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Abstract

Thermofield dynamics is presented in terms of a path-integral using coherent states, equiv-

alently, using a coadjoint orbit action. A field theoretic formulation in terms of fields on a

manifold M× M̃ where the two components have opposite orientation is also presented.

We propose formulating gravitational dynamics for noncommutative geometry using ther-

mofield dynamics, doubling the Hilbert space modeling the noncommutative space. We

consider 2+1 dimensions in some detail and sinceM and M̃ have opposite orientation, the

commutative limit leads to the Einstein-Hilbert action as the difference of two Chern-Simons

actions.



1 Introduction

It is well established by now that thermofield dynamics (TFD) gives a natural framework

to analyze time-dependent processes at finite temperature [1, 2]. But the formalism goes

beyond this limited context. It is ultimately a method for describing mixed states as pure

states in an enlarged Hilbert space. Therefore, it is the natural theoretical framework for

physical contexts where entropy plays an important role. And nowhere is entropy more

central or more mysterious than in gravity and so it is not surprising that the description

of states in a black hole background involves thermofield dynamics [3, 4, 5].

While most discussions of TFD focus on algebraic aspects of the formalism, or on detailed

Feynman diagram techniques, in this paper we will write a general path-integral for TFD

in terms of functional integration over unitary matrices. For simplicity, we will consider

finite-dimensional Hilbert spaces, with a large dimension taken at the end. An alternate

representation would be in terms of an auxiliary fermion field. These representations of TFD

are interesting in their own right, but part of our motivation is to apply this to gravity on

noncommutative spaces [6, 7].

The existence of entropy for empty gravitational backgrounds such as de Sitter space

suggests the idea of assigning a set of states to space itself. In turn, this leads to the

notion of noncommutative or fuzzy spaces, since the basic premise of the latter is that some

smooth manifolds can be obtained as an approximation to a Hilbert space of states as some

parameter is taken to be very large. (If we start with a finite-dimensional Hilbert space,

this parameter is usually the dimension itself.) The possibility that gravity might emerge

from how this limit is taken was pointed out some time ago [8]. What emerges naturally

is Chern-Simons gravity. Here we will argue that one can get the Einstein-Hilbert action if

the whole problem is set within TFD and we assign gravitational fields of opposite chirality

to the physical system and the tilde system. In other words, our basic suggestion is that

one must double the Hilbert space modeling the noncommutative geometry and construct

dynamics using thermofield dynamics. (The extension of TFD for fields and the related

diagrammatic perturbation theory on a noncommutative space have been considered before

[9]. This is different from what we propose here.)

There are, of course, many alternate approaches to gravity using noncommutative spaces

going back to the original suggestion by Connes, which leads to the spectral action of

Connes and Chamseddine [10], Other approaches include the use of a θ-deformed differential

geometry, with and without Drinfeld twists [11, 12] and the emergence of spacetime and

gravity from matrix models [13]. (The matrix model approach has similarities to ours, but

is still significantly different.)

There has also been more general interest in noncommutative spaces. In fact, field

theories on noncommutative spaces have been an important topic of research for a long

time now [14]. Such spaces can arise as brane solutions in certain contexts in string theory

and in the matrix version of M -theory [15]. Gauge theories on such spaces can describe
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fluctuations of the brane solutions and this has also contributed to interest about field

theories on fuzzy and noncommutative spaces.

Among noncommutative spaces, there is a subclass which can be described by finite-

dimensional matrices; these are the fuzzy spaces and, by now, there are many examples of

such spaces [6, 7]. When the dimension of the matrices becomes large, these spaces tend to

their smooth versions in terms of both the geometry and the algebra of functions on such

spaces. For much of what we do in this paper, we will use finite-dimensional Hilbert spaces,

so the discussion is within this class of spaces. A more general starting point is possible,

but we may note that the finiteness of entropy for the de Sitter universe suggests that the

use of a finite-dimensional Hilbert space to describe all degrees of freedom is worthy of

consideration as a basic premise for physical theories. We also point out another facet of

this, namely, entropy considerations are also very suggestive of treating the event horizon

as a fuzzy sphere [16]. The idea that entropy may play a stronger role has also been

suggested recently, namely, that gravity itself can be related to entropy and the first law of

thermodynamics [17], or from the first law for CFTs [18], or that it may be an entropic force

[19]. There is also a recent approach based on a matrix model description of the N = 4

supersymmetric Yang-Mills theory which starts with a finite number of states, see [20].

The time-evolution of a single quantum system starting from a given pure state can be

expressed by a path-integral using coherent states or in terms of unitary matrices. The

relevant action is in the form of a coadjoint orbit action [21]. In the next section, we rewrite

TFD for a single quantum system in a similar way. This requires a doubled set of coherent

states and the action relevant for this path-integral involves the trace over a matrix P which

has the eigenvalue +1 for the system under consideration and −1 for the tilde system. We

can rephrase this in terms of an action defined on a closed contour on a cylinder R × S1

with a single winding around the S1 cycle. Multiple holonomies around this cycle can be

related to the Rényi entropy.

We then re-express this in a more familiar form as the functional integral of a field

theory, the fields being two fermions. The fermions are defined on two copies of a suitable

Kähler manifold M with opposite orientation. The fields are also coupled to a background

field which is a multiple of the Kähler form on M. A variant of this formulation is to take

the fields to be spinors and the action to be the massless Dirac action,. A limit c→∞ has

to be taken at the end, where c plays the role of the speed of light in the action. One can

also generalize this to a multipartite system by considering multiple copies of the fields.

In section 3, we discuss how these ideas may apply to gravity, mostly in the setting of

the three-dimensional (or 2+1 dimensional) case. A doubling of the Hilbert space defining

the fuzzy geometry is introduced. The basic (Euclidean) symmetry under consideration is

SU(2)L×SU(2)R. While the time-component of a gauge field for this symmetry appears in

the thermofield action, the spatial components arise as auxiliary fields which give a simple

way to encode the symmetry in the large N limit. These have to be eliminated, i.e., a specific

choice for these gauge fields has to be made, at the end. One way to do this would be to
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choose them as extrema of the action in the large N limit. Gravitational field equations

arise as this choice.

One of the basic suggestions in this paper is that, for the doubled Hilbert space defining

the geometry, the gauge fields of, say, SU(2)L couple to one component while the gauge

fields of SU(2)R couple to the other, the tilde part. The action in the large N limit becomes

a Chern-Simons action for the SU(2)L fields and a similar one for the SU(2)R fields, with

a crucial negative sign, for the tilde part. The full action is thus the difference of two

Chern-Simons actions, which is equivalent to Einstein gravity in three dimensions.

We close with a brief discussion of the Minkowski signature and comments on comparison

of the results with the literature. A short appendix elaborates on the Hall effect connection

for one version of the TFD path-integral.

2 Generalizing thermofield dynamics

2.1 Action and functional integral for thermofield dynamics

We start by considering the thermal average of an observable O at temperature β−1 defined

by

〈O〉 = Tr(ρO) =
1

Z
Tr
(
e−βHO

)
, Z = Tr

(
e−βH

)
(1)

The density matrix ρ corresponds to a mixed state. The basic idea of thermofield dynamics

is to represent the average 〈O〉 as the expectation value of the operator O for a pure state.

