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Abstract

In this work I present a complete analysis of proton decay in an SO(10) model previously

proposed by Dutta, Mimura, and Mohapatra. The 10, 126, and 120 Yukawa couplings con-

tributing to fermion masses in this model have well-motivated restrictions on their textures

intended to give favorable results for proton lifetime as well as a realistic fermion sector without

the need for fine-tuning and for either type-I or type-II dominance in the neutrino mass matrix.

I obtain a valid fit for the entire fermion sector for both types of seesaw dominance, including

θ13 in good agreement with the most recent data. For the case with type-II seesaw, I find that

using the Yukawa couplings fixed by the successful fermion sector fit, proton partial lifetime

limits are satisfied for nearly every pertinent decay mode, even for nearly arbitrary values of the

triplet Higgs mixing parameters, with only the K+ν̄ mode requiring a minor O(10−1) cancella-

tion in order to satisfy the experimental limit. I also find a maximum lifetime for that mode of

τ(K+ν̄) ∼ 1036 years, which should be tested by forthcoming experiments. For the type-I seesaw

case, I find that all six pertinent decay modes of interest are satisfied for values of the triplet

mixing parameters giving no major enhancement, with modes other than K+ν̄ easily satisfied

for arbitrary mixing values, and with a maximum lifetime for K+ν̄ of nearly 1038 years.
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I. INTRODUCTION

It has been well-established that a certain class of SO(10) Grand Unified (GUT)

models [1] are capable of elegantly solving some of the most prominent problems with

the Standard Model. One of the more basic yet intriguing features of these models is the

ability to naturally accommodate a right-handed neutrino, consequently allowing for a

well-motivated implementation of the seesaw mechanism for neutrino mass [11], a long-

uncontested ansatz that dynamically explains the smallness of (left-handed) neutrino

masses. The seesaw was originally implemented in the framework of SUSY SO(10) with

only the 10- and 126-dimensional Higgs multiplets coupling to fermions [2, 3]; the 126

vev also plays the role of breaking B−L and triggering the seesaw mechanism, thereby

creating a deep mathematical connection between the smallness of neutrino masses and

the other fermion masses. This seemingly-limited yet elegant approach yielded a realistic

neutrino sector, including an accurate prediction of the value of θ13 [5, 8], long before

experiments were being done to measure its properties. This so-called “minimal” SO(10)

model has been explored much more thoroughly over the years by many authors with

the arrival of precision measurements [4–10, 14], and it remains a viable predictor of the

neutrino sector parameters.

There are however still a number of common difficulties one faces when attempting to

construct a complete and realistic candidate for unification. Furthermore, these difficulties

are continually being made more severe by new experimental results, which typically

manifest as new lower bounds on the possible existence of some proposed feature, as part

of a disheartening streak of null results.1

Arguably the most problematic feature common to nearly all GUT models arises

when one examines the lifetime of the proton. In all SO(10) models, heavy SU(5)-like

gauge boson exchanges give rise to effective higher-dimensional operators that allow for

1 The only recent exception to this null trend was the discovery [12] of a significantly non-zero (“large”)

value for the reactor mixing angle θ13. Despite the excitement among experimentalists, the popularity

at the time of tri-bimaximal mixing models [13], which prefer θ13 ∼ 0, meant the practical elimination

of nearly an entire class of active SO(10) research. See [14, 15, 19] for examples of such models.
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quark-lepton mixing and, consequently, nonzero probabilities for proton decay

widths. Furthermore, in SUSY GUT models, several additional decay modes are avail-

able, as each of the GUT-scale Higgs superfields contains at least one colored Higgs triplet

that allows for proton decay through exchange of Higgsino superpartners.

No one yet knows whether protons do in fact decay at all; so far, the lower limit

on proton lifetime is known to be at least ∼1032 years, and the partial lifetimes for the

various decay modes have been continually rising through the findings of experiments [17].

Thus, if any SO(10) model is to be trusted, its prediction for the proton lifetime must be

at least so high a number. Most minimal SU(5) models have already been virtually ruled

out by such limits (technically, a few niches of parameter space do still remain).

There are ways in which the proton lifetime limits can be satisfied within the frame-

work of a given SO(10) model, but doing so typically requires substantial fine-tuning

to create rather extreme cancellations (>∼ O(10−3)) among the mixing parameters of the

color-triplet Higgsinos exchanged in the decay. The values of those mixings cannot so

far be reasonably recognized as more than arbitary free parameters, so to expect multi-

ple instances of very sensitive relationships among them requires putting much faith in

either unknown dynamics or extremely good luck. Restricting the SUSY vev ratio vu/vd,

conventionally parametrized as tan β, to small values can provide some relief without can-

cellation for Higgsino-mediated decay channels, but such an assumption is still ad hoc and

may ultimately be inconsistent with experimental findings; hence it is strongly preferable

to construct a model which is tractable for any feasible tan β.

If however the GUT Yukawas, which are 3×3 matrices in generation space, have

some key elements naturally small or zero, then extreme cancellations can be largely

avoided by eliminating most of the dominant contributions to proton decay width. A

2013 paper by Dutta, Mimura, and Mohapatra [18] proposed such a Yukawa texture

for the SO(10) model including a 120 coupling in addition to the 10 and 126 Higgs

contributions to fermion masses. The authors gave a tentative analysis of mainly leading-

order relationships between key fermion fit parameters and proton partial lifetimes for a

neutrino sector arising from a type-II dominant seesaw mechanism; they also provided a

cursory analysis for a possible type-I solution.

The work I present in this paper verifies the initial analysis of ref. [18] by (a) finding
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a stable numerical fit to all fermion mass and mixing parameters, including the neutrino

sector, where values are predictions of the model, and (b) then finding adequately large

lifetimes for the dominant modes of proton decay using the Yukawa couplings fixed by the

fermion fit. I grounded the analysis in conservative assumptions, including large tan β,

and a comprehensive calculation relying on as few approximations as necessary. The

pertinent modes of proton decay I checked for sufficient partial lifetimes are p → K+ν̄,

K0`+, π+ν̄, and π0`+, where ` = e, µ. I will present solutions for both type-I and II

seesaw neutrino masses.

