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We study asymptotically free chiral gauge theories with an SU(N) gauge group and chiral fermions
transforming according to the antisymmetric rank-k tensor representation, Ak ≡ [k]N , and the

requisite number, nF̄ , of copies of fermions in the conjugate fundamental representation, F̄ ≡ [1]
N
,

to render the theories anomaly-free. We denote these as Ak F̄ theories. We take N ≥ 2k + 1 so
that nF̄ ≥ 1. The A2 F̄ theories form an infinite family with N ≥ 5, but we show that the A3 F̄
and A4 F̄ theories are only asymptotically free for N in the respective ranges 7 ≤ N ≤ 17 and
9 ≤ N ≤ 11, and that there are no asymptotically free Ak F̄ theories with k ≥ 5. We investigate
the types of ultraviolet to infrared evolution for these Ak F̄ theories and find that, depending on k
and N , they may lead to a non-Abelian Coulomb phase, or may involve confinement with massless
gauge-singlet composite fermions, bilinear fermion condensation with dynamical gauge and global
symmetry breaking, or formation of multifermion condensates that preserve the gauge symmetry.
We also show that there are no asymptotically free, anomaly-free SU(N) Sk F̄ chiral gauge theories
with k ≥ 3, where Sk denotes the rank-k symmetric representation.

I. INTRODUCTION

The properties of chiral gauge theories, especially in
the strong-coupling regime, remain a challenge for theo-
retical understanding. One requires that such a theory
must be free of any triangle anomaly in gauged currents,
since such an anomaly would spoil the renormalizability
of the theory. Imposing the additional requirement that
such a theory must be asymptotically free guarantees
that there is at least one region, namely the deep ultravi-
olet (UV) at large Euclidean energy/momentum scales µ,
where the running gauge coupling g(µ) is small, so that
the properties of the theory are reliably calculable using
perturbative methods. A chiral gauge theory is said to be
irreducibly chiral if it does not contain any vectorlike sub-
sector. In this case, the chiral gauge symmetry precludes
any fermion mass terms in the underlying Lagrangian.
We shall focus on irreducibly chiral theories here. In an
asymptotically free gauge theory, as the reference scale µ
decreases toward the infrared (IR) from the ultraviolet,
the running gauge coupling grows. One possibility is that
the beta function has an infrared zero at a small value of
the coupling, which constitutes an infrared fixed point of
the renormalization group (RG). In this case, in the full
renormalization-group evolution of the theory from the
deep UV to the IR, the gauge interaction remains weakly
coupled, and one expects that the IR behavior is that
of a (deconfined) non-Abelian Coulomb phase. In con-
trast, if the beta function has an IR zero at a sufficiently
large value of the coupling, or if the beta function does
not have any IR zero, then the theory becomes strongly
coupled in the infrared. In this case, several types of be-
havior can occur. Since the fermions are massless, the
theory is invariant under a global flavor symmetry. If
one can construct gauge-singlet fermionic operator prod-
ucts that match the global anomalies of the fundamental
fermions, a condition known as ’t Hooft global anomaly
matching, then the strongly coupled chiral gauge inter-
action may confine and produce massless gauge-singlet

composite spin-1/2 fermions [1]-[13]. Alternatively, the
strong gauge interaction may produce fermion conden-
sate(s) that spontaneously break gauge and global chiral
symmetries [8, 9], [14]-[22]. This latter type of behav-
ior can occur in several stages at different energy scales,
resulting in a hierarchy of symmetry-breaking scales. In
addition to their intrinsic field-theoretic interest, strongly
coupled chiral gauge theories have been applied in efforts
to construct (preon) models of composite quarks and lep-
tons and models explaining electroweak symmetry break-
ing and the structure of fermion generations and masses
in the Standard Model. Some work along these lines in-
cludes [1]-[21].
In this paper we shall study asymptotically free chiral

gauge theories in four spacetime dimensions (at zero tem-
perature) with an SU(N) gauge group and chiral fermions
transforming according to the antisymmetric rank-k ten-
sor representation, denoted Ak ≡ [k]N , and the requisite
number, nF̄ , of copies of fermions in the conjugate funda-

mental representation, F̄ ≡ [1]N , to render the theories
anomaly-free [23]. We denote these as Ak F̄ theories.
We take N ≥ 2k + 1 so that the theory is chiral and
nF̄ ≥ 1. We extend previous studies on the A2 F̄ the-
ories [2, 8–12, 18] with further analysis of fermion con-
densation channels and sequential symmetry breaking,
while the Ak F̄ theories with k ≥ 3 are, to our knowl-
edge, new here. These Ak F̄ theories with k ≥ 3 form
a natural generalization of the A2 F̄ theories and are of
particular interest because of the fact that each Ak F̄
theory is irreducibly chiral and is minimal in the sense
that it only contains two types of fermion representa-
tions. The A2 F̄ theories were of interest both as preon
models [2, 8–12] and as reasonably ultraviolet-complete
models of dynamical electroweak symmetry breaking and
quark and lepton mass generation [18]. The A2 F̄ theo-
ries form an infinite family with N ≥ 5, but we show
that the A3 F̄ and A4 F̄ theories are only asymptoti-
cally free for N in the respective ranges 7 ≤ N ≤ 17
and 9 ≤ N ≤ 11, and there are no asymptotically free
Ak F̄ theories with k ≥ 5. We investigate the types of
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ultraviolet to infrared evolution for these Ak F̄ theories
and find that, depending on k and N , they may lead to
a non-Abelian Coulomb phase, or may involve confine-
ment with massless gauge-singlet composite fermions, or
fermion condensation with dynamical gauge and global
symmetry breaking. One of the methods that we use
for our analysis is the most-attractive-channel criterion
for bilinear fermion condensation [2]. We find two cases
in each of which two channels are equally attractive, so
the most-attractive channel criterion cannot determine
which is more likely to occur; for these we show how vac-
uum alignment arguments prefer one channel over the
other. We also discuss the possibility that the strongly
coupled gauge interaction can produce multifermion con-
densates that preserve the gauge symmetry. Finally, we
show that there are no asymptotically free, anomaly-free
SU(N) Sk F̄ chiral gauge theories with k ≥ 3, where Sk

denotes the rank-k symmetric representation. We restrict
our consideration here to chiral gauge theories with only
gauge and fermion fields, but without any scalar fields;
the nonperturbative behavior of systems with interacting
gauge, fermion, and scalar fields has been studied, e.g., in
[24], and some recent work on RG flows in chiral theories
with scalar fields includes [25].
This paper is organized as follows. In Sect. II we

briefly review the theoretical methods that we use for
our work. In Sect. III we discuss the construction of
the Ak F̄ chiral gauge theories and determine the con-
straints from anomaly cancellation and asymptotic free-
dom. In Sect. IV we ascertain whether or not the maxi-
mal scheme-independent information from the beta func-
tion indicates that the theory has an infrared zero, and,
if so, we calculate the value of α at this zero in the beta
function. Sections V and VI contain general discussions
of the global flavor symmetry group and the most attrac-
tive channel for bilinear fermion condensation formation
in an Ak F̄ theory. In Sects. VII, VIII, and IX we present
our results on the specific A2 F̄ , A3 F̄ , and A4 F̄ classes of
theories, respectively. In Sect. X we discuss multifermion
condensates that can preserve chiral gauge symmetry. In
Sect. XI we prove that there are no asymptotically free
Sk F̄ chiral gauge theories with k ≥ 3, where Sk denotes
the symmetric rank-k tensor representation of SU(N).
Our conclusions are given in Sect. XII and some auxil-
iary formulas are included in two appendices.

II. METHODS OF ANALYSIS

In this section we briefly discuss the methods of anal-
ysis that we use for our work. We refer the reader to
[12, 13, 22] for more detailed discussions of these meth-
ods. To determine the constraints due to the requirement
of asymptotic freedom and, for asymptotically free the-
ories, to study the UV to IR evolution, we calculate the
beta function to its maximal order, namely two-loops.
We denote α(µ) = g(µ)2/(4π) and a(µ) ≡ g(µ)2/16π2.
The beta function is βα = dα/dt, where dt = d lnµ, with

the series expansion

βα = −2α

∞
∑

ℓ=1

bℓ a
ℓ = −2α

∞
∑

ℓ=1

b̄ℓ α
ℓ . (2.1)

In Eq. (2.1) we have extracted an overall minus sign, bℓ is
the ℓ-loop coefficient, and b̄ℓ = bℓ/(4π)

ℓ is the reduced ℓ-
loop coefficient. The n-loop beta function, denoted βα,nℓ,
is given by Eq. (2.1) with the upper limit on the ℓ-loop
summation equal to n instead of ∞. The requirement
of asymptotic freedom means that βα < 0 for small α,
which holds if b1 > 0. General expressions for b1 [26] and
b2 [27] are given in Appendix A.
Given that b1 > 0, it follows that if b2 < 0, then the

two-loop beta function, βα,2ℓ, has an IR zero at a
IR,2ℓ

=
−b1/b2, or equivalently,

αIR,2ℓ = − b̄1
b̄2

= −4πb1
b2

. (2.2)

For sufficiently large fermion content in an asymptoti-
cally free theory, b2 may be negative, so that the beta
function exhibits such an infrared zero. This was dis-
cussed for vectorial gauge theories in [27, 28] and is also
important for the chiral gauge theories under consider-
ation here. As the fermion content is reduced, αIR,2ℓ

increases, and for sufficiently small fermion content, the
beta function may not exhibit any IR zero. In both
the case where the IR zero occurs at a substantial value
of αIR,2ℓ and the case where the beta function has no
IR zero, the theory becomes strongly coupled in the in-
frared. Higher-loop calculations of the IR zero for various
fermion representations, including rank-2 tensor repre-
sentations, were presented in [29, 30]. Since these higher-
loop calculations are scheme-dependent, it was necessary
to assess the sensitivity of the IR zero to scheme trans-
formations. This was done in [31]-[33]. For our pur-
poses here, it will suffice to use the maximal scheme-
independent information available from the beta func-
tion, as encoded in the coefficients up to the two-loop
level.
In these situations of strong coupling in the infrared,

one can apply various methods to analyze the resul-
tant nonperturbative behavior of the chiral gauge theory.
First, one may investigate whether the fermion content of
the theory satisfies the ’t Hooft global anomaly matching
conditions [1]. These are necessary but not sufficient con-
ditions for the gauge interaction to confine and produce
massless gauge-singlet composite spin-1/2 fermions. If
such massless spin-1/2 fermions are actually produced,
they would saturate the massless-fermion sector of the
theory, since any composite fermions with spins J ≥ 3/2
would be massive [3].
An alternative possibility is that the gauge interaction

can produce bilinear fermion condensates. In an irre-
ducibly chiral theory (without a vectorlike subsector),
these condensates break the gauge symmetry, as well as
global flavor symmetries. A common method to identify



