s(zs) = 0, the flavor composition of PeV neutrinos at the IceCube

detector is completely determined by the initial condition and oscillations. From Eq. (24),

we can see that
∑

ℓ′(ℓ) Pℓℓ′ = 1, where ℓ′(ℓ) = e, µ, τ . This is expected because without

scattering, the total probability for finding neutrinos in different flavors is conserved.

In the limit of τ̃s(zs) ≫ 1, one might think that νµ and ντ would be completely depleted

in the neutrino flux reaching the IceCube detector because of collisions mediated by the Z ′.
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However, this is not the case. Even though the last two terms of Eq. (24) vanish, the first

one does not depend on τ̃s(zs) at all. Therefore, the probability for finding νµ and ντ does

not vanish. In general, for a model with flavor-dependent neutrino interactions, the CνB can

not completely absorb each flavor of high-energy neutrinos.

To check whether the Lµ − Lτ model can produce the dip in the energy spectrum of

high-energy neutrinos observed by the IceCube, we consider two possible sources for the

high-energy neutrinos. If they originate from pp collisions, the initial flavor compositions

in the neutrino flux are (φνe, φνµ, φντ ) = (φν̄e, φν̄µ, φν̄τ ) ≃ (1, 2, 0). Applying the probability

matrix of Eq. (24) with τ̃s(zs) ≫ 1, we obtain the final flavor composition is (0.56, 0.25, 0.22),

and the total survival rate is 1/3. While, for a pγ source, the initial flavor compositions

are (1, 1, 0) and (0, 1, 0) for neutrinos and anti-neutrino, respectively. At the detector, they

become (0.43, 0.19, 0.17) with a 2/5 survival rate and (0.13, 0.06, 0.05) with a 1/4 survival

rate, respectively.

To examine the favored parameter region for the Lµ − Lτ model, we use Eq. (12) and

take mZ′ = 8 MeV, mν = 0.05 eV, and k0 = 600 TeV. The Hubble expansion rate is

H(z) = H0

√
ΩM(1 + z)3 + ΩΛ, where H0 = 100h km/s/Mpc, ΩM = 0.32, ΩΛ = 0.68, and

h = 0.69. We find the redshift at which the collision occurs is zs ≃ 0.07, and the optical

depth is

τ̃s ≃ 1

(
g′

1.7× 10−4

)2

. (25)

We see that the required value g′ for the model to explain the dip is below the constraint

from the muon g − 2 measurement, g′ . 5 × 10−4. It is interesting to note that the model

can explain the dip in the neutrino spectrum and the discrepancy in the muon anomalous

magnetic moment. If we take g′ = 5 × 10−4 as preferred by ∆aexpµ , the optical depth is

τ̃s ≃ 8.5, which is more than enough to suppress the neutrino flux in the 400-800 TeV

energy range at the IceCube detector [13]. However, as we will show later, this parameter

region is strongly disfavored by the constraint from supernova cooling.

Our result can be easily generalized to the case in which the neutrino interaction is flavor-

blind. After replacing R = diag(0, 1, 1) by diag(1, 1, 1), we can write the probability matrix

as

P ≃ e−τ̃s(zs)




0.54 0.24 0.21

0.24 0.38 0.38

0.21 0.38 0.41


 . (26)
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FIG. 1. Expected number of PeV neutrino events at the IceCube detector for the standard model

(solid), the flavored Lµ − Lτ model (dotted), and a model in which neutrinos have a new flavor-

blind interaction (dashed), together with experimental data [3]. For the Lµ−Lτ model, we assume

that PeV neutrinos originate from pp collisions. Because of the coherent effect in PeV neutrino

propagation, the neutrino flux does not vanish near the resonance for the flavored model. In our

analysis, we have neglected the regeneration effect [12].

In this case, all flavor compositions in the neutrino flux will be suppressed if τs(zs) ≫ 1.