The results not only give satisfactory predictions for the neutrino sector based on

corresponding charged sector fits, but also adequately predict sufficiently long-lived pro-

tons without relying on the usual large degree of cancellation. Furthermore, I find that

the ansatz is completely successful in satisfying the proton lifetime limits without any

need for tuning in the type-I seesaw scenario, while a modest O(10−1) cancellation is still

needed in the type-II case to satisfy the partial lifetime limit of the often-problematic

p → K+ν̄ mode. This combination of type-I and II results is precisely contrary to the

tentative expectations of the authors in [18]; the discrepancy is due mainly to the unex-

pected significance of the effect of rotation to mass basis on the results of the decay width

calculations, combined with the numerical details of the rotation matrices arising from

the charged sector mass and CKM fit.

The paper is organized as follows: in section II, I give an overview of the SO(10)

superpotential and the fermion mass matrices following from it, followed by the details

of the Yukawa texture ansatz; in section III, I expand further on the model specifics and

examine general GUT proton-decay logistics in order to derive the needed partial decay

widths; in section IV, I present the fermion sector results of the numerical fitting to the

measured masses and mixings; in section V, I present the results of the calculation of the

important partial lifetimes of the proton; and in section VI, I discuss the implications of

the results and give my conclusions.
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II. DETAILS OF THE MODEL

As mentioned in the introduction, the SO(10) model in question has 10-, 126-, and

120-dimensional Yukawa couplings contributing to fermion masses. The fields are named

here as H, ∆, and Σ, respectively. Thus, the relevant superpotential terms are

WY 3 hijΨiΨjH + fijΨiΨj∆ + gijΨiΨjΣ, (1)

where Ψi is the 16-dimensional matter spinor containing superfields of all the SM fermions

(of one generation) plus the right-handed neutrino, and i is the generation index.

After the GUT symmetry breaking, SM-type SU(2) doublet representations

(
(
1,2,−1

2

)
+ c.c ) contained in the decompositions of H, ∆, and Σ mix with each

other, and also with the doublets from 126 (which is needed to preserve SUSY invari-

ance) and any additional fields present in the model for GUT-breaking purposes but not

contributing to fermion masses, such as 210 or 54. These doublets come in pairs with

conjugate SM quantum numbers, and each Higgs superfield contains one or two pairs.

The mass matrix MD for each set of doublets is determined by the couplings and vevs

of the GUT-scale superpotential, and so the fields are generally expected to be heavy;

however, one pair must remain light in order to play the role of the MSSM Higgs doublets

Hu,d. This need requires the imposition of the fine-tuning condition DetMD ∼ 0 (i.e.,

MSUSY ∼ 0 when compared to the GUT scale), which can be interpreted as the fixing

of one parameter in the matrix, conventionally chosen to be the mass of the 10, MH .

This choice will have implications for proton decay analysis that I will discuss in the next

section. In light of this establishment of the MSSM doublets, the effective Dirac fermion

mass matrices can be written as

Mu = h̃+ r2f̃ + r3g̃

Md =
r1

tan β
(h̃+ f̃ + g̃)

Me =
r1

tan β
(h̃− 3f̃ + ceg̃)

MνD = h̃− 3r2f̃ + cν g̃, (2)

where 1/ tan β takes vu → vd for down-type fields. Each coupling λ̃ij for λ = h, f, g is

related to λij from eq. (1) by an absorption of the SUSY vacuum expectation value (vev)
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vu and some function of elements of the unitary matrices UDIJ , V
D
IJ that diagonalize MD.

These mixings are given in detail with respect to this model in [19] and more generally in

[21], but those details are not relevant at this point in the discussion. The coefficients ri

and c` are similarly defined as functions of those mixings.

The full neutrino mass matrix is determined by both Majorana mass terms in the

superpotential and the Dirac mass contribution given in eq. (2). The light masses can be

generally given by a combination of the type-I and type-II seesaw mechanisms, involving

the vevs of both left- and right-handed Majorana terms:

Mν = vLf −MνD (vRf)−1 (MνD)T , (3)

where vL,R are the vevs of the SM-triplet ∆L and singlet ∆R in 126. The seesaw scale

(i.e., RH-neutrino scale) coincides with the B−L breaking scale and is set by vR; typically

vL ∼ v2
wk/vR, although it is a free parameter of the model in principle. We will separately

consider cases of type-II (vL term) and type-I (1/vR term) dominance, which can both be

readily accommodated in this model. Note that the presence of the f coupling in both

terms intimately connects the neutrino mass matrix properties to those of the charged

sector matrices, making the model quite predictive. Also note we will consider only normal

mass hierarchy in this analysis.

The matrices h and f (with tildes or not) are real and symmetric, and g is pure

imaginary and anti-symmetric; hence, the Dirac fermion Yukawa couplings are Hermitian

in general, and their most general forms can be written as

h̃ =


h11 h12 h13

h12 h22 h23

h13 h23 M

 , f̃ =


f11 f12 f13

f12 f22 f23

f13 f23 f33

 ,

g̃ = i


0 g12 g13

−g12 0 g23

−g13 −g23 0

 . (4)

M ≡ h33 ∼ mt is singled out to stress its dominance over all other elements. The

three matrices as written have a total of 15 parameters; taken in combination with vL

6



as well as the vev and mixing ratios ri and c`, the model has a total of 21 parameters.

Correspondingly, there are in principle 22 measurable observables, including all masses,

mixing angles, and CP violating phases, associated with the physical fermions, although

the three PMNS phases and one neutrino mass are yet to be observed. Therefore we would

prefer then to have no more than 18 parameters in the model, and generally speaking fewer

parameters indicates greater predictability.

