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We extend our previous work on applying CMB techniques to the mapping of gravitational-
wave backgrounds to backgrounds which have non-GR polarisations. Our analysis and results
are presented in the context of pulsar-timing array observations, but the overarching methods are
general, and can be easily applied to LIGO or eLISA observations using appropriately modified
response functions. Analytic expressions for the pulsar-timing response to gravitational waves with
non-GR polarisation are given for each mode of a spin-weighted spherical-harmonic decomposition
of the background, which permit the signal to be mapped across the sky to any desired resolution.
We also derive the pulsar-timing overlap reduction functions for the various non-GR polarisations,
finding analytic forms for anisotropic backgrounds with scalar-transverse (“breathing”) and vector-
longitudinal polarisations, and a semi-analytic form for scalar-longitudinal backgrounds. Our results
indicate that pulsar-timing observations will be completely insensitive to scalar-transverse mode
anisotropies in the polarisation amplitude beyond dipole, and anisotropies in the power beyond
quadrupole. Analogously to our previous findings that pulsar-timing observations lack sensitivity to
tensor-curl modes for a transverse-traceless tensor background, we also find insensitivity to vector-
curl modes for a vector-longitudinal background.

PACS numbers: 04.80.Nn, 04.30.Db, 07.05.Kf, 95.55.Ym

I. INTRODUCTION

A massive international effort is currently underway
to observe gravitational waves across a wide range of
frequencies. The second-generation of ground-based
gravitational-wave interferometers are about to start col-
lecting data, with Advanced LIGO [1] observation runs
expected to begin before the end of 2015. The two Ad-
vanced LIGO detectors will form part of a global net-
work of kilometre-scale laser interferometers, with other
instruments due to come online during the rest of this
decade. These detectors will employ advanced technolo-
gies to detect gravitational waves from stellar-mass com-
pact binary systems emitting gravitational radiation in
the kHz band [2-5]. The European Space Agency re-
cently selected a science theme based around a ~10° m
arm-length space-based gravitational-wave interferome-
ter (eLISA) for the L3 mission slot, due to launch in
2034. Such a detector will observe gravitational waves
in the millihertz band, which are generated by binaries
involving the massive black holes that reside in the cen-
tres of galaxies, with mass about one million times the
mass of the Sun. These observations will permit tests
of fundamental physics to exquisite precision, whilst also
affording detailed demographic studies of massive black-

hole populations [6].

Complementary to these experiments are ongoing
efforts to characterize nanohertz gravitational waves
through their perturbation to the arrival-times of radio
signals from precisely timed ensembles of millisecond pul-
sars spread throughout our galaxy [7-10]. As a gravita-
tional wave transits between the Earth and a pulsar, it
induces a change in their proper separation, leading to a
redshift in the arrival rate of the pulsar signals [11-14].
It is the exceptional stability of the integrated pulse pro-
files of millisecond pulsars, and the resulting accuracy of
the models for the pulse times of arrival (TOAs), that
allow gravitational waves to be detected in this way.

The differences between the modelled TOAs and the
actual observed TOAs are known as the timing residuals.
These residuals contain the influence of all unmodelled
phenomena, such as additional receiver noise, interstel-
lar medium effects, errors resulting from drifts in clock
standards or ephemeris inaccuracies, and, most tanta-
lisingly, gravitational radiation. The signature of grav-
itational waves in these residuals may be deterministic
or stochastic. The gravitational-wave sources expected
to dominate the signal in the nanohertz frequency band
are the early adiabatic inspirals of supermassive black-
hole binary (SMBHB) systems [15-17]. Such systems



are expected to form following the (suspected ubiqui-
tous) mergers of massive galaxies during the hierarchical
formation of structure. If there is a system which is par-
ticularly loud in gravitational-wave emission then this
signal may be individually resolved and detected with
pipelines dedicated to searches for the deterministic sig-
nals of single sources [18-20]. If, however, there are many
sources which pile up in the frequency-domain beyond
the ability of our techniques to separately resolve them,
then the combined signal will form a stochastic back-
ground of gravitational waves. Although there are other
mechanisms which may contribute to a stochastic nHz
gravitational-wave background (decay of cosmic-string
networks [21-24] or primordial remnants [25, 26]), this
incoherent superposition of signals from many SMBHB
systems is expected to dominate the signal.

Standard pipelines in use today employ cross-
correlation techniques to search for stochastic back-
grounds. The presence of a common background of grav-
itational waves affecting the TOAs of all pulsars in an
array (a so-called pulsar-timing array, PTA [27]) makes
a cross-correlation search effective in leveraging the sig-
nal against uncorrelated noise processes. The concept of
an overlap reduction function is common to stochastic
background searches for all types of gravitational-wave
detectors, and describes the sky-averaged overlap of the
antenna pattern functions of the two detectors whose
data are being correlated [28]. In PTA analysis, the
overlap reduction function for a Gaussian, stationary,
unpolarised, isotropic stochastic background composed
of transverse-traceless (TT) gravitational-wave modes is
a smoking-gun signature of the signal, known as the
Hellings and Downs curve [29]. It is a function of one vari-
able: the angular separation between a pair of pulsars.
For anisotropic distributions of gravitational-wave power
on the sky, the overlap reduction function is no longer
merely a function of the pulsars’ angular-separation. It
will also depend on the positions of the pulsars on the sky
relative to the distribution of gravitational-wave power,
and thus will be a rich source of information in the
precision-science-era of PTAs [30, 31]. Furthermore, the
overlap reduction function can be shown to vary when
describing backgrounds where the graviton is permitted
to have a small but non-zero mass [32].

The same is true when describing the overlap reduc-
tion functions induced by gravitational-wave polarisation
states present in modified (metric) theories of gravity
[33]. In metric theories of gravity the only direct cou-
pling between matter and space-time is through the met-
ric tensor g,,, whereas any other additional fields just
contribute to space-time curvature. These modifications
to general relativity are being explored to ameliorate var-
ious unsolved problems in cosmology and astrophysics,
such as the origin of the accelerated expansion of the
Universe and the nature of dark matter, whilst also try-
ing to couch the gravitational influence within a quan-
tized framework. In addition to the usual GR transverse-
traceless tensor polarisation states, general metric theo-

ries permit four additional degrees of freedom in the Rie-
mann tensor [34], leading to a scalar-transverse (“breath-
ing”) state, a scalar-longitudinal state, and two vector-
longitudinal states, each inducing PTA correlation sig-
natures which are markedly distinct from the Hellings
and Downs curve [35, 36]. Metric theories fall into sev-
eral broad classes, including scalar-tensor theories (met-
ric tensor plus an additional scalar field), vector-tensor
theories (metric tensor plus an additional gravitational
four-vector field), and bimetric theories (space-time char-
acterized by prior geometry described by scalar, vec-
tor, and tensor fields) (see [37] and references therein).
Within each class are theories which have differing rela-
tive combinations of polarization states in the GW emis-
sion from a compact binary system. However in the
following we take an agnostic approach by avoiding the
specifics of each particular theory, and instead investigat-
ing the correlation signatures induced by each individual
beyond-GR state. Convincing evidence of GW polariza-
tion states beyond the usual tensor polarization states
will be a death knell for GR, and indicate the path to-
ward future modifications [33, 34, 38, 39].

Several previous studies have explored the ability of
ground-based laser interferometers to measure the prop-
erties of gravitational wave backgrounds with non-GR
polarisations (see for example [40-42]). In this work we
focus instead on the response of pulsar timing observa-
tions to gravitational wave backgrounds with non-GR po-
larisation states. Previous studies have looked at the de-
tectability of isotropic stochastic backgrounds of gravita-
tional waves with PTAs [35, 36], but in this work we drop
both of those assumptions and we show how PTAs can
be used to construct maps of both the amplitude and the
phase of gravitational wave backgrounds with non-GR
polarisations. By decomposing a background of given po-
larisation in terms of spin-weighted spherical harmonics,
we are able to derive analytic expressions for the detector
response functions for each mode of each non-GR polari-
sation state as a function of the harmonic multipole. We
discuss the implications of these results for mapping non-
GR backgrounds to any desired angular resolution. We
are also able to present analytic expressions for the over-
lap reduction functions of anisotropic scalar-transverse
and vector-longitudinal backgrounds, whilst significant
analytic headway is made for the corresponding function
for scalar-longitudinal backgrounds.

In Sec. IT we introduce the concept of the measured
signal in a gravitational-wave detector being a convolu-
tion of the metric perturbations with the response ten-
sor of the detector. We discuss the six distinct polar-
isation states of gravitational waves which are permit-
ted within a general metric theory of gravity by virtue
of obeying Einstein’s Equivalence Principle. The ba-
sis tensors for these polarisations are explicitly given.
We also discuss the decomposition of the metric pertur-
bations in terms of appropriate spin-weighted spherical
harmonics. In [43], the Fourier amplitudes of a plane-
wave expansion of the metric perturbations for an arbi-



trary transverse-traceless gravitational-wave background
were decomposed in terms of a basis of spin-weight +2
spherical harmonics. In the case of scalar-transverse and
scalar-longitudinal polarisations discussed in this paper,
we decompose the Fourier amplitudes in terms of ordi-
nary (spin-weight 0) spherical harmonics. For the vector-
longitudinal polarisations, we decompose the Fourier am-
plitudes in terms of spin-weight 41 spherical harmonics.
In Sec. II, we also give expressions for the pulsar timing
response functions, for either the polarisation or spin-
weighted spherical harmonic expansion coefficients. The
polarisation basis response functions for a pair of pulsars
are given explicitly in the computational frame, where
one pulsar lies along the z-axis and the other lies in the
xz-plane. These are needed for the overlap reduction
functions calculations given in the following section.

The overlap reduction functions for the different polar-
isation states are studied in Sec. III. This function de-
scribes the response of a pair of pulsars to a gravitational-
wave background in a cross-correlation analysis, and is
computed by integrating the overlap of the response of
each pulsar to a particular gravitational-wave polarisa-
tion over the entire sky. For a gravitational-wave back-
ground with arbitrary angular structure, this sky inte-
gral must be weighted by the gravitational-wave power
at each sky location. We find an analytic expression
for the overlap reduction function for a background with
scalar-transverse (breathing) polarisation, and show that
a PTA will lack sensitivity to angular structure beyond
quadrupole in a cross-correlation analysis for this type of
background. We also make significant analytic headway
for the overlap reduction function of a scalar-longitudinal
background, and find analytic forms for the limiting value
in the case of co-directional and anti-directional pulsars.
The overlap reduction function for a vector-longitudinal
background with arbitrary angular structure is found an-
alytically, with superficially perceived divergences in the
overlap reduction function for co-directional pulsars re-
solved by correctly incorporating the pulsar term in our
calculations.

In Sec. IV we extend our previous work on mapping
gravitational-wave backgrounds using CMB techniques
[43] to non-GR polarisations. We derive analytic expres-
sions for the response of a pulsar to each mode (cor-
responding to a particular spin-weighted spherical har-
monic) of the background, including the contribution
from the pulsar term. In the process of doing these
calculations, we find that the reason for the PTA in-
sensitivity to angular structure beyond quadrupole in
the gravitational-wave power of a scalar-transverse back-
ground is due entirely to the corresponding lack of sensi-
tivity of a single pulsar response to structure in the polar-
isation amplitudes beyond dipole. We verify this analytic
result with numerical map making and recovery. The pul-
sar response to individual modes of a scalar-longitudinal
and vector-longitudinal background are given analyti-
cally, where in the latter case we find that PTAs com-
pletely lack sensitivity to vector curl modes, analogous to

our previous finding that PTAs lack sensitivity to tensor
curl modes of a transverse-traceless background [43]. We
discuss these findings further in Sec. VI, along with sug-
gestions for future study and implications for the forth-
coming analysis of real PTA data.

Finally, we include several appendices (Apps. A-L),
containing relevant information (e.g., definitions, identi-
ties, recurrence relations) for spin-weighted and tensor
spherical harmonics, Legendre polynomials, Bessel func-
tions, etc., as well as providing technical details for the
overlap reduction function and response function calcu-
lations described in Secs. III and IV.

II. RESPONSE FUNCTIONS
A. Detector response

The response of a detector to a passing gravitational
wave is given by the convolution of the metric perturba-
tions hgp(t, ) with the impulse response R%(¢, F) of the
detector:

r(t) :/_Oo dT/d3yR“b(T,37)hab(t—T,f—g'). (1)

If we write the metric perturbations as a superposition
of plane waves

o .7 -
hab(t7f) = / df 2 dQch hab(f7 k)GZQTFf(t—k‘LE/C) ; (2)
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R(f, ff) — pi2mfhE/c

el 7. =
x / dr / APy R*(7,3) e~/ =kl (4)

Further specification of the response function depends
on the choice of gravitational-wave detector as well as on
the basis tensors used to expand hgp(f, 12;), as we explain
below.

