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Theoretical modeling of the redshift-space power spectrum of galaxies is crucially important to
correctly extract cosmological information from galaxy redshift surveys. The task is complicated
by the nonlinear biasing and redshift space distortion (RSD) effects, which change with halo mass,
and by the wide distribution of halo masses and their occupations by galaxies. One of the main
modeling challenges is the existence of satellite galaxies that have both radial distribution inside
the halos and large virial velocities inside halos, a phenomenon known as the Finger-of-God (FoG)
effect. We present a model for the redshift-space power spectrum of galaxies in which we decompose
a given galaxy sample into central and satellite galaxies and relate different contributions to the
power spectrum to 1-halo and 2-halo terms in a halo model. Our primary goal is to ensure that any
parameters that we introduce have physically meaningful values, and are not just fitting parameters.
For the lowest order 2-halo terms we use the previously developed RSD modeling of halos in the
context of distribution function and perturbation theory approach. This term needs to be multiplied
by the effect of radial distances and velocities of satellites inside the halo. To this one needs to add
the 1-halo terms, which are non-perturbative. We show that the real space 1-halo terms can be
modeled as almost constant, with the finite extent of the satellites inside the halo inducing a small
k2R2 term over the range of scales of interest, where R is related to the size of the halo given by its
halo mass. We adopt a similar model for FoG in redshift space, ensuring that FoG velocity dispersion
is related to the halo mass. For FoG k2 type expansions do not work over the range of scales of
interest and FoG resummation must be used instead. We test several simple damping functions to
model the velocity dispersion FoG effect. Applying the formalism to mock galaxies modeled after
the “CMASS” sample of the BOSS survey, we find that our predictions for the redshift-space power
spectra are accurate up to k ≃ 0.4 h Mpc−1 within 1% if the halo power spectrum is measured using
N-body simulations and within 3% if it is modeled using perturbation theory.

PACS numbers: 98.80.-k
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I. INTRODUCTION

Redshift surveys enable us to probe the three-
dimensional mass density field, while weak lensing sur-
veys and cosmic microwave background experiments
measure the density field projected along the observer’s
line of sight. The measured distances to galaxies are
measured through redshift and are distorted due to ra-
dial components of peculiar velocities. These changes
are known as redshift-space distortions (RSD) [1, 2] and
contain additional cosmological information. Analyzing
the power spectrum or correlation function in redshift
space provides a useful test of dark energy and general
relativity [e.g., 3–7] (see, e.g., [8, 9] for the recent obser-
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vational studies). However, galaxy clustering is known
to suffer from various kinds of nonlinear effects, and we
need to model them in order to extract all possible infor-
mation from redshift surveys [e.g., 10–18]. Nonlinearity
in the power spectrum can be modeled using perturba-
tion theory (PT) [19] and numerical simulations [20, 21].
The nonlinearity of RSD was first modeled for dark mat-
ter [22–30], and the formalisms have been extended to
dark matter halos [31–39]. Although detailed studies are
required to fully understand halo bias [40–43], the theo-
retical models for the redshift-space power spectrum of
halos were shown to work well up to reasonably small
scales.
However, what one observes in real observations is the

redshift-space power spectrum not of halos but of galax-
ies. Although all the galaxies are considered to be formed
inside dark matter halos, modeling the galaxy power
spectrum is much more complicated than the halo spec-
trum because of the large virial motions of satellite galax-
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ies, which is known as the Finger-of-God (FoG) effect
[44]. The FoG effect is a fully nonlinear process, caused
by virialized motions of satellite galaxies inside the ha-
los, and depends strongly on both the mass of the host
halo and the satellite fraction [45, 46]. It is not possible
to model the effect in PT schemes, but the effect can be
related to the underlying halo mass and expected satel-
lite occupation. Usually, PT resummed damping func-
tions such as Gaussian or Lorentzian have been consid-
ered [14, 24, 47–49] and multiplied by the halo spectrum
to model the galaxy power spectrum in redshift space.
They contain at least one free parameter, the velocity
dispersion of the halos in which satellites are. Assum-
ing we know the form of the damping function, we must
still consider the different halo masses that contribute to
FoG. This is usually done in the context of the so-called
halo model [50–54]. The halo model has been adopted to
the galaxy clustering in redshift space [9, 45, 46, 55–59].
The halo power spectrum and correlation function were
directly measured from N -body simulations in [59, 60]
and [9], respectively, to fully take into account the non-
linearities of halo clustering in the halo model. However,
for analytical approaches linear PT has been used to de-
scribe RSD of halos, i.e., the linear Kaiser model [1], to
combine with the halo model in previous studies [e.g., 46].
An alternative way to overcome the discrepancy between
the halo and galaxy density fields is to remove the effect
of satellite kinematics from the observed galaxy distribu-
tion, known as halo density reconstruction [61–63]. We
will not pursue this method here, but we note that it may
be a useful alternative to the modeling developed here.

In this paper we present a theoretical model for the
redshift-space power spectrum of galaxies using N -body
simulations and halo PT. We use PT to model RSD for
halos and add halo model inspired terms to model clus-
tering effects that arise from satellites inside the halos.
Motivated by the concept of the halo model, we decom-
pose correlations of central and satellite galaxies in a
galaxy sample into terms arising from galaxies within
the same halo and those from separate halos, known as
the 1-halo and 2-halo terms, respectively. We consider a
simple model where the redshift-space density field in a
2-halo term is described by a Kaiser term (the simplest
case being the linear Kaiser factor, 1+ fµ2/b, where µ is
the cosine of the angle between the line of sight and the
wavevector k, b is the bias parameter and f = ln δ/ lna.)
and RSD in a 1-halo term is described by well-known
damping functions characterized by the nonlinear veloc-
ity dispersion parameter that depends on the host halo
mass, σ2

v(M). We study theoretical models of the Kaiser
terms using N -body simulations and PT.

This paper is organized as follows. In section II, we
describe the decomposition of the observed density field
and relate contributions from central and satellite galax-
ies to 1-halo and 2-halo terms described by a halo model.
Section III describes the N -body simulations and how we
construct a mock galaxy sample. We present measure-
ments of real-space and redshift-space power spectra in

IV. In section V, we examine if it is possible to describe
the redshift-space power spectrum using two models: one
based on N -body simulations (VA) and another based
on nonlinear PT (VB). Our conclusions are given in sec-
tion VI.

II. FORMALISM OF REDSHIFT-SPACE

POWER SPECTRUM OF GALAXIES

In galaxy surveys, we observe two types of galaxies
that contribute differently to a power spectrum measure-
ment: central galaxies which can be considered to move
together with the host halos (but, see [58, 64]) and satel-
lite galaxies that mainly populate the most massive halos.
Modeling the latter part is a nontrivial task, making it
difficult to theoretically predict the statistics of a galaxy
sample. Our goal here is to investigate the effects of satel-
lite galaxies. Note that even the definition of the central
galaxy is model-dependent for two reasons. One is that
it depends on the halo finder. Some halo finders tend to
merge small halos into larger ones (e.g. friends of friends,
FoF [65]), more than others (e.g. spherical overdensity).
So what is a halo center for one halo may be a satellite for
another. We will not address this issue here, and instead
we will work with FoF halos only. Second reason is that
the assignment of the halo center is also model depen-
dent: center can be assigned to the most bound particle,
or to the center of mass of all halo particles, among other
choices. We will use the latter in this paper.
One can always decompose the density field of galaxies

in redshift space δSg into contributions from central and

satellite galaxies, respectively denoted as δSc and δSs . The
superscript S means a quantity defined in redshift space,
while the superscript R will denote the corresponding
quantity in real space. We can describe the decomposi-
tion in Fourier space as