In Fig. 1, we illustrate the event spectrum of the model, together with the experimental

data. As shown in [3], the IceCube data can be fitted by a power law as E2φ(E) = 0.95±0.3×
10−8 GeV cm−2 s−1. We multiply the best-fit signal spectrum by the probability matrices

given in Eqs. (24) and (26), respectively, to get the spectra for the flavored and flavor-blind

interactions. We take mZ′ = 10 MeV and mν = 0.05 eV so that the resonant scattering

occurs near the detector (zs = 0) for neutrinos with measured energy k0 = 1 PeV and at

the source (zs = 1.5) for those with k0 = 400 TeV. We can see that in our flavored model

the collision with CνB neutrinos does not deplete PeV neutrinos completely in the energy

range of resonances. Within the current data set, the expected number of events is just 2.
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Therefore, a small suppression factor can reduce the expected number of events below the

Poisson limit, 1. Our result may be tested with better statistics in the accumulated data

set in the near future.

There is one caveat in the above analysis. In deriving the collision term in Eq. (8), we

have neglected the inverse scattering process and implicitly assumed that PeV neutrinos do

not reach the detector after scattering. Therefore, our current analysis does not capture the

regeneration effect [12], i.e., elastic scattering also leads to a pile-up of neutrinos at lower

energy. Although the full Boltzmann equation contains the regeneration term as shown

in Eq. (40) (Appendix), it is difficult to solve. Since the propagation length is a factor of

∼ 1010 larger than the oscillating length, tracking each oscillation cycle over propagation

in the numerical calculation is highly challenging. In our analysis, we have neglected the

regeneration term and solved the Boltzmann equation analytically. In our model, we expect

that the regeneration effect increases the event number in the low-energy range, while leave

the high-energy spectrum unchanged as in the case of [12]. Therefore, both the flavor and

regeneration effects could be important in determining the final signal spectrum for the

Lµ − Lτ model. On the other hand, if the force mediator also couples to other states and

scattering is inelastic, our analysis is applicable directly because the regeneration effect is

absent in this case.

IV. COSMOLOGICAL AND ASTROPHYSICAL IMPLICATIONS

In this section, we study cosmological and astrophysical implications if neutrinos interact

with a new ∼ MeV force carrier. We take the Lµ−Lτ model as an example, and our analysis

can be generalized to other models.

A. ∆Neff constraints

In the early universe, Z ′ bosons can be produced in the SM thermal both by inverse

decay and pair annihilation of leptons. The rate of inverse decay can be estimated as Γinv ∼
g′2mZ′ ×mZ′/T , where mZ′/T is the time dilation factor. The rate for pair annihilation is

Γann ∼ g′4T . At early stages when the temperature is high, the pair annihilation process

dominates the production of Z ′ in the thermal bath. But inverse decay becomes more
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important when T . 100GeV(10−4/g′)(mZ′/10MeV). When the temperature drops below

mZ′, the number density of Z ′ becomes suppressed by the Boltzmann factor. Since the Z ′

mass is close to the temperature when BBN starts, it may contribute to the effective number

of neutrinos Neff .

The mediator Z ′ may change Neff in two ways. If Z ′ is still relativistic during BBN, it

contributes to Neff directly. In this case, ∆Neff = 3×4/7 ≃ 1.7, which is strongly disfavored

by observations of light nuclei abundances [49, 50] and CMB anisotropies [37–39]. Since

mZ′ ∼ 10 MeV in the model we consider, the direct contribution to Neff at T=0.1-1 MeV is

negligible because of the Boltzmann suppression factor. However, even in this case, Z ′ may

still contribution to Neff in an indirect way. When Z ′ becomes nonrelativistic, it transfers

its entropy to νµ and ντ and increase their temperature relative to the temperature of νe

after neutrinos decouple from the SM thermal bath at Tν,dec=1.5 MeV. To study this subtle

effect, we take the following steps. We assume all neutrinos and anti-neutrinos have the

same temperature Tν,dec=1.5 MeV when they decouple from the SM thermal bath. After

decoupling, the νµ and ντ , and Z ′ form a thermal bath, which evolve independently from

νe and the photon. Then, we follow the phase space distribution function of νµ, ντ , and

Z ′ from Tν,dec=1.5 MeV to Tγ =0.1 MeV, and derive a lower bound on mZ′ by demanding

∆Neff < 0.7 at T =0.1 MeV.