Furthermore, as I will discuss in more detail shortly, the d = 5 effective operators

that arise in proton decay are ∼ λijλkl (again λ = h, f, g); therefore, increasing the

number of λij that are small or zero will increase the number of negligible or vanishing

contributions to the decay width. This idea was given thorough consideration in [18], and

the couplings suggested by the authors are as follows:

h̃ =


0

0

M

 , f̃ =


∼ 0 ∼ 0 f13

∼ 0 f22 f23

f13 f23 f33

 ,

g̃ = i


0 g12 g13

−g12 0 g23

−g13 −g23 0

 . (5)

Note that h̃ is an explicitly rank-1 matrix, with M ∼ O(1); thus, at first order, the

10 Higgs contributes to the third generation masses and nothing more. This feature

has been explored in models demonstrating a discrete flavor symmetry in e.g. [16, 20],

and may therefore be dynamically motivated. Taking f12 ∼ 0 is equivalent to a partial

diagonalization of f̃ , so it can be done without loss of generality, and the restriction on

f11 is clearly phenomenologically motivated given the small first-generation masses. As a

result of these assumptions, the above Yukawa texture should give rise to sufficient proton

decay lifetimes without the need for the usual extreme cancellations.

It is further preferred for proton decay that f13, g12 � 1, although f13 plays a role

in setting the size of the reactor neutrino mixing angle θ13, so the above restriction may

create some tension in the fitting.

In carrying out the numerical minimization, I will allow f11 and f12 to have small
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but non-vanishing values, O(10−4), for the sake of giving accurate first-generation masses

without creating tension in other elements. The results of that analysis will be discussed

in section IV, after I discuss the details of calculating proton decay.

III. DETAILS OF PROTON DECAY

In addition to the the SM-doublets present in each of the GUT Higgs superfields,

which contribute to the emergence of Hu,d at the SUSY scale, the GUT fields similarly

contain SM-type SU(3) color-triplets (
(

3,1,−1
3

)
+ c.c ) in their decompositions. These

fields will also mix after the GUT-scale breaking (again, this mixing includes triplets

contained in the Higgs fields not contributing to fermion masses). Since there is no

light triplet analog to Hu,d found in the low-scale particle spectrum, all of the fields can

be heavy, although the decoupling of the doublet-triplet behavior is a substantial topic

itself. The Yukawa potential in eq. (1) leads to interactions with these fields of the forms

hHT (QL+UCDC) and hHT (QQ+UCEC), which violate baryon or lepton number. The

fields ΨC ≡ CΨ̄T are left-handed anti-fermion superfields. Note e.g. “QL” is shorthand

for the SU(2)-doublet contraction εαβQ
αLβ. There are similar interaction terms for ΣT

and ∆T ; furthermore, two more exotic types of triplets also lead to B- or L-violating

vertices,
(
3,1,−4

3

)
+ c.c, which interact with two up-type or two down-type RH singlet

fermions, and
(
3,3,−1

3

)
+ c.c, with a pair of LH doublets.

Exchange of conjugate pairs of any these triplets, through a mass term or interaction

with a heavy Higgs field such as 54 or 210, leads to operators that change two quarks

into a quark and a lepton; this is the numerically dominant mechanism through which a

proton can decay into a meson and a lepton; corresponding s-channel decays through the

scalar superpartners of these triplets, as well as s-channel decays through the SU(5)-like

gauge bosons X, Y are suppressed by an additional factor of 1/MU and so are generally

negligible in comparison.2 Figure 1 shows Feynman diagrams for two examples of the

operators in question.

2 The dominant mode in X-boson exchange, p → π0e+, may be comparable if the relevant threshold

corrections are large.
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HT HT

Qk

Ll

Qj

Qi

x0ĥkl ĥij

MH

HT ∆T

UC
k

EC
l

DC
j

UC
i

x4ĥkl f̂ij

Φ210

FIG. 1: Examples of superfield diagrams that lead to proton decay in this model. The hats on the

couplings indicate mass basis, and the parameters xi contain the triplet mixing information unique to

the specific pairing of couplings present in each diagram (see below).

The Effective Potential

At energies far below the GUT scale, the triplet fields are integrated out, giving

four-point effective superfield operators, which give rise in turn to four-fermion operators.

The corresponding d = 5 superpotential is

W∆B=1 =
εabc
MT

(
ĈL
ijklQ

a
iQ

b
jQ

c
kLl + ĈR

[ijk]lU
C a
i DC bj U

C c
k ECl

)
, (6)

where i, j, k, l = 1, 2, 3 are the generation indices and a, b, c = 1, 2, 3 are the color indices;

the SU(2) doublets are contracted pairwise. This potential has ∆L = 1 in addition to

∆B = 1 and so also has ∆(B − L) = 0. MT ∼ MU is a generic GUT-scale mass for the

triplets. Note the anti-symmetrization of i, k in the CR operator; this is the non-vanishing

contribution in light of the contraction of the color indices. The analogous anti-symmetry

for the L operator is ambiguous in the current notation, but I will tend to the issue shortly.

The effective operator coefficients Cijkl are of the form

CR
ijkl = x0hijhkl + x1fijfkl + x2gijgkl + x3hijfkl + x4fijhkl + x5fijgkl

+ x6gijfkl + x7hijgkl + x8gijhkl + x9filgjk + x10gilgjk

CL
ijkl = x0hijhkl + x1fijfkl − x3hijfkl − x4fijhkl + y5fijgkl + y7hijgkl

+ y9gikfjl + y10gikgjl. (7)

The couplings h, f, g as written correspond to matter fields in the flavor basis and undergo

unitary rotations in the change to mass basis, as indicated by the hats on ĈL,R in eq. (6)
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above; I will save the details of the change of basis for later in the discussion. The

parameters xi, yi ∼ U TIJ , V
T
IJ are elements of the unitary matrices that diagonalize the

triplet mass matrix MT , or the corresponding matrices for the exotic triplets. Note that

several identifications have already been made here: y0,1 = x0,1 and y3,4 = −x3,4; the

would-be parameters y2,6,8 = 0. Also note that x0 ∼ MH ∼ 1 is the 10 mass parameter

fixed by the tuning condition for MD. The parameters x9,10 and y9,10 correspond to the

exotic triplets; the indices of those terms are connected in unique ways as a result of the

distinct contractions of fields.