δSg (k) = (1− fs)δ
S
c (k) + fsδ

S
s (k), (1)

where fs = Ns/Ng = (1−Nc)/Ng is the satellite fraction,
Nc and Ns are the number of central and satellite galax-
ies, respectively, and Ng = Nc+Ns is the total number of
galaxies. Note that the expression in redshift space can
always be applied to the one in real space by looking at
the tangential mode, δRg (k) = δSg (k, µ = 0). The galaxy
power spectrum is then written as the summation of the
spectra of central galaxies, satellite galaxies, and their
cross-correlation,

PS
gg(k) = (1− fs)

2PS
cc(k)

+ 2fs(1− fs)P
S
cs(k) + f2

sP
S
ss(k), (2)

where PS
XY (k)(2π)

3δ(k−k
′) ≡

〈
δSX(k)δS∗

Y (k′)
〉
is a power

spectrum of fields X and Y (auto spectrum if X = Y
and cross spectrum if X 6= Y ). Again, the corre-
sponding real-space power spectrum can be obtained by
PR
XY (k) = PS

XY (k, µ = 0). In a halo model approach
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[e.g., 50–54], the galaxy power spectrum can be decom-
posed into 1-halo and 2-halo terms. The halo model,
originally developed to model the real-space power spec-
trum, was extended to redshift space by [45, 46, 57] (see
also [58]). In order to decompose the observed power
spectrum (equation 2) into contributions from 1-halo and
2-halo terms, we consider further divisions of central and
satellite galaxies in the following subsections.

A. Decomposition of central galaxies

Satellites and centrals live inside halos of a wide range
of masses, and the corresponding bias terms, and FoG
terms, can be very different. We decompose the central
galaxies into two subsamples, those whose host halos do
not and do contain satellite galaxies, respectively labeled
as cA and cB. In this case, the cross power spectrum
between central and satellite galaxies can be written as

NcP
S
cs(k) = NcAP

S
cAs(k) +NcBP

S
cBs(k), (3)

whereNc = NcA+NcB . The sample cA consists of central
galaxies that do not have any satellite galaxies in the
same halo, so the contribution to the cross-correlation
PS
cAs comes only from a 2-halo term. On the other hand,

PS
cBs contains a 1-halo contribution, so we write it as

PS
cBs = PS1h

cBs + PS2h
cBs . A similar decomposition scheme

was used by [64, 66].

B. Decomposition of satellite galaxies

Similarly, the satellite galaxy subsample can be de-
composed into two subsamples. Satellite galaxies in halos
with only a single satellite are denoted as sample sA, and
those in halos with at least one other satellite are denoted
as sample sB. Then, the auto-correlation of satellites PS

ss

can be written as

N2
sP

S
ss(k) = N2

sAP
S
sAsA(k) + 2NsANsBP

S
sAsB (k)

+ N2
sBP

S
sBsB (k), (4)

where Ns = NsA + NsB . Just like the case of PS
cAs, the

terms PS
sAsA and PS

sAsB only have contributions from 2-

halo terms. PS
sBsB includes a 1-halo contribution, so we

write it as PS
sBsB = PS1h

sBsB + PS2h
sBsB .

C. Putting it all together

Combining the terms outlined in the previous sections,
the galaxy power spectrum in redshift space is

PS
gg(k) = PS1h

gg (k) + PS2h
gg (k), (5)

where the 2-halo and 1-halo terms are given by

PS2h
gg (k) = (1− fs)

2PS
cc(k) + 2fs(1 − fs)

×
(
NcA

Nc
PS
cAs(k) +

NcB

Nc
PS2h
cBs (k)

)

+ f2
s

(
N2

sA

N2
s

PS
sAsA(k) +

2NsANsB

N2
s

PS
sAsB (k)

+
N2

sB

N2
s

PS2h
sBsB (k)

)
, (6)

PS1h
gg (k) = 2fs(1 − fs)

NcB

Nc
PS1h
cBs (k)

+f2
s

N2
sB

N2
s

PS1h
sBsB (k). (7)

Our goal is to compare the modeling of the individual
terms to simulations. In our previous work [35, 37], we
presented a theoretical modeling of the halo power spec-
trum in redshift space based on N -body simulations and
perturbation theory, respectively. In section V, we ex-
amine if this scheme can be applied to the 2-halo terms
of the galaxy power spectrum given in equation 6. Since
we are primarily interested in modeling of RSD, we also
present models where we use halo clustering from simu-
lations.

III. N-BODY SIMULATIONS AND MOCK

GALAXY SAMPLES

As in our previous work [e.g., 35], we use a set of N -
body simulations of the ΛCDM cosmology seeded with
Gaussian initial conditions [67]. The primordial den-
sity field is generated using the matter transfer function
by CAMB [68]. We adopt the standard ΛCDM model
with Ωm = 1 − ΩΛ = 0.279, Ωb = 0.0462, h = 0.7,
ns = 0.96, σ8 = 0.807 [69]. We employ 10243 particles of
mass mp = 2.95 × 1011h−1M⊙ in 12 cubic boxes of side
1600 h−1 Mpc. Dark matter halos are identified using
the friends-of-friends algorithm [65] with a linking length
equal to 0.17 times the mean particle separation. We
use all the halos with equal to or more than 20 particles,
thus the minimum halo mass is 5.9 × 1012h−1M⊙. Be-
cause we consider the “CMASS” galaxy sample from the
Baryon Oscillation Spectroscopic Survey (BOSS) [70, 71]
as a target sample in this paper, we choose the output
redshift of the simulations as z = 0.509, which will be
quoted as z = 0.5 in what follows for simplicity.
To construct a mock galaxy catalog, we adopt a halo

occupation distribution (HOD) model which populates
dark matter halos with galaxies according to the halo
mass [e.g., 54, 72]. Using the best fitting HOD param-
eters determined by [73] for the BOSS CMASS sample,
galaxies are assigned to the halos at z = 0.5. For ha-
los which contain satellite galaxies, we randomly choose
the same number of dark matter particles to represent
the positions and velocities of the satellites. The frac-
tion of satellite galaxies is determined to be fs = 0.123,
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TABLE I: Properties of mock galaxy samples. NX is the number of objects in a given (sub)sample X, M̄ is the average mass
of the host halos, n̄X = NX/V is the number density, and b1,X is the large-scale bias determined using PR

mX (k)/PR
mm(k) at

0.01 ≤ k ≤ 0.04 h Mpc−1.

label galaxy/halo NX fraction to M̄ n̄X b1,X

X types (×104) total (1012h−1M⊙) (h3Mpc−3)

g all galaxies 125 1 3.03 × 10−4 2.17

c central galaxies 109 0.877 26.25 2.67 × 10−4 2.02

s satellite galaxies 15.3 0.123 106.8 3.75 × 10−5 3.26

cA centrals without satellite 98.0 0.786 20.32 2.39 × 10−4 1.91

cB centrals with satellite(s) 11.4 0.091 77.50 2.77 × 10−5 2.92

sA satellites without other satellite 8.71 0.0698 58.61 2.13 × 10−5 2.68

sB satellites with other satellite(s) 6.63 0.0532 169.9 1.62 × 10−5 4.00

bin2 2nd halo mass bin 44.8 28.99 1.09 × 10−4 2.16

bin3 3rd halo mass bin 9.96 85.37 2.43 × 10−5 3.12

consistent with the HOD modeling of [73]. This method
was applied in our previous work and good agreement
with the observations has been confirmed for the corre-
lation function [35] and mean pairwise infall momentum
[74]. The fraction of central galaxies that have satellites
in the same halos relative to all the central galaxies is
NcB/Nc = 0.104. Likewise, the fraction of satellite galax-
ies that have another satellite(s) inside the same halo rel-
ative to the total number of satellites is NsB/Ns = 0.432.
Table I summarizes the properties of the mock galaxy
samples.

