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69IFIC, Universitat de Valencia-CSIC, E-46071 Valencia, Spain
70University of Victoria, Victoria, British Columbia, Canada V8W 3P6

71Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
72University of Wisconsin, Madison, Wisconsin 53706, USA

We present measurements of Collins asymmetries in the inclusive process e+e− → h1h2X, h1h2 =
KK, Kπ, ππ, at the center-of-mass energy of 10.6 GeV, using a data sample of 468 fb−1 collected by
the BABAR experiment at the PEP-II B factory at SLAC National Accelerator Center. Considering
hadrons in opposite thrust hemispheres of hadronic events, we observe clear azimuthal asymmetries
in the ratio of unlike-sign to like-sign, and unlike-sign to all charged h1h2 pairs, which increase with
hadron energies. The Kπ asymmetries are similar to those measured for the ππ pairs, whereas those
measured for high-energy KK pairs are, in general, larger.

PACS numbers: 13.66.Bc, 13.87.Fh, 13.88.+e, 14.65.-q

The Collins effect [1] relates the transverse spin com-
ponent of a fragmenting quark to the azimuthal distri-
bution of final state hadrons about its flight direction.
The chiral-odd, transverse momentum-dependent Collins
fragmentation function (FF) provides a unique probe of
quantum chromodynamics (QCD), such as factorization
and evolution with the energy scale Q2 [2–5].
Additional interest has been sparked by the obser-

vation of azimuthal asymmetries for pions and kaons
in semi-inclusive deep inelastic scattering experiments
(SIDIS) [6–10]. These are sensitive to the product of a
Collins FF and a chiral-odd transversity parton distribu-
tion function (PDF), one of the three fundamental PDFs
needed to describe the spin content of the nucleon. Al-
though these observations require nonzero Collins FFs,
independent direct measurements of one of these chiral-
odd functions are needed to determine each of them.
In e+e− annihilation, one can measure the product of

two Collins FFs, and detailed measurements have been
made for pairs of charged pions [11–13]. No measure-
ments are available for Kπ and KK pairs, which are
sensitive to different quark-flavor combinations, in par-
ticular the contribution of the strange quark. Such mea-
surements could be combined with SIDIS data to simulta-
neously determine the Collins FFs and transversity PDF
for up, down, and strange quarks [14–19].
In this paper, we report the measurement of the Collins

effect (or Collins asymmetry) for inclusive production of
hadron pairs in the process e+e− → qq → h1h2X , where

∗ Now at: University of Tabuk, Tabuk 71491, Saudi Arabia
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h1,2 = K± or π±, q stands for light quarks u or d or s,
and X for any combination of additional hadrons.
The probability that a transversely polarized quark

(q↑) with momentum direction k̂ and spin Sq fragments
into a hadron h carrying zero intrinsic spin with momen-
tum Ph, is defined in terms of unpolarizedDq

1 and Collins

H⊥q
1 fragmentation functions [20]:

Dq↑

h (z,PhT ) = Dq
1(z, P

2
hT )+H⊥q

1 (z, P 2
hT )

(k̂ ×PhT ) · Sq

zMh

,

(1)
where Mh, PhT , and z = 2Eh/

√
s are the hadron mass,

momentum transverse to k̂, and fractional energy, re-
spectively, with Eh its total energy and

√
s the e+e−

center-of-mass (c.m.) energy. The term including H⊥
1 in-

troduces an azimuthal modulation around the direction
of the fragmenting quark, called Collins asymmetry.
In e+e− → qq events, the q and q must be produced

back-to-back in the e+e− c.m. frame with their spin
aligned. For unpolarized e+ and e− beams at BABAR

energies, the q and q spins are polarized along either the
e+ or e− beam direction, so there is a large transverse
component when the angle between the e+e− and the qq
axis is large. The direction is unknown for a given event,
but the correlation can be exploited. Experimentally, the
q and q directions are difficult to measure, but the event
thrust axis n̂ [21, 22] approximates at leading order the
qq axis, so an azimuthal correlation between two hadrons
in opposite thrust hemispheres reflects the product of the
two Collins functions.
Figure 1 shows the thrust reference frame (RF12) [23].