3

the most likely channel in which this condensation oc-
curs is the most-attractive-channel (MAC) criterion [2].
Let us consider a fermion condensation channel in which
fermions in the representations R1 and R2 of the gauge
group G form a (Lorentz-invariant) bilinear fermion con-
densate that transforms according to the representation
Rc of G, denoted as

R1 ×R2 → Rc , (2.3)

where the subscript c stands for “condensate channel”.
An approximate measure of the attractiveness of this con-
densation channel, is

∆C2 ≡ C2(R1) + C2(R2)− C2(Rc) , (2.4)

where C2(R) is the quadratic Casimir invariant for the
representation R (see Appendix B). In this approach,
the most attractive channel for bilinear fermion conden-
sation is the one with the largest (positive) value of ∆C2,
and this is thus the most likely to occur. Here one bears
in mind that the MAC is based on the one-gluon ex-
change and hence is only a rough guide to the nonper-
turbative phenomenon of fermion condensation. If two
or more such channels have the same value of ∆C2, then
we make use of a vacuum alignment argument [14, 15],
as follows. Let us consider the case where two channels
have the same ∆C2 and produce condensates in the repre-
sentations Rc1 and Rc2 . Assume that these condensates
break the initial gauge group G to the respective sub-
groups Hc1 ⊂ G and Hc2 ⊂ G. The vacuum alignment
argument favors the condensation channel that yields the
larger residual subgroup, Hc1 or Hc2 , namely the one
with the larger order, o(Hc1) or o(Hc2) (where the order,
o(H), of a Lie group H is the number of generators of
the associated Lie algebra). This is based on an energy
minimization argument, since the channel that respects
the largest residual gauge symmetry will minimize the
number of gauge bosons that pick up masses.
A rough estimate of the minimal critical strength of the

coupling for fermion condensation in a given channel has
been obtained from an analysis of the Schwinger-Dyson
equation for the fermion propagator and is [34]

αcr,c ∼
2π

3∆C2(Rc)
. (2.5)

Owing to the uncertainties inherent in the strong-
coupling physics describing this condensation phe-
nomenon, Eq. (2.5) is only a rough estimate. For our
purposes, it will be convenient to define the ratio for the
channel (2.3):

ρc ≡
αIR,2ℓ

αcr,c

. (2.6)

If ρc is considerably larger (smaller) than unity, then con-
densation in the given channel (2.3) is likely (unlikely).
We note that fermion condensation in a strongly coupled
gauge theory may, in principle, involve a product of an

even number of fermion operators larger than just two
[40, 41]. A conjecture for a thermally motivated inequal-
ity concerning a measure of field degrees of freedom, as
evaluated in the UV and in the IR, was proposed and
studied for vectorial and chiral gauge theories in [35] and
[10] and investigated further in several works, including
[11–13, 36]. Here our main methods will consist of anal-
yses of beta functions, various channels for fermion con-
densation, and construction of low-energy effective field
theories resulting from self-breaking of chiral gauge the-
ories.

III. Ak F̄ THEORIES AND CONSTRAINTS
FROM ANOMALY CANCELLATION AND

ASYMPTOTIC FREEDOM

The chiral gauge theories that we study here have an
SU(N) gauge group and chiral fermions transforming ac-
cording to a rank-k antisymmetric tensor representation
Ak ≡ [k]N of this group, and the requisite number of chi-
ral fermions in the conjugate fundamental representation,
F̄ ≡ [1]N , to render the theories free of any anomaly in
gauged currents [23]. Here we determine the constraints
on these theories from anomaly cancellation and asymp-
totic freedom. These theories are irreducibly chiral, i.e.,
they do not contain any vectorlike subsector. Conse-
quently, the chiral gauge symmetry forbids any fermion
mass terms in the underlying lagrangian. We denote the
number of copies (flavors) of F̄ fermions as nF̄ . The
contribution to the triangle anomaly in gauged currents
of a chiral fermion in the Ak representation is [37] (see
Appendix B )

A([k]N ) =
(N − 3)! (N − 2k)

(N − k − 1)! (k − 1)!
. (3.1)

The total anomaly in the theory is

A = A([k]N ) + nF̄A([1]N )

= A([k]N )− nF̄A([1]N ) , (3.2)

so A = 0, i.e., the theory is free of anomalies in gauged
currents, if and only if

nF̄ = A([k]N ) . (3.3)

If N is even and k = N/2, the [k]N = [k]2k representation
is self-conjugate, with zero anomaly, so Eq. (3.3) yields
nF̄ = 0 and a nonchiral theory. In order to get a chiral
theory, with positive nF̄ , it is necessary and sufficient
that

N ≥ Nmin = 2k + 1 , (3.4)

so, for a given k, we will restrict N to this range. For N
in this range, the anomaly A([k]N ) is an integer greater
than unity. A member of this set of chiral gauge theories
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is thus determined by its values of k and N and has the
form

G = SU(N), fermions : Ak + nF̄ F̄ , (3.5)

i.e., [k]N + nF̄ [1]N , where N is bounded below by (3.4).
The Ak F̄ theories with k = 3 and k = 4 have respec-
tive upper bounds on N imposed by the requirement of
asymptotic freedom.
To determine the upper bounds on N for these values

of k, we calculate the one-loop coefficient in the beta
function, b1. To indicate explicitly the dependence of the
bℓ coefficients with ℓ = 1, 2 on k, we shall write them as

b
(k)
ℓ . For a general SU(N) Ak F̄ theory, we have

b
(k)
1 =

1

3

[

11N − 2
{

T (Ak) + nF̄ T (F̄ )
}

]

=
1

3

[

11N − 1

(k − 1)!

{[

k
∏

j=2

(N − j)
]

+
(N − 3)!(N − 2k)

(N − k − 1)!

}

]

. (3.6)

In Eq. (3.6), both T (Ak) and nF̄ = A(Ak) are polyno-

mials of degree max(1, k − 1) in N and hence, b
(k)
1 is a

polynomial of degree max(1, k− 1) in N . Specifically, we
find

b
(2)
1 = 3N + 2 , (3.7)

b
(3)
1 =

1

3
(−N2 + 18N − 12) , (3.8)

and

b
(4)
1 =

1

9
(−N3 + 12N2 − 14N + 60) . (3.9)

The A2 F̄ theories are thus asymptotically free without
any upper bound on N . For the A3 F̄ theories, the

asymptotic-freedom requirement that b
(3)
1 must be pos-

itive yields the upper bound N ≤ 17. (If one were to
generalize N from positive integer values to real values,

b
(3)
1 is positive for N in the range 9−

√
69 < N < 9+

√
69,

i.e., 0.6934 < N < 17.3066 to the indicated floating-point

accuracy.) In the A4 F̄ theories, b
(4)
1 is positive only for

the integer values N = 9, 10, 11. (With N generalized

to a positive real number, b
(4)
1 > 0 for N < 11.2291.)

Denoting Nmax as the maximal value of N , for a given k,
for which an SU(N) AkF̄ theory is asymptotically free,
we summarize these results as

Nmax =

{∞ for k = 2
17 for k = 3
11 for k = 4

. (3.10)

Combining these results, we explicitly exhibit the
asymptotically free, anomaly-free chiral gauge theories

of this type with 2 ≤ k ≤ 4 together with the respective
allowed ranges of N , Nmin ≤ N ≤ Nmax:

k = 2 =⇒ N ≥ 5 , (3.11)

k = 3 =⇒ 7 ≤ N ≤ 17 , (3.12)

k = 4 =⇒ 9 ≤ N ≤ 11 . (3.13)

The SU(N) A2 F̄ theories have been studied in several
works [2, 4, 8, 10–12], has fermion content given by

k = 2 : fermions : A2 + (N − 4) F̄ , (3.14)

The SU(N) Ak F̄ theories with k = 3 and k = 4 are,
to our knowledge, new here. These have the fermion
contents

k = 3 : fermions : A3 +
(N − 3)(N − 6)

2
F̄

(3.15)

and

k = 4 : fermions : A4 +
(N − 3)(N − 4)(N − 8)

6
F̄ .

(3.16)

For the Ak F̄ theories with k = 2, 3, 4, we denote
the fermion field in the Ak = [k]N representation as ψab

L ,
ψabd
L , and ψabde

L , respectively, where a, b, d, e are SU(N)
gauge indices (the symbol c is reserved to mean charge
conjugation) with N is in the respective intervals (3.14)-
(3.16), and we denote the F̄ fermions as χa,i,L, where i
is a copy (flavor) index taking values in the respective
ranges 1 ≤ i ≤ nF̄ = A([k]N ).
We next show that there are no asymptotically free

Ak F̄ theories with k ≥ 5. Consider first the k = 5 theory,
for which

b
(5)
1 =

1

36
(−N4 + 18N3 − 119N2 + 474N − 360) .

(3.17)

With N generalized to a real variable, b
(5)
1 is positive only

for N in the range 0.9585 < N < 10.7379. But for an
Ak F̄ theory, N is bounded below by 2k + 1, which has
the value 11 here, so for this k = 5 theory there is no
value of N that simultaneously satisfies both the lower
bound (3.4) and the requirement of asymptotic freedom.
We reach the same conclusion in the k = 6 case, for which

b
(6)
1 =

1

180
(−N5+25N4−245N3+1175N2−2094N+2520) .

