aps CHCRUS

physics

This is the accepted manuscript made available via CHORUS. The article has been
published as:

Symplectic gauge fields and dark matter
). Asorey, M. Asorey, and D. Garcia-Alvarez

Phys. Rev. D 92, 103517 — Published 23 November 2015
DOI: 10.1103/PhysRevD.92.103517


http://dx.doi.org/10.1103/PhysRevD.92.103517

Symplectic gauge fields and dark
matter

J. Asorey
Department of Physics, University of Illinois
Urbana, IL 61801 USA

M. Asorey
Departamento de Fisica Teorica. Facultad de Ciencias
Universidad de Zaragoza. 50009 Zaragoza. Spain

D. Garcia-Alvarez
Departamento de Analisis Econémico
Facultad de Economia y Empresa.
Universidad de Zaragoza. 50005 Zaragoza. Spain

Abstract

The dynamics of symplectic gauge fields provides a consistent frame-
work for fundamental interactions based on spin three gauge fields.
One remarkable property is that symplectic gauge fields only have
minimal couplings with gravitational fields and not with any other
field of the Standard Model. Interactions with ordinary matter and
radiation can only arise from radiative corrections. In spite of the
gauge nature of symplectic fields they acquire a mass by the Coleman-
Weinberg mechanism which generates Higgs-like mass terms where the
gravitational field is playing the role of a Higgs field. Massive symplec-
tic gauge fields weakly interacting with ordinary matter are natural
candidates for the dark matter component of the Universe.



1 Introduction

In the Standard Model all fundamental interactions are described by gauge
theories. In the Einstein theory of General Relativity (GR) the gravitational
interaction is also formulated in terms of a gauge field. Although there are
significant differences between both theories, mainly dues to the strong con-
nection of GR with the structure of space-time, the fact that both theories
are gauge theories helped to consolidate the gauge paradigm where all fun-
damental interactions are described by gauge fields.

The search of new physics beyond the Standard Model is supported by
astrophysical and cosmological evidences of the existence of a new type of
invisible matter with unknown interactings properties. The search of new
types of interactions following the gauge principle suggest to explore the
possibility of gauge theories with higher spin [1, 2]. The pathologies associ-
ated to interactions based on massless particles with helicities higher than
two [3, 4, 5] provided an argument to explain why this kind of interactions
are not observed in Nature. Nevertheless, the challenge is so interesting that
there are numerous attempts to give a physical meaning to gauge theories
of higher helicity fields. Free massless fields with arbitrary helicity (or its
generalizations) do exist in any dimension. In fact, Wigner’s theory of co-
variant representations of Poincaré group, provides a general theory of free
massless gauge fields [6]. Massless fields with integer helicity are described
by transverse, symmetric traceless tensor fields with some equivalence rela-
tions which are reminiscent of gauge transformations [1, 2]. The application
of BRST methods to the consistency analysis of generalized gauge theories
boosted the attempts to extend the analysis of free massless gauge fields to
to interacting theories from a new viewpoint [7, 8, 9]. The consistency of the
BRST approach requires an infinite tower of higher helicities [7, 9, 10, 11, 12]
in close analogy with string theory. However, even in that case it was impos-
sible to show the consistency of the interacting theory [13, 14, 7, 8, 9].

The appearance of new string dualities introduced new approaches based
on five-dimensional theories on anti-De Sitter backgrounds [15, 16, 17]. In
such a scheme the approach to higher spin fields acquired an new perspective
[18, 19, 20].

In this paper we explore a different approach to higher spin gauge fields
based on a gauge theory of symplectic fields [21]. In this approach gauge
fields are symplectic connections and since their covariant derivatives are non-
trivial only for fields of spin higher than two, they are minimally decoupled



of the Standard Model physics and only interact with gravitational fields.
This special characteristic promoted these fields as excellent candidates for
the invisible dark matter component of the Universe.

