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Abstract

We present the explicit de Sitter supergravity action describing the interaction
of supergravity with an arbitrary number of chiral and vector multiplets as well
as one nilpotent chiral multiplet. The action has a non-Gaussian dependence on
the auxiliary field of the nilpotent multiplet, however, it can be integrated out for
an arbitrary matter-coupled supergravity. The general supergravity action with
a given Kähler potential K, superpotential W and vector matrix fAB interact-
ing with a nilpotent chiral multiplet consists of the standard supergravity action
defined by K, W and fAB where the scalar in the nilpotent multiplet has to be re-
placed by a bilinear combination of the fermion in the nilpotent multiplet divided
by the Gaussian value of the auxiliary field. All additional contributions to the
action start with terms quartic and higher order in the fermion of the nilpotent
multiplet. These are given by a simple universal closed form expression.
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1 Introduction

A supergravity action, including fermion interactions, with non-linearly real-
ized spontaneously broken local supersymmetry was derived in [1, 2]. In case
of pure supergravity without scalars it was shown in [1] that de Sitter vacua
form a simple set of classical solutions of this theory. For a long time only
anti-de Sitter supergravity without scalars was known [3]. De Sitter vacua
are also natural for the theory with a single chiral multiplet, constructed in
[2]. The presence of a Volkov-Akulov (VA) type non-linearly realized super-
symmetry [4] in supergravity models [1, 2] leads to a natural uplifting of the
vacuum energy in all these models. This is in full agreement with the string
theory realization of the KKLT de Sitter vacua that use an anti-D3 brane [5].
The construction in [5] was recently described as a supersymmetric realiza-
tion of the KKLT uplifting with account of the fermions on the world-volume
of the anti-D3 brane [6]. Furthermore it was shown in [7] how this setup can
be realized in explicit warped string compactifications.

The purpose of this paper is to derive general and explicit supergravity
models with chiral and vector multiplets interacting with a nilpotent chiral
multiplet based on the superconformal formulation of this theory given in
[8]. This strategy was already used successfully in [1, 2] where full actions
with fermions in models with a nilpotent multiplet and without matter mul-
tiplets or with a single chiral multiplet were derived. Meanwhile in [9] it was
proposed how to derive supergravities with a nilpotent multiplet for general
classes of models with any number of chiral and vector multiplets and with
generic K, W and fAB. It was shown that one can use the same method as
in [1], namely to perform a non-Gaussian integration of the auxiliary field
resulting in a closed form action. A complete action in the unitary gauge was
presented in [9] for general matter coupling. Here we will derive the com-
plete action with fermions and with local supersymmetry for general matter
coupling.

The general action without a nilpotent multiplet is well known and we
will use here the framework presented in [10]. Originally the corresponding
general supergravity-Yang-Mills action was derived from the superconformal
theory in [11, 12, 13].

The interest in a nilpotent chiral multiplet satisfying the nilpotency con-
dition in supergravity in applications to cosmology was initiated in [14] for
the VA-Starobinsky model. For a general supergravity, interacting with the

2



VA model, the superconformal construction was presented in [8]. It has been
shown in [15] that the approach of using the constrained curvature superfield
is dual to the VA model coupled to supergravity. It was also shown recently
that one can use a complex linear goldstino superfield and build de Sitter
supergravity [16].

This interest in these new supergravity models was increased by the fact
that they facilitate the construction of early universe inflationary models
compatible with the data and the construction of de Sitter vacua for ex-
plaining dark energy and supersymmetry breaking, see for example [17] and
references therein. Such supergravity models in application to cosmology
require mostly the knowledge of the bosonic action of the theory, where the
rules are very simple: for the complete models one has to construct the
standard supergravity action defined by K, W and fAB. Once the action is
known, one has to take only the bosonic part of it and, moreover, set the
scalar field in the nilpotent multiplet to zero since the scalar in the nilpotent
multiplet, representing the VA theory, is a fermion bilinear. If the scalar in
the nilpotent multiplet is z1, then the rule for obtaining the bosonic action
is

e−1Lbosonic = e−1Lbook[K(zα, z̄ᾱ),W (zα), fAB(zα)]
∣∣∣
z1=χα=χᾱ=λA=ψµ=0

, α = 1, ..., n ,(1.1)

for a given choice of Kähler potential, superpotential and vector metric. Here
Lbook is the standard supergravity action for a given choice of K, W and fAB,
see also next section for details.

However, the knowledge of the bosonic action may not be sufficient for
studies of reheating of the universe in these models, as well as for studies
of particle physics, where the role of the fermions is important. A complete
action including fermions, with the bosonic part given in (1.1), will be derived
here, following the proposal in [9].

2 Supergravity action with a nilpotent mul-

tiplet

The general supergravity Lagrangian for an arbitrary number of chiral and
vector multiplets coupled to supergravity is given for example in the book
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[10] in equations (18.6)-(18.19) and takes the form

e−1Lbook = Lkin − V + Lm + Lmix + L4f , (2.1)

where Lkin contains all the terms with spacetime derivatives of the fields. All
terms on the right-hand-side of eq. (2.1) are defined in [10]. The Lagrangian
is a function of all the physical fields Lbook = Lbook(eaµ, ψµ, z

α, z̄ᾱ, χα, χᾱ, AAµ , λ
A).