The left-handed term in eq. (6) can be further expanded by multiplying out the

doublets as

W∆B=1 3
εabc
MT

(
ĈL
{[ij}k]lU

a
i D

b
jU

c
kEl − ĈL

{i[j}k]lU
a
i D

b
jD

c
kNl
)
, (8)

where N is the left-handed neutrino superfield. Note that the coefficients CL are sym-

metrized in i, j, as a result of the doublet contractions, and anti-symmetrized in the indices

of the like-flavor quarks, again due to the anti-symmetry of color index contraction, as

discussed above for CR. This anti-symmetry will be crucial in restricting the number

of contributing channels for decay. Since the symmetrizing of i, j is the same for both

types of left-handed operators, I will suppress its denotation in future instances to let

readability favor the less trivial anti-symmetry.

Dressing the Operators

As holomorphism of the superpotential forbids terms like MT φT φT for the scalar

boson components of the triplet superfields, diagrams of the type in Figure 1 can only be

realized at leading order through conjugate pairs of Higgsino triplet mediators. Thus, in

component notation, each vertex will be of the form λ φ̃T q q̃ or similar. Therefore, the

squarks and sleptons must be “dressed” with gaugino or (SUSY) Higgsino vertices to give

d = 6 effective operators of the four-fermion form needed for proton decay. Depending on

the sfermions present, diagrams may in principle be dressed with gluinos, Winos, Binos,

or Higgsinos. Examples of appropriately-dressed component-field diagrams which give

proton decay are shown in Figure 2.

In the following subsections, I will briefly discuss the implications for each type of
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ẽl c̃, t̃

φ̃T φ̃T

W̃− W̃+

u

νl

d

d

(a)

(s̃, d̃), b̃

h̃+u

ũi

h̃−d

φ̃T φ̃T

νl

uC

(d, s)

(sC , dC)

(b)

d̃Cj

φ̃T

c̃C , t̃C

φ̃T

h̃0d h̃0u

uC

s

eCl

u

(c)

FIG. 2: Examples of dressed diagrams leading to proton decay in the model. Diagram (a) shows a

contribution to p→ π+ν̄l; integrating out the triplets gives an effective operator of type CLudue.

Diagram (b) shows a CLuddν-type operator contributing to K+ν̄l. Diagram (c) shows a

CRuCdCuCeC-type operator contributing to K0e+l , for l = 1, 2. Note where more than one field is listed,

each choice gives a separate contributing channel, except for the dependent exchange of (s↔ d) in (b).

dressing and determine which types will contribute leading factors in the proton decay

width. Note that I will give this discussion in terms of B̃, W̃ 0, and h̃±,0u,d , rather than χ̃±

and χ̃0
i , because (a) I will assume a universal mass spectrum for superpartners to satisfy

FCNC constraints, meaning the mass and flavor eigenstates coincide for the gauge bosons,

and (b) the mixing of Higgsinos, while not typically negligible, will result in chargino or

neutralino masses different from MSUSY by O(1) factors, as long as gaugino soft masses

are relatively small compared to MSUSY ; since precise values of such masses are insofar

unknown, and since so many of the SUSY and GUT parameter values needed for the

decay width calculations are similarly unknown, I will take mh̃± ∼ mh̃0 ∼ MSUSY ≡ µ in

order to simplify the calculation, especially for computational purposes.

Gluino Dressing

Two limitations are readily apparent when considering dressing by gluinos. First,

the lepton will have to be a fermion leg in the triplet exchange operator, as in Figure 2 (b)

or (c), since a slepton cannot be dressed by a gluino. Second, since SU(3)c interactions
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are generation-independent, the gluino can only take ũ→ u, s̃→ s, etc. The latter may

seem a fairly innocuous idea on its own, but consider that proton decay to a kaon or

pion will involve operators with one and zero second-generation quarks as external legs,

respectively, with all others first-generation. Taking these two points together with the

generation-index anti-symmetry of the Cijkl operators, which implies that i 6= k for the

UiDjUkEl operators and j 6= k for the UiDjDkNl operators, one can see by inspecting a

dressed diagram that only diagrams with exactly one each of U,D, S in the triplet operator

may be successfully dressed by the gluino. This constraint implies that gluino dressing

can contribute only to p → K+ν̄ decay mode; furthermore, the absence of UDUE-type

contributions implies no right-handed channels.

Taking these constraints into account, and thus looking specifically at variants of the

UDSN operator, there are three independent terms we can write [22], which correspond

to the dressed diagrams shown in Figure 3: 3

εabcU
aDbScNl 3 εabc

{
(uaνl)(d̃

bs̃c) + (dbνl)(ũ
as̃c) + (scνl)(ũ

ad̃b)
}
. (9)

Applying the gluino dressing to each term gives us the following sum of four-fermion

effective operators:

g̃−→ εabc

(αs
4π

){
κ1(uaνl)(d

bsc) + κ2(dbνl)(u
asc) + κ3(scνl)(u

adb)
}
, (10)

where the parameters κa contain factors from the scalar and gluino propagators in the

loop integral. The scalar propagators are different in general; however, recall that I am

assuming universal sfermion mass prescription, meaning that all squark masses a equal

to leading order. In that case, all κs are equal and can be factored out of the brackets.

The sum left inside the brackets is zero by a Fierz identity for fermion contractions [23],

and so the contribution from gluino dressing to the K+ν̄ decay mode vanishes under the

universal mass assumption.

Bino Dressing

As with SU(3)c, U(1)Y interactions are also flavor-diagonal; thus, the same con-

straints apply here as in the gluino case, and possible contributions are to the K+ν̄ mode

3 Each term like “(uaνl)” is actually (ua)TC−1νl; the details have been suppressed simply for readability.
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D

U

Nl

S

3 ũ s̃

d

u

νl

s

+

d̃

ũ

d

u

νl

s

+

d̃

s̃

d

u

νl

s

FIG. 3: Gluino dressings of the d = 5 operator M−1T ĈL1[12]lUDSN that would contribute to p→ K+ν̄l;

in the limit of universal squark masses, the three diagrams sum to zero by a Fierz identity.

NOTE: gluino mass insertions have been omitted from the diagrams for readability.

