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Recently there has been significant interest in the claim that dark matter axions gravitationally
thermalize and form a Bose-Einstein condensate with cosmologically long-range correlation. This
has potential consequences for galactic scale observations. Here we critically examine this claim.
We point out that there is an essential difference between the thermalization and formation of a
condensate due to repulsive interactions, which can indeed drive long-range order, and that due to
attractive interactions, which can lead to localized Bose clumps (stars or solitons) that only exhibit
short range correlation. While the difference between repulsion and attraction is not present in the
standard collisional Boltzmann equation, we argue that it is essential to the field theory dynamics,
and we explain why the latter analysis is appropriate for a condensate. Since the axion is primarily
governed by attractive interactions – gravitation and scalar-scalar contact interactions – we conclude
that while a Bose-Einstein condensate is formed, the claim of long-range correlation is unjustified.

I. INTRODUCTION

Cosmological observations, such as galaxy rotation
curves and anisotropies in the cosmic microwave back-
ground radiation, indicate that the majority of matter in
the universe is a non-radiating type known as dark matter
[1]. Dark matter appears to make up around five times
more mass than ordinary matter, yet we know very little
about its properties. Observational constraints indicate
that dark matter is non-baryonic, cold and collisionless
in nature, a picture known as cold dark matter [2]. It
is important to develop dark matter models with clear
signatures.

Several candidates for the dark matter particle have
been proposed, including weakly interacting massive par-
ticles, sterile neutrinos, and axions, among others. The
latter is a hypothesized particle introduced to solve the
CP problem in QCD [3–5]. This particle physics moti-
vation for axions make them a theoretically attractive
candidate. In addition, the proposed mass range and
non-relativistic behavior are fitting for the dark matter
problem.

Axion dark matter has a rich history, including compu-
tations that show the axion can plausibly carry the right
dark matter abundance, e.g., see Refs. [6–9]. Such ax-
ion dark matter is currently being explored in interesting
table top experiments, such as ADMX [10, 11], utilizing
the axion to photon coupling, which is a unique signature
(other proposed search strategies include Refs. [12, 13]).
Furthermore, axions in an inflationary cosmology can
generate interesting isocurvature signatures [14–16], and
various other interesting ideas include Refs. [17–21]. Here
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we examine a fascinating new proposal for a cosmological
or galactic scale signature of the axions, which is deeply
intertwined with their bosonic character.

Axions are essentially non-relativistic with an approx-
imately conserved particle number, and are produced at
high occupancy. Thus they have the capacity to form a
Bose-Einstein condensate (BEC). Recently, it has been
proposed that axionic dark matter will gravitationally
thermalize and form a BEC during the radiation domi-
nated era [22, 23]. It is then argued that this causes the
axion field’s correlation length to grow dramatically, be-
coming an appreciable fraction of the size of the horizon.
Furthermore, it is claimed that this produces a unique
signature of ∼ 10 kpc caustics with a ring geometry in
galaxies [24]. There have been many followup studies of
this fascinating idea including Refs. [25–28] and similar
but distinct ideas such as Refs. [29–32].

In this paper we examine whether it is plausible that
the axion’s correlation length grows dramatically. For
definiteness, we will focus on the case in which the Peccei-
Quinn phase transition happens after inflation, although
the opposite ordering is also possible. We show that while
long-range correlations can be established, in principle,
for repulsive interactions, they do not occur for attractive
interactions. Hence, although a Bose-Einstein conden-
sate is still formed, a long-range order is not established.
Our analysis applies to the QCD axion, but also applies
to any bosonic dark matter particle whose behavior is
dominated by attractive interactions. We demonstrate
why the properties of the condensate are captured by
classical field theory and we examine its equilibrium be-
havior.

This paper is organized as follows: In Section II we
introduce the non-relativistic field theory of axions. In
Section III we explain why the classical field approxima-
tion is valid. In Section IV we discuss the evolution of
modes around a homogeneous background. In Section V
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we discuss the equilibrium/ground state configurations.
In Section VI we discuss the evolution from realistic ini-
tial conditions and provide coherence length estimates.
In Section VII we summarize our results and discuss. Fi-
nally, in the Appendix we include details of FRW expan-
sion.

II. NON-RELATIVISTIC FIELD THEORY

The axion is a scalar field φ introduced to solve the
strong CP problem. At first approximation it is a mass-
less Goldstone boson associated with a spontaneously
broken global symmetry, but picks up a small mass due
to non-perturbative effects in QCD. This leads to the
following potential

V (φ) = Λ4(1− cos(φ/fa)) (1)

Here Λ ∼ 0.1 GeV is associated with the QCD scale, and
fa sets the symmetry breaking scale. It can be shown
that the abundance of axion dark matter in the universe
is determined by fa with value

Ωa ∼
(

fa
1011−12 GeV

)7/6

(2)

where the uncertainty in this expression is due to com-
plications involved in calculating non-perturbative QCD
effects, including the temperature dependence of the ax-
ion mass.

For small field values φ� fa, it is sufficient to expand
the potential as follows

V (φ) =
1

2
m2φ2 +

λ

4!
φ4 + . . . (3)

where m = Λ2/fa and λ = −Λ4/f4a < 0. Using this, we
have the following relativistic Lagrangian density

L =
1

2
(∂φ)2 − 1

2
m2φ2 − λ

4!
φ4 (4)

It is very useful to treat the axions in a non-relativistic
approximation, which is extremely well-justified. Ax-
ions interact far too weakly to be thermalized in the
early universe, so their production is dominated by the
misalignment mechanism: i.e., when the axion field ac-
quires a mass during the QCD phase transition, the
phase of the field is generally misaligned with the po-
tential energy minimum. As suggested by causality, the
field φ is expected initially to vary by an O(1) amount
from one Hubble patch to the next, which implies that
the typical initial wavenumber ki ∼ HQCD, the Hub-
ble parameter at the QCD phase transition. Numeri-
cally, HQCD ∼ T 2

QCD/MPl, where TQCD is the temper-
ature of the QCD phase transition, TQCD ∼ 0.1 GeV,

and MPl ≡ 1/
√

8πG ≈ 1018 GeV is the reduced Planck
mass, so ki ∼ 10−11 eV. The axion mass increases dur-
ing the phase transition toward its final value m, typi-
callyO(10−5 eV), so the axions are highly non-relativistic

shortly after the QCD phase transition. k redshifts
with the scale factor, so for example by the time of
matter-radiation equality, t ∼ 50, 000 years, the typi-
cal wavenumber is reduced further by factor of O(108).
During structure formation, the axions are accelerated
to galactic speeds of O(10−3) c, but the non-relativistic
approximation continues to be very accurate.

An important feature of the non-relativistic field the-
ory approximation is that particle-number violating pro-
cesses are ignored. This is highly accurate, since the
self-coupling λ = −Λ4/f4a is extremely small: for Λ ∼
0.1 GeV (typical QCD scale) and fa ∼ 1011 GeV (typi-
cal Peccei-Quinn scale), we have λ ∼ −10−48. The only
scattering process with an amplitude that is first order
in λ is the particle-number preserving process 2φ → 2φ,
since φ → 3φ and 3φ → φ are kinematically forbidden.
Particle-number changing processes, such as the annihi-
lation process 4φ→ 2φ, have cross sections that are sup-
pressed by an extra factor of λ2. When photon couplings
are included, the relativistic axion can decay to two pho-
tons, but the lifetime is estimated as τ ∼ (m/20 eV)5

times the age of the universe [33], which is 1028 times
the age of the universe for a typical mass of 10−5 eV.
Thus, all particle-number violating processes can be very
safely ignored.