B. Polarisation basis

In standard GR, the Fourier components hq;(f, l;:) are
typically expanded in terms of the 4+ and x polarisation
basis tensors:

hab(fa k) = h+(fv ];3)6

where

;_b(k) + hx (f, k)e:b(]%) , (5)

e:b(if) = éaéb - ané&ba (6)
e:b(]%) = éang + (ygaéba



and 9, é are the standard unit vectors tangent to the
sphere:
k= sinfcos¢px +sinfsingy + cosf 2,
é:cosQCOS(bi‘+cos€sin¢@—sin92, (7)
¢
In this paper, we also consider modified metric theories
of gravity, which admit four other types of polarisation:

a scalar-transverse (or breathing) mode (B), a scalar-
longitudinal mode (L), and two vector-longitudinal

—singz +cospy.

modes (X, Y). The polarisation basis tensors for these
modes are:
el (k) = 040, + daty, (8)
ey (k) = V2kahs, 9)
e (k) = Ouky, + kaby (10)
exy (k) = daky + katy - (11)

In terms of the polarisation tensors, the Fourier compo-
nents hqp(f, k) can be expanded generally as

hav(f, k) ZhA fikyeg, (k) (12)

where A is some subset of {+, x, B, L, X,Y}. The asso-
ciated response function for a plane wave with frequency

f, propagation direction I%, and polarisation A is given
by

RA(f. k) = R (f,k)ey (k) , (13)

and is related to the detector response r(t) via:

r(t) :/OO df/sz d*Q > D RAf k)ha(f, ket
o ~

(14)
We will work with the polarisation basis response func-
tions when calculating the various overlap reduction
functions in Sec. III.

C. Spherical harmonic basis

Alternatively, we can expand the Fourier components
hav(f, 12:) in terms of the appropriate spin-weighted spher-
ical harmonics, as was done in [43]. A spin-weighted func-
tion is a function of both position on the sphere, labelled
12:, and of a choice of an orthonormal basis, labelled I ,m,
at points on the sphere. Under a rotation of the orthonor-
mal basis, spin-weight functions transform in a particular
way

f(l%, cos il — sin i, sin Yl + cos Ym) = eisd’f(fc, I, m)
(15)

where s is the spin-weight of the function. Any spin-
weight s function can be expanded as a combination of

spin-weighted spherical harmonics of the same weight,
sYim(k). A spin-weight s spherical-harmonic can be re-
lated to s derivatives of an ordinary spherical harmonic,
as described in App. A.

For the standard GR tensor modes, if we define mg =
[94irh® we see that the combinations m% b hay(f, k)are
spin-weight £2 functions on the sphere. This allows the
GR tensor modes to be expanded as combinations of
spin-weight +2 spherical harmonics, or equivalently in
terms of the rank-2 gradient and curl spherical harmon-
ics, Y(lm)ab(k;), Y(lcm)ab(k:), defined by Eq. (C1) in App. C:

33 [t

=2 m=-1

ab fa lm)ab(]%)

05y (DY Gyan(B)] - (16)

For the breathing and scalar-longitudinal modes, the
functions Mm% hap(f, k) are spin-weight 0 and so we can

expand hap(f, k) in terms of ordinary (scalar) spherical
harmonics:

hab ) \[ ;m;l a’(lm) lem k) ab(k) (17)
htlb a \f ;lea(lm) Yim ]%) ab(l%) (18)

since the polarisation tensors e (k) and e, (k) are invari-

ant under a rotation of é, g% For the vector-longitudinal
modes, Mm% hay(k) have spin-weight +£1 and so we
can expand hg(f, k) in terms of spin-weight +1 spher-
ical harmonics or, equivalently, in terms of tensor fields
Y(‘z/m)ab(k) Y(Ym)ab(fc) constructed from the rank-1 vec-
tor spherical harmonics Y(?;n)a(l%)7 Y(lcm)a(]%) defined by
Egs. (B1) and (B9) in App. B

:Z Z [ (i) (lm s (F)

=1 m=-1

+a(lm)<f>m)ab<l%>}. (19)

The above expressions for hq(f, l;:) can be written in
compact form

ab f7

Z Z gy

(Im) P

Yr(fm)ab(l;) (20)

if we take P to be a subset of {G,C, B, L, Vg, Vc}, and
define

im (K)eqy” (k) (21)

to unify the notation for the spherical harmonic basic
tensors. (The factor of 1/v/2 is needed for the tensor



spherical harmonics Y(?nﬁab(/%) to satisfy orthonormality This causes a change in their proper separation, which is

relations similar to Egs. (B11) and (C8).) The associated ~ manifested as a redshift in the pulse frequency [11-14]:
response function for a given spherical harmonic mode is

R () = [ B0 R0V b, (2
and are related to the detector response r(t) via: A1) 1 oyt
2t h) === = 3T ha(t, k), (24)
27 0 + kK-
7" t = / df Z Z R(lm) (f)e 2mft . (23) v

(Im)

We will work with these response functions for the map-
ping discussion in Sec. IV.

where k is the direction of propagation of the grav-

D. Pulsar timing response itational wave, @ is the direction to the pulsar, and
Ahay(t, k) is the difference between the metric pertur-

A gravitational wave transiting an Earth-pulsar line bation at Earth, (¢, %), and at the pulsar some distance

of sight creates a perturbation in the intervening metric. L from the Earth, (¢,,%Z,) = (t — L/c, T + La):
J
Ahgy(t, k) = / af Z ha(f, k)el (k) [emf(t—’%'f/c) - ei%f(fp—’%'fp/ﬂ (25)
:/ df ZhA f7 6 b( ) i2n f(t—k-Z/c) [ 7i27r<fL(l+lA€-ﬁ)/c:| ) (26)

For a gravitational wave background, which is a superposition of waves from all directions on the sky, the pulsar
redshift integrated over k is given by

OO k@) /c .\ ot —k-Z/c
2(t) :/ af | |0 22 T ey (k) [1—e—l2’ffL<1+’f'“>/° ha(f, k) =k/e) (27)

Comparing the above expression with Eq. (14), we see that the detector response function R4(f, 12:) for a Doppler
frequency measurement r(t) = z(t) is given by

b

u : b(,%)e—izwfz%.;z 1— e—i27rfL(1+fc~1l)/c} . (28)
+

l\D\»—l

RA(f. k) =

For a timing residual measurement r(t) = f(f dt’ z(t'), the above response function R4 (f, k) would need to be multiplied
by a factor of 1/(i27 f). The response functions for individual spherical harmonic modes are similarly given by

b

1
e

i;: %m)ab(,%)e—izwfk.f 1 _6—12ﬂfL(1+l%-ﬁ)/c} _ (29)

E. Response functions for a pair of pulsars in the computational frame

In the following section, we will calculate the correlated response of a pair of pulsars to a gravitational wave
background. This calculation is most easily done in the so-called computational frame [30, 43, 44], in which the two
pulsars are in the directions

=(0,0,1),

Qs = (sin¢,0,cos (). (30)



In addition, we can choose the origin of the computational frame to be at the solar-system barycentre (SSB), for
which a detector (i.e., a radio telescope on Earth) has & = 0. In this frame the polarisation basis response functions

given in Eq. (28) simplify to

A 1 )
Rii_(fv k) = 5(1 — Cos 9) (1 _ e*27rsz1(1+cose)/c) ’ (31)
- 1 2sin? ¢ sin? ¢
RI(f. k)= = |(1 —si in 6 — cosf —
2 (1,5) 2 [( sin Csinfcos ¢ — cos fcos () 1 + sin ¢ sin # cos ¢ + cos 0 cos §]
> (1 _e—27'r7lng(1+sin§sin@cos¢+cos€cos()/c) , (32)
Ry (f.k) =0, (33)
RX(f.h) = 1 sin? ¢ cos A sin(2¢) — sin(2¢) sin @ sin ¢ (1 _ o—2mif La(1+sin  sin 0 cos ¢-+cos 0 cos C)/c) (34)
240 2 1+ sin ¢ sin 6 cos ¢ + cos 0 cos ¢ ’
~ 1 ; ;
RB(f,k) = 5(1 — cosf) (1 — e_2’”fL1(1+°059)/c) , (35)
- 1 ; in ¢ s . .
RQB(f7 k) _ 5(1 _ SinCsin9cos¢ — 03 0 cos C) (1 _ e—27TlfL2(1+bln<blnGCOS¢+CObQCOS<)/C> 7 (36)
~ 1 cos? ;
RL B = — 1 — —27ifL1(14cos0)/c 37
1) \/§1+C089( ¢ )’ (37)
~ 1 (sin(sinfcos ¢ + cosf cos()? i 0 s 0 cos
RL 7/€ - = (1 _ Trsz2(1+smCsm@cosqﬁ—i—cos@cos()/c) , 38
2 (/%) v/2 1+ sin ¢ sin 0 cos ¢ + cos 0 cos ¢ ¢ (38)
X 7 —cos fsin ( —2mifL (1+Cos€)/c)
k)= —(1- Ut
RE(R) = =2 (1 , (39)
A sin ¢ sin 6 cos ¢ 4 cos 0 cos ) (sin ¢ cos # cos ¢ — sin 6 cos ¢
Ry (f,k) =
2 1 + sin ¢ sin @ cos ¢ + cos 0 cos ¢
> (1 _ e—27rifL2(1+sin(Sin9COS¢+COS9COSC)/(1) , (40)
RY (f.k) =0, (41)
RY(f l;:) _ - sin ¢ sin ¢(sin ¢ sin € cos ¢ + cos 6 cos ¢) (1 _ o—2mif La(1+sin Csin 6 cos ¢+cosecosg)/c) . (42)
240 1 + sin ¢ sin @ cos ¢ + cos 0 cos ¢

The second (exponential) term inside the bracketed term
at the end of each of these expressions is the contribution
from the pulsar term. We are in general interested in the
regime y;y =27 fLr/c> 1 (I =1,2), and we will present
results below to leading order in this limit. In the GR
case, this limit is equivalent to setting the pulsar term
equal to 0 in the above expressions, i.e., replacing the
whole bracketed term by 1. This is also the correct thing
to do for the breathing modes, but more care is needed
for the other non-GR modes as the term multiplying the
pulsar term is singular at cos® = —1, so we leave this
term in for now. We will use the above expressions for the
response functions in Sec. III, when deriving the overlap
reduction functions for the different polarisation states.

III. OVERLAP REDUCTION FUNCTIONS

The statistical properties of a Gaussian-stationary
background are encoded in the quadratic expectation
values of the Fourier components of the waveform, e.g.,
(ha(f, k)% (f', k), where A = {+,x,B,L,X,Y}, in a

decomposition with respect to the polarisation basis ten-
sors. For an uncorrelated, anisotropic background these
quadratic expectation values take the form

(ha(f, k)Wa: (f' k) = Ha(f)Pa(k)daad®(k, k")5(f—(f/;7
43

where H4(f) and Pa(k) encode the spectral and angu-
lar properties of the A™ gravitational-wave polarisation,
respectively. [We are assuming here that the spectral
and angular dependence of the background factorize as
Pu(kYHA(f).] If the background is unpolarised then
there is the restriction Py = Py and Px = Py, and
similarly for Hy, Hx, and Hx, Hy.

The functions Pa(k) define the anisotropic
gravitational-wave power distribution on the sky
for polarisation A, and can be expanded as sums of

scalar spherical harmonics

o) l
Pa(k) =YY" PyYim(k).

=0 m=—1

(44)

The expectation value of the correlation between two de-



tectors, labelled 1 and 2, can be written in the form resort to numerical integration to do the integral over 6.
Details of the calculations are given in several appendices.
(1 (D)2 (') = Z/OO af eZﬂ*if(t—t’)HA(f)FA(f)’ (45) Plots of T/ (f) as a ﬁ.mcti.on of the angle between the
— /- two pulsars are given in Figs. 1, 2, 3, and 5. We only
show plots for m > 0, since Fﬁn = (—1)"Ll"f_m as a

where the overlap reduction function, FA(f), is given by consequence of Ylm(]%) = (71)m}/‘177m(]})_

oo l
A _ A A
(f) = lz lelmrlm(f) ’ (46) A. Transverse tensor backgrounds
=0 m=—
with Analytic expressions for the overlap reduction func-

tions I'/l (f) for uncorrelated, anisotropic (+, x) tensor

It (f) = / dQQ]% Yim(B)RA(f, )RS (f, k). (47)  backgrounds in GR were derived in [43]. For such back-

52 grounds, we can work in the limit 27 fL/c > 1 and set
the pulsar terms to zero (for which the frequency de-
pendence goes away), obtaining finite expressions for the
overlap reduction function, even for potentially trouble-
some cases such as cos( = +1. Appendix F summarizes
the key analytic expressions derived in that paper. Plots
of I‘;n forl =0,1,2,3 and m > 0 as a function of the an-

gle between the two pulsars are shown in Fig. 1. [I'}S =0

Note that a repeated polarisation index A, as in the last
two equations, is not summed over, unless explicitly indi-
cated with a summation sign. Note also that to simplify
the notation, we have not included a 12 subscript on the
overlap reduction functions, as we did in [43], to indicate
the two pulsars.