2 Symplectic gauge fields

Let us consider a symplectic form w in a four-dimensional space-time!, i.e.
a regular anti-symmetric tensor field w,, = —w,, which is closed dw = 0.
The symplectic form w can be considered as the anti-symmetric component
of a generalized space-time metric in the sense first considered by R. Forster
(formerly known as R. Bach) and developed by Schrodinger and Einstein in
the context of unified field theories. It can also be considered as a background
electromagnetic field w,,, = 9,4, — 9, A, with non-trivial topological density
6#1M2u3u4wulu2wu3“4 (SL’) 75 0.

A symplectic gauge field is by definition a linear connection which pre-
serves the symplectic form, i.e. the covariant derivative of w

Dyw =0 (1)
vanishes. In local coordinates
Ouwyo — Iy Wap + I, Wae = 0, (2)

where I'are the local components of the symplectic gauge field. Although,
gravitational fields are also defined in a similar manner as the linear connec-
tions that preserve the space-time metric symmetric g, the contrast between
both types of fields is very important as we will see below.

The gauge symmetry is given by space-time transformations which leave
the symplectic form invariant (symplecto-morphisms). They are canonical
transformations whose infinitesimal generators are given in local coordinates
by vector fields of the form

gu = u¢> (3)
where ¢ is any scalar field. By using canonical transformations it is always
possible to find local coordinates, Darboux coordinates, where w becomes a

constant form
(0 I
w=\_1 o)

!The theory can be generalized for arbitrary even dimensional space-times




In those coordinates, d,w = 0 and
[ War =1, Wao (4)

If we impose the vanishing of the torsion as in the case of Levi-Civita
metric connection, we have
I, =17, (5)

The components of a torsionless symplectic gauge field in Darboux coor-
dinates

Tyo = I, Wao (6)

define a 3-covariant symmetric tensor
Tl/ua = T/u/a = Tuau = Tuo'l/ = Tauu = Tauu- (7)

Thus, the space of torsionless symplectic gauge fields [22, 23, 24, 25] can
be identified with the space of 3-covariant symmetric tensors. This space of
symplectic gauge fields is infinite dimensional in contrast with the space of
Riemannian gauge fields where the Levi-Civita connection is unique for any
Riemannian metric.

The curvature tensor Rj

R%,, = 0., — 0,15, + 1700, — Isl0, (8)

defines by contraction with w a (0,4)-tensor

Raﬁ/u/ = waaRUﬁW/a (9)

with interesting symmetry properties

Raﬁuu = _Raﬁuu :Rﬁaw/a

Rapuw) = Raopuw + Ruapy + Ruwas + Rgpwa = 0.

The permutation symmetries of this tensor are characterized by the Young
tableau

which is in contrast with that of the standard Riemannian tensor



A symplectic Ricci tensor can also defined by
Rg,, = w”aRagwj, (10)

and is symmetric

Ry, = Ry, (11)

like the Riemannian Ricci tensor. However, there is no scalar symplectic
curvature because the contraction of Ricci tensor with the symplectic form
vanishes.

3 Symplectic Field Theory

The simplest dynamics for symplectic gauge fields is defined by the action

1 (0% v 9 Q v v
S(F,w):w/d% RoPH Raﬁuu + 3272 /d4$ (ROcﬁ/wR o _2RMVRM ) )
(12)
which only involves the curvature tensors
RO = o WO W ™ Ry RM = W™ Ry (13)

and the symplectic form w. The second term of (12) is proportional to the
Pontryagin class of the manifold which has a topological meaning and does
not contribute to the classical dynamics.

The metric independence of (12) implies that the dynamics of the sym-
plectic fields is completely decoupled from gravity.

The action (12) is the most general metric independent action of symplec-
tic fields with quadratic dependence in the curvature tensor [26]. Although
one could add an extra term proportional to the square of the Ricci tensor
(10), it turns out that such a term is not independent of the other two terms
of the action (12). Thus, the extra term can be absorbed by shifting the
couplings ag and 6.

The theory is invariant under symplecto-morphisms, i.e. canonical trans-

formations. Symplectic gauge fields, however, transform as
1o = Tuo + DuD,0s . (14)
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under symplecto-morphisms, where D, = 9, + I'),. The invariance of the
action (12) under these transformations implies the existence of an infinity
of zero-modes.