This will require a doubling of the Hilbert space of states. It is easy to see that we cannot

represent ρ as a pure state without doubling, since ρ2 = ρ for a pure state and we have ρ2 6= ρ

for the thermal density matrix and no unitary transformation can change this property. If

H denotes the Hilbert space of states (which can and will be taken to be finite dimensional

for most of the discussion), then the Hilbert space for thermofield dynamics is H⊗H̃, where

H̃ is a copy of H itself. A general state in H⊗H̃ is of the form |m, ñ〉. The thermal vacuum

is then defined as [1]

|Ω〉 =
1√
Z

∑
n

e−
1
2 βEn |n, ñ〉 (2)

We have used a basis of eigenstates of the Hamiltonian. In |Ω〉 the corresponding states

from each Hilbert space contribute to this sum. With this choice, it follows easily that

〈Ω| O |Ω〉 =
1

Z

∑
m,n

e−
1
2 β(En + Em) 〈m|O|n〉 〈m̃|ñ〉

=
1

Z

∑
n

e−βEn 〈n|O|n〉 = Tr(ρO) (3)

where we have used the fact that O only acts on H, and 〈m̃|ñ〉 = δmn. The thermal

average is thus expressed as the expectation value over the pure state |Ω〉. Thermodynamic

4



entropy for ρ will arise as an entanglement entropy as we restrict the description to just

one component, namely H, of this doubled Hilbert space.

The tilde Hilbert space is usually chosen as a copy of the dual space of H, namely H∗.
The motivation for this choice is that time-evolution in H̃ is then given by −H, with the

full Hamiltonian being

Ȟ = H − H̃ = H ⊗ 1− 1⊗H (4)

The state |Ω〉 obeys Ȟ|Ω〉 = 0 and is independent of time. Thus for a free bosonic field

with single particle energies ωk,

Ȟ =
∑
k

ωk (a†kak − ã
†
kãk) (5)

It is possible to introduce a Bogolyubov transformation from a, a†, ã, ã† to A, A† such that

|Ω〉 is defined by Ak|Ω〉 = 0 [2]. We will not go into this at this point.

A general density matrix ρ obeys the Liouville equation

i
∂ρ

∂t
= H ρ− ρH (6)

It is possible to construct an action whose variational equation of motion is (6). This is

given by

S =

∫
dtTr

[
ρ0

(
U † i

∂U

∂t
− U †H U

)]
(7)

where ρ0 is the initial density matrix and U is a unitary matrix on H. The dynamical

variable in (7) is U and ρ is defined as ρ = U ρ0 U
†. Notice that (7) is in the form of

a coadjoint orbit action. It may be viewed as a general action for a general quantum

system and is very useful in extracting effective actions for collective phenomena [22]. It is

particularly suited for semiclassical and large N expansions. (A few papers which focus on

this aspect, by no means an exhaustive list, are [22, 23].)

Our first goal is to construct a similar action for the calculation of averages and correla-

tors in the thermofield state |Ω〉. Although we initiated the discussion using ρ = Z−1 e−βH ,

the idea of thermofield states can be used with any density matrix, so we will consider this

more general situation. We start by introducing a different notation which will help to

simplify the calculations. Let {|n〉} denote a basis of states for the N -dimensional Hilbert

space, initially chosen to be finite-dimensional as mentioned in the introduction. It is con-

venient to represent these in terms of coherent states which we denote by |z〉 (and a similar

set |w〉 for the tilde part). The states |n〉 can then be described using the coherent state

wave functions 〈z|n〉 = φn(z), and 〈w|n〉 = χn(w). (We use wave functions rather than the

states |z〉, |w〉 since they will be more appropriate for the path integral version.)

Explicitly, there are many ways to construct the coherent states, for example, in terms

of the rank r SU(2) representations (with N = r + 1), or rank 1 representation of U(N),

or using other subgroups of U(N) if the dimensions are compatible. The coherent states
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may be viewed as sections of an appropriate line bundle over a suitable Kähler spaceM (of

real dimension 2 d) (which would be CP1 = SU(2)/U(1) for the SU(2) coherent states and

CPN−1 for the rank 1 U(N) coherent states). Put another way, we consider M as a phase

space and choose the symplectic structure to be a multiple of the fundamental Kähler form

onM and carry out quantization. In the Bargmann polarization, which is most convenient

for us, the wave functions are holomorphic and correspond to the coherent states. For a

compact space of finite volume, the dimension of the Hilbert space will be finite and will

carry a representation of the isometry group of the space, appropriately U(N) (for CPN−1)

or SU(2) (for CP1) as mentioned above. For the case of CPN−1, the wave functions for the

basis of states is of the form zk, k = 1, 2, · · · , N , where zk are the homogeneous coordinates;

the local coordinates in one coordinate patch would be zk/zN , k = 1, 2, · · · , (N − 1). For

the case of CP1 with local coordinates z, z̄ (for one coordinate patch), we get

φn(z, z̄) =

[
(r + 1)!

n! (r − n)!

] 1

2 zn

(1 + z̄z)r/2
, n = 0, 1, · · · , r (8)

which obey (
∂z̄ +

r

2

z

(1 + z̄z)

)
φn(z) = 0 (9)

This is the holomorphicity condition appropriate to the space CP1. We shall shortly return

to the explicit formulae for φn(z) and χn(w), but for now, we observe that, for the coherent

states, we can choose an orthonormal basis with∫
M
dµ(z̄, z)φ∗n φm = δnm,

∫
M
dµ(w̄, w)χ∗n χm = δnm (10)

(The integration measure is the phase volume; thus, for example, dµ = dzdz̄/(π(1 + z̄z)2),

for CP1.) The thermofield state |Ω〉 can then be represented as

|Ω〉 = χ∗n (
√
ρ)nm φm (11)

Here we take
√
ρ to act on the φ’s, i.e., on H. Thus

√
ρ φ is an element of H. The action

of an operator O on |Ω〉 is given by

O |Ω〉 = χ†
√
ρ Oφ (12)

with the expectation value

〈Ω| O |Ω〉 =

∫
(φ†
√
ρχ) (χ†

√
ρ Oφ) =

∫
φ∗a(
√
ρ)ab χb χ

∗
c (
√
ρ)cd(Oφ)d

= Tr(ρO) (13)

Our notation also makes explicit some of the well known properties of TFD, particularly

its relation to C∗-algebras and the Tomita-Takesaki theory or the HHW version of the same

[24]. (For a concise review of this aspect of TFD, see [2].) A key result is the existence of
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an antilinear operation J , referred to as the modular conjugation, and a so-called modular

operator ∆. These obey the properties

∆† = ∆, ∆ > 0, ∆ |Ω〉 = |Ω〉
J† = J, J2 = 1, J |Ω〉 = |Ω〉 (14)

In our notation (12) for |Ω〉, these are given by ∆ = e−βȞ (for the thermal state ρ =

Z−1e−βH), and

J φ = χ∗, J χ = φ∗, J λ φ = λ∗ χ∗ (15)

Thus

J |Ω〉 = J
(
χ†
√
ρ Oφ

)
= φa(

√
ρ)∗ab χ

∗
b = χ†

√
ρ† φ = χ†

√
ρ φ

= |Ω〉 (16)

where we used the fact that ρ† = ρ. All the properties (14) can be easily verified.