In order to examine the effects of satellite galaxies on
our statistics, we also analyze halo samples which have
halo bias similar to the biases of our galaxy samples. We
consider two halo subsamples used in our previous work
[35], denoted as “bin2” and “bin3”, respectively. These
halo samples have biases similar to those of the total
galaxy sample and satellite galaxy sample considered in
this work. The properties of the halo subsamples are also
shown in table I.

IV. NUMERICAL ANALYSIS

Following our previous work [27, 35], we measure power
spectra of given samples with a standard method. We
compute the density field in real space or in redshift space
on a grid of 10243 cells using cloud-in-cell interpolation.
When measuring the density field in redshift space, the
positions of objects are distorted along the line of sight
according to their peculiar velocities before they are as-
signed to the grid. We use a fast Fourier transform to
measure the Fourier modes of the density field of sam-
ple X , δX(k), and then compute the power spectrum
by multiplying the modes of the two fields (or squaring
in the case of auto-correlation) and averaging over the
modes within a wavenumber bin. To show the error of
the mean for measured statistics, we divide the scatter

among realizations by the square root of the number of
the realizations, 1/

√
12 in our case. For the redshift-

space power spectrum we regard each direction along the
three axes of simulation boxes as the line of sight; thus,
the statistics are averaged over the three projections of
all realizations for a total of 36 samples. The three mea-
surements along different lines of sight are, however, not
fully independent. To be conservative, we present the
measured dispersion divided by

√
12 as the error of the

mean even for the redshift-space spectra.

A. Real-space power spectra

Let us first consider the real-space galaxy clustering:
the auto power spectrum of a given sample PR

XX(k)
and the cross power spectrum of two different samples
PR
XY (k). For the auto spectrum, we need to estimate and

subtract shot noise from the measured spectrum P̃R
XX

(the tilde denotes a quantity directly measured from sim-
ulations), which is not a trivial task. Here, we assume
a Poisson model, where the shot noise for the measured
PR
XX is expressed as a constant,

σ2
n,X = V/NX = n̄−1

X , (8)

and we have

PR
XX(k) = P̃R

XX(k)− σ2
n,X . (9)

We show the real-space power spectra for our mock
galaxy samples in figure 1. The power spectrum mea-
sured for the full galaxy sample PR

gg is shown as the
black line. The full galaxy power spectrum is decom-
posed into central-central PR

cc , central-satellite PR
cs, and

satellite-satellite PR
ss correlations, as given in equation 2.

Those three contributions are respectively shown as the
red, green, and blue solid lines. While the auto spectrum
of centrals PR

cc is dominant on large scales because of the
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FIG. 1: Power spectrum of mock galaxy sample in real space
PR
gg(k) (black). The red, green and blue solid lines are respec-

tively the contributions from central-central (PR
cc), central-

satellite (PR
cs), and satellite-satellite (PR

ss) pairs to the full
galaxy power spectrum. The central-satellite correlation can
be further decomposed into the correlation between centrals
that do not have a satellite in the same halo and satellites PR

cAs

(green dashed) and that between centrals with satellite(s) and
satellites PR

cBs (green dotted). Likewise, the satellite-satellite
correlation can be decomposed into the auto-correlation of
satellites that do not have other satellites inside the same ha-
los PR

sAsA
(blue dashed), the auto-correlation of those that

have other satellites inside the same halos PR
sBsB

(blue dot-

dashed), and their cross-correlations PR
sAsB

(blue dotted).

The 2-halo contributions of PR
cBs and PR

sBsB
are shown as

the magenta dotted and dot-dashed lines, respectively.

low satellite fraction, the contributions from PR
cs and PR

ss

become larger on small scales due to 1-halo terms.
The contributions from the cross-correlations between

satellites and centrals without (PR
cAs) and with (PR

cBs) a
satellite inside the same halo, decomposed from Pcs, are
respectively shown as the green dashed and dotted lines.
As expected, the large amplitude of PR

cs at small scales is
caused by PR

cBs, which includes a 1-halo term. Similarly,
the contributions from satellite-satellite correlations are
decomposed as the blue dashed, dotted, and dot-dashed
lines for PR

sAsA , PR
sAsB , and PR

sBsB , respectively. Once

again, the small-scale power is dominated by PR
sBsB , due

to the 1-halo contribution.
To eliminate the 1-halo contributions in PcBs and

PsBsB , we consider a subsample of satellites whose posi-
tions are replaced by halo centers. In this case, the shot
noise for the cross power between the centrals that have
satellites in the same halo and the satellites is given by
Σ2

cB and

PR2h
cBs (k) = P̃R2h

cBs (k)− Σ2
cB , (10)

where P̃R2h
cBs expresses the spectrum measured from the

satellite sample whose positions are replaced by halo cen-
ters, and

Σ2
cB = V/NcB = 1/n̄cB . (11)

Likewise, the auto power spectrum of the satellites that
have another satellite(s) in the same halo, whose posi-
tions are replaced by halo centers, is given by

PR2h
sBsB (k) = P̃R2h

sBsB (k)− σ2
n,sB − Σ2

sB , (12)

where σ2
n,sB is the normal Poisson shot noise (equation

8) and

Σ2
sB = V

∑Nc

i Ns,i(Ns,i − 1)
(∑Nc

i Ns,i

)2
, (13)

where Ns,i is the number of satellites in the ith halo, and
the sum is over all halos that host more than one satellite
galaxy. In our case, Σ2

sB = 4.42×10−5V −σ2
n,sB = 2.92×

10−5V = 1.19 × 105 (h−1 Mpc)3. These measurements
(equations 10 and 12) are shown as the dotted and dash-
dotted magenta lines in figure 1, respectively. One can
see that the small-scale power caused by the 1-halo terms
is well suppressed, and the shapes of the power spectra
PR2h
cBs and PR2h

sBsB are similar to the other 2-halo spectra.

B. Galaxy biasing

The bias for a given galaxy sample X , bX(k), can be
defined as

bX(k) =
PR
mX(k)

PR
mm(k)

, (14)

where PR
mm is the auto spectrum of dark matter, and

PR
mX is the cross power spectrum between the sample

X and dark matter. The bias defined using the cross
power spectrum is not affected by the shot noise. The
value of the linear bias parameter, b1,X , is determined
by minimizing χ2 statistics over the wavenumber range
0.01 ≤ k ≤ 0.04 h Mpc−1. The top panel of figure 2
shows the galaxy biasing normalized by the linear bias,
bX(k)/b1,X = PR

mX(k)/
[
PR
mm(k)b1,X

]
. In the large-scale

limit, the normalized bias for all the samples approaches
unity. The values of b1,X in the large-scale limit are sum-
marized in table I. As we have seen for halos in [35],
the galaxy bias deviates from a constant at increasingly
larger scales for a more biased sample. For a compari-
son, we show the results for the two halo mass bin sam-
ples measured in [35] as [Pmh

00 (k)]1/2, each of which has
a bias value similar to the whole galaxy sample (“bin2”
halos) and the satellite sample (“bin3” halos). We see
that they are similar, although not identical, possibly a
consequence of having a different halo mass distribution.
However, some of the difference appears to be simply an
error in the overall bias due to noise in the bias determi-
nation at low k.
We next look at the nonlinearity of the auto spec-

trum of a given galaxy sample X , PR
XX(k), and the

cross spectrum between samples X and Y , PR
XY (k), us-

ing the bias parameters determined above. The bot-
tom panel of figure 2 shows the auto spectrum nor-
malized as PR