In order to take the non-relativistic limit, let’s re-write
the real field φ in terms of a complex field ψ as follows

φ(x, t) =
1√
2m

(
e−imtψ(x, t) + eimtψ∗(x, t)

)
(5)

We substitute this into eq. (4) and dispense with terms
that go as powers of e−imt and eimt, as they are rapidly
varying and average out to approximately zero. We then
obtain the following non-relativistic Lagrangian for ψ

L =
i

2
(ψ̇ψ∗ − ψψ̇∗)− 1

2m
∇ψ∗ ·∇ψ − λ

16m2
(ψ∗ψ)2 (6)

For these non-relativistic fields, the momentum conjugate
to ψ is π = i ψ∗. Note that this Lagrangian only involves
a single time derivative on the complex field ψ.

Passing to the Hamiltonian and promoting the physical
quantities to operators for the purpose of quantization,
we obtain

Ĥ = Ĥkin + Ĥint (7)

where

Ĥkin =

∫
d3x

1

2m
∇ψ̂† ·∇ψ̂ (8)

Ĥint =

∫
d3x

λ

16m2
ψ̂†ψ̂†ψ̂ψ̂ (9)

The first term represents kinetic energy and the second
term represents a short range interaction; attractive for
λ < 0 and repulsive for λ > 0.

The local number density of particles is given by

n̂(x) = ψ̂†(x)ψ̂(x) (10)
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and the corresponding mass density is ρ̂(x) =

mψ̂†(x)ψ̂(x). With this understanding, it is straightfor-
ward to guess the form of the gravitational contribution
to the energy

Ĥgrav = −Gm
2

2

∫
d3x

∫
d3x′

ψ̂†(x)ψ̂†(x′)ψ̂(x)ψ̂(x′)

|x− x′|
(11)

The total Hamiltonian is the sum

Ĥ = Ĥkin + Ĥint + Ĥgrav (12)

Although we derived this Hamiltonian starting with
fields, we can also derive it using the more fundamen-
tal starting point of many-particle quantum mechanics.
Consider the following Hamiltonian for N non-relativistic
particles, interacting via a contact interaction and grav-
ity

Ĥ =

N∑
i=1

p̂2i
2m

+
λ

8m2

∑
i<j

δ3(x̂i− x̂j)−
∑
i<j

Gm2

|x̂i − x̂j |
(13)

It is useful to introduce creation and annihilation oper-
ators that act on particle states in the usual way and
satisfy standard commutation relations

[âk, â
†
k′ ] = (2π)3δ3(k − k′) (14)

Later we will make use of the following dimensionless
occupancy number

N̂k = â†k âk/V (15)

where V is the volume of the box in which the field theory
lives. The kinetic energy can be written in an obvious
way

Ĥkin =

∫
d3k

(2π)3
k2

2m
â†k âk (16)

and there is a similar representation for the other terms.
We can then pass to the field language by defining

ψ̂(x) ≡
∫

d3k

(2π)3
âk e

ikx (17)

and obtain the field representation of the Hamiltonian in
equation (12).

III. CLASSICAL FIELD THEORY
APPROXIMATION

Let us decompose the quantum field ψ̂ as

ψ̂ = ψ + δψ̂ (18)

where ψ is the expectation value in a given state 〈ψ̂〉 = ψ

and δψ̂ is the quantum correction. We would like to
estimate the relative size of the quantum correction to
the classical piece.

A. Occupancy Number

For coherent states with occupancy number N the typ-
ical relative size of the quantum correction for modes on
scales of the typical wavelengths is

δψ̂

ψ
∼ 1√

N
(19)

This relative quantum correction has an interpretation
as an analogue of “shot-noise” that occurs for photon
fluctuations around the classical electromagnetic field.

Hence we would like to estimate the occupancy num-
ber. For axions in our galaxy, the number density is given
by

ngal =
ρgal
m
≈ GeV/cm3

10−5 eV
=

1014

cm3
(20)

For typical viralized particles in the galaxy, the de Broglie
wavelength is given by

λdB =
2π

mv
≈ 2π

10−5 eV × 10−3
≈ 104 cm (21)

The characteristic occupancy number is then given by

N ∼ ngalλ3dB ≈ 1026 (22)

which is huge. This says that in the galaxy today, ax-
ions are in the high occupancy number regime. In fact
in the early universe, before galaxy formation, the typi-
cal occupancy number was even higher, since the typical
axion velocity was lower, which enhances the de Broglie
wavelength; we shall discuss this in Section VI D.

In this very high occupancy regime, the relative size of
the quantum corrections are very small. This means we
should be able to just use the classical field theory. So
let’s return to the field representation of Section II and
drop the “hats” on ψ. Then using the Hamilton-Jacobi
equations, we obtain the following approximate equation
of motion

i ψ̇ = − 1

2m
∇2ψ +

λ

8m2
|ψ|2ψ −Gm2ψ

∫
d3x′
|ψ(x′)|2

|x− x′|
(23)

This is rather more complicated than the standard one-
particle Schrödinger equation; this equation is non-linear
and non-local.

B. Free Theory Thermalization

Having turned to the classical field theory, one might
be concerned that it misses essential aspects of thermal-
ization. Indeed, one might be concerned that one cannot
see the details of any phase transition to a BEC. Strictly
speaking, ordinary classical fields do not thermalize due
to the Rayleigh-Jeans catastrophe at high wave numbers.
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However, if we cut off the theory at some high
wavenumber kUV, there is normally a well defined ther-
mal equilibrium. In fact the classical theory is able to
describe the phase transition. To see this, let us consider
a free field theory in contact with an external heat bath
at temperature T . The free energy functional is

F [ψ] =

∫
d3k

(2π)3

[
k2

2m
− µ(T )

]
|ψk|2 (24)

where µ(T ) is the chemical potential. The expectation
of the number of particles is given by the ratio of path
integrals

〈N〉 =

∫
DψN [ψ] exp (−F [ψ]/T )∫
Dψ exp (−F [ψ]/T )

(25)

where the number functional is

N [ψ] =

∫
d3k

(2π)3
|ψk|2 (26)

Carrying out the path integrals, and dividing by a vol-
ume factor, we obtain the number density nth of thermal
particles

nth =

∫
d3k

(2π)3
T

k2

2m − µ(T )
(27)

Cutting off the integral at |k| = kUV we obtain

nth =
mT kUV

π2

[
1−

√
2m|µ(T )|
kUV

tan−1

(
kUV√

2m|µ(T )|

)]
(28)

with µ(T ) ≤ 0. So long as the total number density of
particles is ntot < mTkUV/π

2, we can always solve this
equation for µ(T ), implying that all particles are thermal.
However if ntot > mTkUV/π

2, then µ(T ) is stuck at µ = 0
and not all particles can be thermal; there must be a
condensate of particles in the ground state. In the free
theory, the ground state is the k = 0 mode. (Later we
discuss the radical change that occurs when attractive
interactions are included). The critical temperature for
the phase transition is evidently

Tcrit =
π2 ntot
mkUV

(29)

The classical theory does not determine the cutoff kUV,
but if we adopt an estimate from quantum theory,

k2UV/2m = Tcrit, then we find Tcrit = (π4/2)1/3n
2/3
tot /m,

which differs by only 10% from the quantum mechanical

answer, Tcrit = 2π
(
ntot/ζ(3/2)

)2/3
/m. If we keep the

density of particles and the cutoff fixed, then the ratio of
the number of particles in the ground state condensate
nc to the total number of particles ntot is linear in the
temperature T , and given by

nc(T )

ntot
=

{
0 for T > Tcrit

1− T
Tcrit

for T < Tcrit
(30)

So for T � Tc almost all particles are in the condensate.
Since cosmological axions are at very high density and are
non-relativistic, we expect T � Tcrit, if indeed thermal
equilibrium is established.