If not otherwise specified, all kinematic variables are de-
fined in the e+e− c.m. frame. The Collins effect results in
a cosine modulation of the azimuthal angle φ12 = φ1+φ2

of the di-hadron yields. Expressing the yield as a func-
tion of φ12 (after the integration over PhT ), and dividing
by the average bin content, we obtain the normalized
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FIG. 1. (color online). Thrust reference frame (RF12). The
azimuthal angles φ1 and φ2 are the angles between the scatter-
ing plane and the transverse hadron momenta pt1(t2) around
the thrust axis n̂. The polar angle θth is the angle between n̂

and the beam axis. Note that the difference between pt1(t2)

and PhT is that the latter is calculated with respect to the qq
axis.

rate [11]

R12(φ12) = 1 +
sin2 θth

1 + cos2 θth
cosφ12 ·

H
⊥[1]
1 (z1)H

⊥[1]

1 (z2)

D
[0]
1 (z1)D

[0]

1 (z2)
,

(2)
where the sum over the involved quark flavors is implied,
θth is defined in Fig. 1, z1(2) is the fractional energy of the
first (second) hadron, and the bar denotes the function
for the q. Equation (2) involves only the moments of FF,
which are defined as

F [n](zi) ≡
∫

d|kT|2
[ |kT|
Mi

]n

F (zi, |kT|2), (3)

with n = 0, 1, and |kT| the transverse momentum of the
quarks with respect to the hadrons they fragment into,
which, in this frame, is related to the measurement of the
transverse momenta of the two hadrons with respect to
the thrust axis.
Despite the simple form of the R12 normalized rate,

which involves only the product of moments of FFs, the
RF12 frame comes with several downsides, among oth-
ers of having to rely on Monte Carlo (MC) simulations
when using the thrust axis as a proxy for the leading-
order qq axis. An alternative frame is the analogue of the
Gottfried-Jackson frame [23, 24] which uses the momen-
tum of one hadron as a reference axis, and defines a single
angle φ0 between the plane containing the two hadron
momenta and the plane defined by the beam and the ref-
erence axis. We refer to this frame as RF0 [11, 12]. The
corresponding normalized yield in the e+e− c.m. system

is [23]

R0(2φ0) =1 +
sin2 θ2

1 + cos2 θ2
cos 2φ0·

F [(2ĥ · kT ĥ · pT − kT · pT )H
⊥
1 H

⊥

1 ]

(M1M2)F [D1D1]
,

(4)

where θ2 is the angle between the hadron used as ref-
erence and the beam axis, ĥ is the unit vector in the
direction of the transverse momentum of the first hadron
relative to the axis defined by the second hadron, and F
is used to denote the convolution integral

F [XX] ≡
∑

q

e2q

∫

d2kT d
2pT δ

2(pT + kT − qT )

Xq(z1, z
2
1k

2
T )X

q
(z2, z

2
2p

2
T ),

(5)

with kT , pT , and qT the transverse momentum of the
fragmenting quark, antiquark, and virtual photon from
e+e− annihilation, respectively, in the frame where the
two hadrons are collinear, and X (X) ≡ D1 (D1) or

H⊥
1 (H

⊥

1 ). In this frame, specific assumptions on the
kT -dependence of the involved functions are necessary
to explicitly evaluate the convolution integrals.
For this analysis we use a data sample of 468 fb−1 [25]

collected at the c.m. energy
√
s ≈ 10.6 GeV with the

BABAR detector [26, 27] at the SLAC National Accelera-
tor Laboratory. We use tracks reconstructed in the silicon
vertex detector and in the drift chamber (DCH) and iden-
tified as pions or kaons in the DCH and in the Cherenkov
ring imaging detector (DIRC). Detailed MC simulation is
used to study detector effects and to estimate contribu-
tion from various background sources. Hadronic events
are generated using the Jetset [28] package and undergo
a full detector simulation based on Geant4 [29].
We make a tight selection of hadronic events in or-

der to minimize biases due to detector acceptance and
hard initial-state photon radiation (ISR), as they can in-
troduce fake azimuthal modulations. Furthermore, final-
state gluon (qqg) radiation also leads to angular asym-
metries to be taken into account [23]. Requiring at least
three charged tracks consistent with the e+e− primary
vertex and a total visible energy of the event in the lab-
oratory frame Etot > 11 GeV, we reject e+e− → τ+τ−

and two-photon backgrounds, as well as ISR (qqg) events
with the photon (one jet) along the beam line. About
10% of ISR photons are within our detector acceptance,
and we reject events with a photon candidate with energy
above 2 GeV. We require an event thrust value T > 0.8
to suppress qqg and BB events, and | cos θth| < 0.6 so
that most tracks are within the detector acceptance.
We assign randomly the positive direction of the thrust