Since both inverse decay and pair annihilation processes respect CP , the relevant phase

space distribution functions (per spin degrees of freedom) are given by

fνµ = fν̄µ = fντ = fν̄τ =
1

ek/T ′−ξ + 1
, fZ′ =

1

e
√

k2+m2

Z′
/T ′−ξ′ − 1

. (27)

where T ′ denotes the temperature of νν , ντ and Z ′ after they decouple from the SM thermal

bath, ξ and ξ′ are the chemical potential per unit temperature for the neutrinos and Z ′

bosons, respectively.

To evaluate ξ and ξ′, we impose the following three conditions.

• ξ′ = 2ξ, because the inverse decay process is in the thermal equilibrium.

• The entropy per comoving volume is conserved,

(sνµ + sν̄µ + sντ + sν̄τ + sZ′)a3 = constant, (28)

where a is the scale factor.

12



• The third condition depends on whether the pair annihilation process is in chemical

equilibrium when the number density of Z ′ becomes negligible. We estimate the

equilibrium condition requires g′ & 10−5. In this case, ξ′ = ξ. Combining with the

first condition, we have ξ′ = ξ = 0. If not, we instead use the conservation condition

of the comoving number density

(nνµ + nν̄µ + nντ + nν̄τ + 2nZ′)a3 = constant. (29)

We will discuss both cases.

With the distribution functions given in Eq. (27), we can write the entropy densities as

sνµ = sν̄µ = sντ = sν̄τ =

∫
4πk2dk

(2π)3

[
4k

3T ′
− ξ

]
fν , (30)

sZ′ = 3

∫
4πk2dk

(2π)3

[√
k2 +m2

Z′

T ′
+

k2

3T ′
√

k2 +m2
Z′

− ξ′

]
fZ′. (31)

In the case of ξ′ = ξ = 0, we use the entropy conservation condition Eq. (28) to determine

the temperature, T ′, at T=0.1 MeV for a given mZ′. As we know, in the standard case, all

neutrino species have the same temperature 0.1× (4/11)1/3 MeV when T=0.1 MeV. In our

case, the νe evolves as before, but both νµ and ντ should have a higher temperature than

0.1 × (4/11)1/3 because they inherit the energy density of the Z ′ boson. To evaluate the

energy densities of the νµ, ντ and Z ′, we use

ρνµ = ρν̄µ = ρντ = ρν̄τ =

∫
4πk2dk

(2π)3
kfν , ρZ′ = 3

∫
4πk2dk

(2π)3

√
k2 +m2

Z′fZ′ . (32)

We find that ρZ′ is negligible mZ′ &1 MeV at T=0.1 MeV. Using the standard definition,

ργ + ρνe + ρν̄e + ρνµ + ρν̄µ + ρντ + ρν̄τ = ργ

[
1 +

7

8

(
4

11

)4/3

(∆Neff + 3)

]
, (33)

we calculate ∆Neff . Since the presence of the Z ′ boson does not change the thermal history

of γ and νe, the following relation is still valid in our model

ργ + ρνe + ρν̄e = ργ

[
1 +

7

8

(
4

11

)4/3
]
. (34)

We demand ∆Neff defined in Eq. (33) to be less than 0.7, and derive an lower bound mZ′ &

5.3MeV(Tν,dec/1.5MeV) shown in Fig. 2. We note that ∆Neff drops significantly for larger
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mZ′. For example, ∆Neff is 0.1 formZ′ & 10MeV(Tν,dec/1.5MeV). This is because the energy

density carried by the Z ′ boson is suppressed by the Boltzmann factor ∼ exp(−mZ′/T ′).

If the process of pair annihilation and creation becomes less than the Hubble expansion

rate when the Z ′ boson becomes nonrelativistic, T ′, ξ and ξ′ can be determined by solving

Eqs. (28) and (29) simultaneously with the initial condition ξ = ξ′ = 0 at Tν,dec = 1.5 MeV,

where the number densities are given by

nνµ = nν̄µ = nντ = nν̄τ =

∫
4πk2dk

(2π)3
fν , nZ′ = 3

∫
4πk2dk

(2π)3
fZ′ . (35)

Following a similar procedure, we obtain mZ′ & 5.3MeV(Tν,dec/1.5MeV) for ∆Neff < 0.7,

which is similar to the lower bound for the case of ξ′ = ξ. Therefore, our lower bound on

mZ′ shown in Fig. 2 changes only a few percent even in the small coupling region.