We are interested in the case in which one of the chiral superfields in the
supergravity action is nilpotent. Without loss of generality we choose the first

one which leads to the constraint [1]: z1 = (χ1)2

2F 1 (and likewise z̄1̄ = (χ1̄)2

2F̄ 1̄ ).1

What is the corresponding Lagrangian in this case? Clearly we cannot just

plug z1 = (χ1)2

2F 1 into the on-shell Lagrangian (2.1) since we do not know what
F 1 is in the general supergravity model. What we actually need to do is to
start with an off-shell supergravity Lagrangian and then integrate out all the
Fα to get the correct on-shell Lagrangian.

The corresponding off-shell supergravity action for an arbitrary number
of chiral and vector multiplets coupled to gravity is given by

e−1Loff−shell = (Fα − Fα
G)gαᾱ(F̄ ᾱ − F̄ ᾱ

G) + e−1Lbook , (2.2)

where
Fα
G = −e

K
2 gαβ̄∇β̄W + (Fα

G)f , (2.3)

with

(Fα
G)f =

1

2
Γαβγχ̄

βχγ +
1

4
f̄ABβ̄g

β̄αλ̄APRλ
B . (2.4)

Alternatively, we could have started with the off-shell supergravity action in
[12], eqs. (25)-(33), which is given in the form with all auxiliary fields not
integrated out. This set up was used in [2]. When the auxiliary fields Aµ
and F 0 are integrated out, the remaining action still has all auxiliary fields
Fα as shown in our eq. (2.2).

Now since the Lagrangian Lbook does depend on z1 = (χ1)2

2F 1 it will also de-
pend on F 1 and therefore it seems prohibitively difficult to explicitly integrate
it out. However, using a proposal made in [9] which includes a simplifying
assumption about the form of Kähler potential we will derive the explicit

1We are using the conventions of [10] but we will set κ = 1 and we define the short-hand
notations (χ1)2 = χ̄1PLχ

1 and (χ1̄)2 = χ̄1̄PRχ
1̄.
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on-shell Lagrangian in the next section. In particular, we assume that the
Kähler potential depends only on the product z1z̄1̄ so that we have 2

K(zi, z̄ ı̄, z1z̄1̄) = K0(zi, z̄ ı̄) + z1z̄1̄g11̄(zi, z̄ ı̄) . (2.5)

We also expand the holomorphic superpotential W and the holomorphic
gauge kinetic function fAB as follows

W (z1, zi) = W0(zi) + z1W1(zi) ≡ g(zi) + z1f(zi) ,

fAB(z1, zi) = fAB0(zi) + z1 fAB1(zi) . (2.6)

With this assumption we will integrate out F 1 in the next section 3. This
involves taking into account a non-Gaussian dependence of the action on
the auxiliary field F 1. This gives us the generic supergravity Lagrangian for
a nilpotent chiral superfield coupled to an arbitrary number of chiral and
vector multiplets:

e−1Lfinal =
[
e−1Lbook

]
z1=

(χ1)2

2f1

− (χ1)2 (χ1̄)2

4g11̄(f 1f̄ 1̄)2

∣∣∣∣g11̄

2(χ1)2

2f 1
+B1

∣∣∣∣2 (2.7)

with

f 1 ≡ 1

g11̄

(
−e

K0
2 W 1̄ +

1

4
f̄AB1̄λ̄

APRλ
B

)
,

B1 ≡ e−1 δLbook

δz̄1̄
|z1=z̄1̄=0 . (2.8)

Note that the last term in equation (2.7) has already the maximal power of
the (undifferentiated) spinor χ1 so that we can drop all terms in B1 that
contain χ1 or χ1̄. We explicitly give the relevant part of B1 for two examples
in section 4.

One can see that the complete Lagrangian (2.7) has the original form
with z1 replaced by its ‘Gaussian value’ and there are some additional terms
that are at least quadratic in χ1χ1̄. On the basis of this expression we may

2Since (z1)2 = (z̄1̄)2 = 0 the only other term that could arise in the fully general Kähler
potential is z1f(zi, z̄ ı̄) + z̄1̄f̄(zi, z̄ ı̄). Note that linear terms in z1 (z̄1̄) that are multiplied
by a holomorphic (anti-holomorphic) function can be removed by a Kähler transformation.
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conclude that the action with K, W and fAB generic (but with K dependence
on z1z̄1̄) is given by the standard action with the following modifications:

After the standard action for K, W and fAB is presented as a function
of z1 and z̄1̄

1. Replace z1 by z1 = (χ1)2

2f1 and likewise for the conjugate z̄1̄ = (χ1̄)2

2f̄ 1̄ .

2. Add the quartic and higher order in spinors terms shown in the second
entry in eq. (2.7), where B1 is given in (2.8) and more explicitly for
two examples in section 4.