The field theory governed by (5) is very interesting from a geometrical
viewpoint [26], but from a quantum field theory perspective it presents many
pathologies. The Cauchy problem is highly degenerated as it is pointed out by
the existence of many zero modes in quadratic terms which are not associated
to any known gauge symmetry. Apart from the zero modes associated to
the symplectic gauge symmetry (14) there are nine extra zero-modes. The
remaining non-null modes of the quadratic variation of the action on a trivial
T = 0 background are of the form

- %pz ,  E ? p? (double degenerated)

§P2, —gpz, i‘%ﬁ (no degenerated),

where p,, are the momentum of Fourier modes in Darboux coordinates. Al-
though the eigenvalues of the quadratic terms of the action are SO(4) rotation
invariant the corresponding eigenfunctions 7),,, are not invariant under Eu-
clidean or Poincaré transformations. This is due to background symplectic
form w,,, which introduces a phase space structure in the space-time which
is not compatible with Euclidean or Poincaré symmetries. Moreover, the
quadratic terms of the action are not definite positive as a consequence of
the symplectic structure. This implies that the gaussian projection defines a
theory with ghost fields which is not unitary quantum field theory .

Poincaré symmetry can be recovered if we consider a generalization of the
action where the symplectic form w becomes a full-fledged dynamical field.
A natural choice is to introduce a kinetic term for the symplectic form

1

4 nv
2—62 d*xr w W s

with w,, = 0,4, — 0,A,. But, because of the identity w"’w,, = 4 the
integrand is constant and there is no dynamical content as the trivial motion
equations point out.

The only non-trivial possibility is to include terms with tensorial con-
tractions which involve the space-time metric (i.e. coupling to gravity). In
this framework it is possible to recover Poincaré invariance in a Minkowskian
metric background.



4 Interaction with Gravity

Let us consider a different theory of the symplectic gauge fields interacting
with the space-time metric g

1 / /
So(l'w,g9) = ) /d4$ VI 9" W (15)

Instead of imposing the restriction to the symplectic gauge fields that
preserve the symplectic form w (2), we introduce the constraint in a softer
way via a Lagrange multiplier term in the action

So(T,w, g) = S / d*z /g 7 " ¢"" Dy Dy, (16)
The strong symplectic condition, D, w,, = 0, is recovered in the weak cou-
pling limit ctg — 0

The main interaction of symplectic fields with gravity can be introduced
by contracting indices of the curvature tensor with the space-time metric

instead of only using the symplectic form, e.g.

Si(T,w, g) = o / d'z\/ G997 9" 9" Rassrs Ragyu + - - (17)

However, integration over symplectic forms can generate new local terms in
the effective action and the renormalizability condition requires to consider
all possible relevant couplings which do not violate any fundamental gauge
symmetry. Since the symplectic gauge fields generically do not preserve the
space-time metric

Dy G # 0, (18)

marginally relevant terms of the form

ST, w,g) = an? / 'z /G| Do Dy g’ + -+ (19)

should also be considered because there is no symmetry preventing its ap-
pearance as radiative corrections.

In summary, one has to include all renormalizable possible independent
couplings between gravitational field and the symplectic gauge field. There
are only six independent types of renormalizable interaction terms

DDgDDg, DgDgDDg, DgDgDgDg, RR, RDDg, RDgDg, (20)
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because all others can be expressed as linear combinations of these terms
[21]. However, the different contraction of the Lorentz indices give rise to 78
different interaction terms involving 78 independent dimensionless couplings
aq, -+, arg: twenty two (aq ... age) of the type DDg DDy, six (s . .. aog)
of the type Dg Dg Dg Dg and fifty (aag...azs) of the type Dg Dg DDg.
The complete list of these terms is given by equations (29)-(31) of appendix
A.

