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Binary black-hole systems are expected to be important sources of gravitational waves for upcom-
ing gravitational-wave detectors. If the spins are not colinear with each other or with the orbital
angular momentum, these systems exhibit complicated precession dynamics that are imprinted on
the gravitational waveform. We develop a new procedure to match the precession dynamics com-
puted by post-Newtonian (PN) theory to those of numerical binary black-hole simulations in full
general relativity. For numerical relativity (NR) simulations lasting approximately two precession
cycles, we find that the PN and NR predictions for the directions of the orbital angular momentum
and the spins agree to better than ∼ 1◦ with NR during the inspiral, increasing to 5◦ near merger.
Nutation of the orbital plane on the orbital time-scale agrees well between NR and PN, whereas
nutation of the spin direction shows qualitatively different behavior in PN and NR. We also examine
how the PN equations for precession and orbital-phase evolution converge with PN order, and we
quantify the impact of various choices for handling partially known PN terms.

I. INTRODUCTION

Binary black holes (BBH) are among the most im-
portant sources of gravitational waves for upcoming
gravitational-wave detectors like Advanced LIGO [1] and
Virgo [2]. Accurate predictions of the gravitational wave-
forms emitted by such systems are important for detec-
tion of gravitational waves and for parameter estimation
of any detected binary [3]. When either black hole carries
spin that is not aligned with the orbital angular momen-
tum, there is an exchange of angular momentum between
the components of the system, leading to complicated
dynamical behavior. Figure 1 exhibits the directions of
the various angular momenta in several simulations de-
scribed in this paper. This behavior is imprinted on the
emitted waveforms [4–6], making them more feature-rich
than waveforms from aligned-spin BBH systems or non-
spinning BBH systems. In order to model the waveforms
accurately, then, we need to understand the dynamics.

The orbital-phase evolution of an inspiraling binary,
the precession of the orbital angular momentum and
the black-hole spins, and the emitted gravitational wave-
forms can be modeled with post-Newtonian theory [7],
a perturbative solution of Einstein’s equations in pow-
ers of v/c, the ratio of the velocity of the black holes to
the speed of light. Such post-Newtonian waveforms play
an important role in the waveform modeling for ground-
based interferometric gravitational-wave detectors (see,
e.g., [8]).

For non-spinning and aligned-spin BBH, a large num-
ber of comparisons between PN and NR have been per-
formed, among them [9–19]. For these non-precessing
systems, gravitational wave phasing reduces to only one
degree of freedom, generally taken to be the argument
of the complex-valued (2, 2) mode of the emitted grav-
itational radiation. Because phasing is of high impor-

tance for matching filtering, PN-NR comparisons for
non-precessing binaries have focused on the accumulated
phase differences in the dominant (2,2) mode of the gravi-
tational waveform. It was found that the PN error due to
truncation of the PN-series at some finite order (typically
3.5PN) can be quite large, especially at mass-ratios & 5
and for spinning black holes. The resulting phase error
was identified as one of the dominant limitations of wave-
form modeling for non-precessing BBH [14, 17, 20–23].
By coincidence, the uncontrolled higher-order terms in
PN approximants can sometimes be close to the correct,
unknown values. Comparisons that rely on only one PN
approximant are therefore prone to underestimate the
error of PN. The best known case for this behavior are
equal mass, non-spinning BBH, where the TaylorT4 ap-
proximant appears significantly more accurate than other
Taylor approximants [9, 11].

Precessing waveform models (e.g., [6, 24–27]) depend
on the orbital phase evolution and the precession dynam-
ics. Therefore, it is important to quantify the accuracy of
the post-Newtonian approximation for modeling the pre-
cession dynamics itself, and the orbital-phase evolution
of precessing binaries. The first such comparison was
performed by Campanelli et al [28] finding fairly good
agreement between PN and NR, with phase differences
of about a cycle close to merger. They also found that
3.5 PN approximant performed significantly better than
2.5 PN. Lousto and Zlochower [29] studied the preces-
sion dynamics of a long numerical relativity simulation
undergoing a reversal of the black hole spin direction,
and found excellent agreement between NR and PN un-
til close to merger.

In 2013, the SXS collaboration published numerical-
relativity solutions to the full Einstein equations for pre-
cessing BBH systems [30]. These simulations cover & 30
orbits and up to two precession cycles. Therefore, they
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FIG. 1. Precession cones of the six primary precessing simulations considered here, as computed by NR and PN. Shown are
the paths traced on the unit sphere by the normal to the orbital plane ˆ̀ and the spin-directions χ̂1,2. The thick lines represent
the NR data, with the filled circles indicating the start of the NR simulations. The lines connecting the NR data to the origin
are drawn to help visualize the precession-cones. The PN data, plotted with thin lines, lie on the scale of this figure almost
precisely on top of the NR data. (The PN data was constructed using the Taylor T4 approximant matched at frequency
mΩm = 0.021067, with a matching interval width δΩ = 0.1Ωm.)

offer a novel opportunity to systematically quantify the
accuracy of the post-Newtonian precession equations, the
topic of this paper. The first such comparisons based on
the SXS catalog were made in [26, 30]. Ref. [26] found
that Taylor T4 model disagreed with the the NR data
much more than the spinning EOB model. The PN pre-
cession equations used in [26], however, were only leading
order, and it remained unclear whether the disagreement
of Taylor T4 arises because of the low order of precession
equations, or more general deficiencies of PN. The pre-
liminary comparison of 2 precessing cases in [30] demon-
strated good agreement of spin and angular momentum
precession and motivated the current work. That study
is expanded and refined here to include higher-order PN
terms in the precession equations and the evolution of
the orbital frequency.

While this paper focuses on comparison of the or-
bital dynamics (angular momenta directions and or-
bital phase), in order to disentangle different aspects of
the precessing BBH inspirals, some authors have per-
formed comparisons of the emitted waveforms [24, 25,
28].Tarrachini et al [25] computed the unfaithfullness of
the SEOBNRv3 model for a q = 5, χ1 = 0.5, χ2 = 0

(see case q5 0.5x in Table I) and found to be less than
3% which would translate to negligible losses in detection
rate. Hannam et al [24] computed fitting factors between
PN-NR hybrid models and a phenomological precessing
PhenomP model and found fitting factors ≥ 0.965 for most
sky orientations for cases with q ≤ 3, in contrast to lower
fitting factors obtained when using the non-precessing
PhenomC [31] model.

In this paper, we develop a new technique to match
the initial conditions of post-Newtonian dynamics to a
numerical relativity simulation. We then use this tech-
nique to study the level of agreement between the post-
Newtonian precession equations and the numerical sim-
ulations. The agreement is remarkably good, the direc-
tions of orbital angular momentum and spin axes in post-
Newtonian theory reproduces the numerical simulations
usually to better than 1 degree. We also investigate nu-
tation effects on the orbital time-scale that are imprinted
both in the orbital angular momentum and the spin-
directions. For the orbital angular momentum, NR and
PN yield very similar nutation features, whereas for the
spin direction, nutation is qualitatively different in PN
and the investigated NR simulations. Considering the
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orbital-phase evolution, we find that the disagreement
between post-Newtonian orbital phase and numerical rel-
ativity simulation is comparable to the aligned-spin case.
This implies that the orbital phase evolution will remain
an important limitation for post-Newtonian waveforms
even in the precessing case. Finally, we study the conver-
gence with post-Newtonian order of the precession equa-
tions, and establish very regular and fast convergence, in
contrast to post-Newtonian orbital phasing.

This paper is organized as follows: Section II describes
the post-Newtonian expressions utilized, the numerical
simulations, how we compare PN and NR systems with
each other, and how we determine suitable “best-fitting”
PN parameters for a comparison with a given NR sim-
ulation. Section III presents our results, starting with
a comparison of the precession dynamics in Sec. III A,
and continuing with an investigation in the accuracy of
the orbital phasing in Sec. III B. The following two sec-
tions study the convergence of the PN precession equa-
tions and the impact of ambiguous choices when dealing
with incompletely known spin-terms in the PN orbital
phasing. Section III E, finally, is devoted to some tech-
nical numerical aspects, including an investigation into
the importance of the gauge conditions used for the NR
runs. We close with a discussion in Sec. IV. The appen-
dices collect the precise post-Newtonian expressions we
use and additional useful formulae about quaternions.

II. METHODOLOGY

A. Post-Newtonian Theory

Post-Newtonian (PN) theory is an approximation to
General Relativity in the weak-field, slow-motion regime,
characterized by the small parameter ε ∼ (v/c)2 ∼ Gm

rc2 ,
where m, v, and r denote the characteristic mass, veloc-
ity, and size of the source, c is the speed of light, and G
is Newton’s gravitational constant. For the rest of this
paper, the source is always a binary black-hole system
with total mass m, relative velocity v and separation r,
and we use units where G = c = 1.

Restricting attention to quasi-spherical binaries in the
adiabatic limit, the local dynamics of the source can be
split into two parts: the evolution of the orbital fre-
quency, and the precession of the orbital plane and the
spins. The leading-order precessional effects [32] and
spin contributions to the evolution of the orbital fre-
quency [33, 34] enter post-Newtonian dynamics at the
1.5 PN order (i.e., ε3/2) for spin-orbit effects, and 2 PN
order for spin-spin effects. We also include non-spin
terms to 3.5 PN order [7], the spin-orbit terms to 4 PN
order [35], spin-spin terms to 2 PN order [34]1. For the

1 During the preparation of this manuscript, the 3 PN spin-spin
contributions to the flux and binding energy were completed in
[36]. These terms are not used in the analysis presented here.
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FIG. 2. Vectors describing the orbital dynamics of the system.
The yellow plane denotes the orbital plane. Rf(t) is the rotor
that rotates the coordinate triad (x̂, ŷ, ẑ) into the orbital triad

(n̂, λ̂, ˆ̀).

precession equations, we include the spin-orbit contribu-
tions to next-to-next-to-leading order, corresponding to
3.5 PN [37]. The spin-spin terms are included at 2 PN
order2.