We now turn to the time-evolution of the states. For this purpose, we will rewrite Ω in

a slightly different notation as

Ω(z̄, ū) =
∑
nm

ψn(ū) (
√
ρ)nm φm(z̄) (17)

Since we use the wave function representation for the states from now on, we write Ω

rather than |Ω〉. Also, we write ψ in place of χ∗. The time-evolved wave functions can be

represented as a path integral,

φn(z̄, t) =

∫
[Dz] ei S(z,z̄,t |z′,z̄′) φn(z̄′, 0) (18)

where S(z, z̄, t |z′, z̄′) is the action for the coherent states integrated from z′, z̄′ to z, z̄ over

time t. For the full thermofield state Ω we find

Ω(z̄, ū, t) =

∫
[DzDu] ei S(z,z̄,t |z′,z̄′) ei S̃(u,ū,t |u′,ū′) Ω(z̄′, ū′, 0) (19)

Thus a vacuum-to-vacuum amplitude has the form

F =

∫
[DzDu] Ω∗(z, u) ei S(z,z̄,t |z′,z̄′) ei S̃(u,ū,t |u′,ū′) Ω(z̄′, ū′) (20)

In the operator notation∫
φ∗k(z) e

i S(z,z̄,t |z′,z̄′) φl(z̄
′) = 〈k| e−iHzt |l〉 (21)

where Hz is the Hamiltonian for the (z, z̄)-system. In other words, in the coherent state

basis,

ei S(z,z̄,t |z′,z̄′) = 〈z| e−iHzt |z′〉 (22)
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The amplitude F can therefore be written as

F =
∑

(
√
ρ)∗kl 〈k| e−iHzt |a〉 〈l| e−iHut |b〉 (√ρ)ab (23)

We choose Hu = −HT , so that

F = Tr
(√

ρ† e−iHt
√
ρ eiHt

)
(24)

If we introduce operators A, B in the (z, z̄)-sector (or on H), we can write, for t > t1 > t2,

〈A(t1)B(t2)〉 = Tr
(√

ρ U(t, t1)AU(t1, t2)B U(t2, 0)
√
ρ U †(t, 0)

)
(25)

In terms of a time-contour, this may be represented as shown in Fig. 1. This is not the more

familiar Schwinger-Bakshi-Mahanthappa-Keldysh (SBMK) closed time contour [25]. That

has insertion of ρ at t = 0 and identity at t = T . For equilibrium cases, it is equivalent to

the F given here. If ρ is not the equilibrium choice, then there are several amplitudes (with

different physical meanings) one can consider. We can define a more general state specified

by a matrix K as

ΩK =
∑
nm

ψn(ū)Knm φm(z̄) (26)

The SBMK contour is then obtained for the amplitude

F1 ρ =

∫
[DzDu] Ω∗1(z, u) ei S(z,z̄,t |z′,z̄′) ei S̃(u,ū,t |u′,ū′) Ωρ(z̄

′, ū′) (27)

This is the physically relevant amplitude (with insertions of operators such as A, B as

required) for time-evolution of a closed statistical system starting with a given ρ. However,

if we view the physical system under consideration as a subsystem within a larger closed

system which is in a pure state which is an eigenstate of the total Hamiltonian, then the

amplitude (25) would be the relevant one.

We now turn to the action which will give the expected behavior for the (z, z̄)- and

(u, ū)-sectors. It is given by

S =

∫
dt
[
(i z̄kżk − z̄kHklzl) +

(
i ūku̇k + ūkH

T
klul
)]

(28)

with the constraints

z̄k zk = 1, ūk uk = 1 (29)

p
⇢

p
⇢

(0, 0)

(0,⇡) (T,⇡)

(T, 2⇡)

1

Figure 1: Time contours. The left side shows the contour for equation (25) and the right
side for equation (42).
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This action is easily quantized in terms of geometric quantization. For the (z, z̄)-sector, the

canonical one-form and two-form are given by

A =
i

2
(z̄k dzk − dz̄k zk), ω = i dz̄k ∧ dzk (30)

The polarization condition on the wave functions can be chosen as

∇z Ψ =

(
∂

∂zk
+
z̄k
2

)
Ψ = 0 (31)

which leads to wave functions of the form

Ψ = e−zkz̄k/2 f(z̄) (32)

with zk acting as ∂/∂z̄k on the the f ’s. The constraint shows that the f can have one

power of z̄, which implies that f(z̄) ∼ z̄k. There are exactly N states, giving the rank 1

representation of U(N). The Hamiltonian operator is

H = z̄kHkl
∂

∂z̄l
(33)

We see that matrix elements of this Hamiltonian reproduce Hkl. For the (u, ū)-sector, we

again have Ψ = exp(−u · ū/2) f(ū) with uk acting as ∂/∂ūk. The Hamiltonian is

H = −ūkHT
kl

∂

∂ūl
, 〈k|H |l〉 = −HT

kl (34)

The operation H → −HT represents charge conjugation in the Lie algebra of U(N). It is

useful to define

zk = ξk1, ūk = wk = ξk2, P =

[
1 0

0 −1

]
(35)

With a partial integration on the term involving the time-derivative of uk in (28), we can

bring the action to the form

S =

∫
dt

∑
α,β=1,2

Pαβ

(
iξ̄kβ ξ̇kα − ξ̄kβ Hkl ξlα

)
=

∫
dt Tr

[
P
(
i ξ† ξ̇ − ξ†H ξ

)]
(36)

The variables zk, uk with the constraint (29) define (two copies of) CPN−1, so it is useful

to use a notation in terms of group elements. Writing ξkα = U
(α)
k0 = 〈k|U (α)|0〉, for two

unitary matrices U (α), we find

S =

∫
dt
[(
i U (1)†U̇ (1) − U (1)†H U (1)

)
00
−
(
i U (2)†U̇ (2) − U (2)†H U (2)

)
00

]
(37)

The N states forming the fundamental representation of SU(N) can be viewed as being

generated from a highest weight state, usually the vacuum, by the action of various opera-

tors. Group theoretically, they can be constructed from the elements 〈k|U |0〉 for a chosen
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state |0〉. We have explicitly included this in our notation. The action (37) is close to the

form (7), but the key difference is that it is the difference of two actions of the form (7). In

the same notation, the state Ω can be written as

Ω = z̄k
√
ρkl wl = ξ̄k1

√
ρkl ξl2 = 〈0|U (1)†√ρ U (2)|0〉 (38)

Although we have used coherent states to arrive at (37) and (38), these results are no longer

dependent on any specific representation for the states. In terms of (38), we can represent

(20) as

F =

∫
[DU ] eiS 〈0|U (2)†(t))

√
ρ† U (1)(t)|0〉 〈0|U (1)†(0)

√
ρ U (2)(0)|0〉 (39)

with S as given in (37) and [DU ] denotes functional integration for the two copies of CPN−1.

In calculating F as in (20), or correlators as in (25), effectively we have a closed time-

contour with insertions of Ω at two points corresponding to t = 0 and t = T with T → ∞
eventually. This suggests a neat way to rewrite these results. We will use a complex time

variable τ = t+i θ, with the identitfication θ ∼ θ+2π, so that τ describes a cylinder R×S1.

Further we introduce a one-form

A = −i
[
H dt+

i

2π
log ρ dθ

]
(40)

The contour of integration C is then taken as starting at (t, θ) = (0, 0) going to (0, π)

to (T, π) to (T, 2π) ∼ (T, 0) to (0, 0), as shown in the second figure in Fig. 1. This goes

around S1 once. We then consider the Pe
∮
C
A, where P denotes path-ordering along C.