D

U

Nl

S

3 ũ

ν̃l

d

u

νl

s

+ d̃ ν̃l

d

u

νl

s

+
ν̃l

s̃

d

u

νl

s

FIG. 4: Bino dressings of the d = 5 operator M−1T ĈL1[12]lUDSN involving a scalar neutrino that would

contribute to p→ K+ν̄l; again, in the limit of universal squark masses, the three diagrams sum to zero

by a Fierz identity. NOTE: Bino mass insertions have been omitted from the diagrams for readability.

only.

Looking again at the UDSN operator, for terms in which the neutrino is a fermion

leg, the argument is analogous to that given for the gluino dressing: the diagrams involved

are identical to the three in Figure 3 except with g̃ → B̃; starting again from expression (9)

and applying the Bino dressing, we arrive at an expression similar to (10) but containing

hypercharge coefficients in addition to the κa:

B̃−→ εabc

(α1

4π

)
{κ1YdYs(u

aνl)(d
bsc) + κ2YuYs(d

bνl)(u
asc) (11)

+ κ3YuYd(s
cνl)(u

adb)};

however, u, d, s ∈ Qi are all left-handed quarks with Y = 1
6
, so the hypercharge products

factor out, and again the fermion sum vanishes by the Fierz identity.

Because leptons carry hypercharge, there are three additional diagrams one should

include in Figure 3 if dressing instead by the Bino, namely, those involving the scalar
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neutrino; these diagrams are shown in Figure 4, and the corresponding terms from the

triplet operator are:

εabcU
aDbScNl 3 εabc

{
(dbsc)(ũaν̃l) + (uasc)(d̃bν̃l) + (uadb)(s̃cν̃l)

}
. (12)

Applying the Bino dressing to each of these terms gives us another sum of four-fermion

effective operators involving hypercharge:

B̃−→ κ εabc

(α1

4π

)
{YuYν(dbsc)(uaνl) + YdYν(u

asc)(dbνl) (13)

+ YsYν(u
adb)(scνl)};

this group of terms has a different product of hypercharges from that of (11), but it

still has a single common product among the three terms, so we can again factor it out,

leaving us with yet another vanishing contribution by the Fierz argument. Hence, the

entire Bino dressing contribution to the K+ν̄ mode also vanishes under the universal

mass assumption.

Wino Dressing

As the flavor-diagonal restrictions of the gluino and Bino also apply to the W̃ 0 but

not to the W̃±, they must be considered separately. That said, one additional restriction

applicable in both cases is the ability to interact with only left-handed particles; thus

there will be no contribution here from the R-type operators.

Neutral Wino. As noted, dressing with the W̃ 0 is also restricted to UDSN con-

tributions to the K+ν̄ mode. The terms to be dressed are the same as those in the Bino

case, given by expressions (9) and (12); however, in applying the dressing, we find a kink

in the previous argument:

W̃ 0

−→ κ εabc

(α2

4π

)
{T 3

dT
3
s (uaνl)(d

bsc) + T 3
uT

3
s (dbνl)(u

asc) + T 3
uT

3
d (scνl)(u

adb)}

=
κ εabc

4

(α2

4π

)
{(uaνl)(dbsc)− (dbνl)(u

asc)− (scνl)(u
adb)}, (14)

W̃ 0

−→ κ εabc

(α2

4π

)
{T 3

uT
3
ν (dbsc)(uaνl) + T 3

dT
3
ν (uasc)(dbνl) + T 3

s T
3
ν (uadb)(scνl)}

=
κ εabc

4

(α2

4π

)
{(dbsc)(uaνl)− (uasc)(dbνl)− (uadb)(scνl)}; (15)
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the negative weak isospins carried by the down-type fields prevent us from using the Fierz

identity argument. Thus it seems we have finally found a non-vanishing contribution to

proton decay, albeit to only this one mode.

There is something yet to be gained from the Fierz identity in this case: the same

zero sum we have seen in the previous cases tells us that in each expression here, the

sum of the two negative terms is equal to the first term; furthermore, note that the final

expressions in (14) and (15) are actually identical. Therefore, we can collect the above

contributions into one expression:

W̃ 0

−→ 2 × κ εabc
4

(α2

4π

)
(−2){(uasc)(dbνl) + (uadb)(scνl)}

= − κ εabc
(α2

4π

)
{(uasc)(dbνl) + (uadb)(scνl)}. (16)

Including the factors from the triplet operator, we can write an operator for the entire

neutral Wino contribution to K+ν̄:

OW̃ 0 = κ εabc

(α2

4π

)
M−1
T ĈL

1[12]l {(uasc)(dbνl) + (uadb)(scνl)}, (17)

where the sign cancels with that from the UDDN term in eq. (6). The details of κ will be

discussed in the next subsection. Note I could have instead written the above expression

in terms of (dbsc)(uaνl) alone; I chose the two-operator version because the up-up- and

down-down-type pairings in the latter option are forbidden in Higgsino and charged Wino

modes and so are not seen in the calculation otherwise.

Charged Wino. The assumption of universal mass means that the sfermions are

simultaneously flavor and mass eigenstates; therefore, the would-be unitary rotation ma-

trix for each is simply the identity, U f̃ ∼ 1. As a result, the unitary matrix present in

the fermion-sfermion-Wino couplings is not Vckm, but rather the single unitary matrix

corresponding to the fermion quark rotation. Nonetheless, this rotation allows for the

mixing of generations at the dressing vertices, and the limitations found on the neutral

current dressings are not applicable. This is quite crucial since it allows for contributions

from diagrams with any squark propagator not forbidden by the anti-symmetry of the

CL
ijkl operator. Proton decay modes involving neutral Kaons or pions, which have uū or

dd̄ as external quarks, would be intractable without generation mixing. Such mixing will
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of course come at the expense of suppression from an off-diagonal element in the perti-

nent unitary matrix, which will typically be O(10−2-3); hence, one can begin to see an

indication of why the K+ν̄ mode is so dominant in the full proton decay width.