XX(k)/
[
PR
mm(k)b21,X

]
and the cross power
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FIG. 2: (top) The cross-correlation PR
mX normalized by

b1,XPR
mm, where X denotes samples described in the panel

and b1,X is the linear bias determined in the large-scale limit.
(bottom) The normalized auto spectrum PR

XX/b21,XPR
mm and

cross spectrum of the samples X and Y , PR
XY /b1,Xb1,Y PR

mm.
The magenta dotted and dot-dashed lines are respectively the
results for PR

cBs and PR
sBsB

where the 1-halo contributions are
eliminated.

as PR
XY (k)/

[
PR
mm(k)b1,Xb1,Y

]
, where b1,X is again the

large-scale limit of bX(k) determined from the cross-
power spectrum with matter PR

mX . The black solid line
is the result for the whole galaxy sample PR

gg. The red
and blue lines show the results for the auto spectra of
centrals and satellites, respectively, while the green line
shows the result for the cross spectrum between them.
The shot noise for the spectra that have 1-halo contri-
butions is known to deviate from unity in the large-scale
limit [e.g., 75–78]. Although PR

cs also contains a 1-halo
contribution (that is, PR1h

cBs ), it is a minor effect of order

∼10%, (see section III), and thus PR
cs/

[
PR
mmb1,cb1,s

]
is

consistent with unity in the k → 0 limit. However, the
deviation for PR

cBs from unity is more prominent at large

scales. Unlike PR
cs, one can see the clear deviation for PR

ss

because the 1-halo effect is ∼43%. The normalized power
spectra that have only 2-halo contributions are well de-
scribed by constants in the k → 0 limit. Even the results
for the spectra PR

cBs and PR
sBsB , after eliminating 1-halo

contributions, become constant. These results confirm
that the normalized spectra with 2-halo terms have the

same power spectrum shape. We again see some small
differences between the halo sample corresponding to the
same bias as the centrals, and the centrals. Some of this
is due to an overall error in bias determination.

C. Halo satellite radius

In this subsection we examine if the effect of the halo
profile on 1-halo and 2-halo terms can be modeled by the
leading order correction which is proportional to k2R2

X

where RX is the typical radius for a given galaxy sam-
ple X inside halos. This model will be tested with the
simulation measurements.
We can write the measured power spectra that have

both 1-halo and 2-halo contributions, P̃R
XY where XY =

{cBs, sBsB}, as

P̃R
cBs(k) = PR1h

cBs (k) + PR2h
cBs (k), (15)

P̃R
sBsB (k) = PR1h

sBsB (k) + PR2h
sBsB (k) + σ2

n,sB . (16)

The 2-halo terms PR2h
XY are related to the measured spec-

tra P̃R2h
XY through equations 10 and 12. In the k → 0

limit, the 1-halo terms PR1h
XY are a constant and behave

as white noise, PR1h
cBs = Σ2

cB and PR1h
sBsB = Σ2

sB (see [e.g.,
78]). At high k, the halo density profile damps both the
1-halo and 2-halo terms [50, 79], and we consider the
leading-order k2R2 corrections for both terms, where R
is the typical halo radius. Thus, the 1-halo term deviates
from a constant as

PR1h
XY (k) = Σ2

Y

(
1− k2[R2

X +R2
Y ]
)
. (17)

Note that for PcBs, RcB ≪ Rs, so we consider only Rs

and set RcB = 0. Similarly, when including the leading-
order profile correction, the 2-halo terms become

PR2h
cBs (k) = P̃R2h

cBs (k) − Σ2
cB

− b1,cBb1,sPlin(k)k
2R2

s, (18)

PR2h
sBsB (k) = P̃R2h

sBsB (k) − σ2
n,sB

− ΣsB − 2b21,sBPlin(k)k
2R2

sB .(19)

By inserting equation (17) into equations (15) and (18)
for PR

cBs and (16) and (19) for PR
sBsB , we obtain

P̃R2h
cBS − P̃R

cBs =
[
Σ2

cB + b1,cBb1,sPlin

]
k2R2

s, (20)

P̃R2h
sBsB − P̃R

sBsB = 2
[
Σ2

sB + b21,sBPlin

]
k2R2

sB . (21)

They are the results of the model using the leading-order
k2R2 corrections.
Note that the terms inside the brackets of the right

hand sides of equations 20 and 21 are simply a halo model
expression of the measured spectra, so we can instead
write

P̃R2h
cBs − P̃R

cBs = P̃R
cBsk

2R2
s, (22)

P̃R2h
sBsB − P̃R

sBsB = 2
[
P̃R
sBsB − σ2

n,sB

]
k2R2

sB . (23)
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FIG. 3: Top left panel: The difference between the power spec-
trum of centrals (inside halos with satellites, cB) and satel-
lites, and the power spectrum of same centrals with satellites

replaced by halo centers, P̃R2h
cBs − P̃R

cBs (red). The blue dashed

line shows PR
cBs(= P̃R

cBs). The horizontal dotted line is the

expected 1-halo term at the large-scale limit, PR1h
cBs = Σ2

cB
.

Top right panel: Same as the top left panel but for the power
spectrum of satellites that have one or more satellite in the

same halo, P̃R2h
sBsB

− P̃R
sBsB

. The blue dashed line shows

PR
sBsB

= P̃R
sBsB

−σ2

n,sB
and the horizontal line PR1h

sBsB
= Σ2

sB
.

Bottom left panel: Typical satellite radius R2

s as a function
of k computed from equation (20) with (blue) and without
(green) the 2-halo correction, and from equation (22) (red).
For clarity error bars are shown only for the latter result. Bot-
tom right panel: Same as the bottom left panel but for the
auto spectrum, thus the formula is given by equations (21)
and (23).

In the top left panel of figure 3, we show the result for
the cross power spectrum between centrals that have one

or more satellites and satellites, P̃R2h
cBs − P̃R

cBs. The hori-

zontal solid line is the expected shot noise Σ2
cB . The blue

dashed line shows the full power spectrum, PR
cBs(= P̃R

cB ).
The bottom left panel shows the square of the halo ra-
dius, R2

s, for our two models described above. The
green lines are the result of equation 20 when the profile
correction to the 2-halo term (equation 18) is ignored,

R2
s =

(
P̃R2h
cBs − P̃R

cBs

)
/k2Σ2

cB . The rise of Rs at large

scales is caused by the absence of the correction. In-
cluding the 2-halo correction, presented as the blue line,
makes the lines flat. The result of the full model (equa-
tion 22) is presented as the red line. The error bars are
shown only for this result for clarity. The right panels
are the same as the left panels but for the auto power

spectrum of the satellites that have at least one another

satellite in the same halo, P̃R2h
sBsB − P̃R

sBsB . The right bot-
tom panel of figure 3 shows our models for RsB . We find
RsB > Rs as expected, and also our models give nearly
a constant value of RsB . The typical satellite radius
is about 0.3Mpc/h for central-satellite pairs,and slightly
larger for satellite-satellite pairs, as expected since the
latter are in larger halos.
Our models with Rs can correct the effects of the halo

density profile, and the parameters can be tied to the
typical extent of satellites inside the halos. However, the
effect on the full galaxy sample up to k = 0.5 h Mpc−1

is small: the effects are of order 3% at k ∼ 0.5 h Mpc−1,
for central-satellite pairs, and of order 10% for satellite-
satellite pairs, but since the first one is downweighted by
the satellite fraction, and the second one by satellite frac-
tion squared, for a typical value of the satellite fraction
of 10% the overall effect is less than 1%. Thus in the fol-
lowing analysis we do not include the profile correction
in the modeling.