For the segments along the t-direction, we can use (22) to obtain the action as before. For

the segments (0, 0) to (0, π) and (T, π) to (T, 2π) along the imaginary time-direction, we

get factors of
√
ρ. For this, we use the same result as (22) with (i/2) log ρ in place of the

Hamiltonian H. Thus

eiS(w,z′,π) = 〈w| e
1
2 log ρ |z′〉 (41)

Notice that the factor
∫
U †U̇ dτ is insensitive to whether we integrate along real or imaginary

directions. We also take H to be independent of θ so that H(at θ = π) = H(at θ = 0).

With this result, we can write the path integral for thermofield dynamics as

FJ =

∫
[DU ] exp

[∮
C

(
−U † U̇ + U †AU

)
00

+

∮
AJ +BJ ′

]
(42)

where we have also introduced sources which facilitate the insertion of operators A, B, etc.

Setting J = J ′ = 0 gives the vacuum to vacuum transition amplitude. In operator notation,

this is given by

F (C) = TrPe
∮
C
A (43)

Thus F (C) is the Wilson loop integral for the connection (40) taken along the contour C

which winds once around the S1 direction of the cylinder. Consider now a small deformation

of the contour C → C ′ at a point τ0 along the path. Evidently

F (C ′)− F (C) = TrP exp

(∫ (0,2π)

τ0

)
Fσ P exp

(∫ τ0

(0,0)

)
(44)
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where σ = δt ∧ δθ is the infinitesimal area between C ′ and C at τ0. The curvature F is

given by

F =
1

2π

∂

∂t
log ρ+ i

∂H

∂θ
+

i

2π
[log ρ,H] (45)

In our case, ∂H/∂θ = 0 and ∂ρ/∂t = 0. (We have insertions of the same ρ at t = 0 and

t = T .) Thus, the curvature F vanishes if [ρ,H] = 0. For the equilibrium case where this is

obtained, we can do deformation of the contour C reducing F (C) to a simple holonomy of the

connection (40) around the S1-direction of the cylinder R× S1. (This is without insertions

of operators; for correlators there will be a nontrivial segment along the t-direction.)

We can go further and consider multiple windings around the S1 component of the

cylinder. We can consider windings inserted at any value of t, defining W (C, n, t) = F (C +

Cn(t)) where C + Cn(t) corresponds to the contour C with extra n windings around S1 at

the point t. Thus the Rényi entropy is defined in terms of the holonomy as

SR(t) = −
(
W (C, n, t)− 1

n− 1

)
(46)

Since thermofield dynamics uses pure states, entropy must be defined in terms of the basic

observables of the formalism. For the vacuum amplitude, i.e., in the absence of insertions

of operators on the real time line, the holonomy is the only observable we have and hence

equation (46) gives the natural definition.

2.2 A field theoretic representation

We have represented thermofield dynamics in (39) as a functional integral over group ele-

ments. There are other equivalent ways of representing it, one of which is as the functional

integral of a field theory. This is will prove useful as well. The basic idea is that the quan-

tum system can be viewed as the one-particle sector of a field theory. The time-evolution

matrix element (21) can be written as

〈k|e−iHt|l〉 = 〈0|ak e−iHt a†l |0〉 = 〈0|T ak(t) a†l (0)|0〉

= N
∫

[da da∗] eiS ak(t) a
†
l (0) (47)

S =

∫
dt [a∗k(i∂0)ak − a∗kHkl al] (48)

and N is the standard normalization factor,

N−1 =

∫
[da da∗] eiS (49)

Further, we can introduce a (z, z̄)-dependent field (on M) given by ψ(z, z̄, t) =
∑

k ak zk,

ψ†(z, z̄, t) =
∑

k a
†
k z̄k. (We use ψ∗ when we integrate over the c-number versions of these

fields in the functional integral.) The diagonal coherent state representation of operators

also allows us to introduce H(z, z̄) such that

Hkl =

∫
M
dµ(z, z̄) z̄kH(z, z̄) zl (50)
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The action (48) can thus be written as

S =

∫
dt dµ(z, z̄)

[
ψ∗(i∂0)ψ − ψ†H(z, z̄)ψ

]
(51)

The part of the action (36) with the negative eigenvalue for P can be represented in a

similar way, with a field φ, φ†.

The fields ψ, ψ∗ (and φ, φ∗) are restricted since ψ is holomorphic and ψ∗ is antiholomor-

phic. Thus the functional integration over these fields have also to be suitably restricted.

A convenient way to extend the functional integration over all fields and still restrict the

dynamics to holomorphic ψ’s is to use the Landau level trick. We take ψ to describe a

charged particle on M with a background magnetic field which is constant in a suitable

basis. This can be done for by taking the field to be proportional to the Kähler two-form

ω on M and consider the action

S =

∫
dt dµ(z, z̄)

[
ψ∗
(
i ∂0 − A0(z, z̄) +

D2 + E0

2m

)
ψ

]
(52)

where Di = ∇i− iAi is the gauge and Levi-Civita covariant derivative on ψ and d(Aidx
i) =

nω for some parameter n. E0 is the lowest eigenvalue of −D2. Further, A0(z, z̄) = H(z, z̄)

is the Hamiltonian of the original theory. m is a parameter which we will take to be zero

eventually. The Hamiltonian for ψ is H ′ +A0, with

H ′ = −D
2 + E0

2m
(53)

The eigenstates of H ′ are the Landau levels,the lowest of which obeys a holomorphicity

condition, and has zero eigenvalue since we subtracted E0 (which is the lowest eigenvalue of

−D2). The higher states are not holomorphic, but will decouple as m→ 0. The dynamics

will thus be restricted to the lowest state which corresponds to holomorphic ψ’s. Finally,

we introduce

Ω(ψ∗, φ∗) =

∫
M
dµ(z, z̄)dµ(w, w̄) ψ∗(z)φ∗(w) zk

√
ρkl wl (54)

Collecting these results together, we conclude that thermofield dynamics is given by

F = N
∫

[dψdψ∗ dφdφ∗] eiS Ω∗(t) Ω(0) (55)

S =

∫
dt dµ(z, z̄)

[
ψ∗
(
i ∂0 − A0(z, z̄) +

D2 + E0

2m

)
ψ

− φ∗
(
i ∂0 − A0(z, z̄) +

D2 + E0

2m

)
φ

]
=

∫
dt

∫
M
dµ(z, z̄) ψ∗

(
i ∂0 − A0(z, z̄) +

D2 + E0

2m

)
ψ

+

∫
dt

∫
M̃
dµ(z, z̄) φ∗

(
i ∂0 − A0(z, z̄) +

D2 + E0

2m

)
φ (56)
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As usual, N−1 is given by the integral of eiS over all fields. In the second line of (56) we take

M̃ to have the orientation opposite to that of M. The fields may be taken to be bosonic,

but it will turn out to be more convenient to take them as fermionic fields.