1. Orbital dynamics

Following earlier work (e.g., Ref. [34]) we describe the
precessing BH binary by the evolution of the orthonormal

triad (n̂, λ̂, ˆ̀), as indicated in Fig. 2: n̂ denotes the unit

separation vector between the two compact objects, ˆ̀ is

the normal to the orbital plane and λ̂ = ˆ̀× n̂ completes
the triad. This triad is time-dependent, and is related to
the constant inertial triad (x̂, ŷ, ẑ) by a time-dependent
rotation Rf , as indicated in Fig. 2. The rotation Rf
will play an important role in Sec. II C. The orbital triad
obeys the following equations:

dˆ̀

dt
= $n̂× ˆ̀, (1a)

dn̂

dt
= Ωλ̂, (1b)

dλ̂

dt
= −Ωn̂+$ ˆ̀. (1c)

2 The investigation of the effects of spin-spin terms at higher
PN orders (see e.g. [38–42] and references therein), and terms
which are higher order in spin (e.g cubic spin terms) [43, 44] is
left for future work.
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Here, Ω is the instantaneous orbital frequency and $ is
the precession frequency of the orbital plane.

The dimensionless spin vectors ~χi = ~Si/m
2
i also obey

precession equations:

d~χ1

dt
= ~Ω1 × ~χ1, (2a)

d~χ2

dt
= ~Ω2 × ~χ2. (2b)

The precession frequencies ~Ω1,2, $ are series in the PN
expansion parameter ε; their explicit form is given in Ap-
pendix A.

The evolution of the orbital frequency is derived from
energy balance:

dE

dt
= −F , (3)

where E is the energy of the binary and F is the
gravitational-wave flux. E and F are PN series depend-

ing on the orbital frequency Ω, the vector ˆ̀, and the
BH spins ~χ1, ~χ2. Their explicit formulas are given in
Appendix A. In terms of x ≡ (mΩ)2/3 ∼ ε, Eq. (3) be-
comes:

dx

dt
= − F

dE/dx
, (4)

where the right-hand side is a ratio of two PN series.
There are several well known ways of solving Eq. (4),

which lead to different treatment of uncontrolled higher-
order PN terms—referred to as the Taylor T1 through
T5 approximants [45, 46]. The most straightforward ap-
proach is to evaluate the numerator and denominator
of Eq. (4) and then solve the resulting ordinary differ-
ential equation numerically, which is the Taylor T1 ap-
proximant. Another approach is to re-expand the ratio
F/(dE/dx) in a new power series in x, and then trun-
cate at the appropriate order. This gives the Taylor T4
approximant. Finally, one can expand the inverse of the
right-hand-side of Eq. (4) in a new power series in x,
truncate it at the appropriate order, and then substitute
the inverse of the truncated series into the right-hand
side in Eq. (4). This last approach, known as the Taylor
T5 approximant [46], has been introduced fairly recently.

2. Handling of spin terms

When constructing Taylor approximants that include
the re-expansion of the energy balance equation, the han-
dling of spin terms becomes important. In particular,
terms of quadratic and higher order in spins, such as

(~Si)
2, appear in the evolution of the orbital frequency

at 3 PN and higher orders. These terms arise from
lower-order effects and represent incomplete information,
since the corresponding terms are unknown in the orig-
inal power series for the binding energy E and the flux
F ,

E(x) = −1

2
mνx

(
1 +

∑
k=2

akx
k/2

)
, (5)

F(x) =
32

5
ν2x5

(
1 +

∑
k=2

bkx
k/2

)
, (6)

where m = m1 + m2 and ν = m1m2/m
2, and m1,2 are

the individual masses.
In these expansions, the spin-squared terms come in at

2 PN order and thus appear in a4 and b4, cf. Eqs. (A18)
and (A24). Then, in the re-expansion series of Taylor
T4,

S ≡ − F
dE/dx

=
64ν

5m
x5(1 +

∑
k=2

skx
k/2), (7)

the coefficients sk can be recursively determined, e.g.

s4 = b4 − 3a4 − 2s2a2, (8)

s6 = b6 − (4a6 + 3s2a4 +
5

2
s3a3 + 2s4a2). (9)

Thus, the spin-squared terms in a4 and b4 will induce
spin-squared terms at 3PN order in s6. The analogous
conclusion holds for Taylor T5. These spin-squared terms
are incomplete as the corresponding terms in the binding
energy and flux (i.e. in a6 and b6) are not known.

This re-expansion has been handled in several ways
in the literature. For example, Nitz et al. [23] include
only terms which are linear in spin beyond 2 PN order.
On the other hand, Santamaŕıa et al. [31] keep all terms
in spin arising from known terms in E and F . In the
present work, we also keep all terms up to 3.5 PN order,
which is the highest order to which non-spin terms are
completely known. Similarly, we include all terms when
computing the precession frequency (see A 2). We inves-
tigate the impact of different spin-truncation choices in
Sec. III D, along with the impact of partially known 4 PN
spin terms.

B. Numerical Relativity Simulations

To characterize the effectiveness of PN theory in re-
producing NR results, we have selected a subset of 16
simulations from the SXS waveform catalog described in
Ref. [47].3 Our primary results are based on six precess-
ing simulations and a further ten non-precessing ones
for cross-comparisons. To check for systematic effects,
we use a further 31 precessing simulations with random
mass-ratios and spins. The parameters of these runs are

3 The waveform and orbital data are publicly available at https:

//www.black-holes.org/waveforms/.

https://www.black-holes.org/waveforms/
https://www.black-holes.org/waveforms/
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TABLE I. Numerical relativity simulations utilized here. SXS ID refers to the simulation number in Ref. [47], q = m1/m2

is the mass ratio, ~χ1,2 are the dimensionless spins, given in coordinates where n̂(t = 0) = x̂, ˆ̀(t = 0) = ẑ. D0, Ω0 and e are
the initial coordinate separation, the initial orbital frequency, and the orbital eccentricity, respectively. The first block lists
the precessing runs utilized, where ~χ1,r = (−0.18,−0.0479,−0.0378) and ~χ2,r = (−0.0675, 0.0779,−0.357). The second block
indicates 31 further precessing simulations used in Fig. 13, and the last block lists the aligned spin systems for orbital phase
comparisons.

Name SXS ID q ~χ1 ~χ2 D0/M mΩ0 e
q1 0.5x 0003 1.0 (0.5,0.0,0) (0,0,0) 19 0.01128 0.003
q1.5 0.5x 0017 1.5 (0.5,0,0) (0,0,0) 16 0.01443 < 2× 10−4

q3 0.5x 0034 3.0 (0.5,0,0) (0,0,0) 14 0.01743 < 2× 10−4

q5 0.5x 5.0 (0.5,0,0) (0,0,0) 15 0.01579 0.002
q1 two spins 0163 1.0 (0.52,0,-0.3) (0.52,0,0.3) 15.3 0.01510 0.003
q1.97 random 0146 1.97 ~χ1,r ~χ2,r 15 0.01585 < 10−4

31 random runs 115–145 [1, 2] χ1 ≤ 0.5 χ2 ≤ 0.5 15 ≈ 0.0159 [10−4, 10−3]

q1_0.5z 0005 1.0 (0,0,0.5) (0,0,0) 19 0.01217 0.0003
q1_-0.5z 0004 1.0 (0,0,0.5) (0,0,0) 19 0.01131 0.0004
q1.5_0.5z 0013 1.5 (0,0,0.5) (0,0,0) 16 0.01438 0.00014
q1.5_-0.5z 0012 1.5 (0,0,-0.5) (0,0,0) 16 0.01449 0.00007
q3_0.5z 0031 3.0 (0,0,0.5) (0,0,0) 14 0.01734 < 10−4

q3_-0.5z 0038 3.0 (0,0,-0.5) (0,0,0) 14 0.01756 < 10−4

q5_0.5z 0061 5.0 (0,0,0.5) (0,0,0) 15 0.01570 0.004
q5_-0.5z 0060 5.0 (0,0,-0.5) (0,0,0) 15 0.01591 0.003
q8_0.5z 0065 8.0 (0,0,0.5) (0,0,0) 13 0.01922 0.004
q8_-0.5z 0064 8.0 (0,0,-0.5) (0,0,0) 13 0.01954 0.0005

given in Table I. They were chosen to represent vari-
ous degrees of complexity in the dynamics: (i) precessing
versus non-precessing simulations, the latter with spins

parallel or anti-parallel to ˆ̀; (ii) one versus two spinning
black holes; (iii) coverage of mass ratio from q = 1 to
q = 8; (iv) long simulations that cover more than a pre-

cession cycle; and (v) a variety of orientations of χ̂1, χ̂2, ˆ̀.
Figure 1 shows the precession cones of the normal to the
orbital plane and the spins for for the six primary pre-
cessing cases in Table I. The PN data were computed
using the Taylor T4 3.5 PN approximant.

The simulations from the catalog listed in Table I were
run with numerical methods similar to [48]. A gener-
alized harmonic evolution system [49–52] is employed,
and the gauge is determined by gauge source functions
Ha. During the inspiral phase of the simulations consid-
ered here, Ha is kept constant in the co-moving frame,
cf. [11, 53, 54]. About 1.5 orbits before merger, the gauge
is changed to damped harmonic gauge [55–57]. This
gauge change happens outside the focus of the compar-
isons presented here.

The simulation q5 0.5x analyzed here is a re-run of the
SXS simulation SXS:BBH:0058 from Ref. [47]. We per-
formed this re-run for two reasons: First, SXS:BBH:0058
changes to damped harmonic gauge in the middle of the
inspiral, rather than close to merger as all other cases
considered in this work. Second, SXS:BBH:0058 uses an
unsatisfactorily low numerical resolution during the cal-
culation of the black hole spins. Both these choices leave
noticeable imprints on the data from SXS:BBH:0058, and
the re-run q5 0.5x allows us to quantify the impact of

these deficiencies. We discuss these effects in detail in
Secs. III E 2 and III E 3. The re-run q5 0.5x analyzed
here is performed with improved numerical techniques.
Most importantly, damped harmonic gauge is used essen-
tially from the start of the simulation, t & 100M . The
simulation q5 0.5x also benefits from improved adaptive
mesh refinement [58] and improved methods for control-
ling the shape and size of the excision boundaries; the
latter methods are described in Sec.II.B. of Ref. [59].

We have performed convergence tests for some of the
simulations; Sec. III E will demonstrate with Fig. 19 that
numerical truncation error is unimportant for the com-
parisons presented here.

C. Characterizing Precession

The symmetries of non-precessing systems greatly sim-
plify the problem of understanding the motion of the bi-
nary. In a non-precessing system, the spin vectors are
essentially constant, and two of the rotational degrees of
freedom are eliminated in the binary’s orbital elements.
Assuming quasi-circular orbits, the entire system can be
described by the orbital phase Φ, which can be defined
as the angle between n̂ and x̂. In post-Newtonian theory
the separation between the black holes can be derived
from dΦ/dt. Thus comparison between post-Newtonian
and numerical orbits, for example, reduces entirely to
the comparison between ΦPN and ΦNR [11, 60]. For pre-
cessing systems, on the other hand, the concept of an
orbital phase is insufficient; Φ could be thought of as
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just one of the three Euler angles. We saw in Sec. II A 1
that the orbital dynamics of a precessing system can be

fairly complex, involving the triad (n̂, λ̂, ˆ̀) (or equiva-
lently the frame rotor Rf) as well as the two spin vectors
~χ1 and ~χ2—each of which is, of course, time dependent.
When comparing post-Newtonian and numerical results,
we need to measure differences between each of these
quantities in their respective systems.