3 Derivation of the matter-coupled supergrav-

ity action with a nilpotent multiplet

We start with the off-shell action (2.2) and we would like to integrate out
the auxiliary fields Fα. The dependence on F 1 is non-Gaussian since the

Lagrangian depends on z1 = (χ1)2

2F 1 . However, we can still trivially integrate
out all the other F i, i = 2, . . . , n and get

gi1̄(F̄ 1̄ − F̄ 1̄
G) + gi̄(F̄

̄ − F̄ ̄
G) = 0 . (3.1)

The sub-matrix gi̄ is invertible in order to have a non-degenerate kinetic
term for the zi. Thus we find

(F̄ ̄ − F̄ ̄
G) = −(g̄i)

−1gi1̄(F̄ 1̄ − F̄ 1̄
G) , (3.2)

and the Lagrangian after integrating out the F i becomes

e−1Loff−shell = (F 1 − F 1
G)(g11̄ − g1̄(g̄i)

−1gi1̄)(F̄ 1̄ − F̄ 1̄
G) + e−1Lbook . (3.3)

Here e−1Lbook is defined as an expansion in z1, z̄1̄

e−1Lbook = z̄1̄A1z1 +B1z̄1̄ + B̄1z1 + C1 . (3.4)

In order to solve for F 1 we follow the approach described in [9]. Using the
Kähler potential in equation (2.5) which immediately implies that

gi1̄ = z1∂ig11̄ , g1ı̄ = z̄1̄∂ı̄g11̄ , (3.5)
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we rewrite the first term in the Lagrangian (3.3) as follows

(F 1 − F 1
G)g11̄(F̄ 1̄ − F̄ 1̄

G)− (F 1 − F 1
G)z1z̄1̄(∂̄g11̄)(K0,̄i)

−1(∂ig11̄)(F̄ 1̄ − F̄ 1̄
G) ,(3.6)

where we used that (g̄i)
−1 = (K0,̄i)

−1− z1z̄1̄(K0,̄l)
−1(K0,im̄)−1(∂l∂m̄g11̄) and

the fact that (z1)2 = 0.

When solving for F 1, following [1], one finds that F 1 = F 1
G up to powers

of χ1 (see eqn. (A.24) in [1]). Since the second term in equation (3.6) has
already the maximal power of χ1 because z1z̄1̄ ∝ (χ1)2(χ1̄)2 we find that the
second term does not contribute to the action at all. We show this explicitly
in appendix A. Thus, we find that we are left with

e−1Loff−shell = (F 1 − F 1
G)g11̄(F̄ 1̄ − F̄ 1̄

G) + e−1Lbook . (3.7)

Now following [9] we want to separate all the explicit z1, z̄1̄ dependence in
the first term of (3.7) from the dependence on F 1 and F̄ 1̄. This will then
bring the Lagrangian into a form in which we can easily integrate out F 1

following the procedure developed in [1]. To do that we define the following
expansion coefficients that are independent of z1 and z̄1̄

F 1
G = F 1

G0 + F 1
G1z

1 + F 1
G1̄z̄

1̄ + F 1
G11̄z

1z̄1̄ , (3.8)

and likewise for F̄ 1̄
G. We present some details on the moduli space geometry

for our models in appendix B. Using it, a straightforward calculation, given
in appendix C, shows that F 1

G1̄ = F̄ 1̄
G1 = 0 for the Kähler potential given in

equation (2.5).

Now let us look at the term (F 1 − F 1
G)g11̄(F̄ 1̄ − F̄ 1̄

G). We can absorb the
z1 and z1z̄1̄ dependent terms of F 1

G into F 1 by defining

F
′1 = F 1 − F 1

G1z
1 − z1z̄1̄F 1

G11̄ . (3.9)

This does not affect the nilpotency condition that fixes z1 = (χ1)2

2F 1 since

z1 =
(χ1)2

2F 1
=

(χ1)2

2F ′1
=

(χ1)2

2F 1

(
1 +

z1

2F 1

(
F 1
G1 + z̄1̄F 1

G11̄

))
. (3.10)

Here we used that (χ1)2z1 ∝ (χ1)2(χ1)2 = 0. Likewise we can define

F̄
′1̄ = F̄ 1̄ − F̄ 1̄

G1̄z̄
1̄ − z1z̄1̄F̄ 1̄

G11̄ . (3.11)
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This leads to

(F 1 − F 1
G)g11̄(F̄ 1̄ − F̄ 1̄

G) = (F
′1 − F 1

G0)g11̄(F̄
′1̄ − F̄ 1̄

G0) . (3.12)

Putting everything together we can now rewrite the Lagrangian (3.7) as

e−1L = (F
′1 − F 1

G0)g11̄(F̄
′1̄ − F̄ 1̄

G0) + z̄1̄Az1 +Bz̄1̄ + B̄z1 + C1 . (3.13)

We now introduce F = F
′1√g11̄, FG0 = F 1

G0

√
g11̄, z = z1/

√
g11̄ = (χ1)2

2F
and

similarly for the conjugated quantities. We also define A = g11̄A
1, B =√

g11̄B
1, C = C1 to bring the Lagrangian into the form 3

e−1Loff−shell = (F − FG0)(F̄ − F̄G0) + z̄Az +Bz̄ + B̄z + C . (3.14)

Now we can solve the equation for F that is given by

δL(z, z̄, F, F̄ )

δF
+
∂z

∂F

δL(z, z̄, F, F̄ )

δz
=
δL(z, z̄, F, F̄ )

δF
− z

F

δL(z, z̄, F, F̄ )

δz
= 0 .