B. Supernova Cooling and Neutrino Bursts

The presence of a new MeV force carrier between neutrinos also has interesting implica-

tions for the physics of supernova neutrinos. We first briefly summarize the basic picture

in the standard case, see Refs. [51, 52] for review and references therein. The core-collapse

supernova forms a proto-neutron star in its core. Its size and temperature are R ∼ 10 km

and T ∼ 30MeV, respectively. In the core, nuclear reactions and electron pair-annihilations

produce large numbers of neutrinos. These neutrinos reach thermal equilibrium with nuclear

matter and cannot escape from the core due to its high density. As density and tempera-

ture decrease with distance from the core, the mean free path of neutrinos becomes longer.

Above some radius (called the neutrino sphere), they start streaming freely. The radius

and temperature of the νµ and ντ sphere are roughly R ∼ 15 km and T ∼ 8MeV, respec-

tively. The νe sphere has a lager size and lower temperature since they can interact with

circumstellar media more strongly through the charged current. The diffusion time can be

estimated as τdiff = λ/c(R/λ)2, where λ is the neutrino mean free path, and c is the speed

of light. If neutrinos have only the SM weak interaction, we can estimate τdiff ∼ 10 s, which

is consistent with observed duration of the neutrino burst from SN1987A [53, 54].

If neutrinos have new interactions, the standard picture of supernova neutrinos changes.

For the Lµ−Lτ model we consider, the Z ′ mediator can be produced inside the core if its mass

is comparable or less than the core temperature. The the travel distance before it decays is

14



only cτZ′ ∼ 10−9 km(g′/10−4)−2(T/10MeV)(10MeV/mZ′)2, which is much smaller than the

core radius. Therefore, the produced Z ′ boson will reach thermal equilibrium with neutrinos

and other particles in the core. These reactions may prevent νν and ντ from free-streaming,

and change their diffusion time. We evaluate the diffusion time in the following way. The

number density of νµ and ντ increases as Z ′ decays, ṅν ∼ 1/2〈ΓZ′〉nZ′, where 〈ΓZ′〉 is the

total decay width of Z ′ averaged with phase space distributions. Meanwhile, nν decreases

through the inverse decay. Therefore, we have ṅν = 1/2〈ΓZ′〉nZ′ − 〈σv〉inv nνnν̄ . Since

ṅν = 0 in equilibrium, the detailed balance tells us 〈σv〉 = neq
Z′/(2 〈ΓZ′〉neq

ν neq
ν̄ ), where neq

are the number densities when the particles are in thermal equilibrium as given in Eq. (35).

Therefore, we can evaluate the mean-free path for νµ and ντ as

λ =
c

(1/2〈ΓZ′〉neq
Z′/n

eq
ν )

. (36)

To estimate the mean free path in Eq. (36), we factorize the thermally-averaged total width

as 〈ΓZ′〉 = g′2/(12π)mZ′fD(mZ′/T ), where

fD = 16π

∫
Π(~k)fZ′(k)

∫
Π(~p) (1− fν(p))

∫
Π(~p′) (1− fν̄(p

′)) (2π)4δ4(k − p− p′) (37)

with Π(~k) = d3~k/2ω(2π)3 as the phase space measure. We evaluate fD numerically as shown

in Fig. 3. Roughly speaking, fD can be regarded as the time dilation factor fD ∼ mZ′/T .

Using Eq. (36), we estimate the diffusion time for νµ and ντ in the presence of Z ′ as shown

in Fig. 2 (solid black), where we have taken the core size as 10 km and temperature 8 MeV.

For mZ′ ∼5-10 MeV and g′ > 10−5, νµ and ντ may not contribute to the neutrino cooling

of the core, and the neutrino burst would last 3 times longer than expected in the standard

case. This appears to be incompatible with the observed ∼ 10 s duration of the neutrino

burst of SN1987A, although we can not draw a concrete conclusion because uncertainties in

supernova modeling (e.g., nuclear equation of state), limited statistics of observed events,

and also uncertainties in deriving our limit. On the other hand, cooling processes through

other invisible particles can compensate the suppressed neutrino cooling in this model. For

example, QCD axions with mass of ∼ meV [55–57] and hidden photons with a mixing

parameter of ∼ 10−10 [58, 59] are well-motivated candidates in charge of invisible cooling.