(3.18)
With N extended from physical values to real numbers,

b
(6)
1 is positive if N < 11.098, but N is required to sat-
isfy N ≥ 13, which again means that for k = 6 there is
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no value of N that satisfies the lower bound (3.4) and
the requirement of asymptotic freedom. Similarly, we

find that for the k = 7 case, b
(7)
1 is only positive for the

range 1.094 < N < 11.742, while N must be in the range
N ≥ 15 by (3.4), and so forth for higher k. The un-
derlying reason for the non-existence of asymptotically
free Ak F̄ chiral gauge theories with these higher values
of k is that, as noted above, both T ([k]N) and A([k]N )
are polynomials of degree max(1, k − 1) in N , and they

both contribute negatively to b
(k)
1 for the relevant range

N ≥ 2k+1. Their negative contributions eventually out-
weigh the positive contribution of the (11/3)N term from
the gauge fields.
In passing, we remark that there are two possible

ways that one could expand the fermion content of the
Ak F̄ models considered here for certain k and N values,
as restricted by the constraint of asyamptotic freedom,
namely (i) to have ncp replications of the chiral fermion
content and (ii) to add vectorlike subsectors. For ex-
ample, in category (i), the following k = 3 theories are
asymptotically free: ncp = 2 and 7 ≤ N ≤ 11; ncp = 3
and 7 ≤ N ≤ 9; ncp = 4 and N = 7, 8; and ncp = 5 and
N = 7. We have studied different chiral gauge theories
with this sort of ncp replication of a minimal irreducible
chiral fermion content in [22]. We shall not pursue these
expansions here but instead focus on studying the mini-
mal Ak F̄ theories.

IV. BETA FUNCTION ANALYSIS OF Ak F̄
THEORIES

In this section we give a general analysis of the beta
function applicable to all of the (anomaly-free) asymptot-
ically free Ak F̄ theories, with N in the respective ranges
N ≥ 5 for k = 2 and the finite intervals 7 ≤ N ≤ 17
for k = 3 and 9 ≤ N ≤ 11 for k = 4 as given in (3.14)-
(3.16). In Sect. III we gave the one-loop coefficient for
the Ak F̄ theories, which we used to determine the upper
bound on N for a given k. Here we proceed to give the

two-loop coefficient, b
(k)
2 , and use it to analyze the UV

to IR evolution. We have (again with Ak ≡ [k]N , and
F ≡ [1]N)

b
(k)
2 =

1

3

[

34N2 − 2
{(

5C2(G) + 3C2(Ak)
)

T (Ak)

+ nF̄

(

5C2(G) + 3C2(F̄ )
)

T (F̄ )
}

]

, (4.1)

where the various group invariants are listed in appendix
B. For the three relevant cases, k = 2, 3, 4, the explicit
expressions are

b
(2)
2 =

13N3 + 30N2 +N − 12

2N
, (4.2)

b
(3)
2 =

−16N4 + 183N3 − 204N2 − 27N + 108

6N
, (4.3)

and

b
(4)
2 = (36N)−1

[

− 35N5 + 429N4 − 1321N3 + 2235N2

+ 588N − 1440
]

. (4.4)

In Table I we list values of the reduced coefficients b̄1
and b̄2 for an illustrative set of the A2 F̄ theories and for
all of the (asymptotically free) A3 F̄ and A4 F̄ theories.
In the cases where b̄2 < 0 so that the two-loop beta func-
tion has a physical IR zero, we have also listed the value
of αIR,2ℓ. The value of the resultant ratio ρc for conden-
sation in the most attractive channel for bilinear fermion
condensation (discussed further below) gives an estimate
of whether the theories are weakly or strongly coupled
in the infrared. This is indicated by the abbreviations
WC, MC, and SC (weak coupling, moderate coupling,
and strong coupling) in Table I.

V. GLOBAL SYMMETRY OF Ak F̄ THEORIES

Because the Ak F̄ theories are irreducibly chiral, so
that the chiral gauge symmetry requires the fermions to
be massless, each such theory has a classical global flavor
symmetry

G
(k)
fl,cl = U(nF̄ )F̄ ⊗U(1)Ak

, (5.1)

where nF̄ = A([k]N ) as given in Eq. (3.3). Equivalently,

G
(k)
fl,cl =

{

U(1)F̄ ⊗U(1)Ak
if nF̄ = 1

SU(nF̄ )F̄ ⊗U(1)F̄ ⊗U(1)Ak
if nF̄ ≥ 2

(5.2)
For nF̄ ≥ 2, the multiplet (χa,1,L, ..., χa,nF̄ ,L) may be

taken to transform as the conjugate fundamental, ,
representation of the global flavor group, SU(nF̄ ). The
U(1)F̄ and U(1)Ak

symmetries in (5.2) are both broken
by SU(N) instantons [38]. As in [12], we define a vec-
tor whose components are comprised of the instanton-
generated contributions to the breaking of these symme-
tries. In the basis (Ak, F̄ ), this vector is

~v(k) =
(

T ([k]N), nF̄T (F̄ )
)

= λN,k(N − 2, N − 2k) , (5.3)

where

λN,k =
(N − 3)!

2(k − 1)!(N − k − 1)!
. (5.4)

We can construct one linear combination of the two orig-
inal currents that is conserved in the presence of SU(N)
instantons. We denote the corresponding global U(1)
flavor symmetry as U(1)′ and the fermion charges under
this U(1)′ as

~Q(k)′ =
(

Q′
Ak
, Q′

F̄

)

. (5.5)



6

The U(1)′ current is conserved if and only if

∑

f

nfT (Rf )Q
(k)′
f = ~v · ~Q(k)′ = 0 . (5.6)

This condition only determines the vector ~Q(k)′ up to an
overall multiplicative constant. A solution is

~Q(k)′ =
(

N − 2k, −(N − 2)
)

. (5.7)

The actual global chiral flavor symmetry group (pre-
served in the presence of instantons) is then

G
(k)
fl =

{

U(1)′ if nF̄ = 1
SU(nF̄ )⊗U(1)′ if nF̄ ≥ 2

. (5.8)

For the three k values relevant here, this is

G
(2)
fl =

{

U(1)′ if N = 5
SU(N − 4)F̄ ⊗U(1)′ if N ≥ 6

(5.9)

with U(1)′ charges

~Q(2)′ =
(

N − 4, −(N − 2)
)

, (5.10)

G
(3)
fl = SU

((N − 3)(N − 6)

2

)

F̄
⊗U(1)′ (5.11)

with U(1)′ charges

~Q(3)′ =
(

N − 6, −(N − 2)
)

, (5.12)

and

G
(4)
fl = SU

( (N − 3)(N − 4)(N − 8)

6

)

F̄
⊗U(1)′ (5.13)

with U(1)′ charges

~Q(4)′ =
(

N − 8, −(N − 2)
)

. (5.14)

VI. MOST ATTRACTIVE CHANNEL FOR
BILINEAR FERMION CONDENSATION IN Ak F̄

THEORIES

A. General Analysis

The ultraviolet to infrared evolution of a particular
SU(N) Ak F̄ theory is determined by the values of N
and k. In the cases where it can lead to the formation
of a bilinear fermion condensate, one should then deter-
mine the most attractive channel in which this conden-
sate can form. We present this analysis here. Since the
Ak F̄ theories that we consider here are irreducibly chi-
ral, a bilinear condensate breaks the gauge symmetry. In
Sect. X below, we will discuss the possible formation of

multifermion condensates involving more than just two
fermions, which can preserve the chiral gauge symmetry.
For the theories that we are discussing here, there

are two relevant bilinear fermion condensation channels.
First, there is a channel with a condensate that involves
the contraction of 2k gauge indices of the antisymmetric
tensor density ǫa1,...,aN

with the bilinear fermion product
Ak×Ak, which transforms like ĀN−2k. This channel can
thus be written as

Ak ×Ak → ĀN−2k . (6.1)

This channel has attractiveness measure

∆C2 =
k2(N + 1)

N
for Ak ×Ak → ĀN−2k . (6.2)

For a given k, this ∆C2 is a monotonically decreasing
function ofN , decreasing gradually from its value atN =
2k + 1,

∆C2 =
2k2(k + 1)

2k + 1
=

(N − 1)2(N + 1)

4N
at N = 2k + 1

for Ak ×Ak → ĀN−2k = Ā1 = F̄ (6.3)

and approaching the limit k2 for N ≫ k.
Second, there is the channel

Ak × F̄ → Ak−1 , (6.4)

with

∆C2 =
(N + 1)(N − k)

N
for Ak × F̄ → Ak−1 . (6.5)

For a given k, this ∆C2 is a monotonically increasing
function of N , increasing from the value

∆C2 =
2(k + 1)2

2k + 1
=

(N + 1)2

2N
at N = 2k + 1

for Ak × F̄ → Ak−1 , (6.6)

and approaching a linear growth with N for N ≫ k. In
Table II we list the value of ∆C2 in Eq. (6.2) for the
Ak × Ak → ĀN−2k channel and the value of ∆C2 in Eq.
(6.5) for the Ak × F̄ → Ak−1 channel for an illustrative
set of A2 F̄ theories and for the full set of (asymptotically
free) A3 F̄ and A4 F̄ theories.
The most attractive channel for bilinear fermion con-

densation is the one among these two channels with the
larger value of ∆C2 (assuming that these two values are
unequal; we discuss the cases where they are equal be-
low). For a given value of k, we thus determine the MAC
as a function ofN in its allowed rangeNmin ≤ N ≤ Nmax

by examining the difference,

∆C2(Ak ×Ak → ĀN−2k)−∆C2(Ak × F̄ → Ak−1)

=
(N + 1

N

)[

k(k + 1)−N
]

. (6.7)
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For N = Nmin = 2k+1, ∆C2 is larger for the first chan-
nel, Ak × Ak → ĀN−2k = Ā1 = F̄ , than for the second
channel, Ak × F̄ → Ak−1. This is evident analytically
from the fact that with N = 2k + 1, the difference (6.7)
is

2(k + 1)(k2 − k − 1)

2k + 1
=

(N + 1)(N2 − 4N − 1)

4N
, (6.8)

which is positive for the relevant range k ≥ 2 considered
here. Since ∆C2 for the first channel decreases monoton-
ically as a function of N , while the ∆C2 for the second
channel increases monotonically as a function of N , it
follows that at some value of N , which we denote Ne

(where e stands for “equal”), these values are equal, and
for N > Ne, the ∆C2 for the second channel is larger
than that for the first channel. Setting the two ∆C2 val-
ues equal and solving for N = Ne, we find

Ne = k(k + 1) . (6.9)

Evaluating Eq. (6.9) for the three relevant values of k,
we have

Ne =

{

6 for k = 2
12 for k = 3
20 for k = 4

. (6.10)

The first two of these values are within the respective
allowed ranges for N , while the value for k = 4 is larger
than the upper bound Nmax = 11 for k = 4.
Consequently, with Nmin = 2k+ 1 and Nmax as given

in Eqs. (3.4) and (3.10), we find that, for a given k,

If 2k + 1 ≤ N < k(k + 1) then

MAC = Ak ×Ak → ĀN−2k

If k(k + 1) < N ≤ Nmax then

MAC = Ak × F̄ → Ak−1 , (6.11)

with the proviso that the second possibility only applies
if k(k + 1) < Nmax, and hence only for k = 2 and k = 3.
Thus, in particular, if N = Nmin = 2k+1, then the MAC
is the special case of (6.1):

If N = 2k + 1 then MAC = Ak ×Ak → F̄ . (6.12)

In addition to breaking the original SU(N) gauge symme-
try, these condensates also break both the non-Abelian
factor group SU(nF̄ ) (which is present if nF̄ ≥ 2) and the
U(1)′ factor group in the global flavor symmetry (5.8).
In particular, the breaking of the U(1)′ symmetry is ev-
ident from the fact that the respective condensates in
these channels have the nonzero U(1)′ charges

Q′(k) = 2Q′
Ak

= 2(N − 2k) for Ak ×Ak → ĀN−2k

(6.13)
and

Q′(k) = Q′
Ak

+Q′
F̄
= 2(1− k) for Ak × F̄ → Ak−1 .