D. Redshift-space power spectra

We present next the measurements of redshift-space
power spectra, PS

XX and PS
XY , where X and Y are the

given samples, (g, c, s, and so on). As in the case of the
real-space power spectra, the effect of shot noise for the
auto power spectrum in redshift space is assumed to be

Poisson, such that PS
XX(k, µ) = P̃S

XX(k, µ) − σ2
n,X . In

figure 4, we show the redshift-space 2D power spectrum
of the mock galaxy sample, PS

gg(k, µ), for the 5 differ-
ent µ bins as the black solid lines. The red, blue, and
green curves respectively show the contributions of the
auto-correlations of central galaxies, satellite galaxies,
and their cross-correlations to the full spectrum. Because
PS(k, µ = 0) = PR(k), all the spectra PS(k, µ = 0.1)
shown in the top left panel are very similar to the re-
sults presented in figure 1. At higher µ, the spectra PS

cs

and PS
ss are strongly suppressed at small scales because

of the nonlinear velocity dispersion including the FoG
effect, which also leads to the suppression of the total
galaxy spectrum PS

gg. The decomposed cross-power spec-

tra between centrals and satellites, PS
cAs and PS

cBs are pre-
sented as the green dashed and dotted lines, respectively.
The 1-halo term of PS

cBs dominates PS
cs at small scales,

and one can see that the suppression of the amplitude
of PS

cs for large µ is caused by the same term. Likewise,
the decomposed auto spectra of satellites, PsAsA , PsAsB ,
PsBsB , are shown as the blue dashed, dotted and dot-
dashed lines, and PS

sBsB , which has 1-halo contributions,
becomes dominant at small scales.
As we did in previous sections for real space, the 2-

halo contributions of the two terms that also contain 1-
halo contributions, PS2h

cBs and PS2h
sBsB , can be obtained by

replacing satellite positions by halo centers. Here, we
keep the velocity of one of the satellites in the same halo
chosen randomly. As in the case for real space (equations
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FIG. 4: 2D Power spectrum of mock LRG sample PS
gg(k, µ) denoted as the black points with lines and the contributions from

central and satellite LRGs to it. The width of µ bin is 0.2 centered around the values shown in each panel. The meaning of
the color and type of each line is the same as that in figure 1.
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FIG. 5: Multipole moments of galaxy power spectrum (PS
gg,l), the monopole (left), quadrupole (middle) and hexadecapole

(right). The meaning of the color and style of each line is the same as in figures 1 and 4. The sign of the quadrupoles changes
from positive to negative at small scales except for PS

cc,2.

10 and 12), we have

PS2h
cBs (k, µ) = P̃S2h

cBs (k, µ)− Σ2
cB , (24)

PS2h
sBsB (k, µ) = P̃S2h

sBsB (k, µ)− σ2
n,sB − Σ2

sB , (25)

where ΣcB and ΣsB are given in equations (11) and (13).
They are shown in figure 4 as the dotted and dot-dashed
magenta lines, respectively.
When analyzing real data, the multipole moments of

the redshift-space power spectrum are often used to re-
duce the degrees of freedom, thus simplifying the anal-
ysis. The multipoles are described using Legendre poly-
nomials Pl(µ) as

PS
l (k) = (2l + 1)

∫ 1

0

PS(k, µ)Pl(µ)dµ. (26)

Figure 5 presents the redshift-space multipoles: from the
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left, the monopole (l = 0), quadrupole (l = 2), and hex-
adecapole (l = 4). Similar plots are shown by [59]. In
the following section we will present results for the full
2D spectrum PS(k, µ) rather than the multipoles in or-
der to more closely examine any small deviations of our
theoretical modeling from N -body measurements.

V. MODELING THE GALAXY

REDSHIFT-SPACE POWER SPECTRUM

The galaxy power spectrum in redshift space in our
formalism is given by equation 5, and in this section, we
present the prediction for each term in equations 6 and
7. We consider two models for the redshift-space power
spectrum of galaxies: one based on N -body simulations
(section VA) and another based on nonlinear perturba-
tion theory (section VB).
Satellite galaxies have large, nonlinear velocities in-

side their host halos which suppress the clustering am-
plitude relative to linear theory at small scales, a phe-
nomenon known as the FoG effect [44]. In previous stud-
ies, the effect has been modeled with a single damp-
ing factor G(kµ;σv), with σv corresponding to the ve-
locity dispersion of a given system, and the redshift-
space power spectrum of galaxies modeled as PS

gg(k, µ) =

G2(kµ;σv)P
S
hh(k, µ), where PS

hh is the halo power spec-
trum [e.g., 14, 33, 34, 47, 48].
Only the density field of satellite galaxies is affected by

the nonlinear velocity dispersion. Considering this fact,
the four power spectra that have only 2-halo contribu-
tions, namely PS

XY where XY = {cc, cAs, sAsA, sAsB}
(see equation 6), are given by

PS
cc(k, µ) = PS

cc,h(k, µ) (27)

PS
cAs(k, µ) = G(kµ;σv,s)P

S
cAs,h(k, µ), (28)

PS
sAsA(k, µ) = G2(kµ;σv,sA)P

S
sAsA,h(k, µ), (29)

PS
sAsB (k, µ) = G(kµ;σv,sA)G(kµ;σv,sB )

×PS
sAsB ,h(k, µ), (30)

where PS
XX,h represents the auto power spectrum of ha-

los in which the galaxies X reside, and PS
XY,h the cross

spectrum of halos in which galaxiesX and Y reside. Note
that the halo spectrum PS

XX,h or PS
XY,h needs to be dis-

tinguished from PS2h
XX or PS2h

XY presented in section IVD
because the latter is the 2-halo term of the galaxy power
spectrum, thus it is affected by the nonlinear velocity dis-
persion effect. For the Poisson shot noise model, we have

PS
XY,h = P̃S

XY,h and PS
XX,h = P̃S

XX,h − σ2
n,X for these

four halo spectra. Under the assumption of linear per-
turbation theory, the spectrum PS

XY,h converges to the

linear RSD power spectrum originally proposed by [1],
PS
XY,h(k, µ) = (b1,X+fµ2)(b1,Y +fµ2)Plin(k), where Plin

is the linear power spectrum of underlying dark matter
in real space.
The remaining two terms are the cross power spectrum

between the centrals that have satellite(s) in the same

halo and satellite galaxies, PS
cBs, and the auto spectrum

of satellites that have at least one other satellite in the
same halo, PS

sBsB . As we have seen in section II, these
spectra have both 1-halo and 2-halo contributions, and
the shot noise deviates from a constant due to the scale-
dependence of the 1-halo terms (although we ignore this
effect in the full model because of low satellite fraction).
Consequently, modeling these spectra is not as straight-
forward as for those terms that contain only 2-halo con-
tributions.
Nevertheless, we can follow the same procedure for the

spectra that have 1-halo contributions. The cross spec-
trum of the centrals that contain satellites within the
same halo and the satellites, PS

cBs(= P̃S
cBs), can be mod-

eled as

PS
cBs(k, µ) = G(kµ;σv,s)

[
P̃S
cBs,h(k, µ)− Σ2

cB

]

+G(kµ;σv,s)Σ
2
cB

= G(kµ;σv,s)P̃
S
cBs,h(k, µ) (31)

where the shot noise term Σ2
cB is given by equation 11.