A simple extension will give a generalization of this result to a multipartite system

with identical components. Going back to (48), we take the states to be of the form

|k〉 = |α I〉 ∈ H1 ⊗H2 and define a set of fermion fields ψI =
∑

α aαI zα. The action may

now be written as

S =

∫
dt

∫
M
dµ(z, z̄) ψ∗I

(
i ∂0δIJ − (A0(z, z̄)IJ +

D2 + E0

2m
δIJ

)
ψJ

+

∫
dt

∫
M̃
dµ(z, z̄) φ∗I

(
i ∂0δIJ − (A0(z, z̄))IJ +

D2 + E0

2m
δIJ

)
φJ (57)

We may interpret the labels I, J as corresponding to some internal symmetry or degrees of

freedom.

There is one more improvement we can do on this formula. If M× R admits spinors,

we can replace the action by the Dirac type action

S =

∫
dt

∫
M
dµ(z, z̄) Ψ̄I(iγ

µDµ)IJΨJ +

∫
dt

∫
M̃
dµ(z, z̄) Φ̄I(iγ

µDµ)IJΦJ (58)

where Ψ and Φ are spinors, γµ are the standard Dirac matrices and Ψ̄ = Ψ†γ0, Φ̄ = Φ†γ0.

The Hamiltonian for Ψ/Φ now has the form H ′+A0 with H ′ = −iγ0γiDi. The eigenstates

of H ′ are again Landau levels; there are zero modes for H ′ which satisfy a holomorphicity

condition. The other levels are separated by a gap of order of the magnetic field ∼ c nω,

where c plays the role of the speed of light for the action (58), relating ∂/∂t and ∂/∂x.

Taking c → ∞ all the nonzero eigenstates decouple1. (We assume, as usual, that the

negative energy levels are all filled.) The degeneracy of states is controlled by nω and

remains finite in this limit. There is also another limit we can take, namely, n→∞; in this

case, not only the nonzero levels decouple, the degeneracy of the zero modes also tends to

infinity. This is equivalent to an expansion in inverse powers of the background field.

2.3 A quick summary

A quick recapitulation of the results in this section will be useful. We have expressed

thermofield dynamics for a single quantum system as a functional integral over a unitary

group, the action for which is given in (37). This action involves the trace over a matrix P

which has the eigenvalue +1 for the system under consideration and −1 for the tilde system.

Equivalently, one can use an action defined on a closed contour on a cylinder R× S1 with

one winding around the S1 cycle. Multiple holonomies around this cycle can be related to

the entropy.

1This is not the usual nonrelativistic limit since we have set the mass to zero in (58).
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One can also express thermofield dynamics as field theoretic functional integral with

two fields defined on two copies of a suitable Kähler manifold with opposite orientation.

The fields are subject to a background field which is a multiple of the Kähler form on the

manifoldM. The fields can be taken to be spinors and the action to be the massless Dirac

action, with a limit c → ∞ at the end, where c plays the role of the speed of light in the

action. Additional degrees of freedom can be incorporated by considering multiple copies

of the fields, with, generally, a nonabelian symmetry acting on them.

3 Gravity from noncommutative spaces

A particularly interesting situation to which the foregoing analysis can be applied is a

formulation of gravity using noncommutative or fuzzy spaces. The relevance of fuzzy spaces

starts with the question: What if we quantized gravity? In that case, we would have

a Hilbert space of states, and the continuous manifold description would be obtained as

an approximation for large number of degrees of freedom. This is clearly the realm of

noncommutative geometry or fuzzy spaces.

A scenario for implementing this idea would be as follows. We can model noncommu-

tative spaces in terms of the lowest Landau level of a quantum Hall system [26, 27]. For

example, we can think of the complex projective space CPk as SU(k + 1)/U(k). It is thus

possible to consider uniform background fields on CPk which are valued in the algebra of

U(k) and which are proportional to the curvatures of CPk. Single particle wave functions

in this background will fall into SU(k + 1) multiplets. The lowest such set of states can

be represented by holomorphic wave functions. Put another way, these wave functions are

sections of a holomorphic U(k) bundle on CPk. They form an N -dimensional Hilbert space

H1 which may be viewed as a model for the fuzzy version CPkF of the differential manifold

M = CPk. Functions on the fuzzy space are N ×N matrices viewed as linear transforma-

tions onH1. In the large N limit, we recover the usual commutative algebra under pointwise

multiplication of functions on CPk. This limit can be analyzed by using classical functions

(on CPk) to represent operators and using ∗-products to represent operator products.

The isometry group for CPk is SU(k + 1). Hence, background fields valued in the

algebra of U(k) amount to connections and curvatures for (at least part of) the isometry

group. Thus these background fields, since they correspond to gauging the isometries, can

be viewed as describing gravitational degrees of freedom. An action for these fields, which

may be derived from (57) or (58) (or from (A6) given in the appendix), would thus be a

gravitational action.

This point of view regarding gravity was suggested many years ago [8]. The action

used in that case was (7) or (A4), not the thermofield case with both positive and negative

eigenvalues for P . Simplifying it using ∗-products of CPk led to the Chern-Simons term for

the U(k)-valued gauge fields as the leading term in the action. However, there were several

points which were not clear at that stage. A priori, since we start with H1, the choice of
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modeling this as CPkF is arbitrary. The leading CS term which emerges in the large N limit,

being topological, is not sensitive to the metrical details of CPk, but the subleading ones are.

Further, for gravity on a 2k-dimensional spatial manifold (+ time), we need gauge fields

valued in the algebra of the corresponding Poincaré group, (or de Sitter group, including

a cosmological constant), with the gauge fields corresponding to the translations being the

frame fields and those for the Lorentz transformations giving the spin connection. Thus,

with Euclidean signature, we need SO(2k + 2) rather than U(k). Finally, it was not clear

how one could get Einstein gravity rather than CS gravity. With the thermofield approach,

one can improve on some of these problems.

In this paper, we make two basic suggestions. The first is that in discussing gravity

using the large N limit of a Hilbert space H1, we should use thermofield dynamics. This is

motivated by the well-founded expectation that entropy should play an important role in

gravity and that thermofield dynamics, which can incorporate entropy within a formalism of

pure states, is therefore a natural framework. We thus double the Hilbert space to H1⊗H∗1.

The large N approximation of these spaces by a manifold M will introduce gauge fields

corresponding to the frame fields and spin connection ofM. Our second suggestion is that

these gauge fields for the physical system and the tilde system should be considered as parity

conjugates of each other. This is related to the fact that the orientation of the manifold

used to define the states, say in (57) or (58), is reversed for the tilde system. Equivalently,

this emerges from the matrix P in (A6). With this choice, the action, as we will see below,

leads to Einstein gravity rather than Chern-Simons gravity.

Some of the key ingredients are then the following.

1. We need a Hilbert space H which carries a representation of a group G. The latter

will eventually become the isometry group of the continuous spacetimeM×R which

will emerge as we take the limit of some parameter θ → 0. (θ could be ∼ N−α, for

some α > 0.) G = U(k) for the discussion given above, but could be more general,

and, in fact, will be SO(4) for the case of three-dimensional Euclidean gravity.

2. The Hilbert space will have three components, H1 ⊗H2 ⊗H3 with states of the form

|α, a, I〉, where H3 refers to any matter system of interest. For gravity, as a first

approximation, we will not need to consider excitations of the matter system, which

means that we can restrict the matter fields to the ground state. In this case, the

states in H will be taken to be of the form |α, a, 0〉 corresponding to a representation

R1 ⊗R2 of G with the transformation

|α, a, 0〉′ = g
(1)
αβ g

(2)
ab |β, b, 0〉 (59)

We will consider R2 to be a fixed representation, and take the dimension of R1 to

be very large to approximate H1 by a continuous manifold. In the case of an infinite

dimensional representation R1, we take a limit of the highest weight vector to ap-

proximate to a continuous manifold. R1 must be a highest weight representation to
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define symbols and ∗-products. These representations have to be unitary as required

by quantum mechanics.