The corresponding theory is renormalizable. In particular, the effective
action generated by integrating out the symplectic form w in the action S
gets non-trivial contribution to all seventy eight « couplings of symplectic
fields with gravity. In fact, these corrections are logarithmically divergent
and the coefficients of the corresponding contributions to the beta functions
are displayed in Table 1 of appendix A.

We remark that some of the beta functions are positive and some others
are negative. This means that not all of them will be relevant in the full
fledged quantum theory. However, the above calculations have not taken into
account the radiative corrections dues to symplectic gauge field fluctuations.
This calculation is beyond the scope of this paper, but it is crucial to elucidate
which couplings of the theory are finally relevant.

The above calculations show that the symplectic field theory is a renor-
malizable quantum field theory, however, the appearance of four order deriva-
tive terms in the action introduces some ghost components in the symplectic
gauge theory. The absence of a larger gauge symmetry means that unitary
is not guaranteed.

5 Symplectic fields and dark matter

Symplectic gauge fields as linear connections cannot interact by minimal
couplings with scalar fields, because the minimal coupling in this case reduces
to D,¢p = 0,¢. A similar effect arises in the interaction with fermions.
The gauge group of symplectic connections is GL(4,R) and only the trivial
representation of this group acts on spinors, i.e. there is no analogue of spin
connection for symplectic gauge fields, then [Py = Pp.

Thus, the minimal coupling of symplectic gauge fields to Standard Model
particles can only be possible with gauge particles: the photon or the in-
termediate gauge bosons W=* and Z. However, due to the intrinsic gauge
character of these particles this coupling is not possible. The torsionless



character of symplectic gauge fields is responsible for the decoupling also of
vector potentials. Indeed,

Fu = 8,A, — 0,A, + T, A, —T9, A, = 0,4, — 0,A,. (21)

Thus, symplectic gauge fields cannot minimally interact with any particle
of the Standard Model. They can only minimally couple to gravitation,
whenever D,g,, # 0. If the corresponding quanta were massive particles,
they will be natural candidates for the dark matter component of the Universe
and indeed, this is what happens. In the standard ACDM cosmological model
dark matter is usually assumed to be fermionic matter. However, a bosonic
component could solve some dark matter puzzles as we shall discuss below.

However, some non-minimal couplings of symplectic gauge fields with or-
dinary matter like ¢'9,¢ D, g* , |¢|*> DD, g" or ¢y, 1D, g" can arise as
radiative corrections. However, the genuine interacting terms of symplec-
tic gauge fields with gravitation (20) are invariant under the signature flip
transformation,

I = ~Guws (22)
which changes the signature of the metric tensor g,,, from (1, 3) to (3,1). This
symmetry acts as a custodial symmetry which prevents the appearance of
non-minimal coupling between ordinary matter and symplectic gauge fields.

Although the coupling of symplectic gauge fields to the symplectic field
w (16) breaks the signature flip symmetry, the effects of such a symmetry
breaking only affect the couplings between ordinary matter and symplectic
gauge fields via radiative corrections at two loops level.

The breaking of signature flip symmetry also affects the couplings of grav-
ity to symplectic gauge fields via one loop corrections. We have assumed un-
til now that these couplings are dimensionless, however, radiative corrections
generate terms of the form

1
Si(Tw9) = 5 [ 0 VTP gl 4o+ (23)

m

Since the metric g is not preserved by symplectic gauge fields nothing pre-
vents the appearance of these terms with mass square dimension. Indeed,
such radiative corrections appear in the form

1 1% 14
£/Iiggs = /d4x D, 9pyin Doy Gpiovs (@ gt gt g+

5 3
1_6 g“ﬂ“/zgmuzngz _ 1_6 g“flwgﬂl“/zgl/lvz) [27 (24)



of quadratic divergent terms, with

1 d*r
L= ——. 25
2 / (2m)4 r? (25)
Thus, such terms must be included in the bare action to ensure the renoma-
lizability of the theory. Now, in a Minkowski background (i.e. g = Muw)

these terms provide a real mass terms for the spin three gauge fields because
then

1 T vo
Sﬁiggs ~ 20,2 /d4x T Tuvo (26)

i.e., although symplectic gauge fields were in principle related to massless par-
ticles, they acquire a mass from quantum radiative corrections in Minkowski
space-time metric backgrounds. The phenomenon is reminiscent of Coleman-
Weinberg mechanism of generation of mass for conformal scalar electrody-
namics.