In the following subsections we calculate the overlap NP ’ :
reduction functions, Fl‘;‘n( f), for each mode of the power as a consequence of R{(f,k) = 0 in the computational
distribution and for each polarisation state, by evaluating frame.]
the right-hand side of Eq. (47) and using the expressions

for the response functions RA(f, k) given at the end of

Sec. II. It turns out that we are able to derive analytic B. Scalar-transverse backgrounds
expressions for the overlap reduction functions for the +,
X, breathing, and two vector-longitudinal polarisation For scalar-transverse (breathing mode) backgrounds,

modes. For scalar-longitudinal backgrounds, we are able we can again make the assumption 27 fL/c > 1 and set
to do the ¢-integration of (47) analytically, but need to the pulsar term to zero. It then follows that

J
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(48)

(

where we have used the definition of the scalar spherical not included. We must therefore include the pulsar term
harmonics given in Eq. (Al) of App. A and properties when evaluating the overlap reduction function for back-
of the associated Legendre polynomials summarised in grounds of this form. Using the notation y; = 27 f L /c,
App. D. We see that we are only sensitive to modes of  yo = 2w fLa/c, where L; is the distance to pulsar I, the
the background with [ < 2 and |m| < 1. Plots of I'? for  overlap reduction function for a given (Im), is given ex-
1=0,1,2,3 and m > 0 are shown in Fig. 2. plicitly by

C. Scalar-longitudinal backgrounds

The response for a scalar-longitudinal background,
Eq. (37), is singular at cosd = —1 if the pulsar term is
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Figure 1, the vertical scale is not the same in all plots, but has been adjusted to more clearly show the curves in each panel.
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The integral for I, (y,z) is challenging to evaluate in
general; however see App. G for an approximate ex-
pression, valid for large y. As shown in Apps. H and
I, it can be more simply evaluated for co-directional
pulsars (i.e., cos¢ = 1) and for anti-directional pulsars
(i.e., cos ¢ = —1). Using the approximate expression for
I, (y, x) evaluated in App. G, we then do the integration
over x given in Eq. (49) numerically. The results of this
semi-analytic calculation for I'Y (f) for I =0,1,2,3 and
|m| > 0 are shown in Fig. 3. For these plots we have
chosen y; = 100 and yo = 200. We note that the vertical
scale on these plots has been truncated so that the details
of the curves at moderate separations can be seen. The
overlap reduction function for small separations is there-
fore not shown in full. We note that, as discussed earlier,
the overlap reduction function does not diverge at ( =0
for finite pulsar distances, but it tends to a constant value
which can be computed using the result in Appendix H.
The values of the overlap reduction function at ( = 0 are
given in Table I.

The semi-analytic calculation agrees quite well with a
full (0, ¢) sky integration, as shown in Fig. 4. (The 2-
dimensional sky integration was actually done using a
HEALPix [45] pixelisation of the sky.) This plot shows
the fractional percentage difference between the values of
the I = 0, m = 0 overlap reduction function ' (f) cal-
culated using these two methods. As can be seen from
the figure, the agreement is best for values of  that stay
away from ¢ = 0 and ( = 7. However, at those spe-
cial points we can use the analytic expressions given in
Apps. H and I, and these are tabulated for [ = 0,1, 2,3 in
Table I. This allows us to obtain a good approximation
to the overlap reduction function for all {. We note that
Fig. 4 shows that the percentage difference between the
numerical and semi-analytic curves becomes smaller for
larger values of y; and yo, which is consistent with the
semi-analytic expression being valid for large y.

The large value of the overlap reduction function for
small values of ( suggests that only pulsar pairs with
small angular separations might contribute to inference
about scalar-longitudinal backgrounds. In practice, we
don’t have control over where pulsars are on the sky,
nor what the angular separation between pulsars with
the lowest timing noise will be. It is clear that pul-
sar pairs with small angular separations have the poten-
tial to contribute most to signal-to-noise ratio and hence
the prospects of detection of a background. However, to

( V31— 2 SiIlCCOS¢ + x cos C)2 (1 o eiy(lJr;xz cos (+v1—z2 sin ¢ cos (25)) eim(ﬁ.
1+ zcos¢+ V1 —x2sincos¢

(

(50)
l (=0 (=m
Real Imaginary Real Imaginary
0 261 117 3.31 0.254
1 —445 —-201 —-6.78 —0.388
2 561 254 6.19 0.567
3 639 —290 —6.44 —0.590

TABLE I: Values of the co-directional (¢ = 0) and anti-
directional (¢ = ) overlap reduction function for a scalar-
longitudinal GW background given for [ = 0, 1,2, 3. The pul-
sars have y1 = 100 and y2 = 200. The values in the table
correspond to m = 0 modes since all other values of m give
zero overlap reduction function values.

distinguish the different polarisation states of the back-
ground and to measure individual [ and m modes, the
full range of pulsar separations are required, since it is
how the correlations vary with that separation that is
unique to each individual mode. As a simple example, if a
background is detected using a pair of pulsars with small
separation, a non-detection of the background in a pul-
sar pair with larger separation would point towards the
background being longitudinal in nature, while a detec-
tion at larger separations would point to it being trans-
verse. Distinguishability of different backgrounds will be
discussed in more detail in sections IV and V.

D. Vector-longitudinal backgrounds

If we ignore the pulsar term, then the response for a
vector-longitudinal background, Eq. (39), looks singular
at cos = —1. However, due to the factor of sinf in the
numerator thisis a 1/4/1 + cos 0 type singularity which is
integrable. We can therefore also ignore the pulsar term
for these backgrounds and obtain a finite result. The an-
alytic calculation is very similar to that in App. E of [43]
for the standard (4, x) tensor backgrounds of GR. De-
tails of the calculation are given in App. J. Plots of I')\
for 1 =0,1,2,3 and m > 0 are shown in Fig. 5. [T}, =0
as a consequence of RY (f, l;') = 0 in the computational
frame.]

We note that in the limit cos( — 1, the m = 0
overlap reduction functions diverge. This is because
in that limit the singularities at (1 + k- 4;) = 0 and
(1+k-0i2) = 0 coincide and behave like 1/(1+cos ) rather
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adjusted to more clearly show the curves in each panel.
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y1 = 10, y2 = 20; the dashed curve is for y1 = 50, y2 = 100; and the solid curve is for y1 = 100, y2 = 200, where y; = 2w fL;/c
and Ly is the distance to pulsar I. Note that the percentage difference decreases as y1 and y2 increase. The vertical dashed grey
lines at the left and right-hand edges of the plot correspond to the minimum and maximum angular separation (0.95 degrees
and 174 degrees, respectively) over all pairs of pulsars in the European Pulsar Timing Array (EPTA).
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than 1/4/1 4 cosf. Again, this singularity is eliminated
if the pulsar terms are included in the integrand and the
pulsars are assumed to be at finite distance. Details of
that calculation are given in App. J1. For finite pulsar
distances, the limit cos( — 1 is still large compared to
the value at more moderate separations. The implica-
tions for this in terms of background detectability and
characterisation are as discussed for scalar-longitudinal
backgrounds in the previous section.

IV. MAPPING THE BACKGROUND

In [43] we applied the methodology used to charac-
terise CMB polarisation to describe gravitational-wave
backgrounds in general relativity. This involved expand-
ing a transverse tensor GR background in terms of (rank-
2) gradients and curls of spherical harmonics, which are
closely related to spin-weight +2 spherical harmonics. As
described in Sec. IIC, we can use a similar decompo-
sition to represent arbitrary backgrounds with alterna-
tive polarisation states. As explained earlier, for scalar-
transverse and scalar-longitudinal backgrounds, we ex-
pand in terms of the ordinary (scalar) spherical harmon-
ics, while for vector-longitudinal backgrounds we must
expand in terms of spin-weight +1 spherical harmonics.

In the following subsections, we derive analytic ex-
pressions for the pulsar response functions Rgm)( f) de-
fined in Eq. (29), for each mode of a background with
each of the different polarisation states, labeled by P =
{G,C,B,L,Vg,Vc}. We calculate the response in the
“cosmic” reference frame, where the angular dependence
of the gravitational-wave background is to be described.
The origin of this frame is at the SSB and a pulsar is

J

where x = cos6. It is this function that we need to
evaluate in the following subsections.

We finish this subsection by noting an important result
implicit in Eq. (52) connected to the distinguishability of
different background polarisation states. For every po-
larisation type, the response of a pulsar factorises into
a piece that is dependent on pulsar position, which is
Yim (@) for all polarisation types, and a piece that de-
pends only on the distance to the pulsar. Even if we had
infinitely many pulsars distributed across the sky, at any
given frequency, the best we could do would be to con-
struct a pulsar response map across the sky and decom-
pose it into (scalar) spherical harmonics. The coefficient
of each term would be a sum of the RY (2w fL/c)’s for all
polarisation states, P, which at face value means that it
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located in direction @, with angular coordinates (¢, x),
ie.,

4% = (sin ¢ cos x, sin ¢ sin x, cos () , (51)

and is at a distance L from the SSB. In this frame, we
can again make the approximation Z ~ 0 for the de-
tector locations (i.e., radio receivers on Earth). As was
done in [43], it is simplest to evaluate the response in
the cosmic frame by making a change of variables of the
integrand of Eq. (29), so that @ points along the z-axis.
This corresponds to a rotation defined by the Euler an-
gles (a, B,7) = (x,¢,0). Using the transformation prop-

erties of the tensor spherical harmonics Y(lljm) (k) under
a rotation, it follows that

Ry (f) = Yim (@R[ (21 fL/c), (52)

where R (2rfL/c) is proportional to the m = 0 com-
ponent of the response function calculated in the rotated
frame (with the pulsar directed along the z-axis):

47
RE@rfL/) =\ 5 Rl (Plas (53)
Note that we need only consider the m = 0 component,
since the pulsar response must be axi-symmetric in the
rotated frame, while the tensor spherical harmonics we
consider are all proportional to ™ in this frame. Thus,
we see from Eq. (52) that the dependence on the direction
to the pulsar is given simply by Y}, (@), while the distance
to the pulsar is responsible for the frequency-dependence
of the response function. Finally, using Eq. (29) with

Z ~ 0 and doing the integration over ¢, we find

V(). (0,0) (1 - TR/ (54)

4 ! 1

P

o fL/c) = 2/ -
Ri(@mfLje) = 2m 2z+1/_1dx21+m

(

would not be possible to disentangle the different polar-
isation states. However, as we will see below, a scalar-
transverse and transverse tensor background can always
be distinguished as current PTAs operate in a regime
in which the response functions are effectively indepen-
dent of the pulsar distance, i.e., the pulsar term can be
ignored. In that limit, we are only sensitive to modes
with [ < 2 of scalar-tensor backgrounds, while trans-
verse tensor backgrounds can only contain modes with
l > 2. The longitudinal modes cannot be distinguished
from the transverse modes, however, unless we have sev-
eral pulsars, at different distances, in each direction on
the sky. For the longitudinal modes the finite-distance
corrections introduced by the pulsar term are important
for typical pulsar distances of current PTAs, which gives



an additional handle to identify those modes. Alterna-
tively, if we made some assumption about how the back-
ground amplitude was correlated at different frequencies,
e.g., that it followed a power law, we would also break
this degeneracy as the response of the array to longitudi-
nal modes has a frequency dependence through the same
term. Thus, it is in principle possible to disentangle every
component of the background for each polarisation state
at each frequency, given sufficiently many pulsars at a
sufficient variety of distances along each line of sight. In
practice, a pulsar timing array containing IV, pulsars can
only measure 2V, real components of the background at
any given frequency [43, 46] and so the resolution of any
reconstructed map of the background will be limited by

J
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the size of the pulsar timing array. Roughly speaking,
to probe an angular scale of the order 1/ly. we would
require N, = (Imax + 1)? — 4 pulsars, if we assumed the
background was consistent with GR and therefore con-
tained only transverse tensor polarisation modes. If we
allow for arbitrary polarisations we would expect to need
N, = 3(Imax + 1)* — 1 pulsars, since we now have struc-
ture down to ! = 0, and we effectively have three different
possible polarisation states — transverse (either scalar or
tensor, but they are distinguished by the [ of the mode),
scalar longitudinal or vector longitudinal. A full inves-
tigation of what can be measured in practice is beyond
the scope of this current work and we leave it for future
study.

A. Standard transverse tensor backgrounds

In [43], the standard transverse tensor modes of GR were expanded in terms of gradient and curl tensor spherical
harmonics, and the corresponding response functions were calculated to be

RSWL)(f) ~ 27‘-(_

1! ON Y, (4),

Rgm) (f) ~ Oa (55)

where (2N} is a normalisation constant defined in Eq. (C2) of App C, and the = signs means that the pulsar term
was ignored for this calculation. Extending the analysis given in [43] to include the pulsar term, we find

where

= Yim(0)R{ (2w fL/c),

Ry (f) =0, (56)

AN [t Cini1aa) A2P
RE(y) =27 1 l/ldx [(1—:5)(1—962) (1_e zy(lﬂ)) dx;] , (57)

Integrating Eq. (57) by parts twice,

Nl i ) . . . dj;
R (y) = 7 BNy (—i)le ™ {(2 — 2iy + y*)ji(y) — i(6 + diy +y )(Ty — (6iy — y*) 5

where j;(y) denotes a spherical Bessel function, as defined in App. E, and dj;/dy, d2j;/dy?,

42 d?;
Iy 2‘”} (58)

dy? y dy?

and d3j;/dy® can be

simplified using Eqgs. (E9)—(E11). Taking the usual limit that the pulsar is many gravitational-wave wavelengths from

the Earth (y > 1), we find RE(y) ~ 27 (-1
were calculated without the pulsar term.

)t (N, which is consistent with Eq. (55), where the response functions

B. Scalar-transverse backgrounds

Repeating the calculation in [43] for an arbitrary scalar-transverse (breathing mode) background, we find

with

S\

where we used Egs. (E2), (E9) from App. E to get the

— Yin(@)RP@rfL/c), (59)

/ 5(1—2)R(x) (1 - e—"<1+f)y)
{&o - o= e [ (1=iL) ) + it |}

(60)

(

terms involving the spherical Bessel functions. Since the



spherical Bessel functions behave like 1/y for large y, the
terms in square brackets tend to zero as y — oo, leading
to the approximate expression for the response function

Ry (f) = 27V (1) % {510 - ;&1} ; (61)

which is valid in the limit where we ignore the pulsar
term.