One additional constraint on charged Wino dressing involves the Wino mass inser-

tion. Unlike the gauginos discussed so far, W± are the antiparticles of each other, rather

than either being its own antiparticle. As a result, the Wino mass term is of the form

MW̃ W̃
+W̃−; in order to involve one W̃+ and one W̃− in the dressing, the two sfermions

involved must be of opposite SU(2) flavor. As a result, triplet operators of the form ud̃uẽ,

ũdũe (or the RH equivalents), ud̃d̃ν, and ũddν̃ do not contribute.

Beyond these constraints, the generational freedom of the sfermions leads to nu-

merous contributions to each of the crucial decay modes, K+ν̄, K0`+, π+ν̄, and π0`+,

where ` = e, µ. In particular the UDUE- and UDDN -type operators each contribute

to each mode through multiple channels. A list of all such contributions would likely be

overwhelming to the reader no matter how excellent my choices of notation, but one can

find the relevant diagrams in Appendix A.

Higgsino Dressing

When compared to the others, Higgsino dressing is wildly unconstrained. First, the

low-scale Yukawa couplings governing the fermion-sfermion-Higgsino interactions couple

a left-handed field to a right-handed one, so clearly the dressing can be applied to both

CL- and CR-type triplet operators. Also, since charged and neutral Higgsinos couple

through the same Yukawas, both types of interactions can mix generations, meaning the

generation-diagonal constraints on the rest of the neutral-current dressings do not apply to

h̃0
u,d. The only previously-mentioned restriction that does apply is, like the charged Wino,

the mass term for the SUSY Higgs couples Hu to Hd, so it therefore cannot contribute

through the triplet operators with sfermions of like SU(2) flavor. One remaining minor

restriction is that we will not see the triplet operator ũduẽ dressed by h̃± nor ud̃dν̃ dressed

by h̃0 because each would result in an outgoing left-handed anti-neutrino.

One can find cases in the literature (e.g. [23]) of Higgsino-dressed contributions being

counted as negligible when compared to those from the Wino; this is usually because if one
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exchanges the g2
2 VCabibbo found in a typical dominant Wino contribution for a yuii′ y

d
kk′ tan β

found in a typical dominant Higgsino contribution, the resulting value will be smaller by

at least a factor of O(10). Of course one makes several assumptions in such a comparison:

µ ∼ MW̃ for one, but additionally that (a) tan β is small or moderate, and (b) the Cijkl

coefficients are usually of roughly the same magnitude for any combination of i, j, k, l

present.

For this analysis, though, neither assumption is valid: I have already mentioned that

I will consider large tan β for maximal applicability; furthermore, due to the rank-1 texture

of the h coupling and the related sparse or hierarchical textures of f and g as shown in

eq. (5), many of the Cijkl are small or zero, creating large disparities between the values

from one contribution to the next. This discrepancy from expectation is further enhanced

by the tendency for the unitary matrices U f , which give the off-diagonal suppressions at

the dressing vertices in this model, to individually deviate from the hierarchical structure

of Vckm.

To see the extent to which these two properties can lead to surprises in numerical

dominance, consider that, for example, I find CL
1213 ∼ CL

3213 U
d
31; one might expect that

Ud
31 ∼ Vub and therefore the former term is much larger than the latter, but in fact neither

assumption is accurate.

As a result of these model characteristics, I find that the dominant contributions

from Higgsino-dressed diagrams are generally comparable to those from Wino-dressed

diagrams. This statement further applies to contributions from right-handed operators as

well. Thus I made no a priori assumptions about which of the CL- or CR-type Higgsino-

dressed contributions might be excluded as negligible.

Because both the UCDCUCEC operators and the h̃0
u,d dressing contribute to all of

the pertinent decay modes, the complete list of channels dressed by the Higgsino is con-

siderably more plentiful than that of the Wino and would again, I suspect, be of no more

than marginal use to any but the most involved reader. Again though one can find all of

the pertinent diagrams in Appendix A.
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Building the Partial Decay Width Formulae

As I discussed above in the Higgsino dressing subsection, the Yukawa texture seen

in eq. (5) leads to (a) unusually extreme variation in the sizes of the Cijkl coefficients, de-

pending strongly on the index values present, and (b) textures for the unitary matrices U f

which deviate substantially from that of Vckm. The repercussions of these features clearly

extend beyond affecting the relative size of Wino and Higgsino channel contributions. For

one, the off-diagonal suppressions U f
kk′ present in most charged Wino diagrams can not

be dependably approximated as V ckm
kk′ ; fortunately, the GUT-scale U f are fixed by the

fermion fitting, and since the running of such unitary matrices is small, I can simply use

them at the W̃± vertices as reasonable approximations to their low-scale counterparts.

Another complication due the Yukawa texture is the disturbance of typically useful

assumptions about which channels dominate the calculation. Such assumptions include

dominance of Higgsino channels with t̃, b̃, τ̃ intermediate states or Wino channels ∝ Vii

or VCabibbo. In the absence of the validity of any such simplification, I am compelled to

presume that any channel might be a non-negligible contribution to decay width.

Thus, I initially treated all possible channels as potentially significant; however, in

the interest of saving considerable computational time, I chose an abridged set of contri-

butions to include in my numerical analysis through inspection of tentative calculations,

although my threshold for inclusion was quite conservative. It seemed to me that conven-

tional methods of keeping only the most dominant terms for calculation might easily lead

to drastically underestimated decay widths, in that if I exclude ten “negligible” terms

smaller than leading contributions by a factor of ten, then I have evidently excluded the

equivalent of a leading contribution. To fully avoid such folly, I used a cutoff of roughly

1/50 for exclusion, and made cuts on a per-triplet-operator basis, which translates to

three or four significant figures of precision in the decay widths.

The Feynman diagrams for all non-vanishing channels of proton decay for the K+ν̄l,

K0`+, π+ν̄l, and π0`+ modes are catalogued in Appendix A.

Calculation of a proton partial decay width can be broken into three distinct parts.

The first part is the evaluation of the “internal”, d = 6 dressed diagrams discussed in

the previous subsection; each diagram corresponds to an effective operator of the form
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X qqq`, where X ∼M−1
T Cijkl . . . is a numerical coefficient unique to each decay channel.

