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Abstract

The dynamics of symplectic gauge fields provides a consistent frame-

work for fundamental interactions based on spin three gauge fields.

One remarkable property is that symplectic gauge fields only have

minimal couplings with gravitational fields and not with any other

field of the Standard Model. Interactions with ordinary matter and

radiation can only arise from radiative corrections. In spite of the

gauge nature of symplectic fields they acquire a mass by the Coleman-

Weinberg mechanism which generates Higgs-like mass terms where the

gravitational field is playing the role of a Higgs field. Massive symplec-

tic gauge fields weakly interacting with ordinary matter are natural

candidates for the dark matter component of the Universe.
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1 Introduction

In the Standard Model all fundamental interactions are described by gauge
theories. In the Einstein theory of General Relativity (GR) the gravitational
interaction is also formulated in terms of a gauge field. Although there are
significant differences between both theories, mainly dues to the strong con-
nection of GR with the structure of space-time, the fact that both theories
are gauge theories helped to consolidate the gauge paradigm where all fun-
damental interactions are described by gauge fields.

The search of new physics beyond the Standard Model is supported by
astrophysical and cosmological evidences of the existence of a new type of
invisible matter with unknown interactings properties. The search of new
types of interactions following the gauge principle suggest to explore the
possibility of gauge theories with higher spin [1, 2]. The pathologies associ-
ated to interactions based on massless particles with helicities higher than
two [3, 4, 5] provided an argument to explain why this kind of interactions
are not observed in Nature. Nevertheless, the challenge is so interesting that
there are numerous attempts to give a physical meaning to gauge theories
of higher helicity fields. Free massless fields with arbitrary helicity (or its
generalizations) do exist in any dimension. In fact, Wigner’s theory of co-
variant representations of Poincaré group, provides a general theory of free
massless gauge fields [6]. Massless fields with integer helicity are described
by transverse, symmetric traceless tensor fields with some equivalence rela-
tions which are reminiscent of gauge transformations [1, 2]. The application
of BRST methods to the consistency analysis of generalized gauge theories
boosted the attempts to extend the analysis of free massless gauge fields to
to interacting theories from a new viewpoint [7, 8, 9]. The consistency of the
BRST approach requires an infinite tower of higher helicities [7, 9, 10, 11, 12]
in close analogy with string theory. However, even in that case it was impos-
sible to show the consistency of the interacting theory [13, 14, 7, 8, 9].

The appearance of new string dualities introduced new approaches based
on five-dimensional theories on anti-De Sitter backgrounds [15, 16, 17]. In
such a scheme the approach to higher spin fields acquired an new perspective
[18, 19, 20].

In this paper we explore a different approach to higher spin gauge fields
based on a gauge theory of symplectic fields [21]. In this approach gauge
fields are symplectic connections and since their covariant derivatives are non-
trivial only for fields of spin higher than two, they are minimally decoupled
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of the Standard Model physics and only interact with gravitational fields.
This special characteristic promoted these fields as excellent candidates for
the invisible dark matter component of the Universe.

2 Symplectic gauge fields

Let us consider a symplectic form ω in a four-dimensional space-time1, i.e.
a regular anti-symmetric tensor field ωµν = −ωµν which is closed dω = 0.
The symplectic form ω can be considered as the anti-symmetric component
of a generalized space-time metric in the sense first considered by R. Forster
(formerly known as R. Bach) and developed by Schrödinger and Einstein in
the context of unified field theories. It can also be considered as a background
electromagnetic field ωµν = ∂µAν −∂νAµ with non-trivial topological density
ǫµ1µ2µ3µ4ωµ1µ2

ωµ3µ4
(x) 6= 0 .

A symplectic gauge field is by definition a linear connection which pre-
serves the symplectic form, i.e. the covariant derivative of ω

Dµω = 0 (1)

vanishes. In local coordinates

∂µωνσ − Γα
µσ ωαν + Γα

µν ωασ = 0, (2)

where Γα
µσ are the local components of the symplectic gauge field. Although,

gravitational fields are also defined in a similar manner as the linear connec-
tions that preserve the space-time metric symmetric g, the contrast between
both types of fields is very important as we will see below.

The gauge symmetry is given by space-time transformations which leave
the symplectic form invariant (symplecto-morphisms). They are canonical
transformations whose infinitesimal generators are given in local coordinates
by vector fields of the form

ξµ = ∂µφ, (3)

where φ is any scalar field. By using canonical transformations it is always
possible to find local coordinates, Darboux coordinates, where ω becomes a
constant form

ω =

(
0 I

−I 0

)
.