Equation (61) contains a key result of this paper. In
the limit that y — oo, where the influence of the pulsar
term tends to zero, we find that PTAs will completely
lack sensitivity to any angular structure beyond [ = 1 in
a gravitational-wave background with scalar-transverse
polarisation. We can verify this analytic result through
numerical map making and recovery. Using

which relates the expansion coefficients hg(f, ]Af) and
aﬁm) (f) in the polarisation and spherical harmonic bases

(see Secs. IIB, IIC), we generate a random scalar-
transverse (breathing mode) background with angular
structure up to and including [ = 10. This injected map
is shown in the left panel of Fig. 6. To compute the PTA
response to such a background, we generate a random ar-
ray of IV, = 50 pulsars scattered isotropically across the
sky. We work in the polarisation basis rather than the
spherical-harmonic basis here, since the PTA response to
different angular scales in the GW background is trivial
in the latter, and we seek a numerical confirmation of
Eq. (60). The PTA response is computed (with a sky
resolution set by a given number of pixels Npix) using
the Earth term component of Eq. (28), by taking the dot
product of the array response matrix, R, with the vector
of amplitude values at each sky-location, h. The matrix
R has dimensions (N, x Npix), with each element corre-
sponding to the response of a particular pulsar to gravita-
tional waves propagating in a certain direction (denoted
by a map pixel), as given by the integrand of Eq. (28).
The resulting vector is the signal observed by the full
array, r = Rh. We can invert this in a noiseless map
recovery by taking the dot product of the Moore-Penrose
pseudoinverse of R with this observed signal vector. The
recovered scalar-transverse sky is shown in the right-hand
panel of Fig. 6, where we note a lack of small-scale angu-
lar structure. We compute an estimator of the angular
power spectrum for the recovered and injected maps via
HEALPix [45], which is capable of rapid map decompo-
sitions. This estimator is ) = Zin:—l laB 12/(21 + 1),
whereas the true spectrum would be computed from the
intrinsic variance of the background modes. The results
are shown in the left-hand panel of Fig. 7, where we
see that despite the injected map having structure up
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to [ = 10, the recovered map only contains structure up
to and including the dipole. This numerical result is a
confirmation of the corresponding analytic computation
in Eq. (61).

We can also check Egs. (59) and (60), which imply that
the PTA response to a scalar-transverse background will
extend beyond the dipole for pulsars at finite distances.
We do so again with numerical map making and recovery,
by using the full Earth and pulsar term scalar-transverse
response function given in Eq. (28). The pulsar term will
be highly oscillatory across the sky, so we expect some
numerical fluctuations in our results. For this study we
inject white Gaussian noise in each pulsar measurement,
with an amplitude such that the GW background remains
in the strong signal limit. In the right-hand panel of
Fig. 7 we see that the PTA has increasing sensitivity to
higher multiple moments in the background as y is in-
creased. At y ~ 5 — 10 the PTA is able to recover the
full angular structure of the background, but also suffers
from noise leakage at higher multipoles, since the non-
zero response of the pulsar term at these higher multi-
poles amplifies noise arising from the pixelation of the
sky. The pulsar term response peaks at [ ~ y, such that
for PTAs with y = 15,20 we see a drop-off in sensitivity
at [ ~ 15, 20, even though the response is merely amplify-
ing pixel noise at these multipoles. For y 2 20 the Earth
term behaviour is recovered, and we observe a lack of
sensitivity to modes beyond dipole. To put these results
into context, we recall that y = 27 fL/c and peak PTA
sensitivity to a gravitational-wave background occurs at
f ~ 1/T where T is the total observation time. For
T = 20 years, this gives f ~ 1.6 nHz. Thus in order for a
PTA to have sensitivity to structure in a scalar-transverse
sky beyond dipole, we need y < 10, which corresponds to
all pulsars in our array being at a distance of < 0.01 kpc
from Earth. Given that most timed millisecond pulsars
have distances 2 0.2 kpc, it is unlikely that this extended
reach to sensitivity beyond dipole modes will be possible

with current arrays.

Using the mapping response functions Rgm) (f) calcu-
lated above, we can also compute the overlap reduction
function for an uncorrelated, anisotropic background, re-
covering the result given in Sec. III B. Details of that

calculation are given in App. L.

C. Scalar-longitudinal backgrounds

For an arbitrary scalar-longitudinal background we
find

R(Lim)(f) = Ylm(ﬂ)RlL(Qﬂ-fL/C) ) (63)

where
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FIG. 6: Maps of the real amplitude component of a scalar transverse (breathing mode) background. (Left) a randomly generated
scalar-transverse gravitational-wave sky, with structure up to and including [ = 10. (Right) the corresponding recovered sky,
computed by first forming the observed signal vector for an array of N, = 50 pulsars via r = Rh, where each element of the
array response matrix, R, corresponds to the response of a particular pulsar to gravitational waves propagating in a given sky
direction. We perform a noiseless map recovery by computing R™r (where R is the pseudo-inverse of R) which gives the map
in the right panel. We note the lack of small-scale angular structure in the recovered map compared to the injected map.
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FIG. 7: (Left) A comparison of the angular power spectrum estimator, C; = 3! _  [af,|?/(20 + 1), of the injected scalar-
transverse sky map shown in the left-hand panel of Fig. 6, and the PTA-recovered map shown in the right-hand panel of the
same figure. We see that PTAs will completely lack sensitivity to angular structure in a scalar-transverse gravitational-wave
sky beyond the dipole level. This result is confirmed analytically in Eq. (61). (Right) We use the full Earth and pulsar term
response from Eq. (28) to investigate map recovery with finite y. The pulsar-term will be highly oscillatory across the sky, so
we expect some numerical fluctuations in our results. As y is increased the PTA shows greater sensitivity to higher multipole
moments in the GW background. At y = 10 the PTA is able to recover all modes in the injected map, although the non-zero
sensitivity of the pulsar-term response at higher multipoles amplifies noise from the pixelation of the sky. For y 2 20 the Earth
term behavior is recovered, and we observe a lack of sensitivity to modes beyond dipole. See text for further details.
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a3+ (e [ (15 ) ) + )] + 30 |

where H;(y) is defined by Eq. (H6) in App. H. Since the spherical Bessel functions behave like 1/y for large y, the
terms in the square brackets above tend to zero as y — oo, yielding

R (f) % 20Yi (@) {—510 + %511 + ;Hz(y)} : (65)

This is valid for y > 1, but y finite.

D. Vector-longitudinal backgrounds

As discussed in Sec. II B, we can expand each Fourier component of a vector-longitudinal background in terms of
gradient and curl tensor spherical harmonics Y(}/ﬁ)ab(k) Y(‘l/m)ab(k)7 which are simply related to the spin-weight +1
spherical harmonics defined in App. B. It is convenient to relate this expansion

bl fB) =3 Z [l (Y38 (B) + 0o (DYoo () (66)
=1 m=—1
to a similar expansion in terms of the polarisation basis:
hay (£,K) = hx (f. k)edy, (k) + hy (f. k)eqy (). (67)
The relationship is
x(f. k) £ ihy (f k) = WZ (alfz (1) £ ial (1)) 41 Yim (k) (68)

or, equivalently,

x(hR) = 5 > [ (D) (—2Yim(B) = 1Yin(B)) = il () (—2Yiun (B) 4 1Yi (B)) ]

by (F.) = 5 JZ[W ) (LY (B) = Vi () + il (1) (“a¥im () +1Yim(B))]

where 4+1Y},, (/;') are the spin-weight +1 spherical harmonics defined in App. A.
The expressions for the grad and curl response functions for an arbitrary vector-longitudinal background can be
calculated using the same methods as in the preceding subsections. We find

RIS (f) = Yim (@R (2n fL/c), RS, (f) =0, (70)

where
, dP,
RV (y) = 77<1>Nl/ da {x(l —z) (1 - eﬂy(lﬂ’)) dl} . (71)
x
Thus, the response to vector curl modes is identically zero for pulsar timing arrays, as is the case for tensor curl
modes, as shown in [43]. Evaluating the integral in Eq. (71) by parts we find

4 -
'R;/G (y) = 7T(1)Nl [2510 + *511 + (*1)leiw/

dz (14 (2+1iy)z + iny)eiymPl(x)]
~1

(72)

= O { G+ 2000 | (1= ) @4 100l0) = (0= 1204 3 () i) |

(

where we have dropped the §;9 term since for spin-weight the pulsar is many gravitational-wave wavelengths from
41 harmonics we have [ > 1. Taking the usual limit that



the Earth, y > 1, and using the asymptotic result

1 l 1
jl(y) A —sin (y - 7T> + 0 (3) ) for y > 1a (73)
Yy 2 Y2

we find
RS () = 2m¥in@) O[S0 + 1] . ()

As expected, this agrees with the result obtained by eval-
uating the integral in Eq. (71) without the pulsar term,
i.e., making the replacement {1 — exp[—iy(1l + z)]} — 1.

E. Overlap reduction function for statistically
isotropic backgrounds

For a statistically isotropic, unpolarized and parity-
invariant background (see, for example, Eqgs. (52)—(54)
of [43])

L(f)=>_ aru/f), (75)
l

E(f) 2 1) (b 1= 5 (Holon) + 55 ()] + 8 [ 5+

Vector-longitudinal modes (I > 1):
1Y () % w2 DN [~ on +1] Pleos). 6

Note that only the scalar-longitudinal overlap reduction
functions I‘lL( f) are actually frequency-dependent in the
large y limit, via their dependence on H;(yr). The other
overlap reduction functions depend only on the angular
separation ¢ between the pair of pulsars.

As shown in [43], an isotropic, unpolarized and uncor-
related background has C; = 1 for all [. In Fig. 8 we plot
approximations to T'?, 'Y, TV, and I'" corresponding
to different values of l,.x in the summation of Eq.(75),
taking C; = 1 for all I up to lpmax. (Recall that for the
vector overlap reduction function, the summation starts
at [ = 1, while for the tensor overlap reduction function,
it starts at [ = 2.) These finite l;,ax expressions are com-
pared to the | = 0, m = 0 components of the overlap
reduction functions calculated in Sec. III and plotted in
Figs. 1, 2, 3, 5. The normalization is different than in
those figures, since the [ = 0, m = 0 components need to
be multiplied by \/E/ 2 in order to obtain the isotropic
overlap reduction function. (The factor of \VAm comes
from Yoo(k) = 1/v/4m; the factor of 1/2 is needed to
get agreement between Eq. (43) and Eq. (32) of [43] for
isotropic, unpolarized backgrounds.)
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where

l

L(f) = Y Y Rium(HRSG(H)- (76)

m=—1 P

Here ), is a sum over the polarization states for a
particular type of background (e.g., P = {Vg,V} or
P = {G,C} for vector-longitudinal or transverse ten-
sor backgrounds). Using the results of the previous sub-
sections, we have in the limit y; > 1, y2 > 1 (where
yr = 2w fL1/c as before):

Transverse tensor modes (I > 2):

LT (f) = w2+ 1)(N])*Pi(cos (), (77)

which was found in [43].
Scalar-transverse mode (I > 0):

U7 (f) = (2l + 1)% [510 + ;511] Py(cos (). (78)

Scalar-longitudinal mode (I > 0):

1

§ (E o)+ H )|+ Eon 7 )  P(cos).

4
(79)

(

Figure 8 confirms what was found for the transverse
tensor modes in [43], namely that a good approximation
to the full overlap reduction function can be obtained by
including only a relatively small number of modes in the
sum. The maximum [ required in the sum is approx-
imately 1,4,10 and 20 for the scalar-transverse, trans-
verse tensor, vector-longitudinal and scalar-longitudinal
backgrounds respectively.

V. SENSITIVITY TO DIFFERENT
POLARISATION MODES

The results in the preceding sections tell us what will
be possible to measure in principle with a sufficiently
extensive pulsar timing array. The dependence of the
response on the pulsar location on the sky is propor-
tional to Y, (@), where 4 is the direction to the pul-
sar, for all polarisation types. By decomposing the pul-
sar response map, at a particular frequency, into regu-
lar (scalar) spherical harmonics, the coefficients of each
Yim () mode of the response map can be determined,
but these coefficients will be a sum of the contributions
from each of the polarisation types. Scalar-transverse
and transverse-tensor backgrounds can be distinguished
because PTAs typically operate in a regime in which the
pulsar term is negligible and so the response is indepen-
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FIG. 8: Approximations to the overlap reduction functions for an isotropic, unpolarized and uncorrelated stochastic background,
plotted as a function of the angle between a pair of pulsars. The approximations are obtained by summing products of the
response functions over ! for different values of lmax. Panel (a):
(breathing) background; panel (c): scalar-longitudinal background; panel (d): vector-longitudinal background. We are working
in the large y limit for all of these cases. For the scalar-longitudinal background, we have taken y; = 100 and y2 = 200. The
thick black line in each plot is the “full” expression for the overlap reduction function, corresponding to the limit lyax — 00.
(These limiting expressions equal /47 /2 times the [ = 0, m = 0 component of the overlap reduction functions calculated in
Sec. III.) For the scalar-longitudinal case, the full expression was calculated numerically.

dent of the distance to the pulsar. In that regime, PTAs
are only sensitive to modes of the scalar-transverse back-
ground with | < 2, while transverse tensor backgrounds
can only contain modes with | > 2. However, longitu-
dinal backgrounds can only be distinguished from trans-
verse backgrounds if there are multiple pulsars along a
given line of sight, or if there is a known correlation (e.g.,
a power law) between the background amplitudes at dif-
ferent frequencies. In either of these scenarios, we can
exploit the dependence of the pulsar term on 27 fL/c,
which is much more significant for the longitudinal modes
of the background. Thus, in the limit of infinitely many
pulsars distributed across the sky at a range of distances,
we would expect to be able to measure the entire content
of the background in each polarisation state and at each
frequency. In practice, of course, a pulsar timing array of
N, pulsars can only measure 2NV, real components of the
background [43, 46], and so the resolution of any map
that we produce will be limited by the number of pul-
sars in the array. Roughly speaking, to produce a map
of the gravitational-wave sky in all polarisation states to

transverse tensor background; Panel (b): scalar-transverse

an angular resolution of Af =~ 180°/l,ax would require
N, = 3(lmax + 1)? — 1 pulsars.