To compare the positions and velocities of the black
holes themselves, we can condense the information about
the triads into the quaternion quantity [61]

R∆ := RPN
f R̄NR

f , (10)

which represents the rotation needed to align the PN
frame with the NR frame. This is a geometrically mean-
ingful measure of the relative difference between two
frames. We can reduce this to a single real number by
taking the magnitude of the logarithm of this quantity,
defining the angle4

Φ∆ := 2 |logR∆| . (11)

This measure has various useful qualities. It is invariant,
in the sense that any basis frame used to define RPN

f and
RNR

f will result in the same value of Φ∆. It conveniently
distills the information about the difference between the
frames into a single value, but is also non-degenerate in
the sense that Φ∆ = 0 if and only if the frames are iden-
tical. It also reduces precisely to ΦPN − ΦNR for non-
precessing systems; for precessing systems it also incor-
porates contributions from the relative orientations of the
orbital planes.5

Despite these useful features of Φ∆, it may sometimes
be interesting to use different measures, to extract indi-
vidual components of the binary evolution. For example,
Eq. (1a) describes the precession of the orbital plane.
When comparing this precession for two approaches, a
more informative quantity than Φ∆ is simply the angle

between the ˆ̀ vectors in the two systems:

∠L = cos−1
(

ˆ̀PN · ˆ̀NR
)
. (12)

Similarly, we will be interested in understanding the evo-
lution of the spin vectors, as given in Eqs. (2). For this
purpose, we define the angles between the spin vectors:

∠χ1 = cos−1
(
χ̂PN

1 · χ̂NR
1

)
, (13a)

∠χ2 = cos−1
(
χ̂PN

2 · χ̂NR
2

)
. (13b)

We will use all four of these angles below to compare the
post-Newtonian and numerical orbital elements.

4 More explanation of these expressions, along with relevant for-
mulas for calculating their values, can be found in Appendix B.

5 It is interesting to note that any attempt to define the orbital
phases of precessing systems separately, and then compare them
as some ΦB − ΦA, is either ill defined or degenerate—as shown
in Appendix B 4. This does not mean that it is impossible to
define such phases, but at best they will be degenerate; multiple
angles would be needed to represent the full dynamics.
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FIG. 3. Examples of the averaging procedure and error
estimates employed for all comparisons. Shown here are
q1.97 random and q5.0 0.5x. PN evolutions were performed
with the Taylor T1 approximant. The thin blue lines show all
the PN-NR matching intervals.

D. Matching Post-Newtonian to Numerical
Relativity

When comparing PN theory to NR results, it is im-
portant to ensure that the initial conditions used in both
cases represent the same physical situation. We choose a
particular orbital frequency Ωm and use the NR data to
convert it to a time tm. To initialize a PN evolution at
tm, we need to specify

q, χ1, χ2, (14)

ˆ̀, n̂, χ̂1, χ̂2, (15)

Ω. (16)

The quantities (14) are conserved during the PN evolu-
tion. The quantities (15) determine the orientation of
the the binary and its spins relative to the inertial triad
(x̂, ŷ, ẑ). The orbital frequency Ω in Eq. (16), finally,
parametrizes the separation of the binary at tm. The
simplest approach is to initialize the PN evolution from
the respective quantities in the initial data of the NR evo-
lution. This would neglect initial transients in NR data
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as in, e.g., Fig. 1 of Ref. [54]. These transients affect the
masses and spins of the black holes, so any further PN-
NR comparisons would be comparing slightly different
physical configurations. The NR transients decay away
within the first orbit of the NR simulation, so one can
consider initializing the PN evolution from NR at a time
after the NR run has settled down. However, the gen-
erally non-zero (albeit very small) orbital eccentricity in
the NR simulation can lead to systematic errors in the
subsequent comparison as pointed out in Ref. [11].

Therefore, we use time-averaged quantities evaluated
after the initial transients have vanished. In particular,
given a numerical relativity simulation, we set the PN
variables listed in Eq. (14) to their numerical relativity
values after junk radiation has propagated away.

The remaining nine quantities Eqs. (15) and (16) must

satisfy the constraint ˆ̀· n̂ ≡ 0. We determine them with
constrained minimization by first choosing an orbital fre-
quency interval [Ωm − δΩ/2,Ωm + δΩ/2] of width δΩ.
Computing the corresponding time interval [ti, tf ] in the
NR simulation, we define the time average of any quan-
tity Q by

〈Q〉 =
1

tf − ti

∫ tf

ti

Qdt. (17)

Using these averages, we construct the objective func-
tional S as

S = 〈(∠L)2〉+ 〈(∠χ1)2〉+ 〈(∠χ2)2〉+ 〈(∠n)2〉+ 〈(∆Ω)2〉
(18)

where ∆Ω = (ΩPN−ΩNR)/ΩNR, and ∠n is defined anal-
ogously to Eq. (12). When a spin on the black holes
is below 10−5 the corresponding term is dropped from
Eq. (18). The objective functional is then minimized us-
ing the SLSQP algorithm [62, 63] to allow for constrained
minimization. In Eq. (18) we use equal weights for each
term; other choices of the weights do not change the qual-
itative picture that we present.

The frequency interval [Ωm ± δΩ/2] is chosen based
on several considerations. First it is selected after junk
radiation has propagated away. Secondly, it is made wide
enough so that any residual eccentricity effects average
out. Finally, we would like to match PN and NR as early
as possible. But since we want to compare various cases
to each other, the lowest possible matching frequency will
be limited by the shortest NR run (case q8 -0.5z). Within
these constraints, we choose several matching intervals,
in order to estimate the impact of the choice of matching
interval on our eventual results. Specifically, we use three
matching frequencies

mΩm ∈ {0.021067, 0.021264, 0.021461}, (19)

and employ four different matching windows for each,
namely

δΩ/Ωm ∈ {0.06, 0.08, 0.1, 0.12}. (20)

These frequencies correspond approximately to the range
between 10-27 orbits to merger depending on the param-
eters of the binary, with the lower limit for the case q1.0 -
0.5x and the upper for q8.0 0.5x.

Matching at multiple frequencies and frequency win-
dows allows an estimate on the error in the matching
and also ensures that the results are not sensitive to the
matching interval being used. In this article, we gener-
ally report results that are averaged over the 12 PN-NR
comparisons performed with the different matching in-
tervals. We report error bars ranging from the smallest
to the largest result among the 12 matching intervals.
As examples, Fig. 3 shows Φ∆ as a function of time to
merger tmerge for the cases q1.97 random and q5 0.5x for
all the matching frequencies and intervals, as well as the
average result and an estimate of the error. Here tmerge is
the time in the NR simulation when the common horizon
is detected.

III. RESULTS

A. Precession Comparisons

We apply the matching procedure of Sec. II D to the
precessing NR simulations in Table I. PN–NR matching
is always performed at the frequencies given by Eq. (19)
which are the lowest feasible orbital frequencies across all
cases in Table I. Figure 1 shows the precession cones for

the normal to the orbital plane ˆ̀ and the spins χ̂1,2. As

time progresses, ˆ̀ and χ̂1,2 undergo precession and nuta-
tion, and the precession cone widens due to the emission
of gravitational radiation. Qualitatively, the PN results
seem to follow the NR results well, until close to merger.

We now turn to a quantitative analysis of the preces-
sion dynamics, establishing first that the choice of Taylor
approximant is of minor importance for the precession
dynamics. We match PN dynamics to the NR simula-
tions q5 0.5x and q1 0.5x for the Taylor approximants
T1, T4 and T5. We then compute the angles ∠L and
∠χ1. Figure 4 shows the resulting ∠L. During most of
the inspiral, we find ∠L of order a few 10−3 radians in-
creasing to ∼ 0.1 radians during the last 1000M before
merger. Thus the direction of the normal to the orbital
plane is reproduced well by PN theory. This result is vir-
tually independent of the Taylor approximant suggesting
that the choice of approximant only weakly influences
how well PN precession equations track the motion of
the orbital plane. In other words, precession dynamics
does not depend on details of orbital phasing like the
unmodeled higher-order terms in which the Taylor ap-
proximants differ from each other.

Turning to the spin direction χ̂1 we compute the angle
∠χ1 between χ̂NR

1 (t) and χ̂PN
1 (t) and plot the result in

Fig. 5. While Fig. 5 looks busy, the first conclusion is
that ∠χ1 is quite small . 0.01 rad through most of the
inspiral, and rises somewhat close to merger.

The pronounced short-period oscillations of ∠χ1 in
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FIG. 4. Angle ∠L by which ˆ̀PN(t) differs from ˆ̀NR(t) for
the configuration q1 0.5x (red lines) and q5 0.5x (black lines).
∠L ≤ 0.2◦ except very close to merger. In each case, the PN
predictions based on different PN approximants are shown
in different line styles. Shown is the point-wise average of
12 ∠L(t) curves, i.e. the thick red line of Fig. 3. The thin
horizontal lines show the widest edges of the PN matching
intervals.
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FIG. 5. Angle ∠χ1 by which ~χPN
1 (t) differs from ~χNR

1 (t) for the
configuration q1 0.5x (red lines) and q5 0.5x (black lines). In
each case, the PN predictions based on different PN approxi-
mants are shown in different line styles. The thin horizontal
lines show the widest edges of the PN matching intervals.

Fig. 5 are caused by differences between PN-nutation fea-
tures and NR-nutation features. To better understand
the nutation features and their impact on the angle ∠χ1,
we remove nutation features by filtering out all frequen-
cies comparable to the orbital frequency. This is possible
because the precession frequency is much smaller than
the nutation frequency. The filtering is performed with a
3rd order, bi-directional low pass Butterworth filter [64]
with a fixed cutoff frequency chosen to be lower than the
nutation frequency at the start of the inspiral. Due to
the nature of the filtering, the resulting averaged spin
will suffer from edge effects which affect approximately
the first and last 1000 M of the inspiral. Furthermore,

−8000 −6000 −4000 −2000 0

t− tmerge (M)

10−4

10−3

10−2

10−1

100

6
χ

1
(r

a
d

)

q5 0.5x

6 χ̃1

6 χ1

FIG. 6. Angle ∠χ̃1 between the “orbit-averaged” spins for
the configuration q5 0.5x. The non orbit-averaged difference
∠χ1 (cf. Fig. 5) is shown for comparison. Shown is one match-
ing interval as indicated by the thin horizontal line.

the precession frequency close to merger becomes compa-
rable to the nutation frequency at the start of the simula-
tion and thus filtering is no longer truthful in this region.
Therefore, we only use the “averaged” spins where such
features are absent.