The two-point correlation function 〈ψ∗(x)ψ(y)〉 can
also be computed in terms of the chemical potential. In
integral form it is

〈ψ∗(x)ψ(y)〉 =

∫
d3k

(2π)3
T

k2

2m − µ(T )
eik·(x−y) + nc(T )

(31)
where we have separated out the thermal piece and the
condensate piece. In the short distance limit |x−y| → 0
this is just the number density, as we computed above,
and is sensitive to the value kUV. On the other hand,
in the long distance limit |x − y| � 1/kUV, the depen-
dence on kUV is less important and only appears implic-
itly through µ(T ). In this limit the two-point correlation
function is

〈ψ∗(x)ψ(y)〉 =
mT

2π|x− y|
e−
√

2m|µ(T )||x−y| + nc(T )

(32)
So for T > Tcrit, with |µ(T )| > 0 and nc(T ) = 0, the
correlation function falls off exponentially with distance
and has a finite correlation length. For T = Tcrit, with
µ(Tcrit) = 0 and nc(Tcrit) = 0, the correlation function
falls off as a power law. For T < Tcrit, with µ(T ) = 0 and
nc(T ) > 0, the correlation function asymptotes to a non-
zero value at large distances. Hence there is tremendous
long-range correlation for T < Tcrit. In this paper we
shall examine how this is altered in the interacting theory
and how it depends on the sign of the interaction.

In summary, the classical field theory can adequately
describe the phase transition from a regular phase to
a BEC. While a BEC is a very quantum phenomenon
from the particle point of view, it is a very classical phe-
nomenon from the field point of view. By including inter-
actions, we should be able to understand the formation
of the BEC, or otherwise, and its properties, purely by
studying the classical field theory.

IV. EVOLUTION AROUND HOMOGENEOUS
CONDENSATE

In some of the simplest and most familiar BECs, such
as those described by a free theory coupled to an external
heat bath, the system is driven to an equilibrium state
where almost all particles are in the k = 0, or very small
k, modes. From the classical field point of view, this
means that the field ψ is driven to be very slowly vary-
ing in space, with extremely long-range correlation. If
the system is entropically driven to such an equilibrium
configuration, it must be stable against perturbations.
In this section, we examine whether this applies to the
axion using linear perturbation theory.
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A. Self-Interactions

Let us begin by considering the contact interaction and
ignore gravity. The equation of motion for the classical
field is

i ψ̇ = − 1

2m
∇2ψ +

λ

8m2
|ψ|2ψ (33)

Let’s decompose the field into a homogeneous piece ψc
and a perturbation δψ as

ψ(x, t) = ψc(t) + δψ(x, t) (34)

The homogeneous piece is, effectively, the condensate,
while δψ represents a small disturbance in it. The con-
densate satisfies the equation

i ψ̇c =
λ

8m2
|ψ0|2ψc (35)

This has a simple periodic solution

ψc(t) = ψ0 e
−i µc t (36)

where

µc =
λ

8m2
|ψ0|2 (37)

The prefactor ψ0 is not a free parameter; its magnitude
is determined by n0 = |ψ0|2, where n0 is the density of
particles. On the other hand, the phase of ψ0 is arbi-
trary. Any choice for the phase spontaneously breaks the
global U(1) symmetry associated with particle number
conservation.

Perturbing the differential equation (33) to linear order
leads to

i ˙δΨ = − 1

2m
∇2δΨ +

λn0
8m2

(δΨ + δΨ∗) (38)

where, for convenience, we have traded δψ for δΨ through
δψ = ψc δΨ. Now we decompose δΨ into real and imagi-
nary parts as

δΨ = A+ iB (39)

Then after Fourier transforming, we obtain

d

dt

(
Ak
Bk

)
=

(
0 k2

2m

− k2

2m −
λn0

4m2 0

)(
Ak
Bk

)
(40)

Depending on the sign of

κk ≡
k2

2m
+
λn0
4m2

(41)

the solutions have one of two possible forms. For κk < 0,
the solutions are pure exponentials,

δΨk = c1(γk − iκk) eγkt + c2(γk + iκk) e−γkt (42)

where c1 and c2 are arbitrary real constants, ±γk are the
eigenvalues of the above matrix,

γk =
k√
2m

√
−κk (43)

and (γk ∓ iκk) are the eigenvectors. For κk > 0 we can
begin with a trial function of the form δΨk = Z1e

−iωkt+
Z2e

iωkt, which leads to the solution

δΨk = Z(ωk + κk)e−iωkt + Z∗(ωk − κk)eiωkt (44)

where Z is an arbitrary complex constant, and

ωk =
k√
2m

√
κk (45)

Hence, if λ < 0, the modes for k values in the range

k2 < −λn0
2m

(46)

experience parametric resonance and there is exponential
growth of perturbations. For higher values of k2 there is
no growth, only oscillations in the perturbation.

The existence of an instability band is therefore deter-
mined by the sign of the self-coupling λ. In summary we
have

λ > 0 =⇒ stability (47)

λ < 0 =⇒ instability (48)

For the QCD axion, we have λ < 0. This is an attrac-
tive interaction, and hence there is an instability. This
means the homogeneous condensate with long-range cor-
relation is not an attractor configuration of the system. It
is therefore not the entropically preferred configuration
that arises dynamically through thermalization. Simi-
lar remarks go through for very small, but non-zero, k
modes. On the other hand for systems with λ > 0, the
homogeneous configuration is stable and is an attractor
solution under thermalization.

B. Gravity

We now investigate the case of gravity, and ignore the
self-coupling λ. The equations we need to solve are

i ψ̇ = − 1

2m
∇2ψ +mφNψ (49)

∇2φN = 4πG(m|ψ|2 − ρ̄) (50)

where we have subtracted out the average background
density ρ̄ in the equation for the Newtonian potential,
which will be appropriate in the FRW analysis given in
Appendix VII.

Expanding ψ as before in eq. (34) we have the trivial
solution for the condensate

ψc(t) = ψ0 (constant) (51)
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The linearized equations for the fluctuations are

i ˙δΨ = − 1

2m
∇2δΨ +mφN (52)

∇2φN = 4πGmn0(δΨ + δΨ∗) (53)

Eliminating φN leads to

i ˙δΨ = − 1

2m
∇2δΨ + 4πGm2n0∇−2(δΨ + δΨ∗) (54)

which is identical to the structure of eq. (38) in the λφ4

theory with the replacement

λ

8m2
↔ 4πGm2∇−2 (55)

By Fourier transforming, and using the result in eq. (43),
we obtain

γk =
k

2m

√
16πGm3n0

k2
− k2 (56)

So again we find instability for a condensate of long-range
correlation. Modes that satisfy

k < kJ = (16πGm3n0)1/4 (57)

are unstable. Here kJ is a type of Jeans wavenumber, as
it separates the regime where gravity dominates, leading
to collapse, and the regime where pressure dominates,
leading to oscillations. This pressure is, from the particle
point of view, a type of “quantum pressure,” arising from
the uncertainty principle: even though the background
particles are at rest, a perturbation of wavelength 2π/k
implies that at least some of the particles are localized
on this distance scale, requiring an increase in the energy,
with the accompanying restoring force.