1The theory can be generalized for arbitrary even dimensional space-times
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In those coordinates, ∂µω = 0 and

Γα
µσ ωαν = Γα

µν ωασ (4)

If we impose the vanishing of the torsion as in the case of Levi-Civita
metric connection, we have

Γα
µν = Γα

νµ. (5)

The components of a torsionless symplectic gauge field in Darboux coor-
dinates

Tνµσ = Γα
µν ωασ (6)

define a 3-covariant symmetric tensor

Tνµσ = Tµνσ = Tνσµ = Tµσν = Tσνµ = Tσµν . (7)

Thus, the space of torsionless symplectic gauge fields [22, 23, 24, 25] can
be identified with the space of 3-covariant symmetric tensors. This space of
symplectic gauge fields is infinite dimensional in contrast with the space of
Riemannian gauge fields where the Levi-Civita connection is unique for any
Riemannian metric.

The curvature tensor Rα
βµν ,

Rα
βµν = ∂µΓ

α
βν − ∂νΓ

α
βµ + Γσ

νβΓ
α
µσ − Γσ

µβΓ
α
νσ (8)

defines by contraction with ω a (0,4)-tensor

Rαβµν = ωασR
σ
βµν , (9)

with interesting symmetry properties

Rαβµν = −Rαβνµ = Rβαµν ,

R(αβµν) = Rαβµν +Rναβµ +Rµναβ +Rβµνα = 0.

The permutation symmetries of this tensor are characterized by the Young
tableau

which is in contrast with that of the standard Riemannian tensor
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.

A symplectic Ricci tensor can also defined by

Rβν = ωµαRαβµν , (10)

and is symmetric
Rνµ = Rµν , (11)

like the Riemannian Ricci tensor. However, there is no scalar symplectic
curvature because the contraction of Ricci tensor with the symplectic form
vanishes.

3 Symplectic Field Theory

The simplest dynamics for symplectic gauge fields is defined by the action

S(Γ, ω)=
1

2α0
2

∫
d4x RαβµνRαβµν +

θ

32π2

∫
d4x

(
RαβµνR

αβµν−2RµνR
µν
)
,

(12)
which only involves the curvature tensors

Rαβµν = ωαα′

ωββ′

ωµµ′

ωνν′Rα′β′µ′ν′ Rµν = ωµµ′

ωνν′Rµ′ν′ (13)

and the symplectic form ω. The second term of (12) is proportional to the
Pontryagin class of the manifold which has a topological meaning and does
not contribute to the classical dynamics.

The metric independence of (12) implies that the dynamics of the sym-
plectic fields is completely decoupled from gravity.

The action (12) is the most general metric independent action of symplec-
tic fields with quadratic dependence in the curvature tensor [26]. Although
one could add an extra term proportional to the square of the Ricci tensor
(10), it turns out that such a term is not independent of the other two terms
of the action (12). Thus, the extra term can be absorbed by shifting the
couplings α0 and θ.

The theory is invariant under symplecto-morphisms, i.e. canonical trans-
formations. Symplectic gauge fields, however, transform as

T ′
µνσ = Tµνσ +DµDν∂σφ. (14)
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under symplecto-morphisms, where Dµ = ∂µ + Γσ
µν . The invariance of the

action (12) under these transformations implies the existence of an infinity
of zero-modes.

The field theory governed by (5) is very interesting from a geometrical
viewpoint [26], but from a quantum field theory perspective it presents many
pathologies. The Cauchy problem is highly degenerated as it is pointed out by
the existence of many zero modes in quadratic terms which are not associated
to any known gauge symmetry. Apart from the zero modes associated to
the symplectic gauge symmetry (14) there are nine extra zero-modes. The
remaining non-null modes of the quadratic variation of the action on a trivial
T = 0 background are of the form

−1
3
p2 , ±

√
2
3
p2 (double degenerated)

1
3
p2 , −2

3
p2, ± 1√

3
p2 (no degenerated),

where pµ are the momentum of Fourier modes in Darboux coordinates. Al-
though the eigenvalues of the quadratic terms of the action are SO(4) rotation
invariant the corresponding eigenfunctions Tµνσ are not invariant under Eu-
clidean or Poincaré transformations. This is due to background symplectic
form ωµν which introduces a phase space structure in the space-time which
is not compatible with Euclidean or Poincaré symmetries. Moreover, the
quadratic terms of the action are not definite positive as a consequence of
the symplectic structure. This implies that the gaussian projection defines a
theory with ghost fields which is not unitary quantum field theory .