Applying this smoothing procedure to both χ̂PN
1 and

χ̂NR
1 for the run q5 0.5x, we compute the angle ∠χ̃1 be-

tween the averaged spin vectors, χ̃PN
1 and χ̃NR

1 . This an-
gle is plotted in Fig. 66, where results only for the Taylor
T1 approximant are shown, and for only one matching in-
terval specified by mΩm = 0.0210597 and δΩ/Ωm = 0.1.

The orbit-averaged spin directions χ̃
NR/PN
1 agree signifi-

cantly better with each other than the non-averaged ones
(cf. the black line in Fig. 6, which is duplicated from
Fig. 5). In fact, the orbit-averaged spin precessing be-
tween NR and PN agrees as well as the orbital angular
momentum precession, cf. Fig. 4. Thus, the difference in
the spin dynamics is dominated by the nutation features,
with the orbit-averaged spin dynamics agreeing well be-
tween PN and NR.

Motivated by the separation of timescales, orbit-
averaged PN precession equations were developed and
widely used in literature (see e.g. [4, 34, 65]). Because
these equations eliminate the orbital time-scale, they are
much easier to integrate. For example, the SpinTay-
lorT4 model of the LIGO Algorithm Library [66] uti-
lizes the leading order orbit-averaged precession equa-
tions [67]. As an example, we construct and match orbit-
averaged and full PN precession equations at leading or-
der in spin-orbit and spin-spin couplings (i.e, the preces-
sion equations are at 2 PN order). Figure 7 presents χ

and ˆ̀ for the case q5 0.5x for averaged and unaveraged

6 To illustrate edge effects of the Butterworth filter, Fig. 6 includes
the early and late time periods where the filter affects ∠χ̃1.
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2 PN precession equations, as well as the full 3.5PN pre-
cession equations and NR data. It is evident that the
orbit-averaged equations do indeed reproduce the non-
averaged behaviour. Further, we note that the 2PN re-
sults diverge from the NR data quickly outside of the
matching region. Meanwhile the 3.5PN precession equa-
tions match the NR results much better throughout the
inspiral. Therefore, to improve on the leading-order
orbit-averaged precession equations, it is more important
to increase the PN order than to avoid orbit-averaging.

We also test that our a posteori orbit-averaging re-
produces the analytically orbit-averaged precession equa-
tions. This is indeed the case as can be seen in Fig. 8.
Shown are the angles ∠χ1 and ∠L for the various choices
of PN approximants. As one can see, the angle between
the aposteori-averaged PN equations and smoothed NR
data (e.g. χ̃1) lies on top of the angle between the orbit-
averaged PN precession equations and the smoothed NR
data. Further, all of the curves lie essentially on top of
one another, reflecting that a priori and apostori match-
ing do not significantly bias the comparison. Finally, the
angle between the aposteori-averaged PN and the aver-
aged precession equations is approximately 10−20 times
smaller than the angle between PN and NR. We thus have
further confidence that the ad-hoc filtering procedure is
a useful tool for smoothing the NR data.

To characterize the nutation features in the spin vec-
tors, we introduce a coordinate system which is specially
adapted to highlighting nutation effects. The idea is to
visualize nutation with respect to the averaged spin vec-
tor χ̃. We compute the time-derivative ˙̃χ numerically.
Assuming that the “averaged” spin is undergoing pure
precession, so that χ̃ · ˙̃χ = 0, we define a new coordinate
system (ê1, ê2, ê3) by ê1 = χ̃, ê2 = ˙̃χ/| ˙̃χ|, ê3 = ê1 × ê2.
The spin is now projected onto the ê2 − ê3 plane, thus
showing the motion of the spin in a frame “coprecessing”
with the averaged spin. This allows us to approximately
decouple precession and nutation and compare them sep-
arately between PN and NR.

Figure 9 plots the projection of the spins χNR
1 and χPN

1

onto their respective “orbit averaged” ê2− ê3 planes. We
see that the behavior of the NR spin and the PN spins are
qualitatively different: For this single-spin system, the
PN spin essentially changes only in the ê3 direction (i.e.,

orthogonal to its average motion ˙̃χPN). In contrast, the
NR spin undergoes elliptical motion with the excursion
along its ê2 axis (i.e., along the direction of the average
motion) about several times larger than the oscillations
along ê3. The symbols plotted in Fig. 9 reveal that each
of the elliptic “orbits” corresponds approximately to half
an orbit of the binary, consistent with the interpretation
of this motion as nutation. The features exhibited in
Fig. 10 are similar across all the single-spinning precess-
ing cases considered in this work. The small variations in
spin direction exhibited in Fig. 9 are orders of magnitude
smaller than parameter estimation capabilities of LIGO,
e.g. [68], and so we do not expect that these nutation fea-
tures will have a negative impact on GW detectors. To

understand the features of Fig. 9 in more detail, it would
be beneficial to carefully compare gauge conditions be-
tween NR and PN, and to consider spin supplementary
conditions.

Let us now apply our nutation analysis to the or-

bital angular momentum directions ˆ̀. Analogous to
the spin, we compute averages ˜̀NR and ˜̀PN, and com-
pute the angle between the directions of the averages,

∠L̃ = ∠
(

˜̀PN, ˜̀NR
)

. This angle—plotted in the top

panel of Fig. 10—agrees very well with the difference
∠L that was computed without orbit-averaging. This

indicates that the nutation features of ˆ̀ agree between
NR and PN. The top panel of Fig. 11 also plots the an-

gle between the raw ˆ̀NR and the averaged ˜̀NR, i.e. the
opening angle of the nutation oscillations. As is apparent

in Fig. 10, the angle between ˆ̀NR and ˜̀NR is about 10
times larger than the difference between NR and PN (∠L
or ∠L̃), confirming that nutation features are captured.

The lower panel of Fig. 10 shows the projection of ˆ̀ or-
thogonal to the direction of the average ˜̀. In contrast to

the spins shown in Fig. 9, the nutation behavior of ˆ̀ is

in close agreement between NR and PN: For both, ˆ̀ pre-
cesses in a circle around ˜̀, with identical period, phasing,
and with almost identical amplitude. We also point out

that the shape of the nutation features differs between ˆ̀

and χ̂1: ˆ̀ circles twice per orbit around its average ˜̀, on
an almost perfect circle with equal amplitude in the ê2

and ê3 direction.

We now extend our precession dynamics analysis to the
remaining five primary precessing NR simulations listed
in Table I. The top left panel of Figure 11 shows ∠L. The
difference in the direction of the normal to the orbital
plane is small; generally ∠L . 10−2 radians, except close
to merger. Thus it is evident that the trends seen in
Fig. 4 for ∠L hold across all the precessing cases. To
make this behavior clearer, we parameterize the inspiral
using the orbital phase instead of time, by plotting the
angles versus the orbital phase in the NR simulation, as
shown in the top right panel of Fig. 11. Thus, until a
few orbits to merger PN represents the precession and
nutation of the orbital plane well.

The bottom left panel of Fig. 11 establishes qualita-
tively good agreement for ∠χ1, with slightly higher val-
ues than ∠L. As already illustrated in Fig. 6, nutation
features dominate the difference. Averaging away the
nutation features, we plot the angle ∠χ̃1 between the
smoothed spins in the bottom left panel of Fig. 11, where
the behavior of ∠χ1 is very similar to that of ∠L. This
confirms that the main disagreement between PN and
NR spin dynamics comes from nutation features, and
suggests that the secular precession of the spins is well
captured across all cases, whereas the nutation of the
spins is not. For completeness, we also show a paramet-
ric plot of ∠L and ∠S versus orbital frequency in the NR
simulation in Fig. 12.

All configurations considered so far except
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FIG. 7. Comparison of orbit averaged PN precession equations with the non-orbit averaged equations. Plotted are χ̂ (left) and
ˆ̀ (right) on the unit sphere for 2 PN averaged and non-averaged precession equations, 3.5 PN unaveraged precession equations
and NR data. The large black dot represents the centre (in time) of the matching interval (several symbols overlap here). The
other black dots represent the interval ±2000 M from the matching point. The same is done for 2PN (orange dots) and 3.5PN
(blue squares). Both 2PN curves lie on top of each other and match the NR data well close to the matching region but then
quickly diverge away. The 3.5 PN curve matches the NR result much better throughout the inspiral.
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FIG. 8. Comparison of aposterori averaging procedure described above to using orbit-averaged PN precession equations for
PN evolution for configuration q5 0.5x. The curves labelled with 2PN avg use orbit-averaged precession equations. A ṽ means
aposteori smoothing of v̂. There is virtually no difference between using the full precession equations and filtering aposteori and
using the orbit-averaged precession equations. The angle between the orbit-averaged PN results and the aposteori-averaged
PN results is 10-20 times smaller than the angles between PN and NR data showing that apostori-averaging does not bias the
comparison. Shown is one matching interval as indicated by the thin horizontal line.

q1.97 random have ~S · ˆ̀ = 0 at the start of the

simulations, where ~S = ~S1 + ~S2 is the total spin angular

momentum of the system. When ~S · ˆ̀= 0, several terms
in PN equations vanish, in particular the spin orbit
terms in the expansions of the binding energy, the flux
and the orbital precession frequency, see Eqs. (A14),

(A15), and (A31) in Appendix A.

To verify whether ~S · ˆ̀ = 0 introduces a bias to our
analysis, we perform our comparison on an additional
set of 31 binaries with randomly oriented spins. These
binaries have mass ratio 1 ≤ q ≤ 2, spin magnitudes
0 ≤ χ1,2 ≤ 0.5, and correspond to cases SXS:BBH:0115
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FIG. 9. The projection of χ̂NR
1 and χ̂PN

1 onto the ê2 − ê3

plane described in the text for case q5 0.5x. The system is
shown in the interval t − tmerge ∈ [−6662,−1556]. along the
ê3 axis. Meanwhile, the NR data show variations in ê2 and
ê3 directions of comparable magnitude. The solid symbols
(black diamond for NR, red square for PN) indicate the data
at the start of the plotted interval, chosen such that χ̂1· n̂
is maximal—i.e., where the spin projection into the orbital
plane is parallel to n̂. The subsequent four open symbols
(blue diamonds for NR, green squares for PN) indicating the
position 1/8-th, 1/4-th, 3/8-th and 1/2 of an orbit later.