Running simulations with this model are warranted for improving the limit and comparing

it with observations in detail.2

2 The simulations are performed for QCD axions. [59, 60].
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FIG. 2. Summary of the parameter space of the gauged Lµ − Lτ model. Experimental bounds on

the model are from the muon g− 2 measurement (red band) and the electron-neutrino interaction

measurement (brown) at Borexino experiment (Sec. II). In the case of the quasi-degenerate neu-

trino mass spectrum, lower and upper bounds (blue vertical dashed) on neutrino masses indicate

the range of gauge boson mass mZ′ = 5-10MeV required to produce the IceCube dip via resonant

interaction with CνB neutrinos (Sec. II). The optical depth (green dashed) of the IceCube neu-

trinos τ̃s should be larger than unity to reproduce the observed PeV neutrino spectrum (Sec III).

Depending on parameters, resonant scattering can occur at different redshifts. Cosmological con-

straints requires mZ′ & 5 MeV such that ∆Neff < 0.7 (gray vertical). For mZ′ in the range of 5-10

MeV, the energy density carried by the Z ′ boson may still give sizable contributions to ∆Neff , i.e.,

∆Neff ∼0.1-0.7 (Sec. IVA). The resonant interaction may change the diffusion time of νµ and ντ

(black). If τdiff is larger than ∼ 10 s, it may delay supernova cooling (Sec. IVB).

V. CONCLUSIONS

The IceCube experiment has observed high-energy cosmic neutrinos for the first time.

The observed neutrino spectrum exhibits a dip around the sub-PeV energy scale, which may
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FIG. 3. Prefactor fD of the thermally-averaged decay width, 〈ΓZ′〉 = g′2/(12π)mZ′fD(mZ′/T ), as

a function of the ratio of Z ′ mass to temperature. By using this result, we evaluate the mean free

path of νµ and ντ in the supernova core (see Eqs. (36) and (37)) .

indicate new physics beyond the SM of particle physics. One possible explanation is that

PeV neutrinos may scatter with the CνB through a MeV resonance and lose their energy

before reaching the IceCube detector. In this paper, we have developed a formalism to trace

the propagation of PeV neutrinos in the presence of the new interaction. For the flavored

interaction, we have shown that resonant scattering may not suppress the PeV neutrino flux

completely, which could be tested in the near future.

We have also discussed astrophysical and cosmological constraints on this type of models.

The MeV mediator could be produced in the core of supernova, and frequent neutrino

collisions induced by the mediator in the core could trap neutrinos inside the core. In the

early universe, the mediator could thermalize with the SM thermal bath and contribute to

the number of effectively massless degrees of freedom. We have shown both the BBN and

supernova observations are sensitive to the favored parameter region explaining the dip in

the IceCube high-energy neutrino spectrum.
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APPENDIX

The collision term C [F ] describes scattering between the PeV neutrinos with CνB neu-

trinos, ν(k) + ν̄(p) ↔ ν(k′) + ν̄(p′), which is given by

C [F ] =− 1

2ω(k)

∫
dΠ(~k′)

∫
dΠ(~p)

∫
dΠ(~p′)(2π)4δ4(k + p− k′ − p′)

∑

spins

×1

2

∑

b′s

[
{FT (~k, t),M

b2b1†
F

(
1− FT (~k

′, t)
)
M

b3b4
F }FT,b4b1(~p, t) (1− FT,(~p

′, t))b2b3

−{1 − FT (~k, t),M
b1b2
B FT (~k

′, t)M b4b3†
B } (1− FT (~p, t))b4b1 FT,b2b3(~p

′, t)
]
, (38)

where Π(~k) = d3~k/(2ω(k)(2π)3) is the phase space measure, {·, ·} denotes the anticommu-

tator, MF,B are the amplitude matrices for forward and backward scattering, respectively,

and FT is a sum of density matrices of PeV neutrinos F and background neutrinos FB.