(3.15)
This was done for the Lagrangian (3.14) in the paper [1] (see in particular
appendix A.5). The resulting on-shell Lagrangian is given by

e−1Lon−shell =
[
z̄ A z + zB̄ +Bz̄ + C − 1

FG0F̄G0

(z̄Az + z̄B)
(
zĀz̄ + zB̄

) ]
z=

(χ1)2

2FG0

.(3.16)

Expressing this in our original variables we have

e−1Lon−shell =
[
z̄1̄A1 z1 + z1B̄1 +B1z̄1̄ + C1 − 1

g11̄F
1
G0F̄

1̄
G0

∣∣∣z̄1̄A1z1 + z̄1̄B1
∣∣∣2 ]

z1=
(χ1)2

2F1
G0

=
[
e−1Lbook − 1

g11̄F
1
G0F̄

1̄
G0

∣∣∣z̄1̄A1z1 + z̄1̄B1
∣∣∣2 ]

z1=
(χ1)2

2F1
G0

. (3.17)

To make it fully explicit that the ‘new’ terms in the Lagrangian contain the
maximal power (χ1)2(χ1̄)2 of the undifferentiated spinor χ1, we can rewrite
the Lagrangian as

e−1Lfinal =
[
e−1Lbook

]
z1=

(χ1)2

2F1
G0

− (χ1)2 (χ1̄)2

4g11̄(F 1
G0F̄

1̄
G0)2

∣∣∣∣A1 (χ1)2

2F 1
G0

+B1

∣∣∣∣2 , (3.18)

3Note that our definition of C is different from the one used in [1].
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where the explicit expression for F 1
G0 is derived in appendix C and given by

F 1
G0 =

1

g11̄

(
−e

K0
2 W 1̄ +

1

2
(∂ig11̄)χ̄1χi +

1

4
f̄AB1̄λ̄

APRλ
B

)
. (3.19)

Note that A1 in the above expression has to act with two derivatives on (χ1)2

in order to give a non-zero expression. In the Lagrangian Lbook in (3.4) the
relevant part of the z̄1̄A1z1 term which appears in the second term in (3.18)
is

z̄1̄g11̄g
µν∂µ∂νz

1 ≡ z̄1̄g11̄2z
1 . (3.20)

Likewise, from B1 and F 1
G0 only parts contribute that are independent of

the undifferentiated χ1 and χ1̄ since they appear in the above action with
the highest power of the spinor χ1. We denote these parts by b1 and f 1,
respectively. We explicitly spell out b1 for two examples in section 4 and f 1

in appendix C. Taking all this into account the Lagrangian (3.18) simplifies
to our final result given in equation (2.7) above.

4 Examples

In this section we discuss two examples of our general result. First we discuss
the simplest case of pure supergravity without chiral and vector multiplets.
The action in this case was first derived in [1] and [2]. Then we discuss
a pretty general case in which we allow for an arbitrary number of chiral
and vector multiplets and only make the assumption that the gauge kinetic
function fAB and the moment maps PA are independent of z1.

4.1 Pure dS supergravity

For the case of a single nilpotent chiral superfield coupled to supergravity
the most general Kähler and superpotential are given by

K = z1z̄1̄ , W = g + fz1 , (4.1)

with g and f complex constants. The corresponding action was derived in
[1] and [2] in two different superconformal gauges. The one we are using here
is based on the framework in [10].
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Here we show how the action follows from our general answer given in
(2.7). For the simple Kähler and superpotential given in (4.1) we find that
F 1
G0 = −f̄ . This leads to the action

e−1Lpure dS =
[
e−1Lbook

]
z1=− (χ1)2

2f̄

− (χ1)2 (χ1̄)2

4|f |4

∣∣∣∣−2(χ1)2

2f̄
+ b1

∣∣∣∣2 , (4.2)

where the explicit expression for b1 can be read off from the general La-
grangian in eqns. (18.6)-(18.19) in [10]. In particular, α, β only take the
value 1 and we want to extract all terms that are linear in z̄1̄ and indepen-
dent of z1 as described in equation (2.8). Furthermore, we can drop all terms
that contain the undifferentiated spinor χ1 or χ1̄ (after potentially integrating
by parts). This leaves us with only three terms, one coming from the scalar
potential V , one coming from the mass term of the gravitino and lastly one
term which comes from the term + 1√

2
ψ̄µ/∂z̄

1̄γµχ1 in the action after partial
integration. The resulting answer is

b1 = 2gf̄ +
1

2
f̄ ψ̄µPLγ

µνψν −
1√
2
ψ̄µγ

νγµ∂νχ
1 . (4.3)

4.2 De Sitter supergravity coupled to chiral and vector
superfields

In this subsection we spell out the action in the case of an arbitrary number
of chiral and vector multiplets but we make the simplifying assumption that
the gauge kinetic function fAB and the moment maps PA are independent of
z1 (and z̄1̄). The action is given by

e−1Lfinal =
[
e−1Lbook

]
z1=

(χ1)2

2f1

− (χ1)2 (χ1̄)2

4g11̄(f 1f̄ 1̄)2

∣∣∣∣g11̄

2(χ1)2

2f 1
+ b1

∣∣∣∣2 , (4.4)

with

f 1 = −e
K0
2 W 1̄

g11̄

,

b1 = eK0

[
2W0W 1̄ + (K0,i̄)

−1 (D0,iW0)

(
∂̄g11̄

g11̄

W 1̄ − D̄0,̄W 1̄

)]
−1

2
(χ̄̄/∂χ1)

[
3∂̄g11̄ + (z̄k̄∂k̄ − zk∂k)∂̄g11̄

]
10



+
1

2
e
K0
2 W 1̄ψ̄µPLγ

µνψν −
1√
2
ψ̄µγ

νγµ∂νχ
1
(
g11̄ + (∂̄g11̄)z̄ ̄

)
+

1

4
e
K0
2 fABj λ̄

APLλ
B (K0,jk̄)

−1

(
(∂k̄ +K0,k̄)−

∂k̄g11̄

g11̄

)
W 1̄

−1

2
e
K0
2 χ̄ı̄χ̄

(
D̄0,̄ıD̄0,̄ −

∂ı̄∂̄g11̄

g11̄

+ (K0,kl̄)
−1(K0,kı̄̄)

(
(∂l̄g11̄)

g11̄

− D̄0,l̄

))
W 1̄

+
1√
2

e
K0
2 D̄0,̄ıW 1̄ χ̄

ı̄ γ · ψ , (4.5)

where we defined D0,i = ∂i +K0,i and likewise D̄0,̄ı = ∂ı̄ +K0,̄ı. This explicit
expression for b1 can again be read off from the action given in the book [10].
In particular, the first line arises from the scalar potential V , the second line
comes from the kinetic terms for the fermions and the third line contains the
generalization of the terms that we already found above in equation (4.3).
The fourth line comes from the gaugino mass term and the fifth from the
mass term for the χi. The last line contains a term coming from Lmix in
equation (18.18) in [10].

Note that this fairly general case includes the dS supergravity action
coupled to a single chiral multiplet that was derived in [2].

5 Summary

We constructed the locally supersymmetric supergravity action for general
models with chiral and vector multiplets, presented in eq. (2.7). It depends
on all chiral multiplets, zα: the nilpotent one z1 and all other zi with i =
2, ..., n. Our models are defined by K(zα, z̄ᾱ), W (zα) and fAB(zα) given by
the following expressions

K(zα, z̄ᾱ) = K0(zi, z̄ ı̄) + z1z̄1̄g11̄(zi, z̄ ı̄) ,

W (zα) = W0(zi) + z1W1(zi) ,

fAB(zα) = fAB0(zi) + z1 fAB1(zi) . (5.1)

Here the choice of W and fAB is most general, since (z1)2 = 0, whereas the
Kähler potential is assumed to depend on z1z̄1̄.

Interesting features of de Sitter supergravity coupled to generic chiral
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and vector multiplets and a nilpotent chiral multiplet became clear after the
complete action in eq. (2.7) was derived:

1. The bosonic action is the standard supergravity action defined by
K(zα, z̄ᾱ), W (zα) and fAB(zα) which depend on all chiral multiplets.
In this bosonic action one has to take z1 = 0.

2. The complete fermionic action up to terms quadratic in χ1χ1̄ is given
by the standard supergravity action defined by K(zα, z̄ᾱ), W (zα) and
fAB(zα), in which z1 has to be replaced by

z1 = g11̄(zi, z̄ ı̄)
(χ1)2

2

(
−e

K0
2 W 1̄(z̄ ı̄) +

1

4
f̄AB1̄(z̄ ı̄)λ̄APRλ

B

)−1

. (5.2)

3. The complete fermionic action to all orders in fermions is given by the
standard supergravity action defined by K(zα, z̄ᾱ), W (zα) and fAB(zα),
in which z1 has to be replaced as shown in eq. (5.2). In addition to
this, a term quartic and higher order in fermions has to be added to
the action. It is given in closed form by the second term in eq. (2.7).

4. In the unitary gauge
χ1 = 0 , (5.3)

the action reduces to the standard supergravity action defined byK(zα, z̄ᾱ),
W (zα) and fAB(zα) taken at χ1 = z1 = 0 but with F 1 6= 0:

F 1|z1=χ1=0 =
1

g11̄(zi, z̄ ı̄)

(
−e

K0
2 W 1̄(z̄ ı̄) +

1

4
f̄AB1̄(z̄ ı̄)λ̄APRλ

B

)
. (5.4)

The non-linearly realized local supersymmetry of the action in the uni-
tary gauge χ1 = 0 is broken. The extra terms due to F 1 from the
nilpotent multiplet include the non-vanishing positive term in the po-
tential

V = eK0(zi,z̄ı̄)|W1(zi)|2g11̄(zi, z̄ ı̄) > 0 , (5.5)

as well as some fermionic terms in case that fAB depends4 on z1. This
is the basic feature of all de Sitter supergravity models, the leftover
of the positive energy term even in the unitary local supersymmetry
gauge in which the VA fermion is absent.