- SXS:BBH:0146 in the SXS catalog. Fig. 13 plots ∠L
for these additional 31 PN-NR comparisons in gray, with
q1.97 random highlighted in orange. The disagreement
between PN and NR is similarly small in all of these
cases, leading us to conclude that our results are robust
in this region of the parameter space.

B. Orbital Phase Comparisons

Along with the precession quantities described above,
the orbital phase plays a key role in constructing PN
waveforms. We use Φ∆, a geometrically invariant an-
gle that reduces to the orbital phase difference for non-
precessing binaries (cf. Sec. II C) to characterize phasing
effects. We focus on single spin systems with mass-ratios
from 1 to 8, where the more massive black hole carries a
spin of χ1 = 0.5, and where the spin is aligned or anti-
aligned with the orbital angular momentum, or where the
spin is initially tangent to the orbital plane. We match
all NR simulations to post-Newtonian inspiral dynamics
as described in Sec. II D, using the 12 matching inter-
vals specified in Eqs. (19) and (20). We then compute
the phase difference Φ∆ at the time at which the NR
simulation reaches orbital frequency mΩNR = 0.03.

The results are presented in Fig. 14, grouped based on
the initial orientation of the spins: aligned, anti-aligned,
and in the initial orbital plane. For aligned runs, there
are clear trends for Taylor T1 and T5 approximants: for
T1, differences decrease with increasing mass ratio (at
least up to q = 8); for T5, differences increase. For Tay-
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FIG. 10. Characterization of nutation effects of the orbital
angular momentum. Top: angle ∠L̃ between the “averaged”
ˆ̀ in PN and NR for the configuration q5 0.5x (thick red line).
∠L is shown in thin black line for comparison (cf. Fig. 6).

The thin blue line shows ∠(ˆ̀, ˜̀) between the averaged and
the filtered signal. Note that it is larger than both ∠L and
∠L̃. Bottom: the projection of ˆ̀NR (gray) and ˆ̀PN (red) onto
the ê2 − ê3 plane described in the text for case q5 0.5x (cf.
Fig. 10). The system is shown in the interval [−6662,−1556].
Both PN and NR show the same behavior, in contrast to the
behavior of the spin in Fig. 9. The PN-NR matching interval
is indicated by the horizontal line in the top panel.

lor T4, the phase difference Φ∆ has a minimum and there
is an overall increase for higher mass ratios. For anti-
aligned runs, Taylor T5 shows the same trends as for
the aligned spins. Taylor T4 and T1 behaviors, however,
have reversed: T4 demonstrates a clear increasing trend
with mass ratio, whereas T1 passes through a minimum
with overall increases for higher mass ratios. Our results
are also qualitatively consistent with the results described
in [13] as we find that for equal mass binaries, the Tay-
lor T4 approximant performs better than the Taylor T1
approximant (both for aligned and anti-aligned spins).

For the in-plane precessing runs, we see clear trends
for all 3 approximants: Taylor T4 and T5 both show in-
creasing differences with increasing mass ratio, and T1
shows decreasing differences. These trends for precess-
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FIG. 11. Comparison of orbital plane and spin precession for the primary six precessing NR simulations. Top Left: ∠L
as a function of time to merger. Top right: ∠L as a function of orbital phase in NR. Bottom left: ∠χ1 as a function of
orbital phase. Bottom right: ∠χ̃1 between the averaged spins. All data plotted are averages over 12 matching intervals, cf.
Fig. 3, utilizing the Taylor T4 PN approximant. The thin horizontal lines in the top left panel show the widest edges of the
PN matching intervals.
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FIG. 14. Φ∆ as a function of mass ratio for BBH systems
with χ1 = 0.5, and spin direction aligned (top), orthogonal
(middle), and anti-aligned (bottom) with the orbital angular
momentum. For clarity, the aligned/anti-aligned data are off-
set by +0.5 and −0.5, respectively, with the thin horizontal
black lines indicating zero for each set of curves. Plotted is
Φ∆ averaged over the 12 matching intervals, cf. Fig. 3, and
for three different Taylor approximants.

ing binaries are consistent with previous work on non-

spinning binaries [17], which is expected since for ~S · ˆ̀

many of the same terms in the binding energy and flux
vanish as for non-spinning binaries. Overall, we find that
for different orientations and mass ratios, no one Taylor
approximant performs better than the rest, as expected
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FIG. 15. Comparison of PN-NR precession dynamics when
the expansion order of the PN precession equations is varied.
Shown is the case q3 0.5x. The top panel shows the precession
of the orbital plane, and the bottom panel of the spin χ̂1

(without and with averaging). All data shown are averages
over 12 matching intervals, cf. Fig. 3.

if the differences between the approximants arise from
different treatment of higher-order terms.

C. Convergence with PN order

So far all comparisons were performed using all avail-
able post-Newtonian information. It is also instructive to
consider behavior at different PN order, as this reveals
the convergence properties of the PN series, and allows
estimates of how accurate higher order PN expressions
might be.

The precession frequency $, given in Eq. (A31), is
a product of series in the frequency parameter x. We
multiply out this product, and truncate it at various
PN orders from leading order (corresponding to 1.5PN)
through next-to-next-to-leading order (corresponding to

3.5PN). Similarly, the spin precession frequencies ~Ω1,2 in
Eqs. (2) and (A32) are power series in x. We truncate the

power series for ~Ω1,2 in the same fashion as the power se-
ries for $, but keep the orbital phase evolution at 3.5PN
order, where we use the TaylorT4 prescription to imple-
ment the energy flux balance. For different precession-
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truncation orders, we match the PN dynamics to the NR
simulations with the same techniques and at the same
matching frequencies as in the preceding sections.

When applied to the NR simulation q3 0.5x, we obtain
the results shown in Fig. 15. This figure shows clearly
that with increasing PN order in the precession equa-
tions, PN precession dynamics tracks the NR simulation
more and more accurately. When only the leading order
terms of the precession equations are included (1.5PN
order), ∠L and ∠χ1 are ≈ 0.1rad; at 3.5PN order this
difference drops by nearly two orders of magnitude.

We repeat this comparison for our six main precessing
cases from Table I. The results are shown in Fig. 16 and
once again the angles are evaluated at the time the NR
simulation reaches orbital frequency of mΩNR = 0.03. It
is evident that for all cases ∠L decreases with increasing
order in the precession equations with almost 2 orders of
magnitude improvement between leading order and next-
to-next leading order truncations. A similar trend is seen
in the convergence of the spin angle ∠χ1 shown in bot-

tom panel of Fig. 16. The angle decreases with PN order
almost monotonically for all cases except q1.0 twospins.
However, this is an artificial consequence of picking a
particular matching point at mΩ = 0.03: as can be seen
from the bottom panel of Fig. 15 ∠χ1 shows large oscil-
lations and it is a coincidence that the matching point
happens to be in a “trough” of χ1.

So far we have varied the PN order of the precession
equations, while keeping the orbital frequency evolution
at 3.5PN order. Let us now investigate the opposite case:
varying the PN order of the orbital frequency and moni-
toring its impact on the orbital phase evolution. We keep
the PN order of the precession equations at 3.5PN, and
match PN with different orders of the orbital frequency
evolution (and TaylorT4 energy-balance prescription) to
the NR simulations. We then evaluate Φ∆ (a quantity
that reduces to the orbital phase difference in cases where
the latter is unambiguously defined) at the time at which
the NR simulation reaches the frequency mΩNR = 0.03.
We examine our six primary precessing runs, and also
the aligned-spin and anti-aligned spin binaries listed in
Table I.

When the spin is initially in the orbital plane, as seen
in the top panel of Fig. 17, the overall trend is a non-
monotonic error decrease with PN order, with spikes at
1 and 2.5 PN orders as has been seen previously with
non-spinning binaries [11]. All of the aligned cases show
a large improvement at 1.5 PN order, associated with the
leading order spin-orbit contribution. The phase differ-
ences then spike at 2 and 2.5 PN orders and then decrease
at 3 PN order. Finally, different cases show different re-
sults at 3.5 PN with some showing decreases differences
while for others the differences increase.

For the anti-aligned cases the picture is similar to pre-
cessing cases with a spike at 1 and 2.5 PN orders and
monotonic improvement thereafter. The main difference
from precessing cases is the magnitude of the phase dif-
ferences, which is larger by a factor of ∼ 5 at 3.5 PN order
for the anti-aligned cases (see for example q1.5 s0.5x 0).

These results suggest that convergence of the orbital
phase evolution depends sensitively on the exact param-
eters of the system under study. Further investigation of
the parameter space is warranted.

D. Impact of PN spin truncation

As mentioned in Sec. II A 2, post-Newtonian expan-
sions are not fully known to the same orders for spin and
non-spin terms. Thus, for example, the expression for
flux F is complete to 3.5 PN order for non-spinning sys-
tems, but spinning systems may involve unknown terms
at 2.5 PN order; a similar statement holds for dE/dx.
This means that when the ratio in Eq. (4), F/(dE/dx),
is re-expanded as in the T4 approximant, known terms
will mix with unknown terms. It is not clear, a priori,
how such terms should be handled when truncating that
re-expanded series.
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Here we examine the effects of different truncation
strategies. We focus on the Taylor T4 approximant
while considering various possible truncations of the re-
expanded form of F/(dE/dx). We denote these possi-
bilities by the orders of (1) the truncation of non-spin
terms, (2) the truncation of spin-linear terms, and (3)
the truncation of spin-quadratic terms. Thus, for exam-
ple, in the case where we keep non-spin terms to 3.5 PN
order, keep spin-linear terms to 2.5 PN order, and keep
spin-quadratic terms only to 2.0 PN order, we write (3.5,
2.5, 2.0). We consider the following five possibilities:
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FIG. 18. Impact of different choices for spin truncation on
orbital phase difference Φ∆, as a function of mass ratio. The
lines are labeled by the truncation types, as explained in the
text. The upper panel shows all cases for which the spins are
aligned with the orbital angular momentum; the lower panel
shows the anti-aligned cases.

(i) (3.5, 3.5, 3.5)
(ii) (3.5, 4.0, 4.0)
(iii) (3.5, 2.5, 2.0)
(iv) (3.5, 3.5, 2.0)
(v) (3.5, 4.0, 2.0).