Note that here each q is a single quark fermion, not a doublet. The second part is the

evaluation of a hadronic factor that quantifies the conversion of the three external quarks

of a dressed diagram–plus one spectator quark–into a proton and a meson. The third

and final part is the evaluation of the “external” effective diagram for p→ M¯̀ giving the

decay width of the proton . I will go through the details of each stage before giving the

resulting decay width expressions.

Evaluating the Dressed Operators. The evaluation of one such dressed d = 6 box

diagram involves calculating the loop integral but no kinematics, because the physical

particles carrying real momenta here are the proton and the meson, not the quarks. The

loop factor is not divergent and is of the same general form for every channel; furthermore,

as the heavy triplets are common to all diagrams and the sfermion masses are assumed

to be equal, the only factors in the loop that vary from one channel to the next are

the couplings and masses associated with either the Wino or Higgsino. The remaining

variation from one diagram to the next depends entirely on the particle flavors, which is

apparent in the external fermions and encoded in the Cijkl coefficients and the unitary

matrices involved in rotation to mass basis. Thus, I can write the operator for any

pertinent diagram as a generic Wino- or Higgsino coefficient times one of several flavor-

specific sub-operators; the forms of the general operators are

OW̃ =

(
iα2

4π

)(
1

MT

)
I
(
MW̃ ,mq̃

)
CA
W̃

(18)

and

Oh̃ =

(
i

16π2

)(
1

MT

)
I (µ,mq̃) CA

h̃
, (19)

where4

I(a, b) =
a

b2−a2

{
1 +

a2

b2−a2
log
(a
b

)}
,

4 One might notice that this expression for I(a, b) differs from what is usually given in the literature

for analogous proton decay expressions; the discrepancy is due to my inclusion of the universal mass

assumption prior to evaluating the loop integral.
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and the sub-operators CA are5

C I
W̃

=
1

2
(uT C−1 dj) Ĉ

L
[ij1]l U

d
ii′ U

ν
ll′ (d

T
i′ C

−1 νl′)

C II
W̃

=
1

2
(uT C−1 el) Ĉ

L
[1jk]l U

d
kk′ U

u
j1 (dTk′ C

−1 u)

C III
W̃

= −1

2
(uT C−1 dk) Ĉ

L
1[jk]l U

u
j1 U

e
ll′ (u

T C−1 el′)

C IV
W̃

= −1

2
(dTj C

−1 νl) Ĉ
L
i[jk]l U

d
ii′ U

u
k1 (dTi′ C

−1 u) (20)

for the (charged) Wino,

C I
h̃±

= (uT C−1 el) Ĉ
L
[1jk]l y

d †
kk′ y

u †
j1 (d C Tk′ C−1 uC)

C II
h̃±

= −(uT C−1 dk) Ĉ
L
1[jk]l y

u †
j1 y

e †
ll′ (uC T C−1 eCl′)

C III
h̃±

= −(dTj C
−1 νl) Ĉ

L
i[jk]l y

d †
ii′ y

u †
k1 (d C Ti′ C−1 uC)

C IV
h̃±

= (uC T C−1 d Cj ) ĈR
[ij1]l y

u
ii′ y

e
ll′ (d

T
i′ C

−1 νl′)

C V
h̃±

= (uC T C−1 eCl ) Ĉ
R
[1jk]l y

u
kk′ y

d
j1 (dTk′ C

−1 u) (21)

for the charged Higgsino, and

C I
h̃0

= −(uT C−1 dk) Ĉ
L
[ij1]l y

u †
i1 ye †ll′ (uC T C−1 eCl′)

C II
h̃0

= −(uT C−1 el) Ĉ
L
[1jk]l y

d †
kk′ y

u †
j1 (d C Tk′ C−1 uC)

C III
h̃0

= (dTj C
−1 νl) Ĉ

L
i[jk]l y

u †
i1 yd †kk′ (u

C T C−1 d Ck′)

C IV
h̃0

= −(uC T C−1 d Cj ) ĈR
[ij1]l y

u
i1 y

e
ll′ (u

T C−1 el)

C V
h̃0

= −(uC T C−1 eCl ) Ĉ
R
[1jk]l y

u
k1 y

d
jj′ (u

T C−1 dj′) (22)

5 I do not list the neutral Wino operator again here, but looking back at eq. (17), we can see that

κ = I
(
M
W̃
,mq̃

)
.
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for the neutral Higgsino, where I have suppressed the color indices everywhere. Again the

hats on ĈL,R indicate ĥ, f̂ , ĝ are rotated to the mass basis, which I will discuss in detail

shortly. Note that UDUE and UDDN operators generally differ by a sign, as do diagrams

dressed by h̃±u,d and h̃0
u,d; the latter difference arises from the SU(2) contraction in the

SUSY Higgs mass term. These sign differences create the potential for natural cancellation

within the absolute squared sums of interfering diagrams, and even for cancellation of

entire diagrams with each other in some cases. Also note that the Yukawa couplings are

Hermitian in this model, hence the distinction above between yf and yf † is not relevant

for this work.

I utilized two additional observations to simplify the implementation of the above

operators. First, I took values for the superpartner masses such that µ,MW̃ � mq̃, which

imples I(a, b) ' a/b2. Also, because I’m only interested in the combined contribution

of the three neutrinos, and because the total contribution is the same whether one sums

over flavor states or mass states, I made the replacement Uν
ll′ → δll′ for C I

W̃
and took

l = l′ ⇒ yell′ = me
l /vd for C IV

h̃±
.