4In string theory constructions of the nilpotent multiplet via the anti-D3-brane one may
argue that fAB does not depend on z1 [7]. In such case, the only effect of the nilpotent
multiplet in the supergravity unitary gauge χ1 = 0 is the vacuum energy uplift (5.5).
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In conclusion, in this paper we have constructed a locally supersymmetric
supergravity action for the case with a nilpotent multiplet and generic chiral
and vectors multiplets. This creates a consistent framework for the investi-
gation of phenomenological consequences of theories with nilpotent fields for
particle physics and cosmology.
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A Vanishing of the extra term

In this section we show explicitly that the second term in (3.6) does not

contribute to the final on-shell action. We first recall that F 1z1 = F 1 (χ1)2

2F 1 =
(χ1)2

2
is F 1 independent (and likewise for F̄ 1̄z̄1̄). This allows us to rewrite the

second term in the Lagrangian (3.6), which due to the factor z1z̄1̄ can only
depend on F 1

G0 and F̄ 1̄
G0 (see equation (3.8) for the definition)

−(F 1 − F 1
G0)z1z̄1̄(∂̄g11̄)(K0,̄i)

−1(∂ig11̄)(F̄ 1̄ − F̄ 1̄
G0) (A.1)

= (∂̄g11̄)(K0,̄i)
−1(∂ig11̄)

(
−z1z̄1̄F 1

G0F̄
1̄
G0 + z1 (χ1̄)2

2
F 1
G0 + z̄1̄ (χ1)2

2
F̄ 1̄
G0 −

(χ1)2(χ1̄)2

4

)
.

So we see that the explicit F 1, F̄ 1̄ dependence completely disappears. The
above terms then become a correction to (3.4) that of course also does not
have an explicit dependence on F 1 and F̄ 1̄. In particular we find that the
coefficient A1, B1, B̄1 and C1 get the following extra contributions

∆A1 = −MF 1
G0F̄

1̄
G0 ,

∆B1 = M(χ1)2

2
F̄ 1̄
G0 ,

13



∆B̄1 = M(χ1̄)2

2
F 1
G0 ,

∆C1 = −M(χ1)2(χ1̄)2

4
, (A.2)

with
M = (∂̄g11̄)(K0,̄i)

−1(∂ig11̄) . (A.3)

Then we can proceed as in section 3 and integrate out F 1. The final action
expressed in our original variables takes the form (cf. eqn. (3.17))

e−1Lon−shell =
[
z̄1̄ (A1 + ∆A1) z1 + z1(B̄1 + ∆B̄1) + (B1 + ∆B1)z̄1̄ + (C1 + ∆C1)

− 1

g11̄F
1
G0F̄

1̄
G0

∣∣∣z̄1̄(A1 + ∆A1)z1 + z̄1̄(B1 + ∆B1)
∣∣∣2 ]

z1=
(χ1)2

2F1
G0

=
[
e−1Lbook + z̄1̄ ∆A1 z1 + z1∆B̄1 + ∆B1z̄1̄ + ∆C1

− 1

g11̄F
1
G0F̄

1̄
G0

∣∣∣z̄1̄A1z1 +B1z̄1̄ + z̄1̄∆A1z1 + ∆B1z̄1̄
∣∣∣2 ]

z1=
(χ1)2

2F1
G0

. (A.4)

Now we note that using the explicit expressions in (A.2) we find

z̄1̄ ∆Az1
∣∣∣
z1=

(χ1)2

2F1
G0

= ∆C = −M(χ1)2 (χ1̄)2

4
,

z1∆B̄
∣∣
z1=

(χ1)2

2F1
G0

= ∆Bz̄1̄
∣∣
z1=

(χ1)2

2F1
G0

= +M(χ1)2 (χ1̄)2

4
. (A.5)

This implies that[
z̄1̄ ∆A1 z1 + z1∆B̄1 + ∆B1z̄1̄ + ∆C1

]
z1=

(χ1)2

2F1
G0

= 0 . (A.6)

We also see from (A.5) that[
z̄1̄ ∆Az1 + ∆Bz̄1̄

]
z1=

(χ1)2

2F1
G0

= 0 . (A.7)

Thus we have explicitly shown that the Lagrangian (A.4) reduces to the one
in equation (3.17).
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B Inverse Kähler metric and Christoffel sym-

bols

From the Kähler metric as given in eqn. (2.5) we trivially find the following
expansion in z1 and z̄1̄

g11̄ = g11̄(zi, z̄ ı̄) ,
g1ı̄ = z̄1̄∂ı̄g11̄ ,
gi1̄ = z1∂ig11̄ ,
gi̄ = K0,i̄ + z1z̄1̄∂i∂̄g11̄ . (B.1)

Contracting the Kähler metric gαβ with its inverse we find the following
relations

g11̄g
1̄1 + g1̄g

̄1 = 1 ,

g11̄g
1̄k + g1̄g

̄k = 0 ,

gi1̄g
1̄1 + gi̄g

̄1 = 0 ,

gi1̄g
1̄k + gi̄g

̄k = δi
k . (B.2)

Now we recall that

(g̄i)
−1 = (K0,̄i)

−1 − z1z̄1̄(K0,̄l)
−1(K0,im̄)−1∂l∂m̄g11̄ , (B.3)

and use the above (B.2) to find the expansion of the inverse metric

g11̄ =
1

g11̄ − g1̄(gi̄)−1gi1̄
=

1

g11̄

+ z1z̄1̄ (∂̄g11̄)(K0,i̄)
−1(∂ig11̄)

(g11̄)2
,

g1̄ = −(gi̄)
−1gi1̄g

11̄ = −z1 (K0,i̄)
−1(∂ig11̄)

g11̄

, (B.4)

gk̄ = (gi̄)
−1
(
δi
k − gi1̄g1̄k

)
= (K0,k̄)

−1 − z1z̄1̄

[
(K0,̄l)

−1(K0,km̄)−1∂l∂m̄g11̄ −
(K0,i̄)

−1(∂ig11̄)(K0,km̄)−1(∂m̄g11̄)

g11̄

)

]
.