To increase the impact of the spin-orbit terms, we ex-
amine aligned and anti-aligned cases from Table I, with
results presented in Fig. 18,where once more Φ∆ is evu-
lated at the time at which the NR simulation reaches
the frequency mΩNR = 0.03 . For aligned cases, no
one choice of spin truncation results in small differences
across all mass ratios. All choices of spin truncation ex-
cepting (3.5, 4.0, 4.0) have increasing errors with increas-
ing mass ratio. Truncating spin corrections at 2.5 PN or-
der (3.5, 2.5, 2) consistently results in the worst matches.
On the other hand, we find that, for anti-aligned runs,
adding higher order terms always improves the match,
keeping all terms yields the best result, and all choices of
truncation give errors which are monotonically increasing
with mass ratio. Overall, anti-aligned cases have larger
values of Φ∆ when compared to cases with same mass
ratios. This result is consistent with findings by Nitz
et al. [23] for comparisons between TaylorT4 and EOB-
NRv1 approximants.
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E. Further numerical considerations

1. Numerical truncation error

Still to be addressed is the effect of the resolution of
NR simulations in the present work. The simulation
q1 twospins is available at four different resolutions la-
beled N1, N2, N3 and N4. We match each of these four
numerical resolutions with the Taylor T4 approximant,
and plot the resulting phase differences Φ∆ in Fig. 19
as the data with symbols and error bars (recall that the
error bars are obtained from the 12 different matching
regions we use, cf. Fig. 3). All four numerical reso-
lutions yield essentially the same Φ∆. We furthermore
match the three lowest numerical resolutions against the
highest numerical resolution N4 and compute the phase
difference Φ∆. The top panel of Figure 19 shows Φ∆

computed with these 4 different numerical resolutions.
All the curves lie on top of each other and the differences
between them are well within the uncertainties due to
the matching procedure. The bottom panel shows the
differences in Φ∆ between the highest resolution and all
others. Throughout most of the inspiral, the difference is
∼ 10%. Similar behavior is observed in other cases where
multiple resolutions of NR simulations are available. We
therefore conclude that the effects of varying numerical
resolution do not impact our analysis.

2. Numerical gauge change

The simulation SXS:BBH:0058 in the SXS catalog uses
identical BBH parameters than q5 0.5x, but suffers from
two deficiencies, exploration of which will provide some
additional insights. First, the switch from generalized
harmonic gauge with fixed gauge-source functions [11] to
dynamical gauge-source functions [55, 56] happens near
the middle of the inspiral, rather than close to merger
as for the other simulations considered. This will give us
an opportunity to investigate the impact of such a gauge
change, the topic of this subsection. Second, this simu-
lation also used too low resolution in the computation of
the black hole spin during the inspiral, which we will dis-
cuss in the next subsection. We emphasize that the com-
parisons presented above did not utilize SXS:BBH:0058,
but rather a re-run with improved technology. We use
SXS:BBH:0058 in this section to explore the effects of its
deficiencies.

While the difference between PN and NR gauges does
not strongly impact the nature of the matching results,
a gauge change performed during some of the runs does
result in unphysical behavior of physical quantities such
as the orbital frequency. Figure 20 demonstrates this
for case q5 s0.5x. The old run SXS:BBH:0058 with the
gauge change exhibits a bump in the orbital frequency
(top panel), which is not present in the re-run (solid
curve). When matching both the old and the new run
to PN, and computing the phase difference Φ∆, the old

−5000 −4000 −3000 −2000 −1000 0

t− tmerge (M)

10−4

10−3

10−2

10−1

100

Φ
∆

(r
a
d

)

N1

N2

N3

N4

−5000 −4000 −3000 −2000 −1000 0

t− tmerge (M)

10−4

10−3

10−2

10−1

100

6
L

(r
a
d

)

N1

N2

N3

N4

FIG. 19. Convergence test with the numerical resolution of
the NR simulation q1 twospins. Top panel: Φ∆ with com-
parisons done at different resolutions. All the curves lie within
uncertainties due to the matching procedure, indicating that
numerical truncation error does is not important in this com-
parison. The difference between each curve and the highest
resolution are of order 15% and are within the matching un-
certainties. Bottom panel: ∠L with comparisons done at
all the resolutions. The curves lie within the matching uncer-
tainties.

run exhibits a nearly discontinuous change in Φ∆ (bot-
tom panel, dashed curves) while no such discontinuity is
apparent in the re-run.

3. Problems in quasi-local quantities

Computation of the quasi-local spin involves the so-
lution of an eigenvalue problem on the apparent hori-
zon followed by an integration over the apparent hori-
zon, cf. [69–71]. In the simulations q1.0 0.5x, q1.5 0.5x
and q3.0 0.5x and in SXS:BBH:0058 (corresponding to
q5 0.5x), too low numerical resolution was used for these
two steps. While the evolution itself is acceptable, the
extracted spin shows unphysical features. Most impor-
tantly, the reported spin magnitude is not constant, but
varies by several per cent. Figure 21 shows as example
χ1 from SXS:BBH:0058. For t − tmerge ≤ 3200M oscil-
lations are clearly visible. These oscillations vanish at
t− tmerge ≈ 3200M , coincident with a switch to damped
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sent an earlier run SXS:BBH:0058 which changes the gauge
at t − tmerge ≈ −3200M . Top: behavior of the orbital fre-
quency mΩ in evolution with (dashed curve) and without
gauge change (solid curve). Bottom: Φ∆ for all Taylor ap-
proximants. To avoid matching during the gauge change, the
matching was done with mΩc = 0.017.

harmonic gauge (cf. Sec. III E 2). Similar oscillations in
q3 0.5 disappear when the resolution of the spin compu-
tation is manually increased about 1/3 through the inspi-
ral, without changing the evolution gauge. Our new re-
run q5 0.5x (using damped harmonic gauge throughout),
also reports a clean χ1, cf. Fig. 21. Thus, we conclude
that the unphysical variations in the spin magnitude are
only present if both the resolution of the spin computa-
tion is low, and the old gauge conditions of constant Ha

are employed.

The NR spin magnitude is used to initialize the PN
spin magnitude, cf. Eq. (14). Therefore, an error in
the calculation of the NR spin would compromise our
comparison with PN. For the affected runs, we correct
the spin reported by the quasi-local spin computation by
first finding all maxima of the spin-magnitude χ between
500M and 2000M after the start of the numerical sim-
ulation. We then take the average value of χ at those
maxima as the corrected spin-magnitude of the NR sim-
ulation. Figure 21 shows the case q5 0.5x as well as the
rerun described in Sec. III E 2. It is evident that this
procedure produces a spin value which is very close to
the spin in the rerun where the problematic behavior is
no longer present. Thus, we adopt it for the three cases
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FIG. 21. Top: The magnitude of the spin as a function of
time in the original run (black) and the new run (blue) as
well as the value computed with the procedure described in
the text (orange). Middle panel: angles between the spins
and normals to the orbital plane (thin curves) and their aver-
aged values (bold curves) for the original run and the re-run.

Lower panel: ∠χ̃1 and ∠˜̀ for both the old run and the re-
run (the data of this panel are averaged over 12 matching
intervals, cf. Fig. 3). To avoid matching during the gauge
change, the matching was done with mΩc = 0.017.

where an oscillation in the spin magnitude is present.

The nutation features shown in Fig. 9 are qualitatively
similar for all our simulations, independent of resolution
of the spin computation and evolution gauge. When the
spin is inaccurately measured, the nutation trajectory
picks up extra modulations, which are small on the scale
of Fig. 9 and do not alter the qualitative behavior.
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The lower two panels of Fig. 21 quantify the impact of
inaccurate spin measurement on the precession-dynamics
comparisons performed in this paper: The middle panel
shows the differences between the spin directions in the
original 0058 run and our re-run q5 0.5x. The spin direc-
tions differ by as much as 0.01 radians. However, as the
lower panel shows, this difference can mostly be absorbed
by the PN matching, so that ∠χ1 and ∠L are of similar
magnitude of about 10−3 radians.

IV. DISCUSSION

We have presented an algorithm for matching PN pre-
cession dynamics to NR simulations which uses con-
strained minimization. Using this algorithm, we perform
a systematic comparison between PN and NR for precess-
ing binary black hole systems. The focus of the compar-
ison is black hole dynamics only, and we defer discussion
of waveforms to future work. By employing our matching
procedure, we find excellent agreement between PN and
NR for the precession and nutation of the orbital plane.
The normals to the orbital plane generally lie within 10−2

radians, cf. Fig. 11. Moreover, nutation features on the
orbital time-scale also agree well between NR and PN,
cf. Fig. 10.

For the black hole spin direction, the results are less
uniform. The NR spin direction χ̂NR

1 shows nutation fea-
tures that are qualitatively different than the PN nuta-
tion features, cf. Fig. 9. The disagreement in nutation
dominates the agreement of χ̂NR

1 with χ̂PN
1 ; averaging

away the nutation features substantially improves agree-
ment, cf. Fig. 6. The orbit-averaged spin directions agree

with PN to the same extent that the ˆ̀ direction does
(with and without orbit averaging), cf. Fig. 11.

Turning to the convergence properties of PN, we have
performed PN-NR comparisons at different PN order of
the precession equations. For both orbital angular mo-

mentum ˆ̀ and the spin direction χ̂1, we observe that
the convergence of the PN results toward NR is fast and
nearly universally monotonic, cf. Fig. 16. At the highest
PN orders, the spin results might be dominated by the
difference in nutation features between PN and NR.

The good agreement between PN and NR precession
dynamics are promising news for gravitational wave mod-
eling. Precessing waveform models often rely on the post-
Newtonian precession equations, e.g. [24, 72]. Our results
indicate that the PN precession equations are well suited
to model the precessing frame, thus reducing the prob-
lem of modeling precessing waveforms to the modeling of
orbital phasing only.

The accuracy of the PN orbital phase evolution, un-
fortunately, does not improve for precessing systems.
Rather, orbital phasing errors are comparable between
non-precessing and precessing configurations, cf. Fig. 17.
Moreover, depending on mass-ratio and spins, some Tay-
lor approximants match the NR data particularly well,
whereas others give substantially larger phase differences,

cf. Fig. 14. This confirms previous work [14, 17, 20, 31,
73] that the PN truncation error of the phase evolution
is important for waveform modeling.