Likewise, the auto power spectrum of the satellites that
have another satellite(s) in the same halos, PS

sBsB , can
be described as

PS
sBsB (k, µ) = P̃S

sBsB (k, µ)− σ2
n,sB

= G2
2h(kµ;σv,sB )

×
[
P̃S
sBsB ,h(k, µ)− Σ2

sB − σ2
n,sB

]
,

+ G2
1h(kµ;σv,sB )Σ

2
sB (32)

where ΣsB is given by (13). G1h and G2h are the damp-
ing factors due to the FoG effect on 1-halo and 2-halo
terms, respectively. In the general case with a wide halo
mass distribution they would be different because 1 and
2 halo terms have different weightings as a function of
the halo mass, while for a narrow halo mass distribu-
tion we expect the same damping factor for the two,
G1h = G2h ≡ G. Our goal is to divide up the correlations
into individual contributions from components that have
a relatively narrow mass distribution (centrals with and
without satellites, satellites with other satellite pairs...),
and we are thus trading the simplicity of the modeling of
individual terms with narrow halo mass distribution with
the complexity of having several terms that we need to
model. Thus we have

PS
sBsB (k, µ) = G2(kµ;σv,sBsB )

[
P̃S
sBsB ,h(k, µ)− σ2

n,sB

]
.

(33)
Equations 27–30, 31 and 33 are what we will predict with
two ways in the following subsections. Note that even
though our model splits FoG effects into 1 and 2 halo
terms, we could have also modeled it simply by multiply-
ing FoG terms on the total power spectrum combining
the two, in analogy of halo profile effects, where equa-
tions 20-21 are equivalent to equations 22-23.
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Gaussian and exponential distributions are usually
considered for pairwise velocity dispersion in configu-
ration space, which correspond to the Gaussian and
Lorentzian functions in Fourier space, respectively [47–
49],

G(kµ;σv) =

{
e−k2µ2σ2

v
/2 Gaussian,(

1 + k2µ2σ2
v/2

)−2
Lorentzian.

(34)

Note that the Lorentzian function has a form modified
from the commonly-used form in the literature. There
is no formal way to derive these, so we simply adopt
whichever works best. See [27] for a more generalized
functional form for the nonlinear velocity dispersion ef-
fect that approaches the Gaussian and Lorentzian forms
as the two limit cases. Under the assumption that satel-
lites follow the virialized motions inside the halos, the ve-
locity dispersion of the satellite galaxies about the center
of mass of the host halo can be described as a function
of halo mass [e.g., 54],

σ2
v(M) = σ2

v,0

(
M

1013M⊙/h

)2/3

, (35)

where the normalization σv,0 depends on both the as-
sumed RSD model and the functional form of the damp-
ing term (equation 34). The suppression of the power
at small scales due to the damping factor is different for
different PS

XY terms because the galaxies in each subsam-
ple reside in halos with different mass. However, for each
RSD model of the galaxy power spectrum PS

gg, there is
only one free parameter for the velocity dispersion, σv,0.
In practice of course even this assumption is not valid
to some extent: one can have radial profile of satellites
to vary with the halo mass in a way that does not scale
with the virial radius, for example. We will ignore these
considerations.

A. Using redshift-space halo power spectra from

simulations

In this subsection, we consider the case where we have
a perfect model to describe the power spectrum of halos

in redshift space, P̃XX,h and P̃XY,h. Specifically, we use
measurements from N -body simulations for the redshift-
space power spectra of halos that have the same bias at
large scales and the same number density as the target
galaxies. In section VB, we relax this assumption and use
nonlinear perturbation theory to model the halo power
spectrum itself.
Central galaxies reside in the centers of their halos and

thus, the halo spectrum PS
cc,h in equation 27 can be di-

rectly measured from simulations. We compute the halo
spectra in equations 28 - 30 by replacing the position of
each satellite galaxy with the center of the halo and as-
signing the halo velocity to the replaced satellites. This
methodology will remove any satellite FoG effects, leav-
ing only RSD due to the halo velocity field.

The measurements from N -body simulations for the
ratios PS

cAs/P
S
cAs,h, PS

sAsA/P
S
sAsA,h, and PS

sAsB/P
S
sAsB ,h

are presented as functions of k and µ in the top panels of
figure 6, from the left to right, respectively. If the mod-
els in equations 28 - 30 are correct, the plotted results
should be equivalent to the damping factors G(kµ;σv,s),
G(kµ;σv,sA)

2, and G(kµ;σv,sA )G(kµ;σv,sB ), respec-
tively. For the Gaussian and Lorentzian damping mod-
els, we adopt the value of the parameter σv,0 = 270 km/s
and σv,0 = 210 km/s, respectively. To compute the var-

ious velocity dispersions, we use the fact that 〈M2/3
s 〉 =

2.04×109( h−1M⊙)
2/3, 〈M2/3

sA 〉 = 1.43×109( h−1M⊙)
2/3,

and 〈M2/3
sB 〉 = 2.85× 109( h−1M⊙)

2/3, where MX is the
average mass of halos that host satellite galaxy sample
X . Thus, equation 35 predicts σv,s = 5.67 h−1 Mpc,
σv,sA = 4.74 h−1 Mpc and σv,sB = 6.69 h−1 Mpc
for the Gaussian model and σv,s = 4.41 h−1 Mpc,
σv,sA = 3.68 h−1 Mpc and σv,sB = 5.21 h−1 Mpc for the
Lorentzian model. The Gaussian and Lorentzian damp-
ing models using these velocity dispersions are shown as
the dashed and solid lines in the top panels of figure 6.

The Gaussian model fails to explain the small scale
RSD of PS

cAs (k ∼ 0.2 h Mpc−1 for µ = 0.9), while the
modified Lorentzian model matches the simulation result
for all the scales probed here (k ∼ 0.4 h Mpc−1). The
results for PS

sAsA and PS
sAsB are respectively shown at the

middle and right panels of the top set in figure 6. The
Gaussian model works relatively well for these terms, but
the Lorentzian model has a near-perfect agreement with
the N -body results.

The remaining two terms we wish to model are PS
cBs

and PS
sBsB which have both 1-halo and 2-halo contribu-

tions. At the lower set of figure 6, we plot PS
cBs/P̃

S
cBs,h

(left) and PS
sBsB/[P̃

S
sBsB − σ2

n,sB ] (right) as functions

of (k, µ). For PS
sBsB term, the mass term in equa-

tion 35, M2/3, needs to be weighted by the number
of satellite pairs in each halo. Because the average

mass weighted by the number of the pairs is 〈M2/3
sB 〉 =

3.78 × 109( h−1M⊙)
2/3, the σv,0 values the same as

those for 2-halo terms for Gaussian and Lorentzian mod-
els, G(kµ;σv,sBsB ), predict σv,sBsB = 7.7 h−1 Mpc and
σv,sBsB = 6.0 h−1 Mpc, respectively. We find that
both the Gaussian and Lorentzian models can explain
the measurement of PS

sBsB well. On the other hand,
we adopt the value of the parameter σv,0 = 260km/s
and σv,0 = 195km/s, respectively, for the Gaussian and
Lorentzian models for PcBs, which are smaller than those
for 2-halo terms by about 7% and 4%. Since we have a
wide halo mass range particularly for the halos which
host the central galaxies with satellite(s), cB, it is not
surprising that the 1-halo term can have slightly a differ-
ent value of σv,0.