We note that if we were to send G→ −G, and consider
repulsive gravity, then the condensate would be stable.
It would in fact be an attractor solution; entropically
favored under thermalization. Although repulsive New-
tonian gravity is unphysical, we know that in general
relativity, we can achieve effective repulsion provided by
vacuum energy, as is the case during inflation [34–36]. In
this case, the field organizes into a type of condensate
with tremendously long-range correlation. (There have
also been interesting examples of this with light vector
fields [37]).

C. Occupancy Number Evolution

We can gain further understanding of the behavior of
a perturbed condensate by tracking the evolution of the
occupancy number

Nk = |ψk|2/V (58)

for each mode. We can use the linearized evolution
of equations (42) and (44), choosing an initial pertur-
bation (at time ti) with a random phase. Writing

δΨk(ti) ≡ Ak + iBk, a randomized phase implies that
〈A2

k〉 = 〈B2
k〉 ≡ σ2

k/2, and 〈AkBk〉 = 0, which with equa-
tion (42) implies that 〈c21〉 = 〈c22〉 = σ2

k(κ2k + γ2k)/8γ2kκ
2
k

and 〈c1c2〉 = σ2
k(κ2k − γ2k)/8γ2kκ

2
k. We then find that for

κk < 0 the occupancy number evolves (for k 6= 0) as

〈Nk(t)〉 = 〈N i
k〉

[
1 +

1

2

(
λn0
4m2

)2
sinh2(γk (t− ti))

γ2k

]
(59)

where 〈N i
k〉 is the initial value of 〈Nk(t)〉 at t = ti. For

κk > 0 we use equation (44) with 〈Z2〉 = 〈Z∗2〉 =
σ2
k(κ2k − ω2

k)/8ω2
kκ

2
k and 〈ZZ∗〉 = σ2

k(κ2k + ω2
k)/8ω2

kκ
2
k,

finding the same result, provided that we use γk = iωk,
so sinh2(γk(t− ti))/γ2k = sin2(ωk(t− ti))/ω2

k. So at early
times, |γk| (t− ti)� 1, the sign of λ is unimportant and
the occupancy numbers grow as ∼ (t− ti)2. However at
late times, |γk| (t − ti) � 1, there is oscillatory or ex-
ponential behavior depending on the sign of λ and the
k-mode.

• For λ > 0, γk is imaginary for all k and sinh2(γk(t−
ti))/γ

2
k → sin2(ωk(t − ti))/ω

2
k, so the occupancy

number undergoes stable oscillations. Since we
have averaged over phases, it may seem surprising
that we see net growth starting from t = ti; indeed
if we had randomized the phase of Z instead of
δΨ, we would have found a time-independent oc-
cupancy number. The phases are related in such
a way that a random phase for δΨ results in the
phase of Z being more likely to be at the low end
of the occupancy number oscillations. If we had
considered any specific solution, without averaging
over phases, we would have seen larger oscillations:
from equation (44), one can show that

〈Nk(t)〉max

〈Nk(t)〉min
= 1 +

1

ω2
k

[
λn0
4m2

(
k2

2m
+
λn0
4m2

)]
(60)

which means that the oscillations for any solution
are at least twice as large as the phase-averaged
oscillations shown in equation (59). The important
point, however, is that the oscillations are stable.
The largest ratio of 〈Nk(t)〉/〈N i

k〉 is obtained for
the modes that minimize ωk, which occurs as k →
0, as the amplitude scales as ∼ 1/k2. Hence low k-
modes dominate and the homogeneous condensate,
or more generally the configuration dominated by
long-range correlations, is stable.

• For λ < 0, γk is real for a band of k and sinh(γk(t−
ti)) grows exponentially for these modes. Hence
the fastest growth is for the modes that maximize
γk, which occurs at k = k∗, where k∗ is given be-
low as equation (61.) Hence these finite k-modes
dominate and cause the system to evolve towards
localized clumps, as we describe in the next section.

Similar statements go through for gravity.



7

V. GROUND STATES

When the couplings are attractive, the equilib-
rium/ground state of the system is not a homogeneous
condensate but a localized clump [38–41]. Its structure
is different for the case of self-interactions and gravity, as
we now describe.

A. Solitons

For bosons with self-coupling λ < 0 the system is un-
stable toward fragmenting into a complicated configura-
tion governed by a range of wave numbers. The growth
rates are maximized at

k∗ =

√
|λ|n0
4m

(61)

This sets the characteristic scale at which structures
should form.

In 1+1 dimensions this can lead to the production of
stable solitons: ground state configurations at fixed num-
ber of particles. For a soliton ψs comprised ofN particles,
the solution in its center-of-mass frame is

ψs(x, t) =

√
ksN

2
sech(ks x) e−i µs t (62)

where

ks =
|λ|N
16m

(63)

µs = − k2s
2m

(64)

and the ground state energy, as defined by equations (8)
and (9), is

Es = − λ2N3

1536m3
(65)

This solution is known as a “Bright soliton”. The
wavenumber k∗, associated with maximal growth away
from the homogeneous configuration, is of the same order
as the dominant wavenumber that comprises the soliton
ks. To see this, note that the core of the soliton has char-
acteristic number density ns ∼ ksN . If we re-arrange
this as N ∼ ns/ks, insert into equation (63), and solve
for ks, we find that parametrically ks ∼ k∗.

We note that BEC’s do not usually form in 1+1 di-
mensions. In fact if one returns to the free theory anal-
ysis of Section III B and repeats the analysis in 1 spatial
dimension, one finds no actual phase transition. More
interesting is to go to 3+1 dimensions, where a phase
transition can take place. But then the solitons are not
exactly stable. Without further refinement, they are sub-
ject to a collapse instability. In the case of the axion, one
can produce so-called “axitons” in the early universe [42],
which have finite lifetime.

As we describe in Section VI A, in axion cosmology
the claim of thermalization to a BEC comes from consid-
erations of gravitational interactions, to which we now
turn.

B. Bose stars

For ordinary (attractive) gravity the system tends to
fragment, in an analogous way to the case with self-
coupling. In this case it can lead to a stable bound state
in 3-dimensions held together by gravity: a “Bose star”.
The Hamiltonian for these gravitationally bound config-
urations ψg is

H =

∫
d3x
|∇ψg|2

2m
− Gm2

2

∫
d3x

∫
d3x′
|ψg(x)|2|ψg(x′)|2

|x− x′|
(66)

The ground state comes from minimizing the Hamilto-
nian at fixed particle number N . We do not know an ex-
act solution for this system of equations. However, a vari-
ational approximation will suffice. The ground state will
be spherically symmetric ψ(x) = ψ(r). As a variational
ansatz, we take its profile to be exponential (mimicking
the ground state wavefunction of the hydrogen atom)

ψg(r) =

√
N k3g
π

e−kg re−i µg t (67)

where kg is a variational parameter that has units of
wavenumber. Substituting into the Hamiltonian and car-
rying out the integrals, we obtain

H =
Nk2g
2m
− 5Gm2N2kg

16
(68)

Extremizing H with respect to kg, we obtain the charac-
teristic wavenumber of the Bose star

kg =
5Gm3N

16
(69)

and the corresponding approximation for the ground
state energy

Eg = −25G2m5N3

512
(70)

As in the case of the soliton, the characteristic wavenum-
ber kg of the ground state ψg is connected to the char-
acteristic wavenumber kJ of the exponentially growing
modes away from the homogeneous condensate ψc. To
see this, note that in the core of the Bose star, the num-
ber density ng satisfies N ∼ ng/k

3
g ; inserting this into

equation (69) and solving for kg, we have kg ∼ kJ .