We have also examined the effects of including par-
tially known spin contributions to the evolution of the
orbital frequency for the Taylor T4 approximant. For
aligned runs, including such incomplete information usu-
ally improves the match, but the results are still sensitive
to the mass ratio of the binary (top panel of Fig 18). For
anti-aligned runs, it appears that incomplete information
always improves the agreement of the phasing between
PN and NR (bottom panel of Fig 18).

In this work we compare gauge-dependent quantities,
and thus must examine the impact of gauge choices on
the conclusions listed above. We consider it likely that
the different nutation features of χ̂1 are determined by
different gauge choices. We have also seen that different
NR gauges lead to measurably different evolutions of χ̂,
ˆ̀, and the phasing, cf. Fig. 20 and 21. We expect, how-
ever, that our conclusions are fairly robust to the gauge
ambiguities for two reasons. First, in the matched PN-
NR comparison, the impact of gauge differences is quite
small, cf. lowest panel of Fig. 21. Second, the near uni-
versal, monotonic, and quick convergence of the preces-
sion dynamics with precession PN order visible in Fig. 16
would not be realized if the comparison were dominated
by gauge effects. Instead, we would expect PN to con-
verge to a solution different from the NR data.
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Appendix A: Post-Newtonian dynamics

We consider compact object binary with masses m1,2

and carrying angular momentum ~S1,2. The post-
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Newtonian expressions are most conveniently written us-
ing the following symbols:

m = m1 +m2, (A1)

ν =
m1m2

m2
, (A2)

δ =
m1 −m2

m
, (A3)

~S = ~S1 + ~S2, (A4)

sl =
~S · ˆ̀
m2

, (A5)

sn =
~S · n̂
m2

, (A6)

~Σ =
m

m2

~S2 −
m

m1

~S1, (A7)

σl =
~Σ · ˆ̀
m2

, (A8)

σn =
~Σ · n̂
m2

, (A9)

~χs =
1

2
(~χ1 + ~χ2) , (A10)

~χa =
1

2
(~χ1 − ~χ2) , (A11)

~S0 =
m

m1

~S1 +
m

m2

~S2, (A12)

~s0 =
~S0

m2
. (A13)

1. Energy and Flux

The energy and flux are written as power series in the
expansion parameter x ≡ (mΩ)2/3:

E(x) = − 1
2 mνx

(
1 +

∑
k=2 akx

k/2
)
, (A14)

F(x) = 32
5 ν

2x5
(
1 +

∑
k=2 bkx

k/2
)
. (A15)

For the energy, coefficients are given explicitly by:

a2 = −3

4
− ν

12
, (A16)

a3 = 2δσl +
14

3
sl, (A17)

a4 = −27

8
+

19

8
ν − 1

24
ν2 + ν(~χ2

s − ~χ2
a − 3[(~χs · ˆ̀)2 − (~χa · ˆ̀)2]

+(
1

2
− ν){~χ2

s + ~χ2
a − 3[(~χs · ˆ̀)2 + (~χa · ˆ̀)2]}+ δ{~χs · ~χa − 3[(~χs · ˆ̀)(~χa · ˆ̀)]}, (A18)

a5 = 11sl + 3δσl + ν

[
−61

9
sl −

10

3
δσl

]
, (A19)

a6 = −675

64
+

[
34445

576
− 205

96
π2

]
ν − 155

96
ν2 − 35

5184
ν3, (A20)

a7 =

(
135

4
− 367

4
ν +

29

12
ν2

)
sl + δ

(
27

4
− 39ν +

5

4
ν2

)
σl. (A21)

Meanwhile for the flux F :

b2 = −1247

336
− 35

12
ν, (A22)

b3 = 4π − 4sl −
5

4
δσl, (A23)

b4 = −44711

9072
+

9271

504
ν +

65

18
ν2 +

(
287

96
+

ν

24

)
(~χs · ˆ̀)2

−
(

89

96
+

7ν

24

)
~χ2
s +

(
287

96
− 12ν

)
(~χa · ˆ̀)2 +

(
−89

96
+ 4ν

)
~χ2
a +

287

48
δ(~χs · ˆ̀)(~χa · ˆ̀)−

89

48
δ(~χs · ~χa), (A24)

b5 = −8191

672
π − 9

2
sl −

13

16
δσl + ν

[
−583

24
π +

272

9
sl +

43

4
δσl

]
, (A25)

b6 =
6643739519

69854400
+

16

3
π2 − 1712

105
γE −

856

105
log(16x) +

(−134543

7776
+

41

48
π2

)
ν − 94403

3024
ν2 − 775

324
ν3

−16πsl −
31π

6
δσl, (A26)
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b7 =

(
476645

6804
+

6172

189
ν − 2810

27
ν2

)
sl +

(
9535

336
+

1849

126
ν − 1501

36
ν2

)
δσl

+

(
−16285

504

214745

1728
ν +

193385

3024
ν2

)
π, (A27)

b8 =

(
−3485π

96
+

13879π

72
ν

)
sl +

(
−7163π

672
+

130583π

2016
ν

)
δσl, (A28)

where γE denotes Euler’s constant.

2. Precession dynamics

The evolution of the orbital plane is governed by the frequency $ in Eq. (1a), which is defined in terms of two

auxiliary quantities, γ = m/r and al = ~a · ˆ̀:

γ = x

{
1 +

3− ν
3

x+
3σl + 5sl

3
x3/2 +

12− 65ν

12
x2 +

(
30 + 8ν

9
sl + 2σlδ

)
x5/2

+

[
1 + ν

(
−2203

2520
− 41π2

192

)
+

229ν2

36
+
ν3

81

]
x3 +

(
60− 127ν − 72ν2

12
sl +

16− 61ν − 16

6
σlδ

)
x7/2

+x2
(
~s 2

0 − 3(~s0 · ~̀)2
)}

, (A29)

al =
x

7
2

m

{
7sn + 3σnδ + x

[
sn

(
−29ν

3
− 10

)
+ σnδ

(
−9ν

2
− 6

)]
+ x2

[
sn

(
52ν2

9
+

59ν

4
+

3

2

)
+ σnδ

(
17ν2

6
+

73ν

8
+

3

2

)]}
− 3x4

m
(~s0 · ˆ̀)(~s0 · n̂). (A30)

Note that we have dropped the pure gauge term − 22
3 ln (r/r′0) from γ. We now have

$ =
al γ

x3/2
. (A31)

The spins obey Eqs. (2) with

~Ω1 = ˆ̀x
5
2

m

{
−3δ + 2ν + 3

4
+ x

[
10ν − 9

16
δ − ν2

24
+

5ν

4
+

9

16

]
+ x2

[−5ν2 + 156ν − 27

32
δ − ν3

48
− 105ν2

32
+

3ν

16
+

27

32

]}

+
x3

m3

[
3m2

1

q
(~χ1 · n̂)n̂−m2

2~χ2 + 3m2
2(~χ2 · n̂)n̂

]
. (A32)

The expression for ~Ω2 is obtained by ~χ1 ↔ ~χ2, m1 ↔ m2, δ ↔ −δ and q ↔ 1/q.

We re-expand the right-hand-side of Eq. (A31), and trun-

cate the expansion for $ and ~Ω1,2 at the same power of x
beyond the leading order. We refer to the order of the last
retained terms as the precession PN order. For the ma-
jority of comparisons presented in this paper, we truncate
at 3.5PN; truncation at lower PN order is only used in
Sec. III C. Note that spin-squared interactions imply the
lack of circular orbits for generic orientations of the spins.
We neglect these complications in the present work.

Appendix B: Useful quaternion formulas

We refer the reader to other sources [61, 76] for general
introductions to quaternions. Here, we simply give a few
formulas that are particularly important in this paper.
First, we introduce some basic notation to be used for
the four components of a general quaternion Q:

Q = (q0, q1, q2, q3) = q0 + ~q . (B1)

In this notation, the quaternion conjugate is just Q̄ =
q0 − ~q, and we note that the product of quaternions is
given by

P Q = p0 q0 − ~p · ~q + p0~q + q0~p+ ~p× ~q . (B2)
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The norm of a quaternion Q is defined by |Q|2 = QQ̄.
The inverse of a quaternion is Q−1 = Q̄/|Q|2, which
means that the inverse of a unit quaternion is simply
its conjugate. The components of a unit quaternion
R = r0 +~r satisfy R R̄ = r2

0 +~r ·~r = 1. Unit quaternions
are usually referred to as “rotors”. Any rotation can be
expressed as a rotor, where the rotor acts on a vector ~v
according to the transformation law

~v ′ = R~v R̄ . (B3)

The form of this expression ensures that ~v ′ is a pure
vector; it has zero scalar part. To see this, we note that a
quaternion has zero scalar part if and only if its conjugate
equals its negative, which is true of the right-hand side
above. We can use this fact, along with ~p · ~q = − 1

2 (~p ~q +

~q ~p) and the unit-norm property R R̄ = 1, to see that
the right-hand side above is indeed an isometry. Finally,
simple arguments using the cross product can show that
such a transformation preserves orientation, and since
the origin is fixed, it is therefore a simple rotation for
any rotor R.

1. Exponential, logarithms, and square roots

The quaternions are closely analogous to complex num-
bers, except that quaternions do not commute in general.
One striking example of this analogy is Euler’s formula,
which generalizes quite directly. If we define the expo-
nential of a quaternion by the usual power series, we get
for a unit vector û

exp[θ û] = cos θ + û sin θ , (B4)

which is precisely Euler’s formula with i replaced by û.
Every rotor R = r0 + ~r can be expressed in this form, so
it is easy to see that the logarithm of any rotor has zero
scalar part and is given by

~r := logR =
~r

|~r | arctan
|~r |
r0

. (B5)

It is useful to note that the logarithm of a rotor is parallel
to the vector part of the rotor. Finding the magnitude
of ~r, of course, is just the usual square root of the sum of
the squares of its components. And the arctan function is
applied to real values, so we can use standard implemen-
tations of the atan2 function to evaluate it. So we see
that both the exponential and logarithm of quaternions
are extremely simple and numerically robust to calculate.

These formulas can also be used to define general pow-
ers of quaternions. For the purposes of this paper, how-
ever, we only need one particular power of a quaternion:
the square root. More specifically, given two unit vectors
û and ŵ, we need the rotor that takes ŵ to û by the
smallest rotation possible, which is a rotation in their
common plane. This rotor is given [61] by

Rŵ→û =
√
−û ŵ = ± 1− û ŵ√

2[1− (û ŵ)0]
. (B6)

In this expression, û ŵ represents the result of quaternion
multiplication of the quaternions û and ŵ. (û ŵ)0 repre-
sents the scalar part of this product, so that the square
root in the denominator is acting on a real number.
The sign ambiguity is generally irrelevant because of the
double-sided transformation law for vectors, Eq. (B3).
However, in certain special applications such as rotor in-
terpolation, the sign must be chosen carefully to be con-
tinuous [61].