Poincaré symmetry can be recovered if we consider a generalization of the
action where the symplectic form ω becomes a full-fledged dynamical field.
A natural choice is to introduce a kinetic term for the symplectic form

1

2e2

∫
d4x ωµνωµν ,

with ωµν = ∂µAν − ∂νAµ. But, because of the identity ωµνωµν = 4 the
integrand is constant and there is no dynamical content as the trivial motion
equations point out.

The only non-trivial possibility is to include terms with tensorial con-
tractions which involve the space-time metric (i.e. coupling to gravity). In
this framework it is possible to recover Poincaré invariance in a Minkowskian
metric background.
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4 Interaction with Gravity

Let us consider a different theory of the symplectic gauge fields interacting
with the space-time metric g

S0(Γ, ω, g) =
1

2

∫
d4x

√
ggµµ

′

gνν
′

ωµ′ν′ωµν . (15)

Instead of imposing the restriction to the symplectic gauge fields that
preserve the symplectic form ω (2), we introduce the constraint in a softer
way via a Lagrange multiplier term in the action

S ′
0(Γ, ω, g) =

1

2α0
2

∫
d4x

√
g gγγ

′

gµµ
′

gνν
′

Dγ′ωµ′ν′Dγωµν . (16)

The strong symplectic condition, Dγ ωµν = 0, is recovered in the weak cou-
pling limit α0 → 0

The main interaction of symplectic fields with gravity can be introduced
by contracting indices of the curvature tensor with the space-time metric
instead of only using the symplectic form, e.g.

S1(Γ, ω, g) = α2

∫
d4x

√
g gαα

′

gββ
′

gµµ
′

gνν
′

Rα′β′µ′ν′Rαβµν + · · · (17)

However, integration over symplectic forms can generate new local terms in
the effective action and the renormalizability condition requires to consider
all possible relevant couplings which do not violate any fundamental gauge
symmetry. Since the symplectic gauge fields generically do not preserve the
space-time metric

Dσ gµν 6= 0, (18)

marginally relevant terms of the form

S ′
1(Γ, ω, g) = α1

2

∫
d4x

√
g |DσDδ gµν |2 + · · · (19)

should also be considered because there is no symmetry preventing its ap-
pearance as radiative corrections.

In summary, one has to include all renormalizable possible independent
couplings between gravitational field and the symplectic gauge field. There
are only six independent types of renormalizable interaction terms

DDgDDg, DgDgDDg, DgDgDgDg, RR, RDDg, RDgDg, (20)
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because all others can be expressed as linear combinations of these terms
[21]. However, the different contraction of the Lorentz indices give rise to 78
different interaction terms involving 78 independent dimensionless couplings
α1, · · · , α78: twenty two (α1 . . . α22) of the type DDg DDg, six (α23 . . . α28)
of the type Dg Dg Dg Dg and fifty (α29 . . . α78) of the type Dg Dg DDg.
The complete list of these terms is given by equations (29)-(31) of appendix
A.

The corresponding theory is renormalizable. In particular, the effective
action generated by integrating out the symplectic form ω in the action S1

gets non-trivial contribution to all seventy eight α couplings of symplectic
fields with gravity. In fact, these corrections are logarithmically divergent
and the coefficients of the corresponding contributions to the beta functions
are displayed in Table 1 of appendix A.

We remark that some of the beta functions are positive and some others
are negative. This means that not all of them will be relevant in the full
fledged quantum theory. However, the above calculations have not taken into
account the radiative corrections dues to symplectic gauge field fluctuations.
This calculation is beyond the scope of this paper, but it is crucial to elucidate
which couplings of the theory are finally relevant.

The above calculations show that the symplectic field theory is a renor-
malizable quantum field theory, however, the appearance of four order deriva-
tive terms in the action introduces some ghost components in the symplectic
gauge theory. The absence of a larger gauge symmetry means that unitary
is not guaranteed.