C. Characteristic Wavenumber Summary

A summary of the dependence of the typical wavenum-
ber of the ground/equilibrium state is given in Figure
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FIG. 1. The characteristic wavenumber k̃ ≡ k/m of the
ground state as a function of the coupling; self-interactions
λ̃ (in 1+1 dimensions λ̃ is normalized as λ̃ ≡ λN/(16m2))

or gravity −G̃ (in 3+1 dimensions G̃ is normalized as G̃ ≡
5Gm3N/(16m)). For repulsive interactions (λ > 0 or G < 0)
the ground state is governed by k = 0. For attractive inter-
actions (λ < 0 or G > 0) the characteristic wavenumber is
non-zero and given in equations (63, 69).

1. For repulsive interactions, the ground state is gov-
erned by k = 0, while for attractive interactions the
ground state is governed by wavenumbers given in equa-
tions (63, 69). We note that for attractive, but very
small couplings, the ground state is still very homoge-
neous, governed by large, but not infinite, wavelengths.
For large couplings, the ground states are rather com-
pact. We shall estimate the relevant scale for the ax-
ion in Section VI D, and explain why these characteristic
wavelengths (inverse wavenumber) also set the typical
correlation length.

VI. EVOLUTION FOR REALISTIC STATES

The previous analysis shows that a condensate with
long-range correlation is not the attractor point in phase
space for the axion. Instead the attractor point in phase
space includes Bose clumps: solitons or stars. In this
section we investigate the behavior starting from some
plausible initial conditions.

The axion is a Goldstone boson that arises after the
Peccei-Quinn symmetry is broken. Assuming this hap-
pens after inflation, we expect the axion field to be ini-
tially distributed randomly from one Hubble patch to the
next, as causality forbids any initial super-horizon corre-
lations. (While inflation allows the possibility of super-
Hubble correlations, we assume that inflationary-era cor-
relations have no significant influence on the order that
arises in the post-inflationary Peccei-Quinn phase transi-

tion.) In a given Hubble patch, the axion field should be
fairly uniform as gradients are energetically disfavored.
This suggests a form of white noise initial conditions with
a UV cutoff kUV ∼ Hi, where Hi is the Hubble parameter
at the time of formation.

For simplicity, we assume the axion is initially drawn
from a Gaussian distribution. It has a non-zero two-point
function given by

〈ψ(k, t)ψ∗(k′, t)〉 = (2π)3δ3(k− k′)〈Nk(t)〉 (71)

Here 〈Nk(t)〉) is usually called the power spectrum
P (k, t). We also assume that initially (t = ti) the real
and imaginary parts of ψ are uncorrelated and identically
distributed, meaning that the autocorrelation function is
trivial

〈ψ(k, ti)ψ(k′, ti)〉 = 0 (72)

At later times, t > ti, the real and imaginary parts can
become correlated, and the autocorrelation function can
become non-zero. The specific form of the initial power
spectrum 〈N i

k〉 is not important for our discussion, but a
reasonable choice would be the following

〈N i
k〉 =

(2π)3/2 nave
k3UV

exp
(
−k2/(2 k2UV)

)
(73)

where nave is the average density of particles. For k �
kUV the spectrum is flat, which is white noise. As long as
the prefactor nave/k

3
UV � 1 then the occupancy of modes

with k < kUV is large and the classical field theory is
adequate to describe these modes.

A. Relaxation Rate

Since the white noise initial distribution for the ax-
ion is rather incoherent on large scales, the evolution of
modes is more complicated than that of the previous sec-
tion. However the previous analysis contains some of the
central information in it, as we now explain.

For the case of self-interaction, the equation governing
the evolution of modes is

i ψ̇k =
k2

2m
ψk +

λ

8m2

∫
d3k′

(2π)3

∫
d3k′′

(2π)3
ψk′ψ

∗
k′′ψk+k′′−k′

(74)
The evolution of the occupancy number Nk = |ψk|2/V is
then given by

Ṅk = −λV
−1

8m2

∫
d3k′

(2π)3

∫
d3k′′

(2π)3
[iψk′ψ

∗
k′′ψk+k′′−k′ψ

∗
k + c.c]

(75)
Drawing ψk from an initially Gaussian distribution, with
initially independent real and imaginary parts, we find
the expectation value of the 1st time derivative is initially
zero

〈Ṅ i
k〉 = 0 (76)
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However the expectation value of the 2nd time deriva-
tive is initially non-zero. By taking a time derivative of
equation (75), then using equation (74), then taking an
expectation value and using Wick’s theorem, we find it
to be

〈N̈ i
k〉 =

(
λ

4m2

)2 [
− n2ave 〈N i

k〉

+

∫
d3k′

(2π)3

∫
d3k′′

(2π)3
〈N i

k′〉〈N i
k′′〉〈N i

k−k′−k′′〉

]
(77)

(we have used nave =
∫
d3k′

(2π)3Nk′ to simplify the first

term.) This allows us to estimate a kind of “relaxation
rate”: the typical rate at which modes are initially chang-

ing. By estimating Γk ∼
√
|〈N̈ i

k〉/〈N i
k〉|, we find that a

typical value for the bulk of the modes is

Γk ∼
|λ|nave
4m2

(78)

At this early time (and for this special choice of initial
conditions), the evolution is independent of the sign of
λ. But we know that the late time equilibrium behavior
(homogeneous condensate or localized clump) is entirely
controlled by the sign of λ, as we showed in the previous
sections. Indeed the dependence on the sign of λ can be
seen by going to higher time derivatives.

Note that this relaxation rate Γk is the same prefactor
that appears in equation (59) for the evolution of modes
around the homogeneous condensate, with n0 → nave.
Also, by replacing λ/(8m2) → −4πGm2/k2 appropri-
ately inside the convolution integrals, we obtain the grav-
itational case

Γk ∼
8πGm2 nave

k2
(79)

For the gravitational case, the rate is relatively large at
late times because the wavenumber redshifts, so there is a
relative enhancement of a2 and it grows. This was noted
in Refs. [22, 23] and provided much of the motivation
for the claims of thermalization. For this reason we will
focus on this later in Section VI D.

B. Thermalization

The nonlinear evolution of the initial mess of white
noise modes is presumably associated with some form of
thermalization. Since the system is at high occupancy,
the associated temperature is well below the critical tem-
perature Tc, and so the system tries to organize into some
form of BEC.

• For λ > 0 (or repulsive gravity), the thermalization
is towards a condensate with almost all particles in
the ground state with k = 0 (or very small k) –

a homogeneous configuration with long-range cor-
relation. (For λ > 0 this was nicely seen in the
numerical work of Ref. [43]. But it was later, in
Ref. [44], applied incorrectly to the axion, for which
the interactions have the opposite sign.)

• For λ < 0 (or attractive gravity), there is a “bot-
tleneck” to achieve thermalization. In true equi-
librium, the field would organize into a condensate
with almost all particles in the ground state; this
would be a single extremely compact clump of well
defined phase, as described in Section V (equations
(63, 69) show that the ground state has width that
is inversely proportional to the number of particles
N). However, as a coherent clump is forming lo-
cally in one region of space, its local equilibrium
means that it stops re-organizing the phase in dis-
tant regions of space. So the phases of distant re-
gions can remain uncorrelated. It is therefore dif-
ficult to achieve true global thermal equilibrium.
Instead one expects only intermittent patches of co-
herent clumps (solitons or stars) made up of a mod-
erate number of particles, along with a messy scalar
field that has yet to reach true equilibrium. In any
case, no long-range correlation is established. A
full simulation of this process is ongoing work.