axis, and divide each event into two hemispheres by
the plane perpendicular to it. To ensure tracks are as-
signed to the correct hemispheres, we require them to
be within a 45◦ angle of the thrust axis and to have
z > 0.15. A “tight” identification algorithm is used to
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identify kaons (pions), which is about 80% (90%) efficient
and has misidentification rates below 10% (5%). We se-
lect those pions and kaons that lie within the DIRC ac-
ceptance region with a polar angle in laboratory frame
0.45 rad < θlab < 2.46 rad. To minimize backgrounds,
such as e+e− → µ+µ−γ followed by photon conversion,
we require z < 0.9.
We construct all the possible pairs of selected tracks

reconstructed in opposite thrust hemispheres, and we cal-
culate the corresponding azimuthal angles φ1, φ2, and φ0

in the respective reference frames. In this way, we iden-
tify three different samples of hadron pairs: KK, Kπ,
and ππ. To reduce low-energy gluon radiation and the
contribution due to wrong hemispheres assignment, we
require Qt < 3.5 GeV/c, where Qt is the transverse mo-
mentum of the virtual photon from e+e− annihilation in
the frame where the two hadrons are collinear [23].
The analysis is performed in intervals of hadron frac-

tional energies with the following boundaries: 0.15, 0.2,
0.3, 0.5, 0.9, for a total of 16 two-dimensional (z1, z2)
intervals.
For each of the three samples, we evaluate the normal-

ized yield distributions R12 and R0 for unlike (U), like
(L), and any charge combination (C) of hadron pairs as
a function of φ1 + φ2 and 2φ0, as shown in the left plot
of Fig. 2 for KK pairs, for example. These combinations
of charged hadrons contain different contributions of fa-
vored and disfavored FFs, where a favored (disfavored)
process refers to the production of a hadron for which one
(none) of the valence quarks is of the same kind as the
fragmenting quark. In particular, by selecting KK pairs,
we are able to study the favored contribution H⊥fav

s of
the strange quark, not accessible when considering ππ
pairs only.

2
φ+

1
φ

-3 -2 -1 0 1 2 3

R

0.96

0.98

1

1.02

1.04 12
UR

12
LR

12
CR

2
φ+

1
φ

-3 -2 -1 0 1 2 3

12
ULR

12
UCR

FIG. 2. (color online). Distributions of normalized yields (left
plot) for unlike (U), like (L), and any charge combination (C)
of KK pairs, and their double ratios (right plot) in RF12.

The normalized distributions can be parametrized with
a cosine function: Ri

α = bα + aiα cosβα, where α = 0, 12
indicates the reference frames, i = U, L, C the charge
combination of hadron pairs, and β12(0) = φ12(2φ0).

The Ri
α distributions are strongly affected by instru-

mental effects. In order to reduce the impact of the detec-
tor acceptance, as well as any remaining effect from gluon

bremsstrahlung [23], we construct two double ratios (DR)
of normalized distributions, RU

α /R
L
α and RU

α /R
C
α . The

two ratios give access to the same physical quantities as
the independent Ri

α, that is the favored and disfavored
FFs, but in different combinations. We report the results
for both kind of DRs, which are strongly correlated since
they are obtained by using the same data set. These are
shown in the right plot of Fig. 2 for KK pairs in RF12.
At first order, the double ratios are still parametrized by
a function that is linear in the cosine of the corresponding
combination of azimuthal angles:

Rij
α =

Ri
α

Rj
α

≃ Bij
α +Aij

α · cosβα, (6)

with B and A free parameters, and i, j = U, L, C. The
constant term B must be consistent with unity, while
A contains the information about the favored and disfa-
vored Collins FFs.
We fit the binned Rij

α distributions independently for
KK, Kπ, and ππ hadron pairs. Using the MC sample,
we evaluate the K/π (mis)identification probabilities for
the 16 (z1, z2) intervals in each of the three samples. For
example, the probability fKK

KK that a true KK pair is re-
constructed asKK pair is about 90% on average, slightly
decreasing at higher momenta, while the probability fKK

Kπ

that a true Kπ pair is identified as KK is about 10%,
and fKK

ππ is negligible.
The presence of background processes could introduce

azimuthal modulations not related to the Collins effect,
and modifies the measured asymmetry as follows:

Ameas
KK =FKK

uds ·
(

∑

nm

fKK
nm · Anm

)

+

∑

i

FKK
i

(

∑

nm

f (KK)i
nm ·Ai

nm

)

,

(7)

with nm = KK, Kπ, ππ, and i = cc, BB, τ+τ−. In
Eq. 7, Anm are the true Collins asymmetries produced
from the fragmentation of light quarks in the three sam-
ples, Ai

nm is the i-th background asymmetry contribu-
tion, and FKK

uds(i) are the fractions of reconstructed kaon

pairs coming from uds and background events, calcu-
lated from the respective MC samples. By construction,
∑

i Fi+Fuds = 1. A similar expression holds for Kπ and
ππ samples.
Previous studies [11] show that e+e− → BB and τ+τ−

events have negligible Ai
nm, FBB < 2%, and Fτ+τ− sig-

nificantly different from zero only for the ππ sample at
high z values. Since Fcc can be as large as 30%, and Acc

are unknown, we determine Acc
nm in Eq. (7) from sam-

ples enhanced in cc by requiring the reconstruction of
at least one D∗± meson from the decay D∗± → D0π±,
with the D0 candidate reconstructed in the following
four Cabibbo-favored decay modes: K−π+, K−π+π−π+,
K0

sπ
+π−, and K−π+π0. These modes are assumed to

provide a representative sample of ππ, Kπ, and KK
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pairs to be used in the correction, an assumption that
is strengthened by the observation that the background
asymmetries for those modes were found to be consis-
tent. We solve the system of equations for Ameas

KK , Ameas
Kπ ,

Ameas
ππ , for the standard and charm-enhanced samples,

and we extract simultaneously the Collins asymmetries
AKK , AKπ, and Aππ , corrected for the contributions of
the background and K/π (mis)identification. The domi-
nant uncertainties related to this procedure come from
the limited statistics of the D∗-enhanced sample and
from the fractions Fi. The uncertainties on the frac-
tions are evaluated by data-MC comparison and amount
to a few percent. All these uncertainties are therefore
included in the statistical error of the asymmetries ex-
tracted from the system of Eq. (7).
We test the DR method on the MC sample. Spin ef-

fects are not simulated in MC, and so the DR distribu-
tions should be uniform. However, when fitting the dis-
tributions for reconstructed KK pairs with Eq. (6), we
measure a cosine term in the full sample of 0.004± 0.001
and 0.007± 0.001 in the RF12 and RF0 frames, respec-
tively, indicating a bias. Smaller values are obtained for
Kπ and ππ pairs [30]. Studies performed on the MC
samples, both at generation level and after full simula-
tion, demonstrate that the main source of this bias is due
to the emission of ISR, which boosts the hadronic system
and distorts the angular distribution of the final state
particles, resulting in azimuthal modulations not related
to the Collins effect. This effect is more pronounced for
KK pairs due to the lower multiplicity with respect to
the other two combinations of hadrons. Assuming the
bias, which is everywhere smaller than the asymmetries
measured in the data sample in each bin, is additive, we
subtract it from the background-corrected asymmetry.
Using the uds MC sample, or light quark e+e− → qq

MC events, we study the difference between measured
and true azimuthal asymmetries. The asymmetry is in-
troduced into the simulation by reweighting the events
according to the distribution 1 ± a · cosφgen

α , where we
use different values of a ranging from 0 to 8% with posi-
tive (negative) sign for U (L and C ) hadron pairs, and
φgen
α are the azimuthal angles combinations calculated

with respect to the true qq axis in RF12, or the gen-
erated hadron momentum in RF0. The reconstructed
asymmetries in RF12 are systematically underestimated
for the three samples of hadron pairs, as expected since
we use the thrust axis instead of the qq axis, while they
are consistent with the simulated ones in RF0, where
only particle identification and tracking reconstruction
effects could introduce possible dilution. Since we mea-
sure the same dilution for KK, Kπ, and ππ samples, the
asymmetry is corrected by rescaling AKK , AKπ, and Aππ

using the same correction factor, which ranges from 1.3
to 2.3 increasing with z, as shown in Fig. 3. No correc-
tions are needed for the asymmetries measured in RF0.
The uncertainties on the correction factors are assigned
as systematic contributions.
All systematic effects, if not otherwise specified, are
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FIG. 3. (color online). Correction factors for the dilution of
the asymmetry due to the difference between the thrust and
the qq̄ axis. The open (full) markers, triangles and circles,
refer to the U/L and U/C double ratios in the RF12 (RF0)
frame, respectively. The 16 (z1, z2) bins are shown on the
x-axis: in each interval between the dashed lines, z1 is chosen
in the following ranges: [0.15, 0.2], [0.2, 0.3], [0.3, 0.5], and
[0.5, 0.9], while within each interval the points correspond to
the four bins in z2.