5 Symplectic fields and dark matter

Symplectic gauge fields as linear connections cannot interact by minimal
couplings with scalar fields, because the minimal coupling in this case reduces
to Dµφ = ∂µφ. A similar effect arises in the interaction with fermions.
The gauge group of symplectic connections is GL(4,R) and only the trivial
representation of this group acts on spinors, i.e. there is no analogue of spin
connection for symplectic gauge fields, then /Dψ = /∂ψ.

Thus, the minimal coupling of symplectic gauge fields to Standard Model
particles can only be possible with gauge particles: the photon or the in-
termediate gauge bosons W± and Z. However, due to the intrinsic gauge
character of these particles this coupling is not possible. The torsionless
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character of symplectic gauge fields is responsible for the decoupling also of
vector potentials. Indeed,

Fµν = ∂µAν − ∂νAµ + Γσ
µνAσ − Γσ

νµAσ = ∂µAν − ∂νAµ. (21)

Thus, symplectic gauge fields cannot minimally interact with any particle
of the Standard Model. They can only minimally couple to gravitation,
whenever Dγgµν 6= 0. If the corresponding quanta were massive particles,
they will be natural candidates for the dark matter component of the Universe
and indeed, this is what happens. In the standard ΛCDM cosmological model
dark matter is usually assumed to be fermionic matter. However, a bosonic
component could solve some dark matter puzzles as we shall discuss below.

However, some non-minimal couplings of symplectic gauge fields with or-
dinary matter like φ† ∂νφDµ g

µν , |φ|2DµDν g
µν or ψ̄γν ψDµg

µν can arise as
radiative corrections. However, the genuine interacting terms of symplec-
tic gauge fields with gravitation (20) are invariant under the signature flip
transformation,

gµν → −gµν , (22)

which changes the signature of the metric tensor gµν from (1, 3) to (3, 1). This
symmetry acts as a custodial symmetry which prevents the appearance of
non-minimal coupling between ordinary matter and symplectic gauge fields.

Although the coupling of symplectic gauge fields to the symplectic field
ω (16) breaks the signature flip symmetry, the effects of such a symmetry
breaking only affect the couplings between ordinary matter and symplectic
gauge fields via radiative corrections at two loops level.

The breaking of signature flip symmetry also affects the couplings of grav-
ity to symplectic gauge fields via one loop corrections. We have assumed un-
til now that these couplings are dimensionless, however, radiative corrections
generate terms of the form

S ′′
1 (Γ, ω, g) =

1

2αm
2

∫
d4x

√
g |Dσ gµν |2 + · · · . (23)

Since the metric g is not preserved by symplectic gauge fields nothing pre-
vents the appearance of these terms with mass square dimension. Indeed,
such radiative corrections appear in the form

S ′′
Higgs =

∫
d4x Dγ1gµ1ν1Dγ2gµ2ν2

(
1

48
gγ1µ1gν1µ2gγ2ν2+

5

16
gγ1γ2gµ1µ2gν1ν2 − 3

16
gγ1µ2gµ1γ2gν1ν2

)
I2, (24)
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of quadratic divergent terms, with

I2 =

∫
1

(2π)4
d4r

r2
. (25)

Thus, such terms must be included in the bare action to ensure the renoma-
lizability of the theory. Now, in a Minkowski background (i.e. gµν = ηµν)
these terms provide a real mass terms for the spin three gauge fields because
then

S ′′
Higgs ≈

1

2αm
2

∫
d4x T̃ µνσTµνσ (26)

i.e., although symplectic gauge fields were in principle related to massless par-
ticles, they acquire a mass from quantum radiative corrections in Minkowski
space-time metric backgrounds. The phenomenon is reminiscent of Coleman-
Weinberg mechanism of generation of mass for conformal scalar electrody-
namics.

The way symplectic gauge fields Tµνσ acquire a mass is also reminiscent
of the Higgs mechanism with the gravitational field playing the role of the
Higgs field.

Conversely, the alternative mechanism where symplectic fields condensate
into a non-trivial value and provides a mass terms for the graviton is also
possible but not physically realistic because a non-trivial expectation value of
such a field will break Lorentz invariance which is quite unlikely to happen.
As a consequence the graviton remains massless but the symplectic fields
become massive.