C. Comparison to Boltzmann Equation

We note that this critical dependence on the sign of λ
arises because we are in the classical field theory limit,
which is applicable to dark matter axions. In other
regimes, the sign of λ can become relatively unimpor-
tant.

For instance, in the particle limit, we can usually just
track the classical particle phase space density N (x,p),
where one treats particles as carrying a well defined posi-
tion and momentum (albeit perhaps allowing for a semi-
classical enhancement from occupancy factors). The evo-
lution of N (x,p) is described by the Boltzmann equa-
tion, which governs the evolution to equilibrium. For
non-relativistic 2 → 2 collisions, the evolution equation
can be written as

D

Dt
Np1 =

∫
d3p2
(2π)3

dσ vrel

[
Np′1 Np′2(1 +Np1)(1 +Np2)

−Np1Np2(1 +Np′1)(1 +Np′2)
]

(80)

where all the Np’s are evaluated at the same point
in space x. The typical rate of interaction is Γ ∼
nave σ vrelN .

Since the particle scattering cross section σ ∝ λ2, the
sign of λ does not appear in this evolution equation.
However, in the high density/coherent limit that is rel-
evant for cosmological axions, we need to replace this
semi-classical particle description with the classical field
description. Then the sign of λ plays a critical role in the
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evolution equation and dictates its equilibrium behavior,
as discussed in the above sections.

D. Coherence Length Estimate

Having found that attractive interactions do not cause
the system of axions to evolve to an equilibrium state of
huge correlation length – in contradiction to the conclu-
sions of Refs. [22, 23] – we turn now to estimate the actual
size of the correlation length for a universe comprised of
radiation and axion-dominated matter, focussing on the
physically relevant case of (attractive) gravity. A proper
treatment would require a nonlinear simulation, but here
we give a rough estimate of the length scales.

Initially the characteristic lengths evolve under the
standard redshifting, so the physical wavenumbers scale
as kphys ∼ k/a. This continues until the relaxation
rates become comparable to the Hubble expansion rate,
Γk ∼ H. At this point the system will attempt to ther-
malize, and form Bose stars – although it is subject to the
bottleneck described above. An associated length scale
for these Bose stars can be roughly estimated, as follows.

At the QCD phase transition, when the axion potential
turns on, the characteristic wavenumber is k ∼ HQCD ∼
T 2
QCD/MPl, where MPl ≡ 1/

√
8πG ≈ 1018 GeV is the

reduced Planck mass. This also sets the initial correla-
tion length. Assuming the axions comprised most of the
matter in the universe, the number density of axions at
this early time is na ∼ ρa/m ∼ (Teq/TQCD)ρtot/m ∼
TeqT

3
QCD/m. The number of axions within a typical de

Broglie wavelength sets a typical occupancy number

N ∼ na
k3
∼ TeqM

3
Pl

T 3
QCDm

∼ 0.1 eV× (1018 GeV)3

(100 MeV)3 × 10−5 eV
(81)

= 1061 (82)

At late times, once Γ > H, the system will attempt to
thermalize. As we explained above, the bottleneck to
thermalization means that only a fraction of the axions
will organize into the ground state Bose stars. A rough
estimate would be to take the occupancy number N as
the typical number N of axions that form a Bose star,
which is equivalent to saying that a typical Bose star con-
tains the total energy of the axion field within one horizon
volume at the time of the QCD phase transition. Fur-
thermore, since there is no true equilibrium established
and distant Bose stars maintain random phases, we ex-
pect the typical size of the Bose stars to roughly set the
correlation length of the condensate.

Using equation (69) we see that the typical wavelength
of such Bose stars, and hence the associated correlation
length, is roughly

ξ ∼ 1

Gm3N
∼ 8π(1018 GeV)2

(10−5 eV)3 × 1061
(83)

∼ km (84)

On the other hand, the background mess of non-
condensed scalar field can have a larger correlation length
before galaxy formation. However, inside galaxies, this
scale ∼ km is within an order of magnitude or so of the
de Broglie wavelength of virialized axions.

As an upper limit, we note that according to equa-
tion (57), at the time of the QCD phase transition
the Jeans length was shorter than the Hubble length.
Roughly,

kJ
HQCD

∼
[

2m3na
M2
Pl

]1/4
MPl

T 2
QCD

∼

[
2m2TeqT

3
QCD

M2
Pl

]1/4
MPl

T 2
QCD

∼
m1/2T

1/4
eq M

1/2
Pl

T
5/4
QCD

∼ (10−5 eV)1/2(0.1 eV)1/4(1018 GeV)
1/2

(100 MeV)5/4

∼ 10 (85)

Thus, immediately after the QCD phase transition, we
expect correlations up to the Hubble length, but the cor-
relations with wavelengths between the Jeans length and
the Hubble length will start to disappear, as perturba-
tions grow. Equation (57) shows that the Jeans length
grows as a3/4(t), so in comoving coordinates it shrinks
with time. Thus, correlations with comoving wavelengths
larger than the Hubble length at the QCD phase tran-
sition can never form, since causality forbids such corre-
lations before the QCD phase transition (assuming that
the Peccei-Quinn phase transition occurs after inflation),
and afterward these wavelengths are always larger than
the Jeans length. Thus, the comoving correlation length
cannot possibly exceed the Hubble length at the QCD
phase transition, which when scaled to today, is only on
the order of

ξrescaled Hubble ∼ H−1QCD

TQCD

T0
∼ MPl

TQCDT0

∼ (1018 GeV)

(100 MeV)(10−4 eV)

∼ light-year (86)

which is much less than galactic scales. Thus, there does
not appear to be any mechanism for axion thermaliza-
tion to lead to a cosmologically large, or galactic scale,
correlation length. A full analysis of the production of
these Bose stars requires a full simulation, which is the
topic of ongoing work.

We finish this section with a comment on the mass
of these Bose stars. Based on the above estimates, the
typical mass is

M = Nm ∼ 1061 × 10−5 eV (87)

∼ 10−10Msun (88)

This estimate is very close to the maximum possible
mass of a stable QCD-axion star, about 1019 kg ≈
5× 10−12Msun, that was found in Ref. [45]. So they are
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much lighter than solar masses. Such light/low density
objects are unlikely to have cosmological or galactic con-
sequences. Furthermore, they may be outside the range
of microlensing searches.

VII. SUMMARY AND DISCUSSION

In this paper, we investigated the idea that axion
dark matter gravitationally thermalizes to form a Bose-
Einstein condensate (BEC) with a long-range correlation
length – an intriguing idea that has a unique observa-
tional signature [22, 23]. We treated the axion using a
generic low-mass non-relativistic scalar field theory and
studied its equilibrium behavior. While a BEC of long-
range correlation can form from repulsive interactions,
we showed that the homogeneous, or nearly homoge-
neous, condensate configuration is unstable against col-
lapse when attractive interactions are included. Hence
the state of long-range correlation is not the entropi-
cally favored equilibrium configuration. Instead the ax-
ions try to form a different type of BEC, namely clumps,
either solitonic for self-interactions or Bose stars for self-
gravity. The full state of the axions would be some com-
plicated configuration of many BEC clumps that strug-
gles to achieve true thermal equilibrium, and phases of
distant clumps will tend to be uncorrelated. The correla-
tion length should be rather small and not of cosmological
significance.