The Christoffel symbols for the Kähler manifold are given by Γαβγ =

gαδ̄∂βgγδ̄. For the Christoffel symbols with upper index α = 1 we explic-
itly find

Γ1
11 = g11̄∂1g11̄ + g1ı̄∂1g1ı̄ = 0 ,
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Γ1
1i = g11̄∂1gi1̄ + g1̄∂1gi̄

=
∂ig11̄

g11̄

+ z1z̄1̄

(
(∂ig11̄)(∂̄g11̄)(K0,k̄)

−1(∂kg11̄)

(g11̄)2
− (∂i∂̄g11̄)(K0,k̄)

−1(∂kg11̄)

g11̄

)
,

Γ1
ij = g11̄∂igj1̄ + g1k̄∂igjk̄ = z1

(
∂i∂jg11̄

g11̄

−
(K0,lk̄)

−1(∂lg11̄)

g11̄

K0,ijk̄

)
. (B.5)

C The expansion of F 1
G

Using the equations from the previous appendix we can now expand F 1
G to

get the explicit expression for F 1
G0 = F 1

G|z1=z̄1̄=0. We will also show that
F 1
G1̄ = 0, i.e. that F 1

G has no terms that only depend on z̄1̄ and not on z1. It

then follows automatically that its complex conjugate F̄ 1̄
G1 vanishes as well.

Let us first recall the definition of F 1
G in eqns. (2.3) and (2.4),

F 1
G = −e

K
2 g1β̄∇β̄W +

1

2
Γ1
βγχ̄

βχγ +
1

4
f̄ABβ̄g

β̄1λ̄APRλ
B . (C.1)

Expanding the bosonic part in powers of z1 and z̄1̄ we find using (B.4) that

e
K
2

(
g11̄∇1̄W + g1ı̄∇ı̄W

)
= e

K0
2

(
1 +

z1z̄1̄g11̄

2

)(
g11̄(W 1̄ + z1g11̄W )− z1 (K0,jı̄)

−1(∂jg11̄)

g11̄

∇ı̄W

)
=

e
K0
2 W 1̄

g11̄

+O(z1, z1z̄1̄) . (C.2)

Since W 1̄ is independent of z̄1̄ we see that the above expression contains no
term linear in z̄1̄ (and independent of z1).

The term 1
2
Γ1
βγχ̄

βχγ can only have a term linear in z̄1̄, if Γ1
βγ has such a

term. However, from the explicit expressions in equation (B.5) we see that
this is not the case. In particular, we find the expansion

1

2
Γ1
βγχ̄

βχγ =
(∂ig11̄)χ̄1χi

2g11̄

+O(z1, z1z̄1̄) . (C.3)

Finally, we see that the gaugino term can be expanded as

1

4
f̄ABβ̄g

β̄1λ̄APRλ
B =

1

4

(
f̄AB1̄g

1̄1 + f̄ABı̄g
ı̄1
)
λ̄APRλ

B =
f̄AB1̄λ̄

APRλ
B

4g11̄

+O(z1, z1z̄1̄) ,

(C.4)
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and does not have a linear term in z̄1̄ either. So we conclude that F 1
G has no

linear terms in z̄1̄ and therefore by definition we have F 1
G1̄ = 0.

Gathering the terms in (C.2)-(C.4) we find

F 1
G0 =

1

g11̄

(
−e

K0
2 W 1̄ +

1

2
(∂ig11̄)χ̄1χi +

1

4
f̄AB1̄λ̄

APRλ
B

)
. (C.5)

As discussed above, in the action F 1
G0 always appears multiplied by (χ1)2 =

χ̄1χ1 like for example in

z1
G =

(χ1)2

2F 1
G0

= − g11̄(χ1)2

2e
K0
2 W 1̄

∑
n≥0

(
1
2
(∂ig11̄)χ̄1χi + 1

4
f̄AB1̄λ̄

APRλ
B

e
K0
2 W 1̄

)n

. (C.6)

Since (χ1)2χ̄1χi = 0 we can drop the term linear in χ1 and find

z1
G =

(χ1)2

2F 1
G0

= − g11̄(χ1)2

2e
K0
2 W 1̄

∑
n≥0

(
1
4
f̄AB1̄λ̄

APRλ
B

e
K0
2 W 1̄

)n

≡ (χ1)2

2f 1
, (C.7)

where we defined f 1 ≡ 1
g11̄

(
−e

K0
2 W 1̄ + 1

4
f̄AB1̄λ̄

APRλ
B
)

to contain all the

terms in F 1
G0 that are independent of χ1.

References

[1] E. A. Bergshoeff, D. Z. Freedman, R. Kallosh and A. Van Proeyen,
“Pure de Sitter Supergravity,” arXiv:1507.08264 [hep-th].