It is possible to reduce the product R1 ⊗ R2 in terms of irreducible representations

but this will not be important for us. (A priori, one could consider different groups

G1 and G2 acting on H1 and H2 respectively. We have no good argument to exclude

this, except that the minimal way is to use the same group.)

3. To define the functions representing operators and ∗-products, we will need a set of

wave functions. These will be obtained by quantizing the Kähler space G/H for some

suitable H ∈ G. This will also define R1 (and H1). Gauge fields will emerge as part

of the the procedure for the large N limit.

Given this structure, it is possible to simplify the trace of an operator, say, Tr(iH). It

gives a Chern-Simons form of the appropriate dimension. For a spatial manifold M of

dimension 2k, the action (A6) will simplify as the integral of a Chern-Simons (2k+ 1)-form

with gauge group G, more precisely as the difference of Chern-Simons actions for the two

chiralities. The gauge fields on the continuous spacetime are introduced to express the

unitary transformations on H in terms of G-transformations on the continuum M × R.

In a sense, these gauge fields define the small θ (or large N) limit we are taking. The

natural question then is whether we can choose them in some optimal fashion. As the

optimization requirement, we extremize the limit of the action (A6) with respect to Aµ.

These optimization conditions are to be considered as the equations of motion for gravity.

Equivalently, we can use the field theoretic action (58) with the spinor fermionic fields

of the form Ψi,0(z, z̄, t), Φi,0(z, z̄, t). The gauge fields are matrices of the form

Aab = Aidx
i δab + (Aµ)abdx

µ (60)

where d(Aidx
i) = nω and (Aµ)ab are valued in the Lie algebra of G; they are matrices in

the representation R2.

We now show how these ideas can be applied to gravity in three dimensions. In three

Euclidean dimensions, it is well known that Einstein gravity can be formulated as a Chern-

Simons theory [28]. This is true for Minkowski signature as well, but we will first discuss the

Euclidean case. For this, we will use the generators of SO(4) in the spinor representation,

with 4× 4 hermitian γ-matrices. The translation generators Pa and the rotation generators

Sab are defined as

Pa =
γ3 γa
2il

, Sab =
1

4i
(γaγb − γbγa) , a, b = 0, 1, 2. (61)

Here l is a quantity with the dimensions of length which is related to the cosmological

constant. The action is then given by

S = − l

32πG

∫
Tr

[
γ5

(
AdA+

2

3
A3

)]
(62)
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The gauge field A is built of the frame field ea = eaµ dx
µ and the spin connection ωab =

ωabµ dxµ as

A = −i Pa ea −
i

2
ωab Sab (63)

The trace has the property that it gives a pairing between the Pa and Sbc only,

Tr(γ5 Pa Sbc) =
1

l
εabc (64)

This pairing, rather than the usual Cartan metric of SO(4), is crucial in being able to write

Einstein gravity as a Chern-Simons theory. In fact, simplifying (62) using (63, 64) gives

S =
1

16πG

∫
d3x det e

(
R− 3

2l2

)
(65)

Since the SO(4) generators split into two chiral SO(3)’s corresponding to the subspaces

with γ5 = 1 and γ5 = −1, i.e., SO(4) ∼ SO(3)L×SO(3)R, we see that the pairing (64) can

indeed be reproduced by the thermofield action is we take P to be proportional to γ5. This

is precisely what we propose to do.

We will now show how this action can be obtained from thermofield dynamics. For

this purpose, we can use the formulation (58) in terms of spinor fields, but it is more

illuminating to first see how the action (62) or (65) emerges from (A6) in the large N limit.

The N -dimensional space H1 can be taken to correspond to a representation of SU(2).

Since SU(2)/U(1) = CP1, we can think of these states as describing fuzzy CP1. The states

are thus of the form |α, i〉, where for i = 1, 2, we have an action of SU(2) given by

|α, i〉 → h
(s)
αβ hij |β, j〉 (66)

where h
(s)
αβ denotes the spin-s representation and hij is the spin-1

2 representation of SU(2).

This SU(2) will form the SU(2)L ∼ SO(3)L in SO(4). A similar choice of states will be

made for the tilde sector, with SU(2)R ∼ SO(3)R instead of SU(2)L ∼ SO(3)L.

Since we do not consider excitations for the matter part, the intermediate states |k〉 are

of the form |β0〉 and we can take Uβα ≡ 〈β0|U |α0〉 to be a unitary matrix. (Elements such

as 〈βJ |U |α0〉, J 6= 0, will correspond to transitions from the matter vacuum to excited

states of matter.) Further, we must count all states in H1⊗H2, i.e., P+ is the identity. The

action (A6) then simplifies as

S = −
∫
dt [Tr(iA0)L − Tr(iA0)R] (67)

Focusing on the left chirality part first, the states |α〉 which correspond to a spin-s rep-

resentation of SU(2)L, with N = 2s + 1, s = n/2, where n is a positive integer, can be

taken as arising from the quantization of CP1 viewed as a phase space, with the symplectic

two-form nωK , where ωK is the Kähler two-form on CP1. In extracting the large N limit,

we can replace operators by their symbols which are the classical functions corresponding
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to them. If Â is an operator acting on states of the form |α, i〉, the symbol for Â is defined

as

(Â)ik = Aik = 〈 − s, i|h(s)† Â h(s) | − s, k〉 (68)

where | − s〉 is the highest weight state of the spin-s representation. As a 2 × 2 matrix, h

may be explicitly parametrized as

h =
1√

1 + z̄z

(
1 z

−z̄ 1

) (
eiθ/2 0

0 e−iθ/2

)
(69)

where z, z̄ are coordinates for one coordinate patch of CP1. h(s) in (68) is the spin-s

representative of h in (69). Notice that the symbol is independent of θ and is a function on

CP1. It is also a 2× 2 matrix. We now define differential operators on SU(2) by

Ra h = h ta (70)

where ta, a = 1, 2, 3, form a basis for the Lie algebra of SU(2), ta = σa/2 for the 2 × 2

representation. Explicitly in terms of the group parameters ϕi (like z̄, z, θ in (69)),

Ra = i (E−1)ia
∂

∂ϕi
, h−1 dh = −i taEai dϕi (71)

Because of the highest weight condition for the states in (68), h | − s, k〉 obeys a holomor-

phicity condition,

(R1 − iR2)h | − s, k〉 = R− h | − s, k〉 = h t−| − s, k〉 = 0 (72)

The symbol or the classical function corresponding to an operator product ÂB̂ is given by

(ÂB̂)ik = 〈 − s, i|h† ÂB̂ h | − s, k〉
=

∑
a,j

〈 − s, i|h† Â h |a, j〉〈a, j|h†B̂ h | − s, k〉

= AijBjk +

N−1∑
r=1

〈 − s, i|h† Â h | − s+ r, j〉〈 − s+ r, j|h†B̂ h | − s, k〉

= AijBik +

N−1∑
r=1

[
(N − 1− r)!
r!(N − 1)!