To understand the possible detectability of these
anisotropic backgrounds, we can refer to previous work
in related contexts. In [35], the detectability of isotropic
backgrounds of different polarisations was considered.
They found that the scalar-transverse background would
be detectable with comparable signal-to-noise ratio as
the transverse-tensor background (requiring 40 pulsars
timed for 5 years with 100 ns timing precision for a
first confident detection), but the longitudinal modes
would require 50% more pulsars (60 pulsars) to be de-
tected in a comparable time with the same signal-to-
noise ratio. However, this analysis was done assuming
that the correlation at zero pulsar separation was fixed
for all modes, rather than the intrinsic strain amplitude.
For fixed strain amplitude, the longitudinal modes have
much higher responses at low pulsar separations and so
would be detectable much more quickly. In [31] the de-
tectability of anisotropic transverse-tensor backgrounds
of gravitational waves was investigated. It was found



that, assuming the correct form for the anisotropy in
the search, anisotropic backgrounds would be detectable
at the same intrinsic amplitude as an isotropic back-
ground. Searching over the parameters characterising
possible anisotropies would increase the required ampli-
tude by a factor of a few. To confidently distinguish
between an anisotropic and isotropic model of the back-
ground, the amplitude would have to be a factor of ~10
higher. While that work was for stochastic transverse-
tensor backgrounds only and considered only dipole and
quadrupole anisotropies, the conclusions are likely to
carry over to backgrounds of arbitrary polarisation. We
would therefore expect to be able to detect an anisotropic
background at the same amplitude as we would detect
an isotropic background (which was determined in [35]
as described above), but would require a factor of a few
to ten higher signal-to-noise ratio to accurately charac-
terise the anisotropy. While this previous work can tell
us about the possible detectability and identifiability of
anisotropic backgrounds, the formalism described in this
paper allows us to go much further and also determine
which modes of the background we will be most sensitive
to and which we will therefore characterise well.

To obtain a quantitative comparison of the sensitiv-
ity of the mapping search to the different components
agm)( f) of the background, we can perform the equiv-
alent of a Fisher information matrix calculation, using
the response functions Rﬁm)( f) calculated in the pre-
vious section. For simplicity, we will restrict atten-
tion to a single discrete frequency component f = fy,
and assume that the distances L; to the individual pul-
sars (I = 1,2,---,N,) are such that the large-y ap-
proximation is valid, where y; = 2w fL;/c. Explicitly,
for the transverse-tensor and scalar-transverse polarisa-
tions, we use the y; — oo expressions for the response
functions, given by Egs. (55) and (61). While for the
scalar-longitudinal and vector-longitudinal polarisations,
we keep the y-dependence, given in Egs. (64) and (72),
to help distinguish the different modes in the recov-
ery of the background. As in previous sections, we let
P ={G,C,B,L,Vg,Vc} label the different polarisation
states, and (Im)p label the tensor spherical harmonic
components corresponding to polarisation P. Recall that
for scalar-transverse (i.e., breathing) mode backgrounds,

R{,(f)=0, forl>2, (81)
and
R,y (f) =0, RiS,(f)=0 (82)

for the transverse-tensor and vector-longitudinal curl
modes. In addition, the tensor spherical harmonic mul-
tipole indices start at [ = 1 for vector-longitudinal po-
larisations and at [ = 2 for transverse-tensor polarisa-
tions. Given these restrictions on the response functions,
it follows that the response matrix R (having compo-
nents Rgm)(fo)) is an N, x M matrix, where N, is the

total number of pulsars and M = 3(lpax + 1)2 — 1.
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As described in [47], the covariance matrix for the
maximum-likelihood estimates ay, of the components
agm)(fo) can be written as

cov(an) = (avayy) — (amw) (aly) = R (R,

(83)
where R is the whitened response matrix R = LR, with
L the lower triangular matrix defined by the Cholesky
decomposition of the inverse noise covariance matrix,
C,! = LL'. The superscript + denotes the pseudoin-
verse of the matrix R, which can be defined in terms of
the singular value decomposition

R=UxXV', (84)
for which
Rt =VZtUT. (85)

Here % is obtained by taking the reciprocal of each
nonzero singular value of X, leaving the zeros in places,
and then transposing the resulting matrix. The uncer-
tainties in the estimates are then given by the square-root
of the diagonal elements of the covariance matrix,

omr, = \/diaglcov(am)] - (86)

To simplify the calculation further, we will also assume
that the noise covariance matrix C,, is diagonal (i.e.,
Chnrr(fo) = Cnr(fo)drr), and that the power spectral
densities Cp1(fo) for the noise are the same for all pul-
sars [ =1,2,---, N, for which Rf(lm)(fo) o Rf(lm)(fo).
For convenience, we set this proportionality constant to
unity, as it does not affect the relative sensitivity to the
different polarisation modes.

We can apply this formalism to a simple scenario in
which we assume that the background contains modes up
t0 Imax = 2 only and our pulsar array comprises 30 pul-
sars with distances chosen at random uniformly between
1 kpc and 10 kpc. (For frequency fo = 3 x 1079 Hz,
corresponding to 1/(10 yr), y; = 27w foL;/c for the dif-
ferent pulsars range between ~ 2000 and ~ 20000.) In
this case the system is fully determined since we have
more pulsars, N, = 30, than modes of the background,
M = 26. In Table V we show how the uncertainties
in our measurements of each mode of the background
change as we go from searching for only the transverse-
tensor modes, to searching for both transverse-tensor and
scalar-transverse modes, to searching for all transverse
modes and the scalar-longitudinal modes, to searching
for all possible modes. We see that there is little change
in the precision of determination of the transverse-tensor
modes when scalar-transverse modes are also searched
for, and the precision of determination of all of these
modes is comparable. This is to be expected—as ar-
gued above the two families of transverse modes have
an essentially orthogonal effect on the response, since
the transverse-tensor modes have [ > 2 only, while the
scalar-transverse modes have [ < 2 only. When we in-
clude scalar-longitudinal modes in the analysis as well



we would expect to see some confusion since scalar-
longitudinal modes can take all values of [. However, the
response to scalar-longitudinal modes depends strongly
on the distance to the pulsar and this should allow us
to break the degeneracy. This is precisely what is seen
in the Table V—measurements are a little worse than in
the previous case, since the information is being used to
determine more parameters, but all modes can still be
measured. The determination of the scalar-longitudinal
modes is a factor of 10 more precise than the determi-
nation of the transverse modes, since this formalism ef-
fectively assumes equal intrinsic amplitude for all modes
and the scalar-longitudinal modes give a much larger re-
sponse for small pulsar angular separations. The inclu-
sion of vector-longitudinal modes in the analysis leads to
a slightly worse determination of the scalar-longitudinal
amplitudes, again because the available information is
being used to measure more parameters. However, it
also significantly degrades the measurements of all the
other modes. This behaviour can also be understood
from the results derived in Sec. IV. As for the scalar-
longitudinal modes, the only thing that allows the vector-
longitudinal modes to be disentangled from the trans-
verse modes is the dependence of the responses on dis-
tance. However, this dependence is much weaker for the
vector-longitudinal modes than the scalar-longitudinal
modes. We therefore expect, and see, a much greater
confusion between the vector-longitudinal modes and the
transverse modes. This degrades the measurement of any
individual mode amplitude, although certain combina-
tions of transverse and vector-longitudinal mode ampli-
tudes will still be accurately measured.

These results provide quantitative confirmation of the
qualitative statements made earlier in this paper and il-
lustrate some of the potential difficulties with mapping
gravitational-wave backgrounds with PTAs. However,
this analysis makes various simplifications:

e The above implicitly assumes that the intrinsic am-
plitudes of different polarisation backgrounds are
equal. If we had prior beliefs that the transverse-
tensor modes should be of much greater amplitude,
this could be folded into the above and we would
conclude that we would be able to measure those
modes much more accurately. Imposing such a
prior could only be done by reference to a specific
alternative theory and specific astrophysical model
for the background.

e Results have been presented for only one pulsar ar-
ray and implicitly assume that all the pulsars are
equally sensitive, i.e., have equal timing precision.

e Only one frequency component of the background
has been included. Including more frequency com-
ponents could help improve measurements, but
only if some relationship between the mode am-
plitudes at different frequencies is assumed.

e The analysis has been presented in the frequency
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domain and ignored complexities that arise in such
an approach, such as uneven sampling of the data.
These complications are straightforward to con-
sider in this kind of analysis (see, e.g., [43]), but
will impact the conclusions.

e The case above was a fully determined situation
in which there were fewer modes in the background
than pulsars in the array. More generally, we would
want to allow for many more [ and m modes in the
background. In that case, it is not possible to mea-
sure all the modes of the background, but there will
be certain backgrounds to which any given pulsar
timing array is sensitive and others to which it is
blind. This was discussed in detail in [43, 46].

The impact of each of these assumptions on the results
should be fully investigated in the future. This will re-
quire a large campaign of simulations which are beyond
the scope of the current work, so we defer a fuller inves-
tigation to the future.

VI. CONCLUSION

In this paper we have investigated the overlap re-
duction functions and response functions of PTAs for
non-GR polarisations of gravitational waves. The over-
lap reduction function describes the sensitivity of a
pair of pulsars to a gravitational-wave background in a
cross-correlation analysis. The cross-correlation signa-
ture traced out by the overlap reduction function from
an entire array of precisely-timed millisecond pulsars
will aid in isolating any gravitational-wave signal from
other stochastic processes which may have similar spec-
tral properties. Hence, current searches for stochastic
gravitational-wave backgrounds rely on models of the
overlap reduction function as the smoking-gun signature
of a signal. For an isotropic stochastic background in GR,
the overlap reduction function is known as the Hellings
and Downs curve, and depends only on the angular sep-
aration between pulsars in the array. The overlap reduc-
tion functions for arbitrary anisotropic stochastic back-
grounds in GR were investigated in Gair et al. [43] and
Mingarelli et al. [30], where it was shown that these func-
tions are now dependent on the positions of each pulsar
relative to the distribution of gravitational-wave power
on the sky.

The gravitational wave polarisation has a strong in-
fluence on the overlap reduction function through the
form of the pulsar response functions. Chamberlin and
Siemens [36] studied the form of the overlap reduction
functions for isotropic backgrounds of gravitational waves
for scalar-transverse, scalar-longitudinal, and vector-
longitudinal polarisation modes. In this paper, we have
extended that analysis to find analytic expressions for the
overlap reduction functions for anisotropic non-GR back-
grounds. A key result of this work is that PTAs will com-
pletely lack sensitivity to structure beyond quadrupole
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(I, m) mode
G: transverse-tensor (gradient) — — — — 044 038 0.32 0.38 0.44
G: transverse-tensor (gradient) — - — — 049 039 037 039 0.49
B: scalar-transverse (breathing) | 0.16 0.53 0.46 0.53 — — — — —
G: transverse-tensor (gradient) — - — — 16.2 105 11.4 105 16.2
B: scalar-transverse (breathing) |4.36 16.1 14.1 16.1 - — — — —
L: scalar-longitudinal 0.71 096 0.84 096 1.21 0.78 086 0.78 1.21
G: transverse-tensor (gradient) — — — — 1.4eb 5.4ed 8.0ed 5.4ed 1.4eb
B: scalar-transverse (breathing) | 18.4 9.4e4 6.2e4 9.4ed  — — — — —
L: scalar-longitudinal 3.08 11.5 8.68 11.5 209 7.51 11.9 7.52 20.9
Va: vector-longitudinal (gradient)| —  6.6ed 4.4ed 6.6ed T7.0ed 2.7ed 4.0ed 2.7ed 7.0ed

TABLE II: The uncertainties, omi, for the transverse-tensor, scalar-transverse, scalar-longitudinal, and vector-longitudinal
polarisation modes searched for separately or in various combinations for Imax = 2 and N = 30 pulsars.

in the power of a scalar-transverse background. This re-
sult holds regardless of the number of pulsars, timing-
precision, or observational schedules—it is a property of
the geometric sensitivity of PTAs to gravitational-wave
signals of scalar-transverse polarisation. Additionally, we
have found analytic expressions for the overlap reduction
functions for arbitrary anisotropic vector-longitudinal
backgrounds. We also derived a semi-analytic expression
for the overlap reduction functions of anisotropic scalar-
longitudinal backgrounds, in which case a consideration
of the pulsar-term is crucial to avoid divergences.