We combine all the above modeling results to see how
well our model agrees with the total galaxy power spec-
trum measured from simulations, PS

gg. At the top panel
of figure 7, the points with the error bars show the galaxy
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FIG. 6: The ratio of the redshift-space power spectra for various galaxy samples to the corresponding halo spectra. The
halo spectra are computed by replacing satellite positions and velocities by those of halos. The top panels show spectra that
contain only 2-halo contributions: the correlation between centrals without satellites and satellites (left), the auto-correlation
of satellites that have no other satellites in the same halo (middle), and the cross-correlation between satellites with and
without other satellites in the same halo (right). The bottom panels show the spectra which have both 1-halo and 2-halo
contributions: the cross-correlation between the centrals that have satellite(s) in the same halo and satellite galaxies (left) and
the auto-correlation of satellites that have at least one other satellite in the same halo (right). The dashed and solid lines are
respectively the predictions for the Gaussian and Lorentzian damping functions due to the nonlinear velocity dispersion effect.

power spectrum normalized by the linear power spectrum
without baryon acoustic oscillation (BAO) wiggles with
the linear Kaiser factor, PS

NW = (1 + fµ2/b1,g)
2PR

NW .
The dashed lines the combinations of our modeling re-
sults for halo RSD from simulations (equations 27 – 31,
33 –35) with a single parameter for the velocity disper-
sion, σv,0 = 2.1 h−1 Mpc. The dashed lines in the bot-
tom panel of figure 7 show PS,sim

gg /PS,model
gg − 1, where

PS,sim
gg and PS,model

gg are the measured and modeled full
galaxy power spectrum, respectively. We can see that our
model is accurate with 2.5% up to k ∼ 0.4 h Mpc−1. The
solid lines at the top panel of figure 7 is the same as the
dashed lines but we adopt σv,0 = 1.95 h−1 Mpc for PcBs.
The points and solid lines with the error bars present the
model accuracy, and we achieve the agreement of ∼ 1%
at k ∼ 0.4 h Mpc−1 and ∼ 1.5% at k ∼ 0.5 h Mpc−1.

B. Using redshift-space halo power spectrum from

perturbation theory

In this subsection, we present a model for the galaxy
power spectrum in redshift space where we model the
halo power spectrum using perturbation theory, rather
than measurements from N -body simulations as in sec-
tion VA. The perturbation theory model used here re-
lies on expressing the redshift-space halo density field in
terms of moments of the distribution function (DF), and
the approach has been developed and tested in a previous
series of papers [26–28, 35, 37, 38]. If we consider halo
samples X and Y , with linear biases b1,X and b1,Y , the
redshift-space power spectrum in the DF model is given
by
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FIG. 7: Top : the total galaxy power spectrum in redshift
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in redshift space [80]. The ratio of the redshift-space power
spectra for various galaxy samples to the corresponding halo
spectra. The points with error bars are the spectrum directly
measured from simulations. The dashed lines are our model
using halo spectra from simulations with a single parameter
of σv,0 = 2.1 h−1 Mpc, while the solid lines are the case when
we adopt σv,0 = 1.95 h−1 Mpc for PcBs. Vertical offsets have
been added for clarity. Bottom : the ratio of the measured
spectrum to our model for the two cases of treating σv,0 de-
scribed above. For clarity error bars are added only for the
µ = 0.5 result of the case when the different value of σv,0 is
adopted for PcBs.

PS
XY,h(k, µ) =

∞∑

L=0

∞∑

L′=0

(−1)L
′

L!L′!

(
ikµ

H

)L+L′

PXY,h
LL′ (k, µ),

(36)
where H = aH is the conformal Hubble factor, and

PXY,h
LL′ is the power spectrum of moments L and L′ of

the radial halo velocity field, weighted by the halo den-
sity field. These spectra are defined as

PXY,h
LL′ (k)(2π)3δD(k−k

′) =
〈
TX,L
‖ (k)T Y,L′∗

‖ (k′)
〉
, (37)

where TX,L
‖ (k) is the Fourier transform of the halo ve-

locity moments weighted by halo density, TX,L
‖ (x) =

[1 + δX(x)] vL‖,X . For example, PXX,h
00 represents the

halo density auto power spectrum of sample X , whereas

PXX,h
01 is the cross-correlation of density and radial mo-

mentum for halo sample X .

The DF approach naturally produces an expansion of
PS
XY,h(k, µ) in even powers of µ, with a finite number of

correlators contributing at a given power of µ. For the
model presented here, we consider terms up to and in-
cluding µ4 order in the expansion of equation 36. The

spectra PXY,h
LL′ (k, µ) in equation 36 are defined with re-

spect to the halo field, and a biasing model is needed
to relate them to the correlators of the underlying dark
matter density field. We use a nonlocal and nonlinear
biasing model [41], which results in three biasing param-
eters per halo sample: b1, b002 , and b012 . The spectra

PXX,h
00 and PXX,h

01 have distinct values for second-order,
local bias b2 (see [37] for more details). As discussed in
[37], b002 and b012 have a roughly quadratic dependence
on the linear bias b1. We fit this dependence to simula-
tions and treat the quadratic biases as a function of b1
only. Thus, the linear bias b1,X is the only free bias pa-
rameter for halo sample X . Note that when evaluating
the cross spectrum PS

XY,h for halo samples X and Y , we
evaluate the model using the geometric mean of the lin-
ear biases, b1,XY ≡ (b1,Xb1,Y )

1/2. As shown in figure 2,
the power spectra of halos with broad and narrow mass
distributions (denoted as ”c” and ”bin2”, respectively)
have slightly different bias but very similar shapes, con-
firming that one can replace a broad mass distribution
of centrals with a narrow mass distribution. This may
not be such a good approximation for satellites, but if
the satellite fraction is low the overall effects are small as
well.

To evaluate the underlying dark matter correlators and
nonlinear biasing terms present in equation 36, we use
Eulerian perturbation theory, as described in detail in
[37]. Perturbation theory breaks down on small scales,
and in order to increase the accuracy of the DF model,
we use results calibrated from simulations in three in-
stances. First, we use the Halo Zeldovich model [81] for
the dark matter correlators P00 and P01, where P01 can
be related to P00 through P01 = µ2dP00/dlna [28]. This
model has been shown by [81] to be accurate to 1% to
k = 1 hMpc−1. Second, we use simulation measurements
for the functional forms of the cross-correlation between
dark matter density and velocity divergence, Pδθ, and
the µ4-dependence of the dark matter momentum den-
sity auto-correlation, P11[µ

4]. Specifically, P11[µ
4]/Plin

and Pδθ/Plin are interpolated from simulations as a func-
tion of f2σ2

8 and fσ2
8 , respectively. Finally, there are

corrections to the Poisson model for shot noise σ2
n,X due

to halo exclusion effects and nonlinear clustering [37, 78].
As first shown in [78], these two corrections to the halo
stochasticity must be considered together, with exclusion
leading to a suppression of power in the low-k limit and
nonlinear clustering providing an enhancement. The de-
viations from Poisson stochasticity are typically a few
percent in the low-k limit and must vanish in the high-
k limit, leading to a complicated scale-dependence. In
previous work, [37] modeled the halo stochasticity (de-
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FIG. 8: The ratio of the 2-halo redshift-space galaxy power spectra to the corresponding halo spectra modeled with the
distribution function approach described in section VB. The top left panel shows the result for the auto-spectrum of centrals
(XY ) = (cc). Centrals have no velocity dispersion, so the expected damping (solid line) is simply unity. For clarity vertical
offsets are added for results for different µ values. The top right panel shows the result for the cross power spectrum of centrals
that do not have satellites in the same halo and satellites (XY ) = (cAs). The bottom left and right panels show the results for
the auto spectrum of satellites that do not have other satellites in the same halos (XY ) = (sAsA) and the cross power between
such satellites and satellites that do have satellite(s) in the same halo (XY ) = (sAsB). The solid lines show the predictions for
the Lorentzian velocity dispersion damping factor due to the FoG effect (see text for values).

noted as Λ in [37]) with an ad-hoc fitting formula, which
worked well over the desired range of scales. Rather than
use this fitting formula, we measure the halo stochastic-
ity directly from simulations over a range of redshifts and
halo mass bins, and then interpolate the results as a func-
tion of linear bias. The results interpolated directly from
simulations described here are designed to be accurate
to a maximum wavenumber of k = 0.4 hMpc−1. Im-
proved theoretical modeling, independent of simulation
measurements, is actively being developed.