Our analysis applies to the QCD axion, which only
has attractive interactions, and also to any other type of
scalar dark matter candidate with attractive interactions
in the high density/occupancy regime. At late times,
the dominant interaction is ordinarily given by gravity,
which of course is universally attractive. This means our
analysis is very general. We worked in the classical field
theory approximation, which is appropriate in this limit.
Indeed we showed that classical fields can exhibit a phase
transition to a BEC. We noted that Bose-Einstein con-
densation is very quantum mechanical from the particle
perspective, but very classical from the field perspective.
If one moves to another regime of low occupancy, or low
coherence, wherein the system is poorly approximated
by the classical field theory, then other behavior would
be possible. For example, if one passes to the classical
particle phase space description, then the collision term
in the Boltzmann equation does not depend on the sign
of the coupling. The equilibrium behavior indicated by
the standard Boltzmann equation therefore misses the
essential equilibrium behavior of the field theory.

Ongoing work includes a full nonlinear simulation of
the field theory to analyze the production of solitons and
especially Bose stars (the latter is expected to be much
more important at late times). Earlier work along these
lines includes Ref. [42, 46]. This will also help to provide
an understanding of the approach to equilibrium or oth-
erwise. One might see a form of “quasi-equilibrium” [38]

wherein the clumps form and evaporate and so on.
The qualitative difference in the size of the correla-

tion length, between attractive and repulsive interac-
tions, should carry over to many more bosonic dark mat-
ter models. For example, in the string landscape it is
possible to have many light axions [47, 48]. These should
typically also have attractive self-interactions, so we ex-
pect similar conclusions to that of the QCD axion. One
could also investigate scalar dark matter models, not mo-
tivated by axions, wherein the couplings are repulsive.
In these cases, the generation of long-range correlations
is feasible, although highly parameter dependent. This
could conceivably lead to novel new galactic behavior.
Work on these subjects is ongoing.
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APPENDIX: INCLUDING FRW EXPANSION

The relativistic action in a flat FRW background is

L = a3
[

1

2
φ̇2 − 1

2

(∇φ)2

a2
− 1

2
m2φ2 − λ

4!
φ4
]

(89)

where the scale factor is determined by the Friedmann
equation

H2 =
8πG

3
ρtot (90)

Passing to the non-relativistic field ψ and ignoring
rapidly varying terms gives

L = a3
[
i

2
(ψ̇ψ∗ − ψψ̇∗)− 1

2m

∇ψ∗ ·∇ψ
a2

− λ

16m2
(ψ∗ψ)2

]
(91)

The corresponding classical equation of motion is

i

a3/2
∂t(a

3/2ψ) = − 1

2m

∇2ψ

a2
+

λ

8m2
|ψ|2ψ (92)

Including gravity leads to the following pair of equa-
tions

i

a3/2
∂t(a

3/2ψ) = − 1

2m

∇2ψ

a2
+

λ

8m2
|ψ|2ψ +mφNψ (93)

∇2φN = 4πGa2
(
m|ψ|2 − ρ̄

)
(94)
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where we have removed the background density in the
source for the Newtonian potential φN .

In order to solve the above equations we can make sev-
eral simplifications. Firstly, due to redshifting, the λφ4

contact interaction is negligibly small at late times, so
we will ignore it here. Secondly, we will linearize around
a coherent homogeneous background as usual. The solu-
tion for ψc is

ψc(t) ∝
1

a3/2
(95)

The linearized equations of motion for the perturbations
are

i ˙δΨ = − 1

2ma2
∇2δΨ +mφN (96)

∇2φN = 4πGma2n0(δΨ + δΨ∗) (97)

Fourier transforming and then eliminating φN as before
leads to

i ˙δΨk =
k2

2ma2
δΨk −

3

2
mΩa

H2a2

k2
(δΨ + δΨ∗k) (98)

where Ωa = mn0/ρtot. Breaking up δΨ into real and
imaginary as A+ iB and then eliminating B, we obtain

Äk + 2HȦk −
3

2
ΩaH

2Ak +

(
k2

2ma2

)2
Ak = 0 (99)

The first three terms are the “usual” terms one obtains
for the growth of fluctuations in linearized theory of
CDM. The last term is a type of quantum pressure that
arises from tracking the de Broglie wavelength of the ax-
ion. One can define a critical wavenumber where the
pressure term balances the gravitation term (the Jeans
wavenumber). It is given by

kJ
a

= (6 Ωa)1/4
√
Hm (100)

and coincides with the Jeans wavenumber of equa-
tion (57) that we found in the absence of expansion.

For k � kJ we can ignore the pressure term and we
recover the usual equation for CDM. Its solutions are well
known:

Ak ∼ log(a), Bk ∝ a0, radiation era (101)

Ak ∝ a, Bk ∝ a3/2, matter era (102)

For k � kJ we are in the pressure dominated regime,
dominated by oscillations. Putting in numbers, as in
equation (86), we find that this regime corresponds to
very small scales, probably irrelevant to the claims of
Ref. [23].

[1] P. J. E. Peebles, “Dark Matter,” arXiv:1305.6859 [astro-
ph.CO].

[2] Planck Collaboration, P. A. R. Ade, et al. “Planck
2013 results. XVI. Cosmological parameters,” A&A, 571,
AA16 (2014) [arXiv:1303.5076 [astro-ph.Co]]

[3] R. D. Peccei and H. R. Quinn, “CP Conservation in
the Presence of Instantons,” Phys. Rev. Lett. 38, 1440
(1977).

[4] S. Weinberg, “A New Light Boson?,” Phys. Rev. Lett.
40, 223 (1978).

[5] F. Wilczek, “Problem of Strong P and T Invariance in
the Presence of Instantons,” Phys. Rev. Lett. 40, 279
(1978).

[6] J. Preskill, M. B. Wise and F. Wilczek, “Cosmology of
the Invisible Axion,” Phys. Lett. B 120, 127 (1983).

[7] L. F. Abbott and P. Sikivie, “A Cosmological Bound on
the Invisible Axion,” Phys. Lett. B 120, 133 (1983).

[8] M. Dine and W. Fischler, “The Not So Harmless Axion,”
Phys. Lett. B 120, 137 (1983).

[9] J. E. Kim and G. Carosi, “Axions and the Strong
CP Problem,” Rev. Mod. Phys. 82, 557 (2010)
[arXiv:0807.3125 [hep-ph]].

[10] J. Hoskins, J. Hwang, C. Martin, P. Sikivie, N. S. Sulli-
van, D. B. Tanner, M. Hotz and L. J. Rosenberg et al., “A
search for non-virialized axionic dark matter,” Phys. Rev.
D 84, 121302 (2011) [arXiv:1109.4128 [astro-ph.CO]].

[11] S. J. Asztalos et al. [ADMX Collaboration], “A SQUID-
based microwave cavity search for dark-matter axions,”
Phys. Rev. Lett. 104, 041301 (2010) [arXiv:0910.5914

[astro-ph.CO]].
[12] B. M. Roberts, Y. V. Stadnik, V. A. Dzuba, V. V. Flam-

baum, N. Leefer and D. Budker, “Limiting P-odd
interactions of cosmic fields with electrons, protons
and neutrons,” Phys. Rev. Lett. 113, 081601 (2014)
[arXiv:1404.2723 [hep-ph]].

[13] P. Sikivie, “Axion Dark Matter Detection using Atomic
Transitions,” Phys. Rev. Lett. 113, no. 20, 201301 (2014)
[arXiv:1409.2806 [hep-ph]].

[14] P. Fox, A. Pierce and S. D. Thomas, “Probing a QCD
string axion with precision cosmological measurements,”
hep-th/0409059.