In the second half of this paper, we extended the for-
malism of our previous work in Gair et al. [43], where the
Fourier amplitudes in a plane-wave expansion of the GR
metric perturbation were decomposed with respect to a
basis of gradient and curl spherical harmonics, which are
related to spin-weight +2 spherical harmonics. By deter-
mining the components of the background in such a de-
composition it is possible to construct a map of both the
amplitude and the phase of the gravitational wave back-
ground across the sky, rather than simply reconstructing
the power distribution. The decomposition in terms of
spin-weight +2 spherical harmonics is made possible by
the transverse-traceless nature of the GR gravitational-
wave metric perturbations. Here we have appealed to
the structure of the gravitational-wave metric pertur-
bations for non-GR polarisations to perform the same
procedure—the Fourier amplitudes of scalar modes can
be expanded in terms of ordinary spin-weight 0 spherical
harmonics, while the vector mode amplitudes can be ex-
panded in terms of a spin-weight 41 spherical harmonic
basis. In so doing, we found that PTAs lack sensitivity
to structure in the polarisation amplitude of a scalar-
transverse background beyond dipole anisotropy, which
can be used to explain the lack of sensitivity to power
anisotropies beyond quadrupole. This result was veri-
fied through numerical map making and recovery, where
we found some sensitivity to modes beyond dipole when
y = 2rnfL/c was very small, but this would require all

pulsars to lie within a distance of 0.01 kpc from Earth.
We also found that PTAs will lack sensitivity to vector
curl modes for a vector-longitudinal background, which is
analogous to the finding in Gair et al. [43] that PTAs are
insensitive to the tensor curl modes of gravitational-wave
backgrounds in GR.

This paper provides several ready-to-use expressions
for overlap reduction functions for non-GR stochastic
backgrounds with arbitrary anisotropy. These expres-
sions can be trivially plugged into any current or planned
PTA stochastic background search pipeline to obtain lim-
its on the strain amplitude of a non-GR gravitational-
wave sky. We also provide several ready-to-use expres-
sions for the response functions of a single pulsar to
anisotropies in a non-GR gravitational-wave background.
The implications of this are that we can use an array of
pulsars to perform a Bayesian or frequentist search for
the angular dependence of the Fourier modes of a plane-
wave expansion of the gravitational-wave metric pertur-
bations, and in so doing produce maps of the polarisation
content of the sky that include phase information rather
than simply map the distribution of power.

The results in this paper also indicate what is pos-
sible to measure in principle with a sufficiently exten-
sive pulsar timing array, and in Sec. V we discussed
this both qualitatively and gave some simple quantita-
tive examples. For a further discussion of the prospects
of this type of mapping analysis in the case of GR-
polarised gravitational-wave backgrounds, we refer the
reader to Gair et al. [43] and Cornish and van Haasteren
[46]. In the future, we plan to apply the results of this pa-
per to the analysis of real data, to map the amplitude and
phase content of non-GR gravitational-wave backgrounds
influencing the arrival times of millisecond pulsars. This
will allow us to place constraints on beyond-GR polari-
sations of nanohertz gravitational waves.
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Appendix A: Spin-weighted spherical harmonics

This appendix summarizes some useful relations involving spin-weighted and ordinary spherical harmonics, SYlm(lz:)
and Y, (k). For more details, see e.g., Goldberg et al. [48] and del Castillo [49]. Note that we use a slightly different

normalization convention than in Goldberg et al. [48].

Namely, we put the Condon-Shortley factor (—1)™ in the

definition of the associated Legendre functions P/™(z), and thus do not explicitly include it in the definition of the

spherical harmonics.

Also, for our analysis, we can restrict attention to spin-weighted spherical harmonics having

integral spin weight s, even though spin-weighted spherical harmonics with half-integral spin weight do exist.

Ordinary spherical harmonics:

. ) 2041 (1 —m)!
_ — m pm ime m o _
Yim (k) = Y (0,6) = N/"P["(cos)e'™? |,  where N I U m) (A1)
Relation of spin-weighted spherical harmonics to ordinary spherical harmonics:
(=) s
(A2)
l ! =
s}/lm(gvd)) El+z;' ( )Saisyrlm(aagb) for —1 <s< Oa
where
< s | O PR
On = —(sin ) 2 +zc5c08¢ (sinf)~°n,
(A3)

on = —(sing)~*°

and n = n(0, ¢) is a spin-s scalar field.

Series representation:

Yim(0,0) = (—1)™ (L+m)!(l —

Complex conjugate:
Y (0,0) = (-
Relation to Wigner rotation matrices:

’

Dlm’m(¢v 97 w) = (_1)771

|0 s
[30 zcscﬂ](sme)n

U+ = :;')' 2l4jr 1} : (81“9/2)212 <l i S) (k ts—m

2041

d¢

l + s )(_1)lks€im¢(cot 9/2)2k+57’m.

(A4)

D™ Y m(0, ). (A5)
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or
(D an(6.0.)] = (-1 S Y (0, 6)™. (A7)
m'm Y Ql + 1 m ;M 9
Parity transformation:
s}/lm(ﬂ' _07¢+7T) = (_l)l —s)/lm(oa(b)' (AS)
Orthonormality (for fixed s):
R . 2m ™
dQQiC Yim (k) Y7 (k) = / d¢/ sin0do Y (0, ¢) Y7, (0, 0) = 01 dmmy - (A9)
52 0 0
Addition theorem for spin-weighted spherical harmonics:
1
. o 21 'y
Z sl/lm(elad)l)s’yvlm(a%(bQ) = <_1) ?75’1/25(937(;53)6 37 (AlO)
m=—1
where
cos 03 = cos 61 cos O + sin 0y sin 05 cos(pa — ¢1), (A11)
and

o—ildatxa)/2 _ cos = ((bg — 1) cos = (92 —60,) —isin %(Qﬁg — ¢1) cos = (6‘1 + 67)
\/0052 $(¢2 — 1) cos? 5(02 — 1) + sin® 1 (2 — ¢1) cos? L (61 + 62)

)

L . (A12)
pilda—xa)/z _ __ 083 (da — ¢1)sin §(02 — 61) + isin 3 (2 — ¢1) sin (61 + 6)
\/(2052 (2 — 1) sin? 7(92 —61) +sin *((ﬁg — ¢1) sin? %(91 + 69)
Addition theorem for ordinary spherical harmonics:
l . - 2+1 )
D Vi (k)Y (ko) = i Py(ks - k). (A13)

m=—I

Integral of a product of spin-weighted spherical harmonics:

2y, . . LA D)L )@ +1) (L 1y Loy 3
~/Szd Qk Slmlml(k) Szyzzms(k) Ssyvlsms(k) _\/ A mi Mg M3 —S81 —S8S2 —S3 ’

(A14)

where ( b bl ) is a Wigner 3-j symbol, which can be written as
mi1 Mo M3

v LN [0l — D=+ D=L+ + DN+ m)I — m)!(l -+ m)N — m) (L + ML — M)!
(mm’M) = (+U+L+1) .
( 1)z+l+l/—M (A15)

><;;z!(l—i—l’—L—z)!(l— — 2NV +m —2)(L =V +m+2)(L—1—m +2)

See, for example, Wigner [50], Messiah [51], Landau and Lifshitz [52] and references therein. Note that although this
sum is over all integers it contains only a finite number of non-zero terms since the factorial of a negative number is
defined to be infinite.
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Appendix B: Gradient and curl rank-1 (vector) spherical harmonics

The gradient and curl rank-1 (vector) spherical harmonics are defined for [ > 1 by

1 1 OYim 4 1 Y »
G = ,(1) - ,(1) lm tm
Y(lm)a = N10oYim = Ny < 00 @ + sind a¢ > ( )
B1
1 1 OV 2 OVim -
YS = ZON(8,Yim)ebe = =N, [ — ™4, " b
(im)a UOYim)€a = 5N = 9 50 :
where 6 and ngb are the standard unit vectors tangent to the 2-sphere
0 = cosfcos i + cosfsin g — sinf z,
4 ¢ oy (B2)
¢=—sinpT+cosoy,
(N, is a normalisation constant
2(1-1)!
ON, = A B3
: I+ (B3)

and €, is the Levi-Civita anti-symmetric tensor

w=vi( o) a=detton), (B)

vl

Following standard practice, we use the metric tensor on the 2-sphere g4, and its inverse g*° to “lower” and “raise”

tensor indices—e.g., €, = g%€,p. In standard spherical coordinates (6, ¢),

1 0 .
Gab = (O sin20) ; Vg =sind. (B5)
The grad and curl spherical harmonics are related to the spin-weight +1 spherical harmonics

(1— 1)

A N dpPm
Yim(k) = L (+(1-2*)—

+mpP" (SC)) e"™?  where z = cosf (B6)
via

Yimya (k) £ Y, (9 & i) 51 Yim () (B7)

2

S}
—~
>
~
H

or, equivalently,

Vmpa(h) = 5= [(¥inB) = 15 R)) B 1 (<aYiaB) Y0 () ] -

Vpah) = 5 [ (<4750 8) = 1¥iu(8)) 60 =i (Vi ()4 1Yi () ]

For decompositions of vector-longitudinal backgrounds, as discussed in the main text, it will be convenient to
construct rank-2 tensor fields

Va G i G i
Yv(lm)ab Yv(lm)akb + Yv(lm)bka ) (BQ)
Vo c i c i
Yimas = YmyaFo + Yimyka »
where k is the unit radial vector orthogonal to the surface of the 2-sphere:
k=sinfcos¢d +sinfsingy + cosb 2. (B10)
These fields satisfy the following orthonormality relations
2 Vi 7. Vi ab* (1,
/S Y RV () = G
[ PO B ) = b (B11)

/S2 AP YS ) (YRS 20 (k) = 0.



Appendix C: Gradient and curl rank-2 (tensor) spherical harmonics
The gradient and curl rank-2 (tensor) spherical harmonics are defined for [ > 2 by:
G 1 c
Yv(lm)ab =N Yv(lm);ab - igava(lm);c )
Ny
}/(lcm)ab = 7 (}/(lm);acecb + }/(lm);bceca> s

where a semicolon denotes covariant derivative on the 2-sphere, and (?) N; is a normalisation constant

2(1—2)!
@n - [2U=2)
Ni= (I+2)! "

Using the standard polarisation tensors on the 2-sphere:

where 6, ¢ are given by Eq. (B2), we have [53]:

oy PN ot (7 Ve X (]

YSyan(B) = = [Watmy (B)edy (8) + Xy (e (B)]
R (Q)Nl . . . R

Yman(R) = = | Wi (B)e (k) = Xy (R)e (B)]

where

- 02 0 m? 5 0? -

sin“ 6

- 2im (0 R

These functions enter the expression for the spin-weight +2 spherical harmonics [48, 54]:

m m 1 m )
which are related to the grad and curl spherical harmonics via

A . A 1 ~ A ~
}/(gn)ab(k) + Zyi?nl)ab(k) = \ﬁ (et—;b(k) + Ze (k)) $2)/2m(k) :

Note that the grad and curl spherical harmonics satisfy the orthonormality relations
/ A2 Y§yap (R)Y Gy (B) = GG
SZ

5ll’6mm’ )

/,52 dQQ Yv(lm)ab(]%> (l’m’)ab*(]%)

/ dQQ Ylm ab(lA{) U'm ab*(]%)
g2

Appendix D: Legendre polynomials and associated Legendre functions

25

The following is a list of some useful identities involving Legendre polynomials P(z) and associated Legendre

functions P/ (x). For additional properties see e.g., Abramowitz and Stegun [55].
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Differential equation:

1-29)L prey 0w L pmey + i+ 1) - =] pr@) o (D1)
da?™! dz! (1—a2)] ! -
Useful recurrence relations:
d 1 m m
(1-a?)— —P"(2) = 5 [+ DA +m) P2y (@) = W =m + P ()]
1 m—1 m—+1
VI— 2 L pr () = 5 [ m) (= m o+ )PP (@)~ B )]
Orthogonality relation (for fixed m):
2(l+m)t
da P"™(z) P (x) = our
/ : : (20 + 1)(1 — m)! (D3)
2
P(x)Py(x) = —— oy -
/fz ) Pu(r) = gy
Relation to ordinary Legendre polynomials, for m =0,1,--- ,I:
P(w) = (11— 222 P,
pm 1)™m (Z _ m)'Pm ' (D4)
Rodrigues’ formula for P(z):
1 d o,y
{(e) = 52 [0 = 1) (D5)
Series representation of Legendre polynomials
! Z + B [1-—a ! I+ (1+z\"
k - l+k D
-2 U () e e () 09
=0 k=0
Useful recurrence relation:
2+ 1)zP(z) =1+ 1)Py1(z) + 1P _1(x), (D7)
which iterated yields

2Py — D0+

43 + 612 -1
(20+3)(2l + 1

I(1—1)
@+ Gy @

121 Pia(z). (D8)

Appendix E: Bessel functions

The following is a list of some useful identities involving Bessel functions and spherical Bessel functions of the first
kind, J,(y) and j;(y). For additional properties, see e.g., Abramowitz and Stegun [55]

Integral representation of ordinary Bessel functions
11

T =505 | 7 g eitne e,

Integral representation of spherical Bessel functions

1
2(7i)ljl(y) = /71 dx Pl(x)e*iy”” )
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Relationship between ordinary and spherical Bessel functions:

Jiy) = \/ZJ1+;(Z/)~ (E3)

Plane wave expansion:

efi27rffc-:?/c — e W cosf _ Z(*l)l]l(y)(2l + I)PI(COS 9) ) (E4)
1=0
Asymptotic behaviour:
Taly) ~ — ()" foro<y<vatd (E5)
T(n+1) \2/) ’
2 nmwomw 1
~ .2 = _Z = f 1
In(y) ; [cos (y 5 4) —&—O(x)} , ory>1, (E6)
1 l 1
gi(y) = = sin (y — W) +0 <3> , fory>1. (E7)
y 2 Y2
A useful recurrence relation:
. . 20+1 .
Ji=1(y) + Jipa (f) = J 1Y) (E8)
Another useful recurrence relation:
dj, 1 ‘
del = ;]l(y) = Ji+1(y) (E9)
which iterated once yields
d?j (-1 . 20+1 .
WD) - 2L ) + e (B10)
dy Y
and twice yields
d3j (-0 -2) . 312 3(0+1) . )
@; = (y)s()ﬂ(y) - ?]Hl(y) + ( )Jz+2(y) — Ji+3(y) - (E11)

Appendix F: Analytic calculation of the overlap reduction functions for transverse tensor backgrounds

For completeness, we include here expressions for the overlap reduction functions for anisotropic, uncorrelated
backgrounds having the standard transverse tensor polarization modes of GR. These were derived in App. E of [43].
Here we present only the final results; readers should consult [43] for details.