2. Deriving the frame rotor from ˆ̀ and n̂

For both numerical relativity simulations and Post-
Newtonian evolutions we have data about the positions
and velocities of the black holes, that can be used to de-
rive the frame rotor Rf, cf. Fig. 2. Given positions of
the black holes as functions of time, it’s a simple matter
to calculate their unit separation vector n̂, and then to

calculate ˆ̀ using

Ω ˆ̀= n̂× ˙̂n . (B7)

Going from ˆ̀ and n̂ to the frame rotor Rf, the idea is to

first rotate ẑ onto ˆ̀. This will also rotate x̂ onto some x̂′.
We then need to rotate x̂′ onto n̂, while leaving ˆ̀ in place.

Of course, the n̂-x̂′ is orthogonal to ˆ̀, so we just perform
a rotation in that plane. This is easily accomplished by
the following formula:

Ri =

√
−ˆ̀ẑ , (B8a)

Rf =
√
−n̂ (Ri x̂ R̄i) Ri . (B8b)

Again, the square roots are to be evaluated using
Eq. (B6).

3. Comparing frame rotors

Reference [61] introduced a simple, geometrically in-
variant measure R∆ that encodes the difference between
two precessing systems as a function of time, easily re-
duced to a single real number Φ∆ expressing the magni-
tude of that difference. These quantities were mentioned
in Sec. II C without much motivation, here we briefly re-
view that motivation.

In general, we assume that there are two (analytical
or numerical) descriptions of the same physical system,
and that we have two corresponding frames RfA and RfB.
To understand the difference between the frames, we can
simply take the rotation that takes one frame onto the
other. In this case, the rotor taking frame A onto frame
B is

R∆ := RfB R̄fA. (B9)
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Rotors compose by left multiplication, so it is not hard to
see that this does indeed take RfA onto RfB because the
inverse of RfA is just its conjugate, so R∆RfA = RfB.

A particularly nice feature of R∆ is that it is com-
pletely independent of the inertial basis frame (x̂, ŷ, ẑ)
with respect to which we define the moving frames. That
is, if we have another basis frame (x̂′, ŷ′, ẑ′), there is some
Rδ such that x̂′ = Rδ x̂ R̄δ, etc. The frame rotors would
transform as RfA 7→ R′fA = RfA R̄δ, in which case we
obtain

R′fB R̄
′
fA = RfB R̄δ Rδ R̄fA = RfB R̄fA. (B10)

That is, R∆ is invariant.
Now, we seek a relevant measure of the magnitude of

the rotation R∆. We know that it may be written as a
rotation through an angle φ about an axis v̂. Clearly, φ
is the measure we seek. The rotor corresponding to such
a rotation is given by R = exp[φ v̂/2]. Thus, to find the
angle, we just use the logarithm: φ = 2|logR|, where the
norm is the usual vector norm. Again, the formula for
the logarithm of a rotor is a simple combination of stan-
dard trigonometric functions applied to real numbers, as
shown above. Using this interpretation with our differ-
ence rotor, we see that the appropriate definition is

Φ∆ := 2
∣∣log

[
RfB R̄fA

]∣∣ . (B11)

There is information contained in the direction of the
logarithm. For example, the component along ˆ̀ is re-
lated to the difference in orbital phase for non-precessing

systems, while the component orthogonal to ˆ̀ is related

to the direction and magnitude of the difference in ˆ̀ it-
self. For the sake of simplicity, however, we focus on the
magnitude of the logarithm, as given above.

4. Inadequacy of ΦA − ΦB for comparisons of
precessing systems

In this Appendix we show that it is impossible—when
analyzing precessing systems—to compare two rotations
RA and RB in a non-degenerate and geometrically invari-
ant way by defining some phases ΦA and ΦB for them
separately, and then comparing them as ΦA − ΦB . This
conclusion motivates our use of the Φ∆ quantity defined
above, which is both non-degenerate and geometrically
invariant. Here, “non-degenerate” means that the phase
difference is zero if and only if RA and RB represent the
same rotation, and “geometrically invariant” means that
the result is not affected by an overall rotation of the
basis used to define RA and RB .

The basic idea will not come as a surprise. Essen-
tially, the conclusion stems from the simple fact that—
even locally—the three-dimensional rotation group does
not look like a (one-dimensional) phase. Any map from
the former to the latter cannot be one-to-one, even in
an infinitesimal neighborhood of a point. In practical
terms, this means that any prescription for ΦA−ΦB can

be “fooled”, and there will exist a two-dimensional space
of distinct rotations for which the corresponding values
of ΦA − ΦB will be identical.

The basic result does not depend in any way on the
topology of the groups involved; it is a purely alge-
braic argument. As long as RA and RB could be non-
commuting, the conclusion will still hold. The phase
function Φ need not be continuous; indeed, even that
very most basic topological notion—the open set—is su-
perfluous. The inadequacy of ΦA − ΦB is also indepen-
dent of time; it holds at each instant of time, and for any
extended period of time. It does not rule out the possibil-
ity of using multiple measures of the difference between
the rotations simultaneously, one of which may take the
form ΦA − ΦB (though constructing a geometrically in-
variant measure in this way is not trivial). Rather, it is
simply the statement that ΦA − ΦB alone would be de-
generate, and is therefore inadequate for measuring the
difference between general rotations. Moreover, this in-
adequacy will be a problem for every system with nonzero
precession, no matter how small that precession may be.
This conclusion has been the source of some contention,
but is an important point in guiding the analysis of pre-
cessing systems, so we take this opportunity to present a
careful explication and proof.

We begin by defining a function Φ such that Φ(RA) =
ΦA and Φ(RB) = ΦB . The domain of this function is
a rotation group, which could be the one-dimensional
group U(1) for non-precessing systems, but must be the
full three-dimensional group7 SU(2) for general precess-
ing systems. The range of Φ is the usual range of phases,
the additive group of real numbers modulo 2π. It will be
useful to note that this is isomorphic to U(1). Finally,
non-degeneracy is the condition that ΦA − ΦB = 0 [or
equivalently Φ(RA) = Φ(RB)] if and only if RA = ±RB .

The condition of geometric invariance can be written
as a condition on Φ itself. If, for example, we measure
everything with respect to some basis (x̂, ŷ, ẑ), and then
measure again with respect to some other basis (x̂′, ŷ′, ẑ′),
we should get the same answer. Now, there is some rotor
Rδ that takes the first basis into the second. If RA is
defined with respect to the first basis, then the equiva-
lent quantity will be RARδ with respect to the second.
Geometric invariance is then the statement

Φ(RARδ)− Φ(RB Rδ) = Φ(RA)− Φ(RB), (B12)

for any choice of Rδ in SU(2). We will show that there
is no such Φ because the rotation group SU(2) is not
isomorphic to U(1).

Since Eq. (B12) is true for any rotor Rδ, we can choose

7 Even though it is a double cover of the physical rotation group
SO(3), we use SU(2) here for consistency of notation, because it
is the group of unit quaternions. The proof would actually be
slightly simpler for SO(3); we would have Φ(RA) = Φ(RB), if
and only if RA = RB , and ker Φ′ = {1}.
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Rδ = R−1
B , and find that

Φ(RAR
−1
B )− Φ(1) = Φ(RA)− Φ(RB). (B13)

Now, we define another function Φ′(R) = Φ(R) − Φ(1).
The last equation becomes

Φ′(RAR
−1
B ) = Φ′(RA)− Φ′(RB). (B14)

In exactly the same way, we can see that

Φ′(RB R
−1
A ) = Φ′(RB)− Φ′(RA) = −Φ′(RAR

−1
B ).

(B15)
This must be true for all values of RA and RB , so we
have shown that

Φ′(R−1) = −Φ′(R), (B16)

for arbitrary R. Therefore, we can also see from
Eq. (B14) that

Φ′(R1R2) = Φ′(R1) + Φ′(R2), (B17)

for arbitrary R1 and R2. This is precisely the statement
that Φ′ is a group homomorphism [from SU(2) to the
additive group of real numbers modulo 2π].8

However, now we can impose the condition that ΦA −
ΦB = 0 if and only if RA = ±RB . Using the properties
of homomorphism, it is clear that this is equivalent to
the statement that the set of all elements that map to 0
under Φ′ (the kernel) is just ker Φ′ = {−1, 1}.

Then, the First Group Isomorphism Theorem [77] says
that the image of Φ′ is isomorphic to SU(2) modulo this
kernel, which of course is just SO(3). But the image of Φ′

is (possibly a subgroup of) the group U(1), which is obvi-
ously not isomorphic to SO(3). Therefore, it is impossible
to construct a function Φ fulfilling our requirements for
precessing systems.

This conclusion holds whenever RA and RB come from
a non-commutative group. Topological structures associ-
ated with SU(2), SO(3), and U(1) are completely unused
in this proof. However, if we now consider the standard
topology of SO(3), we know that it is possible to find
non-commuting elements inside any neighborhood of any
point—and in particular, inside any neighborhood of the
identity. But precessing systems will necessarily explore
some such neighborhood, which means that their orien-
tations may be described by non-commuting rotors RA
and RB . Thus, ΦA−ΦB would be an inadequate measure
of rotations for any system with any nonzero amount of
precession.

It is, however, interesting to note that if we could re-
strict our rotations (including the allowed coordinate ro-
tations Rδ) to some subgroup of SU(2) isomorphic to
U(1), there would be no contradiction. This is why it
is possible to construct a useful measure of the form
ΦA − ΦB for non-precessing systems—because the rota-
tions can be restricted to rotations about the orbital axis,
which results in precisely the group U(1). On the other
hand, for precessing systems, the measure Φ∆ described
in Secs. II C and B 3 is able to satisfy both key features of
a useful measure (non-degeneracy and geometric invari-
ance) because it simply does not attempt to define a ho-
momorphism from the rotation group; rather, it defines a
(non-homomorphic, but non-degenerate and rotationally
invariant) function from two copies of the rotation group
onto the phase group, SU(2)× SU(2)→ U(1).
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and B. Brügmann, Phys. Rev. D 77, 044020 (2008),
arXiv:0706.1305v2.

[13] M. Hannam, S. Husa, F. Ohme, D. Müller, and
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[31] L. Santamaŕıa, F. Ohme, P. Ajith, B. Brügmann, N. Dor-
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