[15] M. Beltran, J. Garcia-Bellido and J. Lesgourgues,
“Isocurvature bounds on axions revisited,” Phys. Rev.
D 75, 103507 (2007) [hep-ph/0606107].

[16] M. P. Hertzberg, M. Tegmark and F. Wilczek, “Axion
Cosmology and the Energy Scale of Inflation,” Phys. Rev.
D 78, 083507 (2008) [arXiv:0807.1726 [astro-ph]].

[17] M. S. Turner and F. Wilczek, “Inflationary axion cosmol-
ogy,” Phys. Rev. Lett. 66, 5 (1991).

[18] M. Kawasaki and K. Nakayama, “Axions: Theory and
Cosmological Role,” Ann. Rev. Nucl. Part. Sci. 63, 69
(2013) [arXiv:1301.1123 [hep-ph]].

[19] M. P. Hertzberg, “A Correlation Between the Higgs Mass
and Dark Matter,” arXiv:1210.3624 [hep-ph].

[20] C. Cheung, G. Elor and L. J. Hall, “The Cosmologi-
cal Axino Problem,” Phys. Rev. D 85, 015008 (2012)
[arXiv:1104.0692 [hep-ph]].

[21] M. Y. Khlopov, A. S. Sakharov and D. D. Sokoloff, “The



13

nonlinear modulation of the density distribution in stan-
dard axionic CDM and its cosmological impact,” Nucl.
Phys. Proc. Suppl. 72, 105 (1999).

[22] P. Sikivie and Q. Yang, “Bose-Einstein Condensation
of Dark Matter Axions,” Phys. Rev. Lett. 103, 111301
(2009) [arXiv:0901.1106 [hep-ph]].

[23] O. Erken, P. Sikivie, H. Tam and Q. Yang, “Cosmic
axion thermalization,” Phys. Rev. D 85, 063520 (2012)
[arXiv:1111.1157 [astro-ph.CO]].

[24] N. Banik, & P. Sikivie, “Axions and the galactic angu-
lar momentum distribution,” Phys. Rev. D, 88, 123517
(2013) [arXiv:1307.3547 [astro-ph.GA]]

[25] S. Davidson and M. Elmer, “Bose Einstein condensation
of the classical axion field in cosmology?,” JCAP 1312,
034 (2013) [arXiv:1307.8024].

[26] H. J. de Vega and N. G. Sanchez, “Galaxy phase-space
density data exclude Bose-Einstein condensate Axion
Dark Matter,” arXiv:1401.1214 [astro-ph.CO].

[27] T. Noumi, K. Saikawa, R. Sato and M. Yamaguchi, “Ef-
fective gravitational interactions of dark matter axions,”
Phys. Rev. D 89, 065012 (2014) [arXiv:1310.0167 [hep-
ph]].

[28] S. Davidson, “Axions: Bose Einstein Condensate or
Classical Field?,” Astropart. Phys. 65, 101 (2015)
[arXiv:1405.1139 [hep-ph]].

[29] T. Rindler-Daller and P. R. Shapiro, “Vortices and
Angular Momentum in Bose-Einstein-Condensed Cold
Dark Matter Halos,” ASP Conf. Ser. 432, 244 (2010)
[arXiv:0912.2897 [astro-ph.CO]].

[30] T. Rindler-Daller and P. R. Shapiro, “Angular Momen-
tum and Vortex Formation in Bose-Einstein-Condensed
Cold Dark Matter Haloes,” Mon. Not. Roy. Astron. Soc.
422, 135 (2012) [arXiv:1106.1256 [astro-ph.CO]].

[31] B. Li, T. Rindler-Daller and P. R. Shapiro, “Cosmo-
logical Constraints on Bose-Einstein-Condensed Scalar
Field Dark Matter,” Phys. Rev. D 89, 083536 (2014)
[arXiv:1310.6061 [astro-ph.CO]].

[32] P. H. Chavanis, “Growth of perturbations in an
expanding universe with Bose-Einstein condensate
dark matter,” Astron. Astrophys. 537, A127 (2012)
[arXiv:1103.2698 [astro-ph.CO]].

[33] K. A. Olive et al. [Particle Data Group], “Axions
and other similar particles,” (revised April 2014 by
A. Ringwald, L. J. Rosenberg, and G. Rybka) Chin.
Phys. C38, 090001 (2014) [http://pdg.lbl.gov/2014/
reviews/rpp2014-rev-axions.pdf].

[34] A. H. Guth, “The Inflationary Universe: A Possible Solu-

tion to the Horizon and Flatness Problems,” Phys. Rev.
D 23, 347 (1981).

[35] A. D. Linde, “A New Inflationary Universe Scenario: A
Possible Solution of the Horizon, Flatness, Homogene-
ity, Isotropy and Primordial Monopole Problems,” Phys.
Lett. B 108, 389 (1982).

[36] A. Albrecht and P. J. Steinhardt, “Cosmology for Grand
Unified Theories with Radiatively Induced Symmetry
Breaking,” Phys. Rev. Lett. 48, 1220 (1982).

[37] A. E. Nelson and J. Scholtz, “Dark Light, Dark Matter
and the Misalignment Mechanism,” Phys. Rev. D 84,
103501 (2011) [arXiv:1105.2812 [hep-ph]].

[38] S. Khlebnikov and I. Tkachev, “Quantum Dew,” Phys.
Rev. D 61, 083517 (2000) [hep-ph/9902272].

[39] S. Khlebnikov, “Short Scale Gravitational Instability in
a Disordered Bose Gas,” Phys. Rev. D 62, 043519 (2000)
[astro-ph/9911218].

[40] P. H. Chavanis, “Mass-radius relation of Newtonian self-
gravitating Bose-Einstein condensates with short-range
interactions: I. Analytical results,” Phys. Rev. D 84,
043531 (2011) [arXiv:1103.2050 [astro-ph.CO]].

[41] P. H. Chavanis and L. Delfini, “Mass-radius relation
of Newtonian self-gravitating Bose-Einstein condensates
with short-range interactions: II. Numerical results,”
Phys. Rev. D 84, 043532 (2011) [arXiv:1103.2054 [astro-
ph.CO]].

[42] E. W. Kolb and I. I. Tkachev, “Nonlinear axion dynam-
ics and formation of cosmological pseudosolitons,” Phys.
Rev. D 49 (1994) 5040 [astro-ph/9311037].

[43] J. Berges and D. Sexty, “Bose condensation far from
equilibrium,” Phys. Rev. Lett. 108, 161601 (2012)
[arXiv:1201.0687 [hep-ph]].

[44] J. Berges and J. Jaeckel, “Far from equilibrium dynamics
of Bose-Einstein condensation for Axion Dark Matter,”
arXiv:1402.4776 [hep-ph].

[45] J. Eby, P. Suranyi, C. Vaz and L. C. R. Wijewardhana,
“Axion Stars in the Infrared Limit,” JHEP 1503, 080
(2015) [arXiv:1412.3430 [hep-th]].

[46] E. W. Kolb and I. I. Tkachev, “Axion miniclusters and
Bose stars,” Phys. Rev. Lett. 71, 3051 (1993) [hep-
ph/9303313].

[47] P. Svrcek and E. Witten, “Axions In String Theory,”
JHEP 0606 (2006) 051 [hep-th/0605206].

[48] A. Arvanitaki, S. Dimopoulos, S. Dubovsky, N. Kaloper
and J. March-Russell, “String Axiverse,” Phys. Rev. D
81 (2010) 123530 [arXiv:0905.4720 [hep-th]].