The way symplectic gauge fields 7),,, acquire a mass is also reminiscent
of the Higgs mechanism with the gravitational field playing the role of the
Higgs field.

Conversely, the alternative mechanism where symplectic fields condensate
into a non-trivial value and provides a mass terms for the graviton is also
possible but not physically realistic because a non-trivial expectation value of
such a field will break Lorentz invariance which is quite unlikely to happen.
As a consequence the graviton remains massless but the symplectic fields
become massive.

In a similar manner radiative corrections generate at two loops level new
interacting terms involving symplectic fields and Higgs fields of the form

1 4 2 2
s [V IOFD, gl 2D

which in a Minkowski background provide real mass terms for the symplectic
gauge fields like in equation (26)

S/// (1—1’ ¢) —

Higgs

[ o
Ilflliggs ~ 2ah2 d4£L' ks T;u/aa (28)

where v =< ¢ > is the vacuum expectation value of the Higgs field. The
Higgs contribution to the mass of the symplectic gauge fields (28) is similar
to the mass terms of the other particles of the Standard Model. The only
difference is that the mass term of symplectic gauge fields has an extra mass
contribution due to radiative corrections of symplectic fields.
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6 Discussion

The Standard Model sector of the Universe contains a large variety of par-
ticles. It is then envisageable that the dark matter sector is also made of
more than one type of particles. The characteristics of spin three massive
gauge particles associated to symplectic gauge fields suggest that they are
natural candidates as components dark matter. The mass of these gauge
particles is only dictated by the coupling to gravitation which means that
generically it can be large enough to provide a relevant component of the
cold dark matter. On the other hand, the bosonic character of the new par-
ticles could explain the smooth behavior of the central dark matter density
in galaxy halos [27, 28, 29, 30] and it could give rise to bosonic condensates
which provide interesting scenarios for dwarf galaxies [31, 32, 33].

Since the only primary interaction of symplectic gauge fields involves
gravitational fields the effect of the new interaction can be mimicked by
a effective theory of gravitation. The results obtained via integration of
symplectic gauge fields yield an effective action which is highly non-local and
it will only become local in the infinite mass limit of symplectic gauge fields.
In that case one gets back the standard gravitational action with extra R?
terms. However, the physical interpretation of the effective theory is very
subtle because the calculation is highly dependent on the background space-
time metric. There are metric backgrounds where the Higgs mechanism
provides a mass to symplectic gauge fields, and metric backgrounds without
such a mass generating mechanism. In the later case the symplectic gauge
fields contain massless particles. Thus, the theory provides scenarios which
interpolate between hot and cold dark matter scenarios depending on the
gravitational background. This chameleonic property of symplectic gauge
fields is very attractive and deserves further exploration.
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A Renormalization

The 78 independent dimensionless couplings of the symplectic gauge fields
to gravity can be obtained by using Tensorial and FeynCalc packages of
Mathematica.

There are three different types of terms: twenty two of the type DDg DDg,

5y = /d4x\/§ (DTlD“{lg,UflVl) (DTQD'yzgquz)