In a similar manner radiative corrections generate at two loops level new
interacting terms involving symplectic fields and Higgs fields of the form

S ′′′
Higgs(Γ, φ) =

1

2αh
2

∫
d4x

√
g |φ|2|Dσ gµν |2 + · · · , (27)

which in a Minkowski background provide real mass terms for the symplectic
gauge fields like in equation (26)

S ′′′
Higgs ≈

|v|2
2αh

2

∫
d4x T̃ µνσTµνσ, (28)

where v =< φ > is the vacuum expectation value of the Higgs field. The
Higgs contribution to the mass of the symplectic gauge fields (28) is similar
to the mass terms of the other particles of the Standard Model. The only
difference is that the mass term of symplectic gauge fields has an extra mass
contribution due to radiative corrections of symplectic fields.
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6 Discussion

The Standard Model sector of the Universe contains a large variety of par-
ticles. It is then envisageable that the dark matter sector is also made of
more than one type of particles. The characteristics of spin three massive
gauge particles associated to symplectic gauge fields suggest that they are
natural candidates as components dark matter. The mass of these gauge
particles is only dictated by the coupling to gravitation which means that
generically it can be large enough to provide a relevant component of the
cold dark matter. On the other hand, the bosonic character of the new par-
ticles could explain the smooth behavior of the central dark matter density
in galaxy halos [27, 28, 29, 30] and it could give rise to bosonic condensates
which provide interesting scenarios for dwarf galaxies [31, 32, 33].

Since the only primary interaction of symplectic gauge fields involves
gravitational fields the effect of the new interaction can be mimicked by
a effective theory of gravitation. The results obtained via integration of
symplectic gauge fields yield an effective action which is highly non-local and
it will only become local in the infinite mass limit of symplectic gauge fields.
In that case one gets back the standard gravitational action with extra R2

terms. However, the physical interpretation of the effective theory is very
subtle because the calculation is highly dependent on the background space-
time metric. There are metric backgrounds where the Higgs mechanism
provides a mass to symplectic gauge fields, and metric backgrounds without
such a mass generating mechanism. In the later case the symplectic gauge
fields contain massless particles. Thus, the theory provides scenarios which
interpolate between hot and cold dark matter scenarios depending on the
gravitational background. This chameleonic property of symplectic gauge
fields is very attractive and deserves further exploration.
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A Renormalization

The 78 independent dimensionless couplings of the symplectic gauge fields
to gravity can be obtained by using Tensorial and FeynCalc packages of
Mathematica.

There are three different types of terms: twenty two of the typeDDg DDg,

S ′
22 =

∫
d4x

√
g (Dτ1Dγ1gµ1ν1) (Dτ2Dγ2gµ2ν2)[

α1 gµ1ν1 gµ2ν2 gτ1γ1 gτ2γ2 + α2 gµ1ν1 gτ1γ1 gγ2ν2 gτ2µ2

+ α3 gµ1τ2 gµ2ν2 gν1γ2 gτ1γ1 + α4 gµ1τ2 gν1µ2 gτ1γ1 gγ2ν2

+ α5 gµ1γ2 gν1µ2 gτ1γ1 gτ2ν2 + α6 gµ1µ2 gν1ν2 gτ1γ1 gτ2γ2

+ α7 gγ1ν1 gτ1µ1 gγ2ν2 gτ2µ2 + α8 gµ2ν2 gν1γ2 gγ1τ2 gτ1µ1

+ α9 gν1µ2 gγ1τ2 gτ1µ1 gγ2ν2 + α10 gν1µ2 gγ1γ2 gτ1µ1 gτ2ν2

+ α11 gν1τ2 gγ1µ2 gτ1µ1 gγ2ν2 + α12 gν1γ2 gγ1µ2 gτ1µ1 gτ2ν2

+ α13 gµ2ν2 gν1γ2 gγ1µ1 gτ1τ2 + α14 gν1µ2 gγ1µ1 gτ1τ2 gγ2ν2

+ α15 gµ1ν1 gµ2ν2 gγ1γ2 gτ1τ2 + α16 gµ1µ2 gν1ν2 gγ1γ2 gτ1τ2

+ α17 gµ1γ2 gν1ν2 gγ1µ2 gτ1τ2 + α18 gµ1µ2 gν1ν2 gγ1τ2 gτ1γ2

+ α19 gµ1τ2 gν1ν2 gγ1µ2 gτ1γ2 + α20 gν1τ2 gγ1µ1 gτ1µ2 gγ2ν2

+ α21 gµ1τ2 gν1ν2 gγ1γ2 gτ1µ2 + a22 gµ1τ2gν1γ2gγ1ν2 gτ1µ2

]
,

(29)