evaluated for each bin of z. The main contribution comes
from the MC bias. We compare the bias results from
the nominal selection, with those obtained by requiring
different cuts on Etot, and/or by changing the detector
acceptance region for the hadrons. The largest variation
of the bias is combined in quadrature with the MC sta-
tistical error and taken as systematic uncertainty. The
effects due to the particle identification are evaluated us-
ing tighter and looser selection criteria. The largest de-
viations with respect to the nominal selection are taken
as systematic uncertainties: the average relative uncer-
tainties are around 10%, 7%, and 5% for the KK, Kπ,
and ππ pairs. Fitting the azimuthal distributions us-
ing different bin sizes, we determine relative systematic
uncertainties, which are not larger than 5%, 1.9%, and
1% for the three samples. The systematic uncertainty
due to the Etot cut is obtained by comparing the mea-
sured asymmetries with those obtained with the looser
selection Etot > 10 GeV. The average systematic con-
tribution is around 10% for the three samples in both
reference frames. We use different fitting functions with
additional higher harmonic terms. No significant changes
in the value of the cosine moments with respect to the
standard fits are found. As a cross-check of the double
ratio method we fit the difference of Ri distributions, and
we compare the two results. The difference between the
two procedures is negligible for Kπ and ππ pairs, while
it reaches 1% and 3% for kaon pairs in RF12 and RF0,
respectively. All the other systematic contributions are
negligible [11].
The Collins asymmetries measured for the 16 two-

dimensional (z1, z2) bins, for reconstructedKK,Kπ, and
ππ hadron pairs, are shown in Fig. 4 for RF12 and RF0,
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FIG. 4. (color online). Comparison of U/L (top) and U/C (bottom) Collins asymmetries in RF12 (left) and RF0 (right) for
KK, Kπ, and ππ pairs. The statistical and systematic uncertainties are represented by the bars and the bands around the
points, respectively. The 16 (z1, z2) bins are shown on the x-axis: in each interval between the dashed lines, z1 is chosen in the
following ranges: [0.15, 0.2], [0.2, 0.3], [0.3, 0.5], and [0.5, 0.9], while within each interval the points correspond to the four bins
in z2.

and are summarized in Tables reported in the Supple-
mental Material [30]. The asymmetries are corrected for
the background contributions and K/π contamination
following Eq. (7), the MC bias is subtracted, and the
corrections due to the dilution effects are applied. The
total systematic uncertainties are obtained by adding in
quadrature the individual contributions, and are repre-
sented by the bands around the data points.
An increasing asymmetry with increasing hadron ener-

gies is visible for the U/L double ratio in both reference
frames. The largest effects, but with less precision, are
observed for KK pairs, for which AUL

12 is consistent with
zero at low z, and reaches 22% in the last z bin, while
somewhat smaller values are seen for ππ and Kπ pairs.
In particular, at low (z1, z2) bins AUL for ππ pairs is
nonzero, in agreement with the behavior observed in [11].
The small differences between the two data sets are due
to the different kinematic region selected after the cut on
cos θth. The AUC asymmetry is smaller than AUL in all
cases, and, for the KK pairs, the rise of the asymmetry
with the hadron energies is not evident. We also note
that the asymmetries for the KK pairs are larger than
the others when the U/L ratio is considered, while they
are at the same level, or lower, when they are extracted
from the U/C ratio.
In summary, we have studied for the first time in

e+e− annihilation the Collins asymmetry for inclusive
production of KK and Kπ pairs as a function of
(z1, z2) in two distinct reference frames. We measure
the azimuthal modulation of the double ratios U/L and
U/C, which are sensitive to the favored and disfavored
Collins FFs for light quarks. We simultaneously extract
also the Collins asymmetries for ππ pairs, which are
found to be in agreement with those obtained in previous
studies [11, 13]. The results reported in this paper and
those obtained from SIDIS experiments can be used in
a global analysis to extract the favored contribution of
the strange quark, and to improve the knowledge on the
u and d fragmentation processes [14–16].
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