(6.14)

The marginal case N = Ne = k(k+1) requires further
analysis, since the ∆C2 values for the Ak ×Ak → ĀN−2k

and Ak × F̄ → Ak−1 channels are equal, so the proce-
dure of picking the channel with the largest ∆C2 cannot
determine which is more likely to occur. To deal with
this marginal case, we use a vacuum alignment argument,
which, as applied to possible bilinear fermion condensa-
tion channels, favors the one whose condensate respects
the larger residual gauge symmetry. To apply the vacuum
alignment argument, we must thus determine the resid-
ual gauge symmetry group respected by the condensates
that occur in these two channels. The resultant bilinear
fermion condensate transforms like an n-fold antisym-
metric tensor representation of SU(N), where n = N−2k
for the Ak ×Ak → ĀN−2k channel and n = k− 1 for the
Ak × F̄ → Ak−1 channel. (The fact that in the first case
the condensate transforms like ĀN−2k rather than AN−2k

does not affect how this breaks SU(N).) From the point
of view of the group theory, the problem of determining
the residual gauge symmetry is effectively the same as
the problem of determining the residual gauge symme-
try that results when one has a Higgs field transforming
according to the antisymmetric rank-n representation of
SU(N). An analysis of this, within the context of Higgs-
induced symmetry breaking, was given in [39], and the
results depend, in that context, on the parameters in the
Higgs potential, which one has the freedom to choose,
subject to the overall constraint that the energy must
be bounded below. As emphasized in Ref. [20], the sit-
uation is different in dynamical gauge symmetry break-
ing; in principle, given an initial gauge group and set of
fermions, there is a unique answer for how the symmetry
breaks; this breaking does not depend on any parame-
ters in a Higgs potential. Despite this basic difference
between dynamical and Higgs-induced gauge symmetry
breaking, we can make use of the general group-theoretic
analysis performed for the Higgs case. The result is that
there are, a priori, three possibilities for the gauge sym-
metries respected by a condensate or Higgs vacuum ex-
pectation value transforming as the rank-n antisymmet-
ric tensor representation of SU(N), [n]N . Denoting the
integral part of a real number r as [r] and setting

κ ≡ [N/n] , (6.15)

these are [39]

SU(N − n)⊗ SU(n) with 2 ≤ n < [N/2] , (6.16)

[SU(n)]κ with 3 ≤ n ≤ [N/2] if N − [N/n]n = 0 or 1 ,

(6.17)

and the symplectic group

Sp(2κ) if n = 2 . (6.18)

We analyze the respective cases k = 2, 3, 4 next.
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B. Case k = 2

From the special case for k = 2 of our general result
(6.11) above, we infer that the A2 ×A2 → Ā1 = F̄ chan-
nel is the most attractive channel for bilinear fermion
condensation in the A2 F̄ theories for the lowest value of
N , namely N = 5, while the A2 × F̄ → F channel is the
MAC for the infinite interval N ≥ 7. For the marginal
case k = 2, N = 6, the A2 × A2 → ĀN−2k = Ā2 and
A2×F̄ → F channels have the same value of ∆C2, namely
∆C2 = 14/3 = 4.667 (see Table II), so the ∆C2 attrac-
tiveness criterion cannot be used to decide which is more
likely to occur. Now the condensate in the A2 × F̄ → F
channel leaves invariant an SU(5) subgroup of SU(6),
with order 24. To analyze the possible invariance groups
of a condensate in the A2 × A2 → Ā2 channel, we ap-
ply our discussion above with N = 6, n = 2, and hence
κ = [6/2] = 3, so the a priori possible invariance groups
of the condensate are SU(4) ⊗ SU(2) with order 18 and
Sp(6) with order 21. Neither of these groups has an or-
der as large as that of SU(5), so the vacuum alignment
argument predicts that, if a bilinear fermion condensate
forms, then this condensate will form in the A2× F̄ → F
channel. Summarizing our results for k = 2 and all N ,
we thus find that if bilinear fermion condensation occurs,
then

k = 2 =⇒ MAC =

{

A2 ×A2 → Ā1 for N = 5
A2 × F̄ → F for N ≥ 6

.

(6.19)
As noted above, since this class of (asymptotically free)

A2 F̄ chiral gauge theories satisfies the ’t Hooft global
anomaly matching conditions, there is also the possibil-
ity of confinement, yielding massless composite fermions.
There is also the possibility of multifermion condensate
formation, which we will discuss below. Since the early
works such as [1, 2, 4], for a class of asymptotically free
chiral gauge theories such as the A2 F̄ class discussed
here, for which the UV to IR evolution leads to strong
coupling and hence could lead to confinement with mass-
less composite fermions or to fermion condensation, there
has not, to our knowledge, been a rigorous argument pre-
sented that actually determines the type of UV to IR
evolution in an asymptotically free chiral gauge theory.

C. Case k = 3

From the special case for k = 3 of our general result
(6.11) above, we infer that the A3×A3 → ĀN−2k = ĀN−6

channel is the most attractive channel for bilinear fermion
condensation not only for the minimal value ofN , namely
N = 7, but also for the interval ofN values up to N = 11.
We discuss the marginal case of N = 12 last. Again sub-
stituting k = 3 into (6.11), it follows formally that the
MAC for 12 ≤ N ≤ 17 is the A3×F̄ → A2 channel. How-
ever, for N = 13, 14, the respective values of the IR zero
in the beta function are sufficiently close to the rough es-

timate of the minimal critical value of α for condensate
formation in the A3 × F̄ → A2 channel (see Tables I and
II) that it is possible that the system could evolve from
the UV to a deconfined, non-Abelian Coulomb phase in
the IR with no fermion condensate formation or associ-
ated spontaneous chiral symmetry breaking.
The k = 3, N = 12 case is again marginal; the

A3 × A3 → Ā6 and A3 × F̄ → A2 channels have the
same value of ∆C2, namely ∆C2 = 39/4 = 9.750.
Hence, we use a vacuum alignment argument to decide on
which of these channels is more likely to occur. For the
A3 ×A3 → ĀN−6 = Ā6 channel, we apply our discussion
above with N = 12, n = 6, and hence κ = [12/6] = 2,
so the invariance group of the Ā2 condensate is [SU(6)]2,
with order 70. For the A3 × F̄ → A2 channel, we have
N = 12, n = 2 and hence κ = [12/2] = 6, so the a pri-

ori possible invariance groups of the A2 condensate are
SU(10)⊗SU(2) with order 102 and Sp(12) with order 78.
The vacuum alignment argument thus favors condensa-
tion in the A3 × F̄ → Ā2 channel for this N = 12 case.
Summarizing these results, we have

k = 3 =⇒ MAC =

{

A3 ×A3 → ĀN−6 for 7 ≤ N ≤ 11
A3 × F̄ → A2 for 12 ≤ N ≤ 17

(6.20)

However, as mentioned above, for N = 13, 14 (and also
for N = 12), the respective values of ρc are sufficiently
close to unity that, in view of the intrinsic theoretical un-
certainties in the analysis of the strong-coupling physics,
it is possible that the UV to IR evolution could lead ei-
ther to the formation of a fermion condensate or to a
non-Abelian Coulomb phase without spontaneous chiral
symmetry breaking.
If N is in the higher interval 15 ≤ N ≤ 17, then ρc

is sufficiently small that we definitely expect the evolu-
tion to lead to a chirally symmetric non-Abelian Coulomb
phase in the IR. Hence, in these cases, the MAC is not
directly relevant to the dynamics of the theory.

D. Case k = 4

Finally, we discuss the theories with k = 4, for which
the interval of values of N is 9 ≤ N ≤ 11. Since the value
of Ne, namely Ne = 20, is larger than Nmax, the most
attractive channel for bilinear fermion condensation in all
of these theories isA4×A4 → ĀN−8, i.e., A4×A4 → F̄ for
N = 9, A4×A4 → Ā2 for N = 10, and A4×A4 → Ā3 for
N = 11. In the SU(9) A4 F̄ theory, the IR zero in the two-
loop beta function is much larger than αcr for this chan-
nel, so it is likely that the SU(9) gauge interaction would
produce a condensate in this channel, thereby breaking
SU(9) to SU(8). For N = 10, αIR,2ℓ/αcr = 1.7, which is
sufficiently close to unity that, taking account of the un-
certainties in the strong-coupling estimates, the UV to IR
evolution might produce a condensate in the respective
most attractive bilinear fermion channel or might lead to
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a non-Abelian Coulomb phase. For N = 11, the IR zero
in the two-loop beta function is small compared with the
estimated αcr for the A4 ×A4 → Ā3 condensation chan-
nel, so we definitely expect the system to evolve from the
UV to a non-Abelian Coulomb phase in the IR.