six of the type Dg Dg Dg Dg,

S ′
6 =

∫
d4x

√
g (Dγ1 gµ1ν1) (Dγ2 gµ2ν2) (Dγ3 gµ3ν3) (Dγ4 gµ4ν4)[

α23 gµ2γ3 gν1γ2 gν2µ3 gν3µ4 gγ1µ1 gγ4ν4

+ α24 gµ2γ3 gµ3γ4 gν1γ2 gν2µ4 gν3ν4 gγ1µ1

+ α25 gµ2µ3 gν1γ2 gν2µ4 gγ1µ1 gγ3ν3 gγ4ν4

+ α26 gν1µ2 gν3µ4 gγ1µ1 gγ2ν2 gγ3µ3 gγ4ν4

+ α27 gν1µ2 gν2µ3 gν3µ4 gγ1µ1 gγ2γ3 gγ4ν4

+ α28 gν1µ2 gν2µ4 gν3ν4 gγ1µ1 gγ2µ3 gγ3γ4
]
,

(30)
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and fifty of the type Dg Dg DDg,

S ′
50 =

∫
d4x

√
g (Dγ1gµ1ν1) (Dγ2gµ2ν2) (Dτ3Dγ3gµ3ν3)[

α29 g
µ2τ3gµ3ν3gν1γ2gν2γ3gγ1µ1 + α30 gµ2τ3gν1γ2gν2µ3gγ1µ1gγ3ν3

+ α31 g
µ2γ3gν1γ2gν2µ3gγ1µ1gτ3ν3 + α32 gµ2µ3gν1γ2gν2ν3gγ1µ1gτ3γ3

+ α33 g
µ3ν3gν1µ2gγ1µ1gγ2ν2gτ3γ3 + α34 gν1µ2gγ1µ1gγ2ν2gγ3ν3gτ3µ3

+ α35 g
µ3ν3gν1µ2gν2γ3gγ1µ1gγ2τ3 + α36 gν1µ2gν2µ3gγ1µ1gγ2τ3gγ3ν3

+ α37 g
ν1µ2gν2µ3gγ1µ1gγ2γ3gτ3ν3 + α38 g

ν1µ2gν2τ3gγ1µ1gγ2µ3gγ3ν3

+ α39 g
ν1µ2gν2γ3gγ1µ1gγ2µ3gτ3ν3 + α40 g

ν1µ2gν2ν3gγ1µ1gγ2µ3gτ3γ3

+ α41 g
µ3ν3gν1τ3gν2γ3gγ1µ1gγ2µ2 + α42 g

ν1τ3gν2µ3gγ1µ1gγ2µ2gγ3ν3

+ α43 g
µ2µ3gν1τ3gν2ν3gγ1µ1gγ2γ3 + α44 g

µ2γ3gν1τ3gν2ν3gγ1µ1gγ2µ3

+ α45 g
ν1γ3gν2µ3gγ1µ1gγ2µ2gτ3ν3 + α46 g

µ2µ3gν1γ3gν2ν3gγ1µ1gγ2τ3

+ α47 g
µ2τ3gν1γ3gν2ν3gγ1µ1gγ2µ3 + α48 g

ν1µ3gν2ν3gγ1µ1gγ2µ2gτ3γ3

+ α49 g
µ2γ3gν1µ3gν2ν3gγ1µ1gγ2τ3 + α50 g

µ2τ3gν1µ3gν2ν3gγ1µ1gγ2γ3

+ α51 g
µ2τ3gν1µ3gν2γ3gγ1µ1gγ2ν3 + α52 g

µ1µ2gµ3ν3gν1τ3gν2γ3gγ1γ2

+ α53 g
µ1µ2gν1τ3gν2µ3gγ1γ2gγ3ν3 + α54 g

µ1µ2gν1γ3gν2µ3gγ1γ2gτ3ν3

+ α55 g
µ1µ2gν1µ3gν2ν3gγ1γ2gτ3γ3 + α56 g

µ1τ3gµ2µ3gν1γ3gν2ν3gγ1γ2

+ α57 g
µ1τ3gµ2γ3gν1µ3gν2ν3gγ1γ2 + α58 g

µ1γ2gµ3ν3gν1ν2gγ1µ2gτ3γ3

+ α59 g
µ1γ2gν1ν2gγ1µ2gγ3ν3gτ3µ3 + α60 g

µ1γ2gµ3ν3gν1τ3gν2γ3gγ1µ2

+ α61 g
µ1γ2gν1τ3gν2µ3gγ1µ2gγ3ν3 + α62 g

µ1γ2gν1γ3gν2µ3gγ1µ2gτ3ν3

+ α63 g
µ1γ2gν1µ3gν2ν3gγ1µ2gτ3γ3 + α64 g

µ1ν2gν1τ3gγ1µ2gγ2µ3gγ3ν3

+ α65 g
µ1ν2gν1γ3gγ1µ2gγ2µ3gτ3ν3 + α66 g

µ1ν2gν1µ3gγ1µ2gγ2τ3gγ3ν3

+ α67 g
µ1ν2gν1µ3gγ1µ2gγ2γ3gτ3ν3 + α68 g

µ1ν2gν1µ3gγ1µ2gγ2ν3gτ3γ3

+ α69 g
µ1τ3gν1µ3gν2ν3gγ1µ2gγ2γ3 + α70 g

µ1τ3gν1µ3gν2γ3gγ1µ2gγ2ν3

+ α71 g
µ1γ3gν1µ3gν2ν3gγ1µ2gγ2τ3 + α72 g

µ1γ3gν1µ3gν2τ3gγ1µ2gγ2ν3

+ α73 g
µ1µ3gν1ν3gν2γ3gγ1µ2gγ2τ3 + α74 g

µ1τ3gµ2ν3gν1γ3gγ1ν2gγ2µ3

+ α75 g
µ1µ2gν1γ3gν2ν3gγ1τ3gγ2µ3 + α76 g

µ1µ2gν1µ3gν2ν3gγ1τ3gγ2γ3

+ α77 g