]
(Rr+A)ij(R

r
−B)jk (73)

= (A ∗B)ik

The right hand side of this equation defines the ∗-product which starts off with the matrix

product of the functions A, B followed by additional terms involving derivatives. As N

becomes large, these derivative terms are suppressed by powers of N . Another useful result

is that the trace of an operator Â can be expressed in terms of the integral of its symbol as

Tr(Â) =

∫
dµTrA (74)
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The remaining trace on the right hand side is just over the matrix elements of the 2 × 2

matrix A.

Starting from the Hilbert space, the action (A6) has a “gauge invariance” corresponding

to the transformation

U → g U, A → gA g−1 + ġ g−1 (75)

For a gauge transformation with g close to the identity, we can write g ≈ 1 − Φ and (75)

simplifies as

Â → Â − ∂0Φ̂− Â Φ̂ + Φ̂ Â, (76)

where ∂0 = ∂/∂t and we use the hat-notation to emphasize that all quantities are still

operators. We can represent (76) in terms of the symbols as

A → A− ∂0Φ−A ∗ Φ + Φ ∗ A (77)

This transformation still has the full content of the transformation at the level of operators.

The symbols A and Φ are functions of the coordinates of M = CP1 × R (R is for the time

variable), and are also 2 × 2 matrices. For an explicit realization of this transformation it

is convenient to introduce a set of auxiliary quantities Aµdx
µ which is a one-form on M

such that an ordinary continuum gauge transformation of Aµ with parameter Λ induces the

transformation (77). In other words we seek functions

A0 = A0(A0, Ai), Φ = Φ(Λ, A0, Ai) (78)

such that
A0 → A0 + ∂0Λ + [A0,Λ]

Ai → Ai + ∂iΛ + [Ai,Λ]

}
=⇒ A0 + ∂0Φ +A0 ∗ Φ− Φ ∗ A0 (79)

The fact that this can be done is the essence of the Seiberg-Witten transformation [29].

A0 may be considered as the continuum version of A while Ai, the spatial components, are

additional auxiliary variables. The choice of these Ai is part of how the large N limit is

taken. Our approach will be to optimize this choice by the equations of motion following

from the large N limit of the action.

The solution for (78) is straightforward, although somewhat involved algebraically and

reads [30]

A0 = A0 +
P ab

2n
[∂aA0Ab −Aa∂bA0 + Fa0Ab −AaFb0] + · · · (80)

Φ = Λ +
P ab

2n
(∂aΛAb −Aa∂bΛ) + · · ·

P ab ≡ 1

2

[
gab

2π
+ i (ω−1

K )ab
]

While we do not explicitly display the matrix labels, it should be kept in mind that these

are all 2 × 2 matrices and matrix products are assumed. Taking the trace and using (74)

we get ∫
dt TrA = − 1

4π

∫
Tr

[
(a+A) d(a+A) +

2

3
(a+A)3

]
(81)
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where a is the connection for ωK , i.e., ωK = da. The result is the integral of a Chern-Simons

term, expanded around a as a background. It is useful to think of a+A as the connection of

interest, in this case SU(2)L-valued. The dependence on the choice of CP1 with its ωK as a

background to expand around is irrelevant once we get to (81). The background is thus only

an auxiliary step in arriving at this result. There are higher terms, with more derivatives

and so on, which do retain the dependence on the metrical details of the background. These

are negligible for slowly varying Aµ; some of the terms will also cancel out when we include

the SU(2)R sector.

The final result of simplifying (A6) would thus be

S = − 1

4π

∫ [
Tr

(
AdA+

2

3
A3

)
L

− Tr

(
AdA+

2

3
A3

)
R

]
(82)

The A’s are connections for SU(2)L and SU(2)R and this result reproduces the Euclidean

gravitational action (62), apart from an overall factor of (l/8G). This overall degeneracy

factor is important and, in this approach, has to come from several copies of the fields we

have used.

We have used the action (A6) as it makes more transparent the role of the spatial

components of A as part of how the large N limit is taken. We can also obtain the result

(82) from the action (58) by integrating out the spinor fields. In the present case, we have

M = CP1 is two-dimensional. We take the fermions to be in the spin-1
2 representation of

SU(2), i.e., the indices I, J takes values 1, 2. The fermions Ψ are coupled to the SU(2)L
gauge fields while Φ couple to SU(2)R fields. We have a field theory of Dirac fermions

in 2+1 dimensions and it is well known that the effective cation, upon integrating out

the fermions, is the Chern-Simons action. Since the fields Φ are defined on M with the

orientation reversed, the Chern-Simons action generated by these fields will be the negative

of the one generated by Ψ. The result, once again, is the action (82). In fact, being a field

theory, the action (58) is much easier to use in practice as there are familiar diagrammatic

techniques for evaluating the effective action.

We have considered the Euclidean signature so far. The spinor field version of the action,

namely, (58), can be easily continued to Minkowski signature, with the gauge fields being

valued in the Lie algebra of SO(2, 1)L and SO(2, 1)R.

4 Discussion

A number of comments are in order at this point.

We have carried out the calculations in section 3 for Euclidean signature. While this is

not relevant for the differential form, the trace in the Chern-Simons action over the gauge

fields which are written as matrices corresponding to the spin-1
2 representation of SU(2)L

and SU(2)R is sensitive to the signature. A continuation to Minkowski signature would

involve SO(2, 1) representations, which in the interest of unitarity, should be chosen as
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infinite dimensional. Defining the trace is then rather tricky. However, the formulation of

TFD in terms of the fermionic field theory, as in (57), (58) avoids this problem. Taking

the fields in (58) to be SO(2, 1) spinors, we have a standard fermionic field theory and we

expect that this will be consistent with unitarity.

There are many papers analyzing 2+1 dimensional gravity, starting with the Chern-

Simons formulation and considering the evaluation of the partition function [31, 32, 33].

All these lead to strong hints of the underlying string origin of the action. This may very

well be the case, but since we are obtaining the Chern-Simons action only in the large

N limit, it is not clear how to compare our work with these developments. However, we

may note the following. We have used a rank n representation of SU(2) with n → ∞
to approximate the two-dimensional spatial manifold. In Minkowski signature, we should

presumably use a representation of SO(2, 1). But we may also consider using a coadjoint

orbit of the Virasoro group (which contains a suitable SO(2, 1) ∼ SL(2,R)) to construct a

noncommutative version of the two-manifold [34]. In that case, the analogue of the large N

limit would be the limit of large central charge. Indeed this is the limit considered in [32] to

compare 2+1 dimensional gravity and string theory. Further elaboration of this connection

has to be left to future work at this stage.

Finally, we may note that the spectral action of Connes [10] is not the same as what we

have, but there is some similarity. A key result for the spectral action is that the Wodz-

icki residue of the inverse square of the Dirac operator gives the Einstein action, see in

particular Kastler’s article in [10]. In our case, we are considering odd dimensional space-

times. However, the action is basically related to the Dirac action given in (58). The main

points of difference are that we have two sets of spinor fields which are naturally obtained

in thermofield dynamics, and that they carry opposite chiralities in terms of coupling to

gravitational degrees of freedom. Further, we are evaluating the effective action in a limit

corresponding to c→∞ or we are taking the limit where only the lowest modes of the Dirac

Hamiltonian of (58) is included. Whether this is related in some fashion to the Wodzicki

residue is not clear.