The collision term C [F ] can be further simplified. Since the phase density of the PeV

neutrinos is much less than the quantum limit, FT (~k, t) ≪ 1 for k ∼PeV, we can ignore the

higher-order term of F 2 and the Pauli blocking effect. In addition, we assume the distribu-

tion of background neutrinos are flavor-blind, i.e., fb(~k, t) = f(~k, t) = 1/[exp(k/Tν(t)) + 1]

with Tν(t) = Tν,0(1+z) ≃ 1.7×10−4(1+z) eV and z parametrizing the redshift. With these

considerations, the collision term can be written as

C [F ] =− 1

2ω(k)

∫
dΠ(~k′)

∫
dΠ(~p)

∫
dΠ(~p′)(2π)4δ4(k + p− k′ − p′)

×
∑

spins

1

2

∑

b′s

[
{F (~k, t),M b2b1†

F M
b2b1
F }f(~p, t)

−2M b1b2
B F (~k′, t)M b1b2†

B f(~p′, t)− 2M b1b2
B M

b1b3†
B Fb2b3(~p

′, t)f(~k′, t)
]
. (39)

In general, all s, t and u-channel exchanges of Z ′ contribute to neutrino scattering.

Here, we focus on the parameter region where the s-channel resonance has a domi-

nant contribution. For the model we consider, the invariant amplitude matrices can be

written as M b′b
F,B = MF,BOb′b, where MF = M (ν(k) + ν̄(p) → ν(k′) + ν̄(p′)), MB =

M (ν(k′) + ν̄(p′) → ν(k) + ν̄(p)), and Ob′b
ℓ′ℓ = Qℓ′b′Qbℓ (see Eq. (1)). Hence, we have the
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collision term as,

C [F ] =− 1

2ω(k)

∫
dΠ(~k′)

∫
dΠ(~p)

∫
dΠ(~p′)(2π)4δ4(k + p− k′ − p′)

×
∑

spins

1

2

[
2|MF |2{F (~k, t),R}f(~p, t)

−2|MB|2R
(
Tr(F (~k′, t)R)f(~p′, t) + Tr(F̄ (~p′, t)RT )f(~k′, t)

)]
, (40)

where R = Q2 containing all information about flavor structure of new neutrino interactions.

For the Lν −Lτ model, R = diag(0, 1, 1) in the interaction basis. In Eq. (40), the first term

in the square bracket corresponds to the disappearance of neutrinos with energy k, while the

second one represents the regeneration effect due to collisions between CνB neutrinos and

those with energy higher than k. The former can be simplified further as discussed below,

while the latter can not. We drop the second term in our calculation because of technical

challenges (see the discussion toward the end of Sec. III).

Noting the definition of scattering cross section

2ω(k)2ω(p)σ(ν(k) + ν̄(p) → ν(k) + ν̄(p′))vrel =

∫
dΠ(~k′)

∫
dΠ(~p′)(2π)4δ4(k + p− k′ − p′)×

∑

spins

|M (ν(k) + ν̄(p) → ν(k′) + ν̄(p′)) |2 , (41)

we write the scattering rate Γs(~k, t) as

Γs(~k, t) = 2

∫
d3~p

(2π)3
f(~p, t)σ(ν(k) + ν̄(p) → ν + ν̄)vrel . (42)

The cross section for resonant scattering is given by the Breit-Wigner formula

σR = 4π
2J + 1

(2s1 + 1)(2s2 + 1)
BrinBrout

1

p2cm

E2
cmΓ

2
R(Ecm)

(E2
cm −m2

R)
2 + E2

cmΓ
2
R(Ecm)

, (43)

where s1 and s2 are the spins of initial particles, J is the spin of the resonance, mR is its

mass, ΓR is its decay width, and Brin and Brout are decay branching ratios to initial and

final state particles, respectively. In the limit of mR ≫ ΓR, Eq. (43) can be written as

σR ≃ 16π2 2J + 1

(2s1 + 1)(2s2 + 1)
BrinBrout

ΓR

mR
δ(E2

cm −m2
R). (44)

For the model we consider, s1 = s2 = 0, Brin = Brout = 1/2, and we have

σ = 12π2 ΓZ′

mZ′

δ(E2
cm −m2

Z′), (45)
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where ΓZ′ = g′2mZ′/(12π) is the Z ′ decay width in the rest frame. Therefore, the total

scattering rate is

Γs(~k, t) = 9ζ(3)T 3
ν (t)

1

mν

ΓZ′

mZ′

δ
[
k −m2

Z′/(2mν)
]
, (46)

where ζ(s) is Riemann zeta function.
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