VII. A2 F̄ THEORIES

A. General

In this section we analyze the UV to IR evolution of
some A2 F̄ theories in detail. Recall that the explicit
fermion fields are A2 : ψab

L and F̄ : χa,i,L, where a, b
are the SU(N) gauge indices and i = 1, .., N−4 is a copy
(flavor) index. The one-loop and two-loop coefficients
were given in Eqs. (3.7) and (4.2). We find that for

all N ≥ Nmin = 5, the coefficient b
(2)
2 is positive, so the

two-loop beta function of the A2 F̄ theory has no IR zero.
Hence, as the Euclidean reference scale µ decreases from
the UV to the IR, the gauge coupling increases until it
eventually exceeds the region where it is perturbatively
calculable. This IR behavior is thus marked as SC, for
strong coupling, in Table I.
The global flavor symmetry group for this theory is

given in Eq. (5.9) with the U(1)′ charge assignments in
(5.10). This theory satisfies the ’t Hooft global anomaly
matching conditions [1, 10], so, as it becomes strongly
coupled in the infrared, it could confine and produce
massless gauge-singlet composite spin-1/2 fermions as
well as massive gauge-singlet mesons and also primar-
ily gluonic states. If this happens, then it is a complete
description of the UV to IR evolution. The three-fermion
operator for the composite gauge-singlet fermion can be
written as

fij ∝ [χT
a,i,LCψ

ab
L ]χb,j,L + (i↔ j) . (7.1)

From Eq. (5.10), the U(1)′ charge of this composite
fermion is

Qfij = QĀ + 2QF̄ = −N . (7.2)

If N ≥ 6, fij transforms as the conjugate symmetric
rank-2 tensor representation, , of the SU(N −4)F̄ fac-

tor group in the global flavor symmetry group G
(2)
fl =

SU(N − 4)F̄ ⊗U(1)′ of the theory.
Another possibility is that the SU(N) gauge interac-

tion could produce bilinear fermion condensates, thereby
breaking both gauge and global symmetries. The most
attractive channel for this fermion condensation was de-
termined, as a function of N , in Eq. (6.19). It can also
be possible to form multifermion condensates involving
more than two fermion fields, which preserve the chiral
gauge symmetry. We will discuss this latter possibility
in Sect. X. Here we proceed to analyze bilinear fermion
condensate formation for various specific theories.

B. SU(5) A2 F̄ Theory

The simplest chiral gauge theory in the A2 F̄ family of
theories has the gauge group SU(5), with fermion content
given by the N = 5 special case of Eq. (3.14), namely

A2+ F̄ = [2]5+[1]5. Like the other A2 F̄ theories consid-
ered here that become strongly coupled in the infrared,
this one could confine and produce a massless composite
fermion. Alternatively, it could produce fermion conden-
sates. The most attractive channel for bilinear fermion
condensation in this theory is A2 × A2 → Ā1. If the dy-
namics is such that this condensate does, indeed, form,
then we denote the mass scale at which it is produced
as Λ5. This condensate breaks the SU(5) gauge symme-
try to SU(4). Without loss of generality, we take the
gauge index corresponding to the breaking direction to
be a = 5. The condensate then has the form

〈ǫabde5ψab T
L Cψde

L 〉 ∝
[

〈ψ12 T
L Cψ34

L 〉 − 〈ψ13 T
L Cψ24

L 〉

+〈ψ14 T
L Cψ23

L 〉
]

. (7.3)

The fermions involved in this condensate gain dynamical
masses of order Λ5, as do the nine gauge bosons in the
coset SU(5)/SU(4). In addition to breaking the SU(5)
gauge symmetry, the condensate has the nonzero value
of the U(1)′ charge Q′(2) = −2 given by the k = 2 special
case of Eq. (6.14) and hence breaks the global U(1)′ sym-
metry. Since this symmetry is not gauged, this breaking
yields one Nambu-Goldstone boson (NGB).
To construct the low-energy effective field theory with

SU(4) chiral gauge invariance that describes the physics
as the scale µ decreases below Λ5, we decompose the
fermion representations of SU(5) with respect to the un-
broken SU(4) subgroup. It will be useful to give this
decomposition more generally for SU(N) relative to an
SU(N − 1) subgroup in our usual notation and also in
terms of the corresponding Young tableaux:

[2]N = {[2]N−1 + [1]N−1} , i.e.,

SU(N) = [ + ] SU(N−1) . (7.4)

The [2]4 field is comprised of ψab
L fermions with 1 ≤

a, b ≤ 4 that gained dynamical masses of order Λ5 and
were integrated out of the low-energy theory. The other
massless SU(4)-nonsinglet fermions are the [1]4 = F

fermion ψ5b
L with 1 ≤ b ≤ 4 and the [1]4 = F̄ fermion

χa,1,L with 1 ≤ a ≤ 4. Hence, the massless SU(4)-
nonsinglet fermion content of this theory consists of
F + F̄ , so this theory is vectorial. This SU(4) theory also
contains the SU(4)-singlet fermion χ5,1,L. The one-loop
and two-loop coefficients of the SU(4) beta function have
the same sign, so again, this function has no IR zero,
and therefore the SU(4) gauge coupling inherited from
the SU(5) UV theory continues to increase as the refer-
ence scale µ decreases. Rewriting the left-handed F̄ as
a right-handed F , one sees that this is a vectorial SU(4)
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gauge theory with massless Nf = 1 Dirac fermion in the
fundamental representation. It therefore has a classical
global chiral flavor symmetry group U(1)F ⊗ U(1)F̄ , or
equivalently, U(1)V ⊗ U(1)A in standard notation. The
U(1)A is broken by SU(4) instantons, so the nonanoma-

lous global flavor symmetry is U(1)V . At a scale Λ4
<∼ Λ5,

one expects that the SU(4) gauge interaction produces a
bilinear fermion condensate in the most attractive chan-
nel, which is F× F̄ → 1, thus preserving the SU(4) gauge
symmetry. The condensate is

〈
4

∑

b=1

ψ5b T
L Cχb,1,L〉 . (7.5)

This condensate respects the U(1)V global symmetry,
and hence does not produce any Nambu-Goldstone
bosons. Thus, this SU(4) theory confines and produces
gauge-singlet hadrons (with the baryons being bosonic).
In the infrared limit, the only remaining massless par-
ticles are the SU(4)-singlet fermion χa,1,L and the one
Nambu-Goldstone boson resulting from the breaking of
the U(1)′ global flavor symmetry by the condensate (7.3).

C. SU(6) A2 F̄ Theory

We next consider an SU(6) A2 F̄ theory. The fermion
content of this theory is the N = 6 special case of (3.14),

namely A2 + 2F̄ = [2]6 + 2[1]6. The A2 fermion is de-
noted ψab

L = −ψba
L , and the two copies of the F̄ fermion

are denoted χa,i,L, where 1 ≤ a, b ≤ 6 are gauge indices
and i = 1, 2 is the copy index. We consider possible bi-
linear fermion condensates for this theory. As discussed
above, although the bilinear fermion condensation chan-
nels A2×A2 → Ā2 and A2× F̄ → F have the same ∆C2,
a vacuum alignment argument favors the A2 × F̄ → F
channel because it leaves a larger residual gauge symme-
try, namely SU(5). Assuming that a condensate in this
channel does form, we denote the scale at which it is pro-
duced as Λ6. Again, by convention we take the breaking
direction as a = 6 and the copy index as i = 2 on the F̄
fermion in the condensate, which can thus be written as

〈
5

∑

b=1

ψ6b T
L Cχb,2,L〉 . (7.6)

This condensate also breaks the SU(2)F̄ ⊗ U(1)′ global
flavor symmetry. The ψ6b

L and χb,2,L fermions with 1 ≤
b ≤ 5 involved in the condensate (7.6) get dynamical
masses of order Λ6, as do the 11 gauge bosons in the
coset SU(6)/SU(5). These are integrated out of the low-
energy effective SU(5)-invariant theory that describes the
physics as the scale µ decreases below Λ6.
From the N = 6 special case of the general de-

composition (7.4) in conjunction with the form of the
condensate (7.6), it follows that the massless SU(5)-
nonsinglet fermion content of the descendant SU(5) the-
ory is A2+ F̄ , together with the (massless) SU(5)-singlet

fermions χ6,1,L and χ6,2,L. Thus, the SU(5)-nonsinglet
fermion content of this theory is the same as that of the
SU(5) theory discussed above, and our analysis there ap-
plies here. Since this SU(5) theory satisfies the ’t Hooft
global anomaly matching conditions, when it becomes
strongly coupled, it could confine and produce mass-
less SU(5)-singlet composite fermions, as well as massive
mesons and primarily gluonic states, or it could self-break
via fermion condensate formation. We also discuss below
a possible SU(5)-preserving four-fermion condensate that
might form.

D. SU(N) A2 F̄ Theories with N ≥ 7

For N ≥ 7, the most attractive channel for bilinear
fermion condensation is A2× F̄ → F , with ∆C2 given by
the k = 2 special case of (6.5),

∆C2 = C2([2]N ) =
(N − 2)(N + 1)

N
for A2 × F̄ → F .

(7.7)
The UV to IR evolution of these theories is similar to
that of the SU(6) theory. At each stage, owing to the
fact that the SU(N) theory and the various descendant
theories satisfy ’t Hooft global anomaly matching condi-
tions, as the coupling gets strong in the IR, the gauge
interaction may confine and produce massless composite
fermions or may produce various fermion condensates.
The most attractive channel for bilinear fermion conden-
sation at a given stage is A2×F̄ → F , breaking the theory
down to the next descendant low-energy theory. If the
theory follows the first type of UV to IR flow, namely con-
finement with massless composite fermions, this extends
all the way to the IR limit, while if the theory follows
the second type of flow with condensate formation, then
there is, in general, a resultant sequence of low-energy ef-
fective theories that describe the physics of the massless
dynamical degrees of freedom at lower scales. If all of the
stages involve gauge (and global) symmetry breaking by
fermion condensates, then the gauge symmetry breaking
is of the form

SU(N) → SU(N − 1) → ...→ SU(4) . (7.8)

Here, the last theory, namely the SU(4) theory, is vecto-
rial, while all of the higher-lying theories are chiral gauge
theories.