Another point of clarification is the following. There are two ways to think of gravity on

noncommutative spaces. We may consider the continuum description as an approximation,

with a noncommutative operator version at short distances or at finite N . In this case, one

has the full set of dynamical fields for gravity at all levels [10]-[13]. An alternative is to

consider gravity as being trivial at the fundamental level only emerging in the continuum

limit. This would be more in the spirit of gravity as an entropic phenomenon [17]-[19].

In our case, the spatial components of the gauge field were introduced in (79) to provide

a simple realization of the gauge transformation property (77), with their values set to

what is given by extremizing the continuum action. Thus there is no dynamics for these

components if we stay at the level of the starting action (67) or (A6), making this approach

closer to [17]-[19].
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Appendix: A generalization of (37)

The action for the functional integral for thermofield dynamics was given in (37) for a single

quantum system. The fermion field version of that was given in (56) and generalized to a

multipartite system with identical components in (57, 58). Here we want to consider the

direct generalization of (37) and its relation to the Hall effect.

if we consider several systems which are distinct, the generalization is simple. We must

have a unitary matrix U for each system and the action is simply a sum of actions of the

form (37). The more interesting case is when we have identical subsystems; each subsystem

may be a boson or a fermion. The latter is what is relevant for noncommutative geometry.

In that case, we have a Hilbert space H, say, of dimension N . States in this H replace the

notion of points on a manifold. All of H must be included to account for the total volume

of the manifold. For the purpose of time-evolution, it is then useful to think of the space as

a state in the N -fold tensor product H ⊗H · · · ⊗ H. To avoid double counting, the choice

of state in each component H must be distinct. The simplest way to implement this is to

take the totally antisymmetrized state in H⊗H · · · ⊗ H, i.e., an N -fermion state.

An analogy with a quantum Hall system is very useful for this situation. Consider

a quantum Hall system in the lowest Landau level with one-particle states |α〉, α =

1, 2, · · · , N . To be general, we assume that the fermion can have multiple internal states,

such as spin degrees of freedom. (In the context of noncommutative geometry, this could

correspond to degrees of freedom of matter.) We use labels I, J , etc. for the latter, so

that states may be represented as |k〉 = |α I〉 which span a Hilbert space H. Let M be

the dimension of this space. We consider the dynamics of a droplet of n fermions starting

out in one spin state, say, I = 0. The many-body Hilbert space will consist of suitably

antisymmetrized states in the n-fold tensor product H ⊗ H ⊗ · · · ⊗ H. Let N denote the

dimension of this Fock space, N = M !/((M −n)!n!). Let us say that we are considering the

first n states, i.e., |α 0〉, α = 1, 2, · · · , n, to be filled. This means that if we write a fermionic

field operator ψ(x) =
∑

k ak fk(x), where fk(x) are the single particle wave functions, the

droplet is given by the state a†10 a
†
20 · · · a

†
n0|0〉 or by the density matrix

ρ = a†10 a
†
20 · · · a

†
n0|0〉 〈0|an0 · · · a20 a10 (A1)

The possible transformations of this configuration, including time-evolution, are given by

an element of U(N ). We have a single pure state chosen by ρ in (A1), so a path integral

for the time-evolution of this state would have the action (7), with integration over all

U(t) ∈ U(N ) modulo transformations which leave ρ invariant. The relevant action is thus

S =

∫
dt
[∑
{k}

i (U†)10 20 ···n0,k1k2···kn(U̇)k1k2···kn,10 20 ···n0
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−
∑
{kl}

(U†)10 20 ···n0,k1k2···kn Hk1k2···kn, l1l2···ln(U)l1l2···ln,10 20 ···n0

]
(A2)

This is the general situation for the case with all sorts of many-body interactions. However,

if the Hamiltonian and other observables of interest only involve singe-particle operators, i.e.,

they are of the form C = a†k Ckl al, then the action simplifies. The possible transformations

will correspond to unitary transformations of the form Ukl ∈ U(M) acting on the single

particle states, U being of the form eiC . The states in the n-body Hilbert space may be

viewed as corresponding to an irreducible representation of the group U(M) obtained as the

totally antisymmetrized product of n copies of the fundamental representation of U(M).

Thus we can simplify (7) by restricting to U(M) ∈ U(N ). In this case the elements of U
are given by the Slater determinant,

(U)k1k2···kn,10 20 ···n0 =
1√
n!

∣∣∣∣∣∣∣
Uk1 10 Uk1 20 · · · Uk1 n0

Uk2 10 Uk2 20 · · · Uk2 n0

· · ·

∣∣∣∣∣∣∣ (A3)

It is easily seen that the action (A2) simplifies to

S =

∫
dt Tr

[
P+

(
i U † U̇ − U †H U

)]
=

∫
dt

n∑
α=1

[
i 〈α 0|U †|k〉 〈k|U̇ |α 0〉 − 〈α 0|U †|k〉Hkl 〈l|U |α 0〉

]
(A4)

P+ =

n∑
α=1

|α0〉〈α0| (A5)

Notice that P is not a density matrix; it is a representation, at the level of the one-particle

Hilbert space, of the density matrix for the pure state (A1) of the droplet of n fermions.

(It was this version of the action which was used in [22, 23].) In this expression, we do not

yet have the part with the negative eigenvalues of P since the tilde system is not included.

It is easy to see that the tilde system will have a similar path integral, with the eigenvalues

of P being −1. The complete action for the thermofield dynamics of this system is then

S =

∫
dt

n∑
α=1

[
i 〈α 0|U †|k〉 〈k|U̇ |α 0〉 − 〈α 0|U †|k〉Hkl 〈l|U |α 0〉

]
−
∫
dt

n∑
α=1

[
i 〈α 0|Ũ †|k〉 〈k| ˙̃U |α 0〉 − 〈α 0|Ũ †|k〉Hkl 〈l|Ũ |α 0〉

]
(A6)

When applying this to noncommutative geometry, we should take n = N .

Here is a curiosity in this formulation: In the path integral, we also have the functional

integration over CPN−1; this corresponds to the integration over (U)k1k2···kn,10 20 ···n0 at each

instant of time. In restricting the action to U(M) transformations with P as in (A4), a

part of this integration becomes trivial. The left over integration is over the Grassmannian
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space U(M)/U(n)× U(M − n). This gives a factor of V at each instant of time, where V

is defined by ∫
dµ(CPN−1) = V

∫
dµ(U(M)/U(n)× U(M − n)) (A7)

Exponentiating these factors we get an additional term in S which is

∆S =

∫
dt

ε
log V (A8)

Here we are considering dividing the interval of time-integration into segments of length

ε, with ε → 0 eventually. This extra factor may be thought of as an additional entropy

factor arising from the fact that we are restricting the observables to a smaller set, namely,

to those of the one-particle type. (It is also similar to the terms with δ(0)-factor that one

encounters in field theories when making a change of field variables upon exponentiating

the Jacobian of the transformation.)

After this discussion, it should be clear that (A6), apart from the extra term (A8), is

indeed the required generalization once the tilde system is included.

This generalization to several systems can also be phrased as a contour integral, with

the action

SC = i

∮
C
dt

n∑
α=1

(
U †U̇ − U †AU

)
α0α0

(A9)
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