[2] F. Hasegawa and Y. Yamada, “Component action of nilpotent mul-
tiplet coupled to matter in 4 dimensional N = 1 supergravity,”
arXiv:1507.08619 [hep-th].

[3] P. K. Townsend, “Cosmological Constant in Supergravity,” Phys. Rev.
D 15, 2802 (1977).

[4] D. Volkov and V. Akulov, “Is the neutrino a Goldstone particle?”, Phys.
Lett. B46 (1973) 109–110.

17

http://dx.doi.org/10.1016/0370-2693(73)90490-5


[5] S. Kachru, R. Kallosh, A. D. Linde and S. P. Trivedi, “De Sitter vacua
in string theory,” Phys. Rev. D 68, 046005 (2003) [hep-th/0301240].
S. Kachru, R. Kallosh, A. D. Linde, J. M. Maldacena, L. P. McAllister
and S. P. Trivedi, “Towards inflation in string theory,” JCAP 0310, 013
(2003) [hep-th/0308055].

[6] E. A. Bergshoeff, K. Dasgupta, R. Kallosh, A. Van Proeyen and
T. Wrase, “D3 and dS,” JHEP 1505, 058 (2015) [arXiv:1502.07627
[hep-th]]. R. Kallosh and T. Wrase, “Emergence of Spontaneously Bro-
ken Supersymmetry on an Anti-D3-Brane in KKLT dS Vacua,” JHEP
1412, 117 (2014) [arXiv:1411.1121 [hep-th]].

[7] R. Kallosh, F. Quevedo and A. M. Uranga, “String Theory Realizations
of the Nilpotent Goldstino,” arXiv:1507.07556 [hep-th].

[8] S. Ferrara, R. Kallosh and A. Linde, “Cosmology with Nilpotent Super-
fields,” JHEP 1410, 143 (2014) [arXiv:1408.4096 [hep-th]].

[9] R. Kallosh, “Matter-coupled de Sitter Supergravity,” to appear in
Theor.Math.Phys. [arXiv:1509.02136 [hep-th]].

[10] D. Z. Freedman and A. Van Proeyen, “Supergravity,” Cambridge, UK:
Cambridge Univ. Pr. (2012) 607 p

[11] E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, “Coupling
Supersymmetric Yang-Mills Theories to Supergravity,” Phys. Lett. B
116, 231 (1982). E. Cremmer, S. Ferrara, L. Girardello and A. Van
Proeyen, “Yang-Mills Theories with Local Supersymmetry: Lagrangian,
Transformation Laws and SuperHiggs Effect,” Nucl. Phys. B 212, 413
(1983).

[12] T. Kugo and S. Uehara, “Improved Superconformal Gauge Conditions
in the N = 1 Supergravity Yang-Mills Matter System,” Nucl. Phys. B
222, 125 (1983).

[13] R. Kallosh, L. Kofman, A. D. Linde and A. Van Proeyen, “Superconfor-
mal symmetry, supergravity and cosmology,” Class. Quant. Grav. 17,
4269 (2000) [Class. Quant. Grav. 21, 5017 (2004)] [hep-th/0006179].

18



[14] I. Antoniadis, E. Dudas, S. Ferrara and A. Sagnotti, “The Volkov-
Akulov-Starobinsky supergravity,” Phys. Lett. B 733, 32 (2014)
[arXiv:1403.3269 [hep-th]].

[15] E. Dudas, S. Ferrara, A. Kehagias and A. Sagnotti, “Properties of
Nilpotent Supergravity,” arXiv:1507.07842 [hep-th]. S. Ferrara, M. Por-
rati and A. Sagnotti, “Scale invariant Volkov-Akulov Supergravity,”
arXiv:1508.02939 [hep-th]. I. Antoniadis and C. Markou, “The coupling
of Non-linear Supersymmetry to Supergravity,” arXiv:1508.06767 [hep-
th].

[16] S. M. Kuzenko, “Complex linear Goldstino superfield and de Sitter su-
pergravity,” arXiv:1508.03190 [hep-th].

[17] R. Kallosh and A. Linde, “Inflation and Uplifting with Nilpotent Su-
perfields,” JCAP 1501, no. 01, 025 (2015) [arXiv:1408.5950 [hep-
th]]. G. Dall’Agata and F. Zwirner, “On sgoldstino-less supergrav-
ity models of inflation,” JHEP 1412, 172 (2014) [arXiv:1411.2605
[hep-th]]. J. J. M. Carrasco, R. Kallosh, A. Linde and D. Roest,
“The Hyperbolic Geometry of Cosmological Attractors,” Phys. Rev.
D 92 (2015) 4, 041301 [arXiv:1504.05557 [hep-th]]. J. J. M. Carrasco,
R. Kallosh and A. Linde, “α-Attractors: Planck, LHC and Dark En-
ergy,” arXiv:1506.01708 [hep-th].

19


	Introduction
	Supergravity action with a nilpotent multiplet
	Derivation of the matter-coupled supergravity action with a nilpotent multiplet
	Examples
	Pure dS supergravity
	De Sitter supergravity coupled to chiral and vector superfields

	Summary
	Vanishing of the extra term
	Inverse Kähler metric and Christoffel symbols
	The expansion of F1G