For all [, m:
rX.(f) =0, (F1)
which trivially follows from the fact that R;(f, 12:) = 0 in the computational frame.

For m = 0:

1 1 1 2
I‘;B(f) =3 (2l—|—1)7r{ (1+ 3cos(> 010 — 3 (14cos() &1 + 1—500sC612

— (L +cos()F g, 0(cosC) — (1 — cos C).7—'L7l70(cos C)} . (F2)



28

For m = 1:

M = LV e g;igi{zsmc(;aﬂ—;@?)

(1 + cos)?/? (1 — cos ¢)3/?

W}-l 0., 1(COSC) — (14—00801/2]:;’_1’171(0080} . (F3)
Form=2,3,---:
(1 5
m\/ l+;n1!{ J_CZZSCC fm,o,z,m(cosf)_mfm 1,-1,0,m (€08 C)
(1- 1- 1
(1_:2(8)?02 rJrrL+1,1,l,m(COSC)_(1(_|_C((;(S)SOQ§—1 ;;mhm(COSC)}. (F4)
For m < 0:

Dy (f) = (=)™ (f). (F5)

(cos ) which appear in the above equations are defined by

- T (1)t d™
Farim(€0sQ) = /71 dzx mdxmpl(f)a

The functions F=

q,r,l,m

1
s _ (1=a)7 dm
‘Fq,r,l,m(cosg) _/—cos(d (1+l‘) dl‘mf’l( )

These functions also arise when calculating the overlap reduction functions for the vector-longitudinal polarization
modes. The F* integrals can be evaluated analytically as shown in App. K of this paper (or in App. E of [43]).

Appendix G: Evaluating the I,,(y,z) integral for the overlap reduction function for scalar-longitudinal
bacgkrounds

The response for a scalar-longitudinal background, Eq. (37), is singular at cos® = —1 if the pulsar term is not
included. We must therefore include the pulsar term when evaluating the overlap reduction function for backgrounds
of this form. We use the notation y; = 27 fLi/c, y2 = 27 fLa/c, where Ly is the distance to pulsar I, that was
introduced in the main body of this paper. In the following, we will ensure that we keep all terms up to constant
order (y1)°, (y2)°. The final expression, Eq. (G12), contains some terms of higher order, but these are incomplete.
This will be discussed further below. The components of the overlap reduction function are given by

1 ! 2 ‘
TE (f) =N [ d (1 - *WI(HI)) Inm P G1
ban =g [ ae [ (1 (v2.2)| P (a) (@)
where
I (y .’13) — /27T d (V 1 —a? sinCcosqb -+ & cos <)2 (1 _ eiy(l+:1ccos(+\/l—n:2 sin(cos¢)) eim¢ ) (G2)
e 0 1+ 2zcos¢ ++1—z2sin( cos ¢

The integral for I,,,(y, z) can be simplified by writing

2
Im(yvf) = / d(;ﬁ {.’E COSC —+ mSiHCCOS(b _ 1} (1 _ eiy(1+$cosC+vl—z2 sin(cos¢)) eimd) + Im(y, (E)
0
=27 (xcos( —1) (5m0 —i" I (y SiHCM)ez’y(lJﬁz cos§)>
+sin¢y/1—a? (5|m\,1 —mt [ ma1 ( yblnCm Tm—1 ybln(ﬂ] ’y(1+“05€)

+ fm(y, x), -
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where
o (1 _ eiy(1+x cos (+v/1—x2 sin ¢ cos 43))
I.(y,z) = / d eme G4
) 0 ¢ 1+ xcosC+ V1 —x2sin(cos¢ (G4)

and J,(y) denotes the Bessel function of the first kind. For large values of y, Bessel functions have the asymptotic
form given in Eq. (E6), and we will use this to drop certain terms when we take the limit y; — oo later.
To evaluate the integral I,,(y,z), we first note that I,,,(0,z) = 0 and

T 27
% — _7;/ d(b eim¢+iy(1+xcos§+\/1—:c2 sin ¢ cos ¢)
dy 0

= —opimHleW(FTeost) 1 (ysin /1 — 22).

This last equation can be integrated as follows. For 1 + x cos( # sin{+v/1 — 22 (which corresponds to x + cos{ # 0)
the integral to infinity can be computed as

(G3)

|m|
. 1 in vl — 22
I (00, 2) =27 (—1)™ sin g i . (G6)
|cos¢+z| \ 1+ zcosC+ |z + cos(]
This is divergent at z = — cos ¢, but that is an artefact of taking the limit y — co. To evaluate I, (y, ) for finite y
we can write
In(y, ) = Ly (00, x) 4 2mi™+ / dyj VHecosQ) g (Fsin /1 — 22). (GT)

Y

For the range of § in the integral, we can approximate the Bessel function using Eq. (E6). The corrections to this
approximation take the form of trigonometric functions times factors of 1/73/2 and will contribute terms of order
1/\/y and smaller to the result. To obtain a result accurate to at least O(y{,49), we therefore just need to evaluate

/ 2 ° 1 . mn w
= =~ ig(1+xcos() = I A
sinC ﬁ—ﬂ/y dy \/?je cos(ysm(x/l T 5 4)
9 ,L‘meiTr/4 (_Z‘)mefifr/él
= FC ]- — 7Fc 1 9 G8
”ﬂsin(\/l—mQ {\/H—x_ ( y(1+z ))+ i ( y( +x+))] (G8)

where x4 is shorthand notation for

T4+ =xcos +sin(vV1—x2, (G9)

F.(y) = /yoo du e’ = gei”/‘L - g lc (\/E@/) +iS (ﬂyﬂ . (G10)

Here C(x) and S(x) are the Fresnel cosine and sine integrals, defined by

and

Cy) = Oy du cos (gﬁ) , S(y) = /Oy du sin (guz) . (G11)

Thus,

[m|
~ B . 1 sin (V1 — 22
I, (y,x) = 2m(—1) {|COS<—|—$ <1+mcosg+|x+COS<|>
+1 2

msin (V1 — a2

eiﬂ'/4

VA +a

(_1)me—i7r/4
(1 + I+)

)Fc< y(i+2))+ F.( y(1+x+))”. (G12)
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Although the first term above is singular at x = — cos (, it becomes finite when combined with the term proportional
to F, ( y(1+ x,)) To see this note that

! sin¢ vl — o7 +i 2 L (Vy(i+20)
msin ¢

Fe
|cos¢+ x| \ 1+ axcos¢+ |z + cos(| VI—a22/1T+z_

(G13)

! sin (VT — 22 e 1 .
[cos ¢+ af \ 1+ @cos¢+ [a + cosC] V2sin V- 2T T

|ml]
B 1 sin (V1 — 22 B 1+, n
~ |cos¢ +z 1+ zcos(+ |z + cos(| 2sin¢v1 — a2 ’

V14+aiy/1+2z_ =|x+cos|, (G14)

to get the last line, and where the dots correspond to the Fresnel cosine and sine integral terms from Fe. Since, to
leading order in x4 cos ¢, the expression in curly brackets is —|m)|| cos ¢ +z|/sin? ¢, it follows that (G12) for I,,(y, ) is
actually finite at © = — cos ¢ and therefore integrable. For small values of the argument C(y) ~ y and S(y) ~ wy3/6,
so the terms in Eq. (G13) represented by the dots are also finite for all z, and proportional to /y near x = — cos(.
In deriving expression (G12), we have neglected some terms of O(1/,/y), but terms of that order and higher are
present in Eq. (G12) so these orders have been treated inconsistently. To obtain a consistent result at O(y?,43), we
could expand this expression and drop terms of higher order. However, keeping the incomplete higher order terms in
Eq. (G12) was found empirically to give a better approximation to numerically computed overlap reduction functions.

where we used

Appendix H: Analytic calculation of the overlap reduction function for co-directional pulsars for
scalar-longitudinal backgrounds

For two pulsars that lie along the same line of sight as seen from Earth (i.e., cos{ = 1), the calculation of I, (y, x)
can be done analytically. For this case

m z2 , 4 x
E / d¢ (1 — ezy(l-i-ic)) elm¢ = 27T5m0
cos (=1 0 1+ 1+x

2

In(y, )

(1 - eiy(lﬂ)) . (H1)

The integral for T'Z (f) then takes the form

1 4

= 7N dmo dz [(1—77—1‘)23(1:) (1 _ C*iyl(ler)) (1 _ Ciy2(1+x)>:|
—1

= N[ 0mo [GI (1) + Gl (—y2) — Gl (11 — w2)]

Lo (£)

cos (=1

where
Gt = [ dr [(“le (1= (13)

By making the expansion

we can write

/1 da [3 4 a?— (1ix) +a —|—1$)2] Pi(x) (1 _e—iy(1+z))

G (y)

20 4 4 0 -0 1 _ A+1 )\ . , H5
2*510—5511—%5512—2(—2)% y[—<( yg) +2zy—3> Jiy) + <y+2z) Ji1(y) = Jiv2(y) (H5)

—4H(y) + Ki(y),
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where

Hly) = / ar R (1-emvosa) (H6)

1 (I4=)
1
Kity) = [ o s ) (1= ) (HT)

These last two integrals are most easily evaluated using the recursion relation in Eq. (D7) for Legendre polynomials,
which for this calculation is most conveniently rewritten as:

Py =& - Y@= - Yp @)+ & - Vaso)pa@), forl>2. (HS)
This leads to
Holy) = Cin(2y) + iSi(2y)
Hy(y) = ~Holy) + 2+ & (1=¢72) (19)
() =~ ) - ) -2y B e ), iz,
and
de::(m“%O_l+y&@m>+i(—;$mmo—ycm@m+y{1+/iliil),
Ki(y) = Holy) — Ko(y), (H10)
Ki(y) = —@Kl—l(y) - (l_fl)Kl&(y) + (%l;l)ﬂl—l(y)a for 1> 2,

where Si(z) and Cin(z) denote the sine and cosine integrals respectively, defined by

Si(z) = / at S i) = / qp L8t (H11)
0 t 0 t

Note that the last two terms (in square brackets) in the above expression for Ky(y) will cancel when forming the

combination Ko(y1) + Ko(—y2) — Ko(y1 — y2), which enters the expression for I'2 (f). The above recursion relations

are particularly useful when the values of H;(y) and K;(y) are required at fixed y for all I < l;ax.

For isotropic backgrounds (I = m = 0), an expression for the scalar-longitudinal overlap reduction function for
equidistant (y; = y2 = y), co-directional (cos( = 1) pulsars valid in the limit y > 1 was given in Chamberlin and
Siemens [36]. Equation (H2) reduces to that result in the appropriate limit, as we now show.

For equidistant pulsars and [ = 0,m = 0, the last term in Eq. (H2) is G&(0), which is zero. This can be seen by direct
evaluation or by noting that the last term in square brackets in Eq. (H5) reduces to [350(y) + (1/y + 2i)51(y) — j2(y)]
for I = 0, which tends to 10/3 as y — 0. When multiplied by the pre-factor of —2, this cancels the first term in
Eq. (H5). Likewise, Hy(0) = 0 and Ky(0) =0, so GOL (0) = 0. The equidistant, co-aligned, isotropic overlap reduction
function is therefore

V3

2

VT

F(%O(f)‘cos(jzl = = 7

(GE(y) + Gl ()] (GH(y) + GE(y)") = VA Re{GE (1)} (H12)
We now evaluate this expression in the limit y > 1. All spherical Bessel functions decay to zero as y — oo, so the
term in square brackets in Eq. (H5) makes no contribution in this limit. Hence, we focus on the behaviour of Hy(y)
and Ky(y) for large y. We make use of the following asymptotic expressions:
m
Si(y) =~ —, >1,
(y) =~ 5 y (H13)

Cin(y) vy+In(y), y>1,

where + is the Euler-Masheroni constant, v = 0.57722---. We deduce that, for large vy,

20 , 1 my 1
Gé(y) ~ 3~ 4(v+In(2y)) — 2w — 3 + -5 = iy(y + In(2y)) + 56 2y (H14)
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SO

37 1

Re{Gé’(y)} ~ e 4v —41n(2y) + %y + 3 cos(2y)
37 Ty (H15)
~——4y—4In(2 =

6 ’y n( y) + 2 )

and
37 T
Féb(f)lcos(:l ~ \/7T' |:6 — 4y — 4ln(2y) 4+ 231] ,
(H16)

~ /T [367 —4y—4In <4TrfL) + WQfL} )

C Cc

where f is the gravitational-wave frequency and L is the distance of the two pulsars from the Earth. This agrees
with Eq. (40) of Chamberlin and Siemens [36], apart from a factor of y/m, which comes from a difference in our
normalization convention.