VIII. A3 F̄ THEORIES

The fermion content of the A3 F̄ theories was displayed
in Eq. (3.15). The one-loop and two-loop coefficients in
the beta function were given in Eqs. (3.8) and (4.3), with
numerical results for b̄1 and b̄2 displayed in Table I. As
is evident in Table I, for 7 ≤ N ≤ 10, the coefficient
b̄2 is positive, so the two-loop beta function has no IR
zero, and hence, as the reference scale µ decreases from
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large values in the UV toward the IR, the gauge cou-
pling increases until it exceeds the region where it is per-
turbatively calculable. These theories are thus strongly
coupled in the infrared (marked as SC in Table I).
The next step in the analysis of the UV to IR flow

in these theories is to determine if one or more of them
might satisfy the ’t Hooft global anomaly matching con-
ditions. If this were to be the case, then, as in the A2 F̄
theories, one would have a two-fold possibility for the
strongly coupled IR physics, namely confinement with
gauge-singlet composite fermions but no spontaneous chi-
ral symmetry breaking or formation of bilinear fermion
condensates with associated breaking of gauge and global
symmetries. For this purpose, we have examined possible
SU(N) gauge-singlet fermionic operator products to de-
termine if any of them could satisfy these global anomaly
matching conditions. The global flavor symmetry group
was given in Eq. (5.11) with (5.12). We have not found
any such fermionic operator products. As an illustration
of our analysis, let us consider the caseN = 7, which con-
tains a [3]7 fermion ψabd

L and two fermions, χa,i,L with

i = 1, 2 comprising two copies of the [1]7 representation.
For this case,

G
(3)
fl,N=7 = SU(2)F̄ ⊗U(1)′ , (8.1)

with ~Q′ = (1,−5). A fermionic operator product that is
an SU(7) singlet is of the form

fi,R = ǫabdefgh[ψ
abd T
L Cψefg

L ](χc)hi,R , (8.2)

where the c superscript denotes the charge conjugate
fermion field. However, this vanishes identically. This
can be seen as follows: an interchange (transposition) of

ψabd
L and ψefg

L entails a minus sign from the switching
of an odd number of indices in the antisymmetric SU(7)
tensor density, a second minus sign from Fermi statistics,
and a third minus sign from the fact that CT = −C for
the Dirac charge conjugation matrix, so the operator is
equal to minus itself and hence is zero.
Therefore, when theory becomes strongly coupled in

the infrared, we will focus on the type of UV to IR evo-
lution that leads to fermion condensates, and we consider
bilinear fermion condensates here. The most attractive
channel for these condensates, as a function of N , was
given in Eq. (6.20).
As an explicit example of the A3 F̄ class of chiral gauge

theories, let us consider the SU(7) theory, which has chi-
ral fermion content given by the N = 7 special case of
Eq. (3.15), namely

A3 + 2F̄ = [3]7 + 2[1]7 . (8.3)

The most attractive channel for this theory is A3 ×
A3 → F̄ , which breaks the gauge symmetry SU(7) to
SU(6) and also breaks the global flavor symmetry group
SU(2)F̄ ⊗ U(1)′. We denote the scale at which this con-
densate forms as Λ7. Without loss of generality, we label

the gauge index for the broken direction to be a = 7.
The condensate then has the form

〈ǫabdefg7ψabd T
L Cψefg

L 〉 . (8.4)

Of the
(

7
3

)

= 35 components of the A3 fermion, denoted

generically as ψabd
L , the

(

7
3

)

−
(

6
2

)

= 20 components with
1 ≤ a, b, d ≤ 6 that are involved in this condensate
gain dynamical masses of order Λ7, as do the 13 gauge
bosons in the coset SU(7)/SU(6). These are integrated
out of the low-energy effective theory SU(6) chiral gauge
theory that describes the physics as the scale decreases
below Λ7.
The massless SU(6)-nonsinglet fermion content of this

SU(6) theory thus consists of A2+2F̄ = [2]6+2[1]6, com-

prised by the
(

6
2

)

= 15 components ψab7
L and the χa,i,L

with 1 ≤ a, b ≤ 6 and i = 1, 2. A theorem proved in [22]
states that a low-energy effective theory that arises by
dynamical symmetry breaking from an (asymptotically
free) anomaly-free chiral gauge theory is also anomaly-
free. One sees that the present example is in accord with
this general theorem. Indeed, the nonsinglet fermions in
this SU(6) descendant theory are precisely those of the
SU(6) A2 F̄ theory discussed above, and that analysis
applies here for the further UV to IR evolution of the
theory. In addition to the SU(6)-nonsinglet fermions,
this descendant theory also contains the SU(6)-singlet
fermions χ7,i,L with i = 1, 2.

IX. A4 F̄ THEORIES

The fermion content of the A4 F̄ theories was given
in Eq. (3.16). The reduced one-loop and two-loop co-
efficients in the beta function were listed in Eqs. (3.9)
and (4.4), with numerical results displayed in Table I.
We find that for each of the three relevant values of N ,
namely N = 9, 10, 11, the coefficient b̄2 is negative, so
the two-loop beta function has an IR zero. As we noted
above, for N = 11, this IR zero is at very weak cou-
pling relative to the minimal critical value for bilinear
fermion condensation, so we can reliably conclude that
the theory evolves from the UV to a (deconfined) non-
Abelian Coulomb phase in the infrared. In theN = 9 and
N = 10 theories, the respective IR zeros in the two-loop
beta function occur at strong and moderate coupling, so
a full analysis is necessary.
We have examined whether there are SU(N) gauge-

singlet composite fermion operators that could satisfy
the ’t Hooft global anomaly matching conditions, but we
have not found any. The global flavor symmetry group
was given in Eq. (5.13) with (5.14). As an illustration of
our analysis, let us consider the SU(9) A4 F̄ theory, which
contains a [3]9 fermion ψabd

L and the fermions, χa,i,L with

1 ≤ i ≤ 5 comprising five copies of the [1]9 representation
of SU(9). The global flavor symmetry group is

G
(4)
fl,N=9 = SU(5)F̄ ⊗U(1)′ , (9.1)
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The χa,i,L fermions transform as of the SU(5)F̄ fla-

vor group, and the vector of U(1)′ charges is ~Q′ =
(Q′

A4
, Q′

F̄
) = (1,−7). A fermionic operator product that

is an SU(9) gauge singlet is

f i
R = ǫabdefghrs[ψ

abde T
L Cψfghr

L ](χc)s,iR . (9.2)

This transforms as a representation of the global
SU(5)F̄ symmetry with U(1)′ charge 2Q′

A4
− Q′

F̄
= 9.

Since this is a right-handed composite fermion, we actu-
ally calculate with the charge conjugate (f c)i,L, which is
a left-handed fermion that transforms as a representa-
tion of the global SU(5) with U(1)′ charge −9. We find
that this composite fermion does not satisfy the global
anomaly matching conditions. For example, consider the
SU(5)3 anomaly. The fundamental fields make the fol-
lowing contributions: the A4 fermion yields zero, while
the F̄ fermions yield NA( ) = 9 × (−1) = −9. How-
ever, the f c

L fermion yields A( ) = −1, which does not
match. Since we have not found composite fermion oper-
ators that satisfy the ’t Hooft global anomaly matching
conditions, we consider fermion condensation in the cases
where the beta function has an IR zero at moderate (for
N = 10) and strong (for N = 9) coupling in the infrared.
As an explicit example, we analyze the SU(9) A4 F̄

theory. The fermion content of this theory is given by
the N = 9 special case of Eq. (3.16), namely

A4 + 5F̄ = [4]9 + 5[1]9 . (9.3)

The most attractive channel for bilinear fermion con-
densation is the N = 9 special case of (6.12), namely
A4 × A4 → F̄ . Assuming that this condensate forms,
it breaks the gauge symmetry SU(9) to SU(8) and also
breaks the global flavor symmetry group SU(5)F̄ ⊗U(1)′.
We denote the scale at which this condensate forms as
Λ9. Without loss of generality, we label the gauge index
for the broken direction to be a = 9. The condensate
then has the form

〈ǫabdefghr9ψabde T
L Cψfghr

L 〉 . (9.4)

Of the
(

9
4

)

= 126 components of ψabde
L , the

(

9
4

)

−
(

8
3

)

= 70
components with 1 ≤ a, b, d, e ≤ 8 that are involved in
this condensate gain dynamical masses of order Λ9, as do
the 17 gauge bosons in the coset SU(9)/SU(8). These are
integrated out of the low-energy effective theory SU(8)
chiral gauge theory that describes the physics as the scale
decreases below Λ9.
The massless SU(8)-nonsinglet fermion content of this

SU(8) theory thus consists of A3+5F̄ = [3]8+5[1]8, com-

prised by the
(

8
3

)

= 56 components ψabd9
L and the χa,i,L

with 1 ≤ a, b, d ≤ 8 and 1 ≤ i ≤ 5. Again, the theo-
rem proved in [22] guarantees that this SU(8) descendant
theory is anomaly-free. Indeed, the nonsinglet fermions
in this SU(8) descendant theory are precisely those of
the SU(8) A3 F̄ theory discussed above, and that analy-
sis applies here for the further UV to IR evolution of the
theory. In addition to the SU(8)-nonsinglet fermions,
this descendant theory also contains the SU(6)-singlet
fermions χ9,i,L with 1 ≤ i ≤ 5.

X. MULTIFERMION CONDENSATES AND
IMPLICATIONS FOR THE PRESERVATION OF

CHIRAL GAUGE SYMMETRY

Our discussion above of fermion condensate formation
focused on bilinear fermion condensates and resultant dy-
namical chiral gauge symmetry breaking. However, it is,
in principle, possible for a strongly interacting vectorial
or chiral gauge theory to produce fermion condensates
involving product(s) of more than just two fermion fields
[40, 41]. Much less attention as been devoted in the liter-
ature to such multifermion condensates than to bilinear
fermion condensates. This is somewhat analogous to the
situation with bound states of (anti)quarks in hadronic
physics. For many years the main focus of research was
on color-singlet bound states with the minimum num-
ber of (anti)quarks, namely qqq, for baryons and qq̄ for
mesons. (Subsequently, glueballs and mixing between
qq̄ mesons and glue to form mass eigenstates were also
studied.) However, there is increasing experimental ev-
idence that the hadron spectrum also contains bound
states with additional quarks, such as qq̄qq̄ and qq̄QQ̄,
where Q means a heavy quark, c or b, including charged
mesons, and possibly qqqqq̄ and qqqQQ̄ [42]. In the case
of possible condensates involving four or more fermions,
we are not aware of a reliable method that can be used to
assess the relative likelihood that these would form. The
problem of assessing this likelihood is fraught with even
more theoretical uncertainty than the uncertainty inher-
ent in the use of the rough MAC criterion to measure the
attractiveness of bilinear fermion condensation channels.