[ a gmm guwz ng’Yl g‘rz'yz + an gu1V1 ng’Yl g'\/zlfz gTzuz
+ Q3 gﬂlm guzm gvl’YQ ng’Yl + ay ngz gl/luQ ng’Yl g’Y2V2
+ o gﬂl“fz gl/luQ ng’Yl gT2V2 +a6 gmuz gV1V2 ng“/l gT2“/2
+ ar g’hlfl ng,ul g’sz g7'2u2 ‘|'048 gH2V2 gl/l“f2 g’Ysz ng/Jl
+ ooy ghtE gl g g agg g g g g™ (29)
+ g gl/17'2 g'\/wz gnm g'yzl/z + ays gm'\/z g'ywz gﬁm g‘er2
+ 13 gH2V2 gl/l“f2 g’ﬂul ngTz + oy gV1H2 g’ﬂul ngTz g’YQV2
+ o gmvl guzl@ g’Yl’Yz ngTz + g guluz gV1V2 g“/l’m ngTz
+ aqy gﬂl’m gV1V2 g’YllLQ ngTz "‘0518 gH1H2 gV1V2 g“fsz 971’72
+ aqg ngz gml/z g'ywz ng’Yz + a9 gl/rrz g'mu gﬁuz g’Yzl/z
+ 91 gM1T2 gV1V2 g’Yl’Yz gﬁuz _|_a22 guszglfl’ng’th g‘Fle]’

six of the type Dg Dg Dg Dg,

Sg = /d4:c

g (D’Yl 9#11/1) (D'yz guzw) (D'y:s guSVS) (Dm gu4V4)

2773 vivy2 va 3 V34 Y11 4V4
Qg3 G273 g1z gl gtk g g

(o4
Q25
Qo6
Qar

gﬂ2’73 gHSM ng’YQ gwm gV3V4 g’ﬂul (30>
gﬂ2u3 gl/l’YQ gV2H4 g“flul g’Y3V3 g’Y4V4
gl/wz gu3u4 g'ylm g'yzl/z 973/13 g’y4l/4
gl/wz guzm gl/3u4 g'ywl g'yz'y3 g’y4l/4

A S

v v V3.
Qo g 12 g 214 g 3V4 g’YllLl g“/2l13 9’73’74}’
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and fifty of the type Dg Dg DDg,

/
50

i i i e a e i el e o S e e ey

/d4x V9 (D, 91 ) (Do Guss) (Dry Doys Gss)

273 3V3 4V17Y2 4V273 1H1
Qugg gH2Ts ghavs g gv27s gkt

31 gﬂﬂsgvl’m ngm g'YlHl g7'31/3
Q33 gH3V3gV1u2 g’ﬂul g'YQngTS'YS
o35 gM3V3gV1u2 gl/z'\/ag'nmg'\/zm
Qg7 gl/1uzglf2u3 g’YlMl g’Yz’YBgTBVB
Q39 gV1H2 gV2’YS g’YI#l g’YQlngTSVS
o gH3V3gV1ngV2“/3 g’ﬂul g’YQuQ
0uy3 gﬂ2usgV1ngV2V3 g’ﬂul g’Y?’YS
ous gV1’YagV2u3 g’hul g’quz gT3V3

2T3 4V17Y3 4V2V3 1H1 213
Qup gheTs gris gvevs gk gkt

Qg9
51 g#27'3 ng:a gVQ“/Sg“fl K1 g’szs

2773 V13 qV2V3 V111 7273
g#“fg Hg g“fﬂg“/

Q53 gmuz ngTSgVQHSg'Yl'YQ g’Y3V3
Q55 gﬂluzgmm gV2V3g’Yl'Yz gT3’Y3
o5y gM1T3 guz'm ngagl/zl/ag'ywz
Q59 guryzglfll/z g’nuz g’YBVBgTBMB
g1 g#l“fz gl/lngVQ,usg“ﬂ w2 g’Y3V3
63 g#l“fz gl/luS gvzvsg“ﬂ#z 973’73
s gM1V2gV1'YB g’yluz g’yzuagmva
g7 gu11/291/1u3 gvluz g’Yz’\/BgTBVB
9 gmm gV1u3gV2V3 g’yluz g'yz%
fa%el g#l“fsgvlu:’, gvzvsg“ﬂ#z g“127'3
Q73 g#lusgvlvsgvﬂsg“ﬂw g“127'3