Appendix I: Analytic calculation of the overlap reduction function for anti-directional pulsars for
scalar-longitudinal backgrounds

For two pulsars that lie in antipodal positions along the same line of sight as seen from Earth (i.e., cos¢ = —1),
the calculation of I,,(y,z) can also be done analytically. For this case

2

2 562 . X T .
::A d¢1_x(1—&““”)dm¢:%ﬂwq_x<l—€“k”>. (11)

Ln(y,z)

cos(=—1

The integral for T'Z (f) then takes the form

I (f

1 4
— m x _ e~ (1+w) _ ety2(1-x)
) et N 6m0/1d33 [1 — xQPZ(x) (1 e ) (1 e ) . (12)

By making the expansion

4
(1fx2)__1_x2+2(1ix)+2(11—x)’ 13)
we can write
Fﬁn(f) =N dmo 1 dr [—1 — %+ 1 + ! } P(x) (1 — e*iyl(Hz)) (1 - ein(l*x))
cosC=—1 . 21+z)  2(1—2x)
= N0 {—idlo - %612 + 2(—i)le™ 1 ([1 - l(ly_% 1)} Ji(yr) + 2x 1j1+1(y1) - jl+2(2/1))
watafer ([1= S )+ 2 )~ ot ()

L it (-1 1. 20+ 1
— 92—t y2—y1) ([1 _ } o) +
=) (y1 +y2)? 7w + 1) Y1+ Y2

1. 1.,
+§Hl(yl7y2) +-H (y27y1):| ’

Jir1 (Y1 +y2) — Jir2(yr + y2)>

2 l

where

1
~ 1 . .
MWMMZ/JMHTQMM@—€WMM)@—Wmﬁg~ (15)
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This final integral can be obtained via a recurrence relation using Eq. (H8) from App. H. We find
Ho(y1,y2) = Cin(2y1) + iSi(2y1) + €*™¥2 (Cin(2y1) + iSi(2y1) — Cin [2(y1 + y2)] — iSi 2(y1 + 12)]) ,

Fh(yhyz) = —f{o(yh y2) +2 (1 et IS e W — Mgz eV 4 78111(% ha y2)ei(y2yl)) )
Y1 Y2 Y1 + Y2 (16)
~ 20 -1 l
Hi(y1,y2) = _{ ] )Hz 1(y1,y2) — (li)Hz 2(y1,y2)
Nl—1 (2l — 1) —iy1 ; Y2 ; i(y2—y1) ;
—2(—1) 7 {e Ji—1(y1) +e25i_1(y2) — e Ji—1(yr + y2)} , fori>2,

where, as before, Si(z) and Cin(x) denote the sine and cosine integrals, which were defined in Eq. (H11). The result
for Hy(y1,y2) can be obtained by rewriting Eq. (I5) as a combination of integrals of the following four forms:

u

2y 1—cosu 1. 1. .
/0 du <) cos(au) = §C1n[2(a + Dy + 50111[2(& —1)y] — Cin(2ay),

2y 1—cosu\ . ) 1. 1.
/0 du (u> sin(au) = Si(2ay) — 581[2(& + y] — 581[2(@ -1y, -

2y 3
/ dy 22Y cos(au) = 1Si[2(a + Dyl - 181[2@ — Dyl
0 u 2 ?

2y : 1 1
/ gy, v sin(au) = =Cin[2(a + 1)y] — =Cin[2(a — 1)y] .
0 u 2 ?

Appendix J: Analytic calculation of the overlap reduction functions for vector-longitudinal backgrounds

Ignoring the pulsar terms, the overlap reduction functions for an uncorrelated, unpolarised, anisotropic vector-
longitudinal background are given by T'Y, (f) = 0 and

i (f)
27 1_ 2 1_ D) 1= 5 . '
_ N / dac/ do x x? (sin¢ cos pv/1 — 22 + x cos () (xsin cos p — v 1 — 22 cos () P ()ei™?
1+2 1+zcos¢+v1—ax2sin(cosd
27
:Nlm/ dx/ dqﬁi[(m+cos§(1—x2)—x\/l—xzsingcosqb)
1 0 1+z
(z + cos() } b
— Pm l,elm
(1+zcosC++v1—a2sinCcosg)] ' (@)
= 27TNm (Ilm + Jlm) R
(J1)
where
T = 308 (5,1 15 )/1d Sy e L)
Im = D) m,1 m,—1 . T 11z 1 (x),
x
P J2
LB, (12)

:/_1dx [(z 4+ (1 = 2%) c0s )80 — (x + cos () Ky ()]
1

27 imae
e
Kpn(z)= — [ d .
im (@) 27r/0 ¢1+xcos(+\/1—x2sin§cos¢

The integral K, (z) can be evaluated using contour integration, as described in [43] for the response of a PTA to
anisotropic backgrounds with GR polarisations. The result is

Kipn () 1 (|x+cos§|1xcos§>|m|
m\L) =
! |z + cos (| V1—a2sin
]
D™ ((—a)(1—cos) ) 2 (J3)
o TcosC ((1+z)(1+cosc)) , —cos( <cosf <1

[m|

)T , —l<cosf < —cosC.

(=D)!™I+1  (14a) (14cos )
z+4cos ¢ (1—z)(1—cos ()
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The non-zero I,,’s can be straightforwardly evaluated:

in (N} 4 4
NMy = =Ny = Smg l (2(—1)l+1 + 200 — gon + 5612> : (J4)
The J;,’s can be written in terms of the f(fr,hm(cos ¢) functions defined in [43]:
B —cos( (1 4 Ji)q dm
J:Q,’I‘,L,m(cos g) = /_1 dZC (1 _ LE)T dl.m PL(J}),
(J5)
Fr (cos¢) = /1 dr Mﬁp (x)
o km N —cos( (1 + :L')T dz™ t -
For m = 0 we have
2 2 _
Jio = 3 cos( (—510 + 61 — 5552) — 2010 + F g0(cos () + 2]-'5?1’130(c0s () — ]:fto,z,o(cos <), (J6)

while for m > 0 we have
||

1+ T _ 1- =
Jim = (12222> (‘Fm,O,l,m(COS Q- fmq,o,l,m(COS C)) - <1+(sz2§> (‘F:L,O,Lm(cos ¢) — ]::1,1,1,711(005 C)) )
(J7)

and N; ™ J; _y = (—1)" N/ Jim,. Explicit expressions for the Ft

oL m(cos () functions are given in App. K.

1. Limiting case: cos( =1

As noted in the main text, in the limit cos ¢ — 1, the m = 0 overlap reduction functions calculated above diverge.
This singularity is eliminated if the pulsar terms are included in the integrand, and the pulsars are assumed to
be at finite distance. Proceeding in a fashion identical to the case of co-directional pulsars in scalar-longitudinal
backgrounds, we find

1 21 —x) ) )
FX -9 NO - LP 1— —iy1 (14+x) 1— iy2 (14x)
lm(f) cos (=1 T l5 0[1 dz 1+ l(l’) ( ¢ ) ( ¢ ) (J8)
=21 NP bmo G (y1) + G (—y2) — Gi* (11 — 12)]
where
1 2
X _ T (1 B .Z‘) _ —iy(l+a)
G (y)—/_ld DR (1-e ).

1

= / dz [—2 + 2z — 2% + ] Pi(z) (1 — e—w““))
1 1+ (79)

with H;(y) defined as in Eq. (H6). This is a finite expression provided y; and yo are finite.

Appendix K: Evaluating the 7+ integrals for transverse tensor and vector-longitudinal backgrounds

The overlap reduction functions for both the standard transverse tensor and vector-longitudinal backgrounds can
be written in terms of the functions

: el (14a)t dm
FqrLm (€08 C) =/_1 dxmdijL(%‘), (K1)

1 m
+ 5¢) = (=) d™ K2
‘/—-"1,7",Lml(cob C) = /cos( dx (1 -+ LL‘)T dxm L(JU) : ( )
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These integrals can be evaluated using the series representation of the Legendre polynomials

l

l k k
I+ k)! 1—x I+ k)! 1+
A =0 e () = 2w () (K3)

k=0 k=0

Explicitly, we find
_c0$< (1 +x)q d'rn

FrnpeosO = [ de gL p )
q L | -\ —cos (¢ (K4)
— q i+j+m Q~(L +.7)' d o q—i—r+j—m
227 T L, 0 ’
for which
a L o
_ o i g (L §)! (Qq i+j=m+l _ (1 4 cos ()1 it m+1)
— 7 _ 1+ +m
Fq’O’L’m(COSC)_;g§2 e = =G —m g —itj—m+1)
=1 L g L+ ) (2q—i+j—m — (1 + cos C)q—i—i—j—m)
F- — 2=J (1 q7z+j+m
q,l,L,m(COSC) Z-:oJ; (-1) iNg—)G L= NG -—m)l(g—i+75—m) (K5)
L i
L o (LA D(277™ — (1 + cos¢)P™™)
24—J(_1)i+m
t o T R G G -
297" (L 4+ m)! 2
T =y ™ (1+cos<) '
Similarly,

1
, _ (1=t dm
fqyr’bm(cos{)/coscdx (T2 dmeL( )

K6)
q L 'L—i— ')l 1 (
= 9i=j(_1)Lta—iti . . (I( J. — / dz (1 +2 qfifrJrj*m7
2 2 T =G = O
for which
q L 1 R 1
L + 24— i+j—m-+ 1— q—i+j—m-+
‘F!;—OLm cos () :ZZT J(=pFram (I j)l( (, CO?C), >,
== illg = )YUL =G —m)(g—i+j—m+1)
-1 L it
g (L + 2q9—itj—m 1— g—itj—m
]:;1 Lm(c0sC) = Z 2 (-t l( j)l ( L cosd) )
,zojzm (g = )YUL =G —m)l(g—i+j—m) (K7)
+ Z 2q—j(_ L+j (L+7)! (QJ i C'OS C)jim)
Pt GHL = NG =m)(G —m)
_1\L+mog—m |
n (-1 297"(L + m)! In 2 '
m!(L —m)! 1—cos(
For the standard transverse tensor backgrounds, we also need to evaluate 7, m(cos ¢) for r = —1. This can be
reduced to combinations of F_ ;. (cos() and F_, ;. (cos() by writing (1 —z) =2 — (1 +z):
.7-";_17l’m(cosC) —2]-"q0[m(cos§) qulOlm(cosg). (K8)
Alternatively, we can just evaluate this integral directly, finding
l ; —i+j—m —i+j—m
COSC — i Z 2i*j(_1)Q*i+J+m '(l +.])' (2(] 7 +2_ (1 + cos C)q + +2) (Kg)
Ta-tim g =)= NG —mg—i+j—m+2)

=0 j=m
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Appendix L: Recovering the overlap reduction function for an uncorrelated, anisotropic scalar-transverse
background

Ignoring the pulsar term, we can show that the response of a pulsar to the indiviudal modes of a scalar-transverse
gravitational-wave background can be used to recover the overlap reduction function for an arbitrary uncorrelated,
anisotropic background. Inverting Eq. (62) to find agm)( f) gives

Aim) (f f/ d*Q;, hp(f, k)Y, (k) (L1)

from which we deduce the following quadratic expectation values:
Clmtrm (£ f) = (aimy (N)aiy (F)) =2 /S oy /S P (hp(F RN ()Y (W)Y (), (L2)

where CE . (f,f) = CB, .Hg(f)d(f — f') assuming stationarity. For a Gaussian-stationary, uncorrelated,

anisotropic background, the quadratic expectation value of breathing mode amplitudes is given by Eq. (43):

(hi(f, k)W (f k) = He(f)Pp(k)o*(k,k)6(f — f) . (L3)

The angular distribution of gravitational-wave power can be expanded in terms of scalar spherical harmonics (see
Eq. (44)). Hence the integrals over the sphere in Eq. (L2) can be explicitly evaluated:

L
i 1) = Ho(1)3(f — 1) > erf [ Yias BV (0¥ )
L=0M=
5(F- )3 Z 2P (1" [ 0 Yias (DY () Yo ()
L=0 M= 52
QL+ 120+ 1)(2I' +1 L 1 U Ll
= Hp(f)d( ;}MZ 2PL(— \/ X A ( )(M—mm’)(OOO)'

(L4)
Now the overlap reduction function between pulsars 1 and 2 is given by

FB == Z Z Cﬁnl’m’Rﬁlm)R§7’m’)
(Im) (I'm”)

CLr)@+0)@+1) (L 1 U \(LIV B
=2 Z Z 2P (= \/ in M o—m o )\ 000 ) BlemBaimy (L)
(LM) (im) (I'm

= Z PLMFLM'
(LM)

Note that the breathing response is limited to [ = 0,1. Hence, Wigner-3j selection rules restrict the sensitivity
of the breathing mode overlap reduction function to L < 2. By substituting the breathing response function
from Eq. (61) into Eq. (L5), we fully recover the form of T'?,, obtained by direct calculation in Eq. (48). For
example, with L = 0,M = 0, Eq. (L5) gives '} = (v/7/2)(1 + %cos (), where ¢ is the angular separation be-
tween the two pulsars. (Recall that PR = V/4r /2 for an isotropic uncorrelated background, as described at the
end of Sec. IV E.) This exactly matches the expression given by Eq. (48), as do the remaining expressions for L = 1, 2.
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