We can compute the redshift-space halo spectra PS
XY,h

in the four 2-halo galaxy power spectra of equations 27 –
30 using the DF approach described in this section. Note
that PS

cAs,h and PS
sAsB ,h are cross power spectra of two

halo samples, and we model the spectra using the geo-
metric mean of the linear biases of the individual samples.
The ratio of the simulation measurements for these four
2-halo galaxy spectra to the corresponding halo spectra

modeled with the DF approach in redshift space is shown
in figure 8. For PS

cAs, P
S
sAsA , and PS

sAsB , the solid lines
show the suppression factor due to the FoG effect using
the Lorentzian model. No FoG suppression is expected
for Pcc so the solid lines are simply unity. To compute the
halo spectra, the linear biases are taken from table I, and
we vary the FoG velocity dispersions to obtain the best fit
possible. The values we obtain are σv,s = 4.1 h−1 Mpc,
σv,sA = 3.5 h−1 Mpc, and σv,sB = 5 h−1 Mpc. These
values are in rough agreement with those predicted using
equation 35, with discrepancies likely due to deficiencies
in the RSD model at high k and high µ, which are par-
tially compensated by the FoG damping.

We can also combine both 2-halo and 1-halo terms
in order to examine the accuracy of the DF model in
describing the total galaxy redshift-space power spec-
trum, PS

gg(k, µ). Similar to section VA, we use equa-

tions 31 and 32 to model PS
cBs and PS

sBsB , and we use
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FIG. 9: Top : the total redshift-space galaxy power spec-
trum PS

gg(k, µ) as measured from simulations (points with er-

rors). The solid lines show the prediction for PS
gg using the

distribution function model for the halo spectra of the various
2-halo terms contributing to the total power. The power spec-
tra have been normalized by the linear Kaiser redshift space
power spectrum, using the the no-wiggle linear power spec-
trum [80]. Vertical offsets have been added for clarity. Bottom
: the ratio of the measured spectrum to our DF model. For
clarity the error bars are added only for the µ = 0.5 result.

the DF model to describe the halo spectra that enter
into these equations. The FoG velocity dispersions used
for these terms are the same as described previously:
σv,s = 4.1 h−1 Mpc and σv,sB = 5 h−1 Mpc. The same
values are used for both the 1-halo and 2-halo contri-
butions. The amplitudes of the 1-halo terms for PS

cBs

and PS
sBsB are treated as constant and equal to Σ2

cB

and Σ2
sB , respectively. We show the simulation mea-

surements for PS
gg(k, µ) (points with errors) as well as

the DF model plus FoG damping prediction (solid lines)
at the top panel of figure 9. The power spectra in this
figure have been normalized by the linear Kaiser red-
shift space power spectrum, using the the no-wiggle lin-
ear power spectrum [80]. The bottom panel of figure 9
shows the accuracy of our DF model compared to the
measurement, PS,sim

gg /PS,model
gg − 1. Using the DF model

described here for halo spectra, we can successfully de-
scribe the total galaxy spectrum in redshift space to small
scales, roughly k ∼ 0.4 hMpc−1 within 3%. The modeled
spectrum breaks down significantly at k > 0.4 h−1 Mpc,
because the underlying PT breaks down at these scales

and the simulation-calibrated results have only been fit
to k ≤ 0.4 h−1 Mpc in order to improve the accuracy
only to this wavenumber.
The results shown in figure 9 use three free parameters,

given by the three FoG velocity dispersions σv,s, σv,sA ,
and σv,sB ; all other parameters (linear biases, sample
fractions, etc) are set to their fiducial values listed in
table I. In comparison to the results of VA, where sim-
ulation measurements are used for halo spectra, the DF
model achieves a slightly worse precision (1% vs. 3% at
k ∼ 0.4 hMpc−1) and uses one additional free parameter
to model the FoG velocity dispersions.

VI. CONCLUSIONS

In this paper we have investigated the redshift-space
power spectrum of galaxies using N -body simulations
and developed a model based on perturbation theory
(PT) of dark matter halos. In previous work [37] we have
established the requirements and reach of PT models on
halos, and in this paper our focus is on effects induced
by satellites that are not at the halo centers, inducing
effects that go beyond PT halo modeling. We have ar-
gued that the simplest approach to describe these effects
is within the context of a halo model, where the radial
distribution of satellites inside the halo induces both 2-
halo and 1-halo effects. In real space these effects add
additional small scale clustering term, the so called 1-
halo term, which appears at low k as a white noise like
term. We have investigated the departures of this term
from the white noise and found that they can be well ap-
proximated as a −k2R2 relative correction to the 1-halo
power spectrum. The corresponding 2-halo term effects
are also very small and scale as −k2R2PL(k). Together
the two effects can be modeled as −k2R2P (k) correction,
but are in any case very small.
In redshift space the satellites are spread out in the

radial direction by their virial velocities inside the halos,
an effect called Fingers-of-God (FoG). These FoG effects
also induce both 1-halo and 2-halo correlations. These
effects are large and over the range of scales of interest
they cannot be modeled simply by a k2σ2

v correction. In-
stead, we explore several FoG resummations proposed in
the literature, finding that Lorentzian is a good fit over
the range of interest. To provide a more physical inter-
pretation we further decompose these galaxy subsamples
into subsamples that can be approximately described as
having a narrow halo mass distribution. The advantage
of this decomposition is that there is just a single FoG
term that is needed to describe both the 1-halo and 2-
halo FoG, and that this term is related to the typical
virial velocity corresponding to the halos of a given mass.
We divide centrals into those with and without satellite
inside the same halos, and satellites into those with and
without another satellite(s) inside the same halos. The
decomposed terms of the observed power spectrum can
be uniquely related to 1-halo and 2-halo terms in a halo
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model and we assign each subsample their own FoG term.
But doing this we successfully model the contributions up
to k ∼ 0.4 h Mpc−1, and we can relate the FoG param-
eters to the underlying physical properties of the halos
like their halo mass.
Ultimately our goal is to model the observed galaxy

power spectrum from surveys such as BOSS [70, 71].
Our modeling contains many more parameters than the
current state-of-the art models of RSD power spectrum,
which typically combine PT halo models with a single
white noise amplitude and a single FoG term to account
for satellite effects [8]. These parameters combine all the
different terms discussed here into a single one, and as we
argued there should be several FoG terms that act differ-
ently on different scales. As a consequence these models
typically fail for k > 0.2 h Mpc−1, while our models ex-
tend the reach up to k ∼ 0.4 h Mpc−1. Moreover, our
FoG parameters can be directly connected to the under-
lying halo mass of halos in which satellites live, and thus
the bias of the same halos, and our 1-halo amplitude can
be connected to the satellite fraction, so many of the pa-
rameters we introduced may have strong priors and do

not need to be fit from the data. There is thus hope
that such improved modeling of small scales will trans-
late into better cosmological constraints, as argued re-
cently for configuration space analysis [9], and we hope
to address this in the future.
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