Clearly, Lorentz invariance implies that the number
of fermion fields in such multifermion condensates must
be even. As usual, we denote the charge conjugate of
a generic fermion field χ as χc ≡ Cχ̄T , where C is the
Dirac charge conjugation matrix satisfying C = −CT

and χ̄ ≡ χ†γ0; recall also that for a left-handed fermion
χL, the charge conjugate is (χL)

c = (χc)R.

As an example, consider the SU(5) A2 F̄ theory, with
the fields ψab

L and χa,1,L or equivalently, ψc
ab,R and

(χc)a,1R . When the gauge interaction becomes strong, it
could produce several different four-fermion condensates
that preserve the SU(5) gauge symmetry. One such con-
densate that involves all of the fermions is

〈ǫabdef [ψab T
L Cψde

L ][ψfs T
L Cχs,1,L]〉 , (10.1)

where here a, b, d, e, f, s are SU(5) gauge indices. This
condensate has U(1)′ charge 3Q′

A2
+ Q′

F̄
. Using the re-

sults from the N = 5 special case of Eq. (5.10), namely,
Q′

A2
= 1, Q′

F̄
= −3, we find that this condensate (10.1)

has zero U(1)′ charge, so it also preserves the global U(1)′

symmetry of the SU(5) theory.

In a similar manner, consider the SU(6) A2 F̄ theory,
with the fermions ψab

L and χa,j,L with j = 1, 2. As the
SU(6) gauge interaction becomes strong in the infrared,
it might produce the following four-fermion condensate
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that is invariant under the SU(6) gauge symmetry:

〈ǫabdesu[ψab T
L Cψde

L ][(χc)s,1 T
R C(χc)u,2R ]〉 − (1 ↔ 2)

= 〈ǫabdesu[ψab T
L Cψde

L ]ǫij [(χ
c)s,i T

R C(χc)u,jR ]〉 . (10.2)

Note that because of the contraction of the operator

product [(χc)s,1 T
R C(χc)u,2R ] with the SU(6) ǫabdesu ten-

sor, the first term in Eq. (10.2) is automatically anti-
symmetrized in the flavor indices j = 1, 2; we have made
this explicit by subtracting the term with these indices
interchanged. As shown by the second line of Eq. (10.2),
this condensate thus preserves the SU(2)F̄ factor group
in the global flavor symmetry Gfl for this theory, namely
SU(2)F̄ ⊗ U(1)′. In the (A2, F̄ ) basis, the U(1)′ charges
are (2,−4), as given by the N = 6 special case of Eq.
(5.10). Hence, the U(1)′ charge of the condensate (10.2)
is −4, so it breaks the U(1)′ part of Gfl, yielding one
Nambu-Goldstone boson.
One can give corresponding discussions of gauge-

invariant multifermion condensates for other SU(N)
Ak F̄ theories that become strongly coupled in the in-
frared. In general, these theories could also produce other
types of four-fermion condensates such as

〈[ψab T
L Cχb,i,L][(ψ

c)Tad,RC(χ
c)d,jR ]〉 , (10.3)

〈[ψ̄ab,Lγµψ
ab
L ][ψ̄de,Lγ

µψde
L ]〉 , (10.4)

〈[ψ̄ab,Lγµψ
ab
L ][(χ̄L)

d,iγµχd,j,L]〉 , (10.5)

and

〈[(χ̄L)
a,iγµχa,j,L][(χ̄L)

b,kγµχb,ℓ,L]〉 , (10.6)

where 1 ≤ i, j, k, ℓ ≤ nF̄ . There are also multifermion
condensates with eight and more fermions that one could
consider. Such multifermion condensates merit further
study.

XI. NON-EXISTENCE OF ASYMPTOTICALLY
FREE Sk F̄ THEORIES WITH k ≥ 3

It is natural to carry out an investigation of (anomaly-
free) chiral gauge theories with gauge group SU(N) and

chiral fermions transforming according to the rank-k
symmetric tensor representation with k ≥ 3 and a req-
uisite number of chiral fermions in the F̄ representation
so as to render the theories free of an anomaly in gauged
currents. We denote such a theory as an SU(N) Sk F̄
theory. This investigation would be the analogue of the
study that we have performed in this paper for Ak F̄ the-
ories with k ≥ 3 and would generalize the studies that
have been carried out in the past on the S2 F̄ theory
[4, 10–13]. As with the Ak F̄ theories, we require that
the theory must be asymptotically free so that it is per-
turbatively calculable in at least one regime, namely the
deep UV, where the gauge coupling is small.

However, we shall show here that there are no asymp-
totically free (anomaly-free) Sk F̄ chiral gauge theories
with k ≥ 3. As before we denote the number of copies
of F̄ fermions as nF̄ . The contribution to the triangle
anomaly in gauged currents of a chiral fermion in the Sk

representation is (see Appendix B )

A(Sk) =
(N + k)! (N + 2k)

(N + 2)! (k − 1)!
. (11.1)

The total anomaly in the theory is A = A(Sk)−nF̄A(F ),
so the condition of anomaly cancellation is that

nF̄ = A(Sk) . (11.2)

The first few values are of nF̄ are

nF̄ =

{

N + 4 if k = 2
(1/2)(N + 3)(N + 6) if k = 3
(1/6)(N + 3)(N + 4)(N + 8) if k = 4

(11.3)

and so forth for higher k.

To investigate the restrictions due to the requirement
of asymptotic freedom, we calculate the one-loop coeffi-
cient of the beta function. We find

b1,SkF̄
=

1

3

[

11N − 2
{

T (Sk) +A(Sk)T (F̄ )
}

]

=
1

3

[

11N − 1

(k − 1)!

{[

k
∏

j=2

(N + j)
]

+
(N + k)!(N + 2k)

(N + 2)!

}

]

. (11.4)

We exhibit the explicit expressions for b(k) for the first few k ≥ 2:

b1,S2F̄
= 3N + 2 , (11.5)
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b1,S3F̄
=

1

3
(−N2 + 4N − 12) , (11.6)

b1,S4F̄
= −1

9
(N3 + 12N2 + 14N + 60) , (11.7)

b1,S5F̄
= − 1

36
(N4 + 18N3 + 119N2 + 210N + 360) ,

(11.8)

and

b1,S6F̄
= − 1

180

(

N5 + 25N4 + 245N3 + 1175N2

+ 2094N + 2520
)

. (11.9)

The coefficient b1,S2F̄
is positive for all relevant N , and

this property was used in past studies of the S2 F̄ the-
ory. However, the coefficient b1,S3F̄

is negative for rele-
vant N ≥ 3. (Recall that an SU(2) theory has only real
representations and hence is not chiral.) With N gen-
eralized from positive integers to real numbers, b1,S3F̄

is
negative for all N , reaching its maximum value of −8/3
for N = 2. We find that the b1,SkF̄

coefficients with
k ≥ 4 are negative-definite for all positive N (either real
or integer). This is evident from the illustrative explicit
expressions that we have given for 4 ≤ k ≤ 6. This com-
pletes our proof that there are no asymptotically free,
(anomaly-free) Sk F̄ chiral gauge theories with k ≥ 3.

XII. CONCLUSIONS

In summary, in this paper we have constructed and
studied asymptotically free chiral gauge theories with an
SU(N) gauge group and chiral fermions transforming ac-
cording to the antisymmetric rank-k representation, Ak,
with k = 2, 3, 4, and, for each k and N , the requisite
number of copies, nF̄ , of fermions transforming according
to the conjugate fundamental representation, F̄ , of this
group to render the theory anomaly-free. For a given k,
to get a theory that is chiral and has nF̄ ≥ 1, we take
N ≥ 2k + 1. We have extended previous studies of the
A2 F̄ theories with further analysis of fermion conden-
sation channels and sequential symmetry breaking and
have presented a number of new results on the Ak F̄ the-
ories with k ≥ 3. The A2F̄ theories form an infinite
family with N ≥ 5, but we have shown that the A3 F̄
and A4 F̄ theories are only asymptotically free for N in
the respective ranges 7 ≤ N ≤ 17 and 9 ≤ N ≤ 11,
and that there are no asymptotically free Ak F̄ theories
with k ≥ 5. We have investigated the types of ultravio-
let to infrared evolution for these Ak F̄ theories and have
found that, depending on k and N , they may lead in
the infrared to a non-Abelian Coulomb phase, or may in-
volve confinement with massless gauge-singlet composite

fermions, or bilinear fermion condensation with dynam-
ical gauge and global symmetry breaking. In two cases,
namely (k,N) = (2, 6), (3, 12), in each of which two bilin-
ear fermion condensation channels are equally attractive,
so the MAC criterion does not prefer one over the other,
we have applied vacuum alignment arguments to infer
which channel is preferred. We have also discussed mul-
tifermion condensates. Finally, we have shown that there
are no asymptotically free, anomaly-free SU(N) Sk F̄ chi-
ral gauge theories with k ≥ 3, where Sk denotes the rank-
k symmetric representation.
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Appendix A: Beta Function Coefficients and
Relevant Group Invariants

For reference, we list the one-loop and two-loop coeffi-
cients [26, 27] in the beta function (2.1) for a non-Abelian
chiral gauge theory with gauge groupG and a set of chiral
fermions comprised of Ni fermions transforming accord-
ing to the representations Ri:

b1 =
1

3

[

11C2(G) − 2
∑

Ri

NiT (Ri)
]

(A1)

and

b2 =
1

3

[

34C2(G)
2 − 2

∑

Ri

Ni{5C2(G)+ 3C2(Ri)}T (Ri)
]

.