µ1µ2gν1µ3gν2γ3gγ1τ3gγ2ν3 + α78 g

µ1µ2gν1τ3gν2γ3gγ1µ3gγ2ν3
]
.

(31)

Integration over the symplectic fields ω in the action S1 generates log-
arithmically divergent contributions to all α couplings. The coefficients of
these divergent terms can be identified with the coefficients of the beta func-
tions of α couplings displayed in the Table 1.
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β1 = − 11
320

β2 = − 9019
15360

β3 =
1103
6144

β4 = − 569
3840

β5 = −221
640

β6 =
151
1536

β7 = − 811
7680

β8 = −2173
7680

β9 =
569
3840

β10 = − 481
3840

β11 = − 1
24

β12 =
509
3840

β13 =
1733
2560

β14 = − 1
32

β15 = − 959
10240

β16 =
5
96

β17 = − 5
96

β18 = −125
512

β19 =
983
1920

β20 =
811
7680

β21 =
161
3840

β22 = − 143
1280

β23 =
353
1024

β24 = − 77
7680

β25 = − 6691
30720

β26 = − 1
80

β27 = − 601
1280

β28 =
1981
1920

β29 =
3299
10240

β30 =
121
480

β31 =
8977
15360

β32 =
151
1280

β33 =
2283
5120

β34 =
1083
2560

β35 =
293
3840

β36 = − 13
960

β37 = −1447
3840

β38 =
4909
15360

β39 = −15437
30720

β40 = −169
960

β41 = − 1807
15360

β42 = − 95
256

β43 =
187
7680

β44 =
121
160

β45 = −8459
7680

β46 = −101
384

β47 = −89
96

β48 = − 769
7680

β49 =
167

15360
β50 =

8647
30720

β51 =
349
3840

β52 =
2449
3840

β53 =
3323
15360

β54 = − 6377
15360

β55 =
271
320

β56 =
1921
3072

β57 = − 3407
15360

β58 = −457
768

β59 =
629

15360
β60 = − 57

512

β61 =
61
640

β62 =
1453
7680

β63 = − 695
3072

β64 = −55
64

β65 = − 33
2560

β66 = − 513
5120

β67 =
73
960

β68 = − 351
2560

β69 =
1
2

β70 =
203
960

β71 =
7253
15360

β72 =
1753
15360

β73 = −15
64

β74 = − 6607
15360

β75 = −1417
1920

β76 =
2603
7680

β77 = −329
640

β78 =
1309
2560

Table 1: Beta function coefficients of gravitational α couplings of symplectic
gauge fields
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The fact that no new couplings are generated by one loop diagrams points
out the renormalizable character of the theory. The couplings whose beta
function coefficients are listed in Table 1 are the only dimensionless renor-
malized couplings of the theory.
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