H1H2 AV17Y3 4V2V3 4V1T3 4V213
Q75 g g -rgTrgrryg

1% v T: v
vy guluzg 1u3g 2’Y3g’Y1 3g’Y2 3

_|_

i i st s sl i s it S S R

273 4V172 H4V213 1M1 47Y3V3
Qg gl gz g giing

39 gﬂzu:’, gvl“fz gV2V3 g’ﬂul gTS“fs
3y ng,UQ g’YIHl g“/2V2g’*/3ngT3H3
Qg guluz ngagwmgwmg%%
Q38 guluz gV2T3g'\/1u1 g’yzm g’y3V3
Qg gl’lﬂz gV2V3g“/1H1 g“/2,u3 gTS“/S
(V49 ngTSgVQHSg“ﬂ K1 g’YQHQ g’YSVS
gy gﬂﬂsgl/lngVzVSg’Ylul g’n#s
o guzuzsgm% gV2V3g'y1M1 g'yzm
s gV1u3 gV2V3g'y1M1g'\/2Mz gTa’Ya

273 4V1IU3 H4V2V3 1H1 2773
Qs gH2T3 grihs gravs g g

€7:9)
QOl54 gmuz gl/l’Y3 gvz,usg“ﬂ“/z g7'31/3

1H2 qH3V3 AV1T3 4273 47172
g##g# g g’Yg“/“f

Qs gulfaguzua ng’Y3 gV2V3g’Yl'Yz
Q53 gm'\/z gM3V3gV1V2g’YlM2 gTa'YB
Q60 ng'\/z gM3V3gV1‘F3gV2’Y3 ngz
Q62 g#l“fz gl/l’Y3 gv2usg“/1,uz g7'31/3
TV g#l V2 gvlng“fl w2 g’YQuS g’Y3V3
6 gpll/zgulug g’nuz g’YzTB g’YBVB
s ng/z gV1u3 g’yluz g'YzV3 gTa'Ya

173 4V1 3 4273 12 2V3
Qg g™ grtks gres gk gy

Q7o
7y
Qg

173 qV1H3 V273 4 Y1H2 47V2V3
g# . g 2 g g’Y 2 g’Y

173 qH2V3 4V17Y3 4 Y1V2 V2143
g# g# g 7. g’Y g’Y H

M2 VI3 4V2V3 4 Y1T3 47273
g g-"rgTrgT g

V1T3 LV v
a78 ngMZg 1 39 273g’¥1#3g'¥2 3i| .

Integration over the symplectic fields w in the action S; generates log-
arithmically divergent contributions to all o couplings. The coefficients of
these divergent terms can be identified with the coefficients of the beta func-
tions of a couplings displayed in the Table 1.
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o 11 o 9019 . 1103 o 569 . 221
br=—35 Po= —imw HB= wm P1= —mw = —5n

Bs= 1o Or= —wmy Os= —Hm Bo= zu5 Bu= —mp
Bi= -5 BPro= 22 Pi= B Bu= -% Bi=-—1
Bis = 5 bir= —5 Bis= —55 b= 1 Po= =%
Bor =  go5 Poo= —me fuy= 2 fu= —L o= —ak
Bag = _$ Par = _% Pog = % Bag = % B30 = %
B = DL Pp= o fiy= B8 pfy= 8 pp= 25
B3e = —% fa7 = _% P3s = % Bsg = _% Pro = _%
B =—1ore Bio= —g fi= ot fu= 1a Pi= -2
Bis = —% Bar = _% Bas = —% Bag = % B0 = %
Bi= g P= T Bu= i Pu= "t P = m
Bss = o3 DO = —tigeg DPos= —aes DBoo= 1oag5 Do = —#g
Poo= G5 Pe= Tm Pe=—mm Bu= —& Oo= —5m
Bos = —% Ber = % Pes = _% Beog = % Bro = %
Bn= faw PBr= 1mg Bu= —§ Bu= -1 Os= —Imp
Bro= 3 Brm= —t Bs= 260

Table 1: Beta function coefficients of gravitational « couplings of symplectic
gauge fields
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The fact that no new couplings are generated by one loop diagrams points
out the renormalizable character of the theory. The couplings whose beta
function coefficients are listed in Table 1 are the only dimensionless renor-
malized couplings of the theory.
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