(A2)

Appendix B: Relevant Group Invariants

We list below the group invariants that we use for
the relevant case G = SU(N). Recall that the or-
der of the Lie group SU(N) (i.e., the number of in-
finitestimal generators of the associated Lie algebra) is
o(SU(N)) = N2 − 1, and the order of the symplectic
group Sp(2N) is o(Sp(2N)) = N(2N + 1). The anti-
symmetric rank-k representation of SU(N) is denoted
Ak ≡ [k]N . Some group invariants are

dim(R)
∑

i,j=1

DR(Ta)ijDR(Tb)ji = T (R)δab (B1)

and

o(G)
∑

a=1

dim(R)
∑

j=1

DR(Ta)ijDR(Ta)jk = C2(R)δik , (B2)



15

where Ta are the generators of G, and DR is the matrix
representation (Darstellung) of R.
For the adjoint representation, adj, C2(adj) ≡ C2(G),

and for G = SU(N), C2(G) = N . For the rank-k anti-
symmetric representation of SU(N), Ak ≡ [k]N ,

C2([k]N ) =
k(N − k)(N + 1)

2N
(B3)

and

T ([k]N ) =
1

2

(

N − 2

k − 1

)

. (B4)

Thus, for k = 1, T ([1]N) = T (F ) = 1/2 and, for k ≥ 2,

T ([k]N) =

∏k
j=2(N − j)

2(k − 1)!
. (B5)

For the rank-k symmetric representation, Sk,

C2(Sk) =
k(N + k)(N − 1)

2N
(B6)

and

T (Sk) =

∏k
j=2(N + j)

2(k − 1)!
. (B7)

The anomaly produced by chiral fermions transforming
according to the representation R of a group G is defined
as

TrR(Ta, {Tb, Tc}) = A(R)dabc (B8)

where the dabc are the totally symmetric structure con-
stants of the corresponding Lie algebra. Thus, A( ) = 1
for SU(N). For the symmetric and antisymmetric rank-k
tensor representations of SU(N), the anomaly is, respec-
tively [37],

A(Sk) =
(N + k)! (N + 2k)

(N + 2)! (k − 1)!
. (B9)

and, for 1 ≤ k ≤ N − 1,

A(Ak) =
(N − 3)!(N − 2k)

(N − k − 1)!(k − 1)!
. (B10)

(Note that [N ]N is the singlet, so A([N ]N ) = 0.) Hence,
in particular,

A([2]N ) = N − 4 , (B11)

A([3]N ) =
(N − 3)(N − 6)

2
, (B12)

and

A([4]N ) =
(N − 3)(N − 4)(N − 8)

3!
. (B13)

From Eq. (B10), there follows the recursion relation

A([k]N )+A([k+1]N ) = A([k+1]N+1) for 1 ≤ k ≤ N−1 .
(B14)
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ries, 1979 Cargèse Summer Institute (Plenum, New York,
1980), p. 135.

[2] S. Raby, S. Dimopoulos, and L. Susskind, Nucl. Phys.
B 169, 373 (1980); S. Dimopoulos, S. Raby, and L.
Susskind, Nucl. Phys. B 173, 208 (1980).

[3] S. Weinberg and E. Witten, Phys. Lett. B 96, 59 (1980).
[4] I. Bars and S. Yankielowicz, Phys. Lett. B 101, 159

(1981).
[5] J. Preskill and S. Weinberg, Phys. Rev. D 24, 1059

(1981).
[6] I. Bars, Nucl. Phys. B 208, 77 (1982).
[7] J. L. Goity, R. D. Peccei, and D. Zeppenfeld, Nucl. Phys.

B 262, 95 (1985).
[8] H. Georgi, Nucl. Phys. B 266, 274 (1986).
[9] E. Eichten, R. D. Peccei, J. Preskill, and D. Zeppenfeld,

Nucl. Phys. B 268, 161 (1986).
[10] T. Appelquist, A. Cohen, M. Schmaltz, and R. Shrock,

Phys. Lett. B 459, 235 (1999).
[11] T. Appelquist, Z. Duan, and F. Sannino, Phys. Rev. D

61, 125009 (2000).
[12] T. Appelquist and R. Shrock, Phys. Rev. D 88, 105012

(2013).
[13] Y. Shi and R. Shrock, Phys. Rev. D 91, 045004 (2015).

[14] S. Weinberg, Phys. Rev. D 13, 974 (1976).
[15] M. Peskin, Nucl. Phys. B 175, 197 (1980); J. Preskill,

Nucl. Phys. B 177, 21 (1981).
[16] H. Georgi, Nucl. Phys. B 156, 126 (1979).
[17] S. Dimopoulos and L. Susskind, Nucl. Phys. B155, 237

(1979); E. Eichten and K. Lane, Phys. Lett. B90, 125
(1980); E. Farhi and L. Susskind, Phys. Rept. 74, 277
(1981).

[18] T. Appelquist and J. Terning, Phys. Rev. D 50, 2116
(1994); T. Appelquist and R. Shrock, Phys. Lett. B 548,
204 (2002); Phys. Rev. Lett. 90, 201801 (2003); T. Ap-
pelquist, M. Piai, and R. Shrock, Phys. Rev. D 69 (2004);
N. C. Christensen and R. Shrock, Phys. Rev. Lett. 94,
241801 (2005); T. A. Ryttov and R. Shrock, Phys. Rev.
D 81, 115013 (2010).

[19] T. A. Ryttov and R. Shrock, Phys. Rev. D 72, 035013
(2005); N. Chen, T. A. Ryttov, and R. Shrock, Phys.
Rev. D 78 035002 (2008).

[20] N. Chen, T. A. Ryttov, and R. Shrock, Phys. Rev. D 82,
116006 (2010).

[21] M. Kurachi, R. Shrock, and K. Yamawaki, Phys. Rev. D
91, 055032 (2015).

[22] Y. Shi and R. Shrock, arXiv:1509.08501.
[23] When no confusion would result about the value of N , we



16

often use the notation Ak and F̄ for [k]N and [1]
N
. Our

study of Ak F̄ chiral gauge theories is obviously equiva-
lent to the study of the set with fermions in the conjugate
representations Āk and F .
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TABLE I: Some properties of SU(N) Ak F̄ chiral gauge theories. The quantities listed are k, N , n
F̄
, b̄1, b̄2, and, for negative b̄2,

α
IR,2ℓ

= −b̄1/b̄2, αcr for the most attractive bilinear fermion condensation channel (2.3) in the SU(N) theory, and the ratio ρc. The
dash notation − means that the two-loop beta function has no IR zero. The likely IR behavior is indicated in the last column, with the
abbreviations SC, MC, WC for the type coupling in the IR (SC = strong, MC = moderate, WC = weak coupling). In the WC case, the UV
to IR evolution is to a non-Abelian Coulomb phase (NACP). The various possibilities for the evolution involving strong and moderately
strong coupling are discussed in the text. For k = 2, we include illustrative results covering the interval 5 ≤ N ≤ 10; for k = 3, 4 we list
results for all (asymptotically free) Ak F̄ theories.

k N nF̄ b̄1 b̄2 α
IR,2ℓ

αcr ρc IR coupling

2 5 1 1.3528 1.4996 − 0.44 − SC

2 6 2 1.59155 2.0486 − 0.45 − SC

2 7 3 1.8303 2.6796 − 0.37 − SC

2 8 4 2.0690 3.3927 − 0.31 − SC

2 9 5 2.3077 4.1879 − 0.27 − SC

2 10 6 2.5465 5.0654 − 0.24 − SC

3 7 2 1.7242 2.1525 − 0.20 − SC

3 8 5 1.8038 1.9784 − 0.21 − SC

3 9 9 1.8303 1.3805 − 0.21 − SC

3 10 14 1.8038 0.2573 − 0.21 − SC

3 11 20 1.7242 −1.4926 1.155 0.21 5.4 SC

3 12 27 1.59155 −3.9705 0.4008 0.21 1.9 MC

3 13 35 1.4059 −7.2779 0.1932 0.19 0.99 MC

3 14 44 1.1671 −11.5161 0.1013 0.18 0.57 MC

3 15 54 0.8753 −16.7864 0.05215 0.16 0.32 WC, NACP

3 16 65 0.5305 −23.1901 0.02288 0.15 0.15 WC, NACP

3 17 77 0.1326 −30.8287 0.00430 0.14 0.03 WC, NACP

4 9 5 1.5650 −0.5896 2.6542 0.12 22.5 SC

4 10 14 1.0610 −5.3310 0.1990 0.12 1.7 MC

4 11 28 0.2387 −13.410 0.0178 0.12 0.15 WC, NACP
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TABLE II: ∆C2 values for the SU(N) Ak F̄ chiral gauge theories and most attractive channels for bilinear fermion condensation. The
quantities listed are k, N , and the respective ∆C2 values for the Ak × Ak → ĀN−2k and Ak × F̄ → Ak−1 channels. In the last column,
we list the most attractive channel for bilinear fermion condensation in the strongly coupled and moderately strongly coupled (SC,MC)
cases. If the UV to IR evolution remains weakly coupled (WC), it flows to a non-Abelian Coulomb phase (NACP). For k = 2, we include
illustrative results including the interval 5 ≤ N ≤ 10; for k = 3, 4 we list results for all (asymptotically free) Ak F̄ theories. See text for
further discussion of the k = 2, N = 6 and k = 3, N = 12 cases where the ∆C2 values are equal. The A2 F̄ theories could confine, yielding
massless composite fermions. Possible multifermion condensates are also discussed in the text.

k N ∆C2(Ak ×Ak → ĀN−2k) ∆C2(Ak × F̄ → Ak−1) MAC for (S,M)C

2 5 4.800 3.600 A2 × A2 → F̄

2 6 4.667 4.667 A2 × F̄ → F

2 7 4.571 5.714 A2 × F̄ → F

2 8 4.500 6.750 A2 × F̄ → F

2 9 4.444 7.778 A2 × F̄ → F

2 10 4.400 8.800 A2 × F̄ → F

3 7 10.29 4.571 A3 × A3 → F̄

3 8 10.125 5.625 A3 ×A3 → Ā2

3 9 10.000 6.667 A3 ×A3 → Ā3

3 10 9.900 7.700 A3 ×A3 → Ā4

3 11 9.818 8.727 A3 ×A3 → Ā5

3 12 9.750 9.750 A3 × F̄ → A2 or NACP

3 13 9.692 10.769 A3 × F̄ → A2 or NACP

3 14 9.643 11.786 A3 × F̄ → A2 or NACP

3 15 9.600 12.800 NACP

3 16 9.5625 13.8125 NACP

3 17 9.529 14.824 NACP

4 9 17.78 5.556 A4 × A4 → F̄

4 10 17.60 6.600 A4 × A4 → Ā2 or NACP

4 11 17.45 7.636 NACP