Since the unitary matrices U f do not appear in the SM (+ neutrino sector) La-

grangian except in the CKM and PMNS combinations, the non-diagonal SUSY Yukawas

yf present in the CA are not physically determined. Fortunately in our GUT model full

high-scale Yukawas are defined by the completely determined fermion sector. Further-

more, it is known that unitary matrices such as the CKM matrix experience only very

slight effects due to SUSY renormalization. Thus, since the low-scale masses are of course

known, I can define good approximations to the SUSY Yukawas needed by using the

high-scale U f to rotate the diagonal mass couplings at the proton scale, divided by the

appropriate vevs:

yu =
1

vu
Uu
(
Mwk

u

)D
U †u,

where vu = vwk sin β, or, in component notation,

yuij =
1

vu

∑
k

mu
k U

u
ik U

u ∗
jk . (23)
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I can similarly write

ydij =
1

vd

∑
k

md
k U

d
ik U

d ∗
jk

yeij =
1

vd

∑
k

me
k U

e
ik U

e ∗
jk ,

where vd = vwk cos β. Mass values used were taken from the current PDG [24]; light

masses are run to the 1-GeV scale, top and bottom masses are taken on-shell. Note

that since the Yukuwa factors always appear in pairs of opposite flavor in the Higgsino

operators, and since 1
sinβ cosβ

' tan β for large β, the Higgsino contributions to proton

decay ∼ tan2 β
v4wk

for this model.

There are generally two distinct mass-basis rotations possible for each of the

UDUE -, UDDN -, and UCDCUCEC-type triplet operators; the difference between the two

depends on whether the operator is “oriented” (i.e., in the diagram) such that the lepton

is a scalar. For a given orientation, a unitary matrix corresponding to the fermionic field

at one vertex in the triplet operator will rotate every coupling present in CL,R pertaining

to that vertex; an analogous rotation will happen for the other vertex in the operator. For

example, looking at the π+ν̄l channel in Figure 2(a), every coupling λij from CL
ijkl present

at the φ̃T vertex will be rotated by some form of Ud; similarly all λ′kl present at the φ̃T

vertex will be rotated by some Uu. The down quark field shown is a mass eigenstate quark

resulting from unitary the rotation, which we can interpret as a linear combination of fla-

vor eigenstates: dj = Ud
jm d

′
m, with j = 1; applying the same thinking to the up quark, we

can also write uTk = u′Tp U
uT
pk , with k = 1. To work out the details of the rotations, we can

start with the d = 5 operator written in terms of flavor states6,
∑

a xa(ũi λ
a
im d

′
m)(u′pλ

′a
pl ẽl),

where I have expanded CL
impl in terms of its component couplings and chosen the indices

with the malice of forethought; now we can write∑
a

xa(ũ
T
i C

−1λaim d
′
m)(u′Tp λ′apl C

−1 ẽl)

6 Recall the scalars are both mass and flavor eigenstates under the universal mass assumption. Also note

“λ′” is again my name for the second generic coupling, and the prime has nothing to do with basis; I

will continue to use hats to indicate rotated couplings.
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=
∑
a

xa(ũ
T
i C

−1 λaim U
d †
mj︸ ︷︷ ︸

≡ λ̂aij

Ud
jn d

′
n︸ ︷︷ ︸

dj

)(u′Tp UuT
pk︸ ︷︷ ︸

uTk

Uu ∗
kq λ

′a
ql︸ ︷︷ ︸

≡ λ̂′akl

C−1 ẽl).

Using the new definitions for λ̂, we can see that the rotated coefficient ĈL corresponding

to the expression in eq. (7) has become

ĈL
ijkl = x0ĥijĥkl + x1f̂ij f̂kl − x3ĥij f̂kl + . . .

= x0(hU †d)ij(U
∗
uh)kl + x1(f U †d)ij(U

∗
uf)kl − x3(hU †d)ij(U

∗
uf)kl + . . . (24)

Note that this version of ĈL is only valid for UDUE-type operators with this orientation

in the diagram, namely, those with a scalar ẽ; there is an analogous pair of rotations for

UDUE with a scalar down and fermionic lepton, as well as two each for UDDN and

UCDCUCEC, for a total of six possible schemes.

From Quarks to Hadrons. As mentioned above, the composite hadrons p and K, π

(in addition to the lepton) carry physical momenta in the proton decay process, not the

“external”, “physical” quarks we see in the dressed operators above. Therefore we are in

need of calculating a factor like 〈M| (qq)q |p〉, where M = K, π is the final meson state.

More explicitly these objects will look like

〈K+| εabc(ucsb)L daL |p〉

〈K0| εabc(uasc)R ubL |p〉

〈π0| εabc(ubdc)L uaR |p〉
...

Such matrix elements are calculated using either a three-point function (for M, p, and

the (qq)q operator) on the lattice or chiral Lagrangian methods; in either case, the result

is determined in part by a scaling parameter βH defined by 〈0| (qq)q |p(s)〉 = βHPLup(s),

where PL is the left-chiral projection matrix and up(s) is the Dirac spinor for an incoming

proton of spin s. In principle βH is not necessarily the same for cases where the quarks

have different chiralities, but the values usually differ only in sign, which is irrelevant

when the entire factor is squared in the decay width expression.

While lattice methods have advanced significantly since the early years of SUSY

GUT theory, there is still a substantial amount of uncertainty present in the calculation
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of both βH and the matrix element factors; some groups have even obtained contradictory

results when applying the two methods in the same work [25]. Some more recent works

(e.g. [26]) using more advanced statistics and larger lattices seem to be converging on

trustworthy answers, but it is still normal to see results vary by factors of (1/2 - 5) for a

single decay mode from one method to the next, where the values for the matrix elements

themselves are O(10)×βH . Thus I will simply take the admittedly favorable approach of

using 〈M| (qq)q |p(s)〉 ∼ βHPup for all modes.

It is not uncommon to see values as low as βH = 0.003 used in other works calculating

proton decay [28], but while calculated values have indeed varied as much as (0.003 - 0.65)

over the years [26], the value is now most commonly found in the range (0.006 - 0.03)

[27], with a tendency to prefer βH ∼ 0.015, as seen in [26]. Again, I will take a slightly

optimistic approach and use βH = 0.008.

The p → M¯̀ Effective Diagram and the Decay Width of the Proton. Ultimately

it is a deceptively simple two-body decay that I am calculating, as shown in Figure 5.

The corresponding decay width can be determined by the usual phase-space integral

expression:

Γ =
1

2Mp

∫
d3p

(2π)3 2EM

∫
d3p

(2π)3 2E`
(2π)4 δ4(pp − pM − p`)

1

2

∑
s

|M | 2 (25)

where in this case

1

2

∑
s

|M | 2 =
1

2
β2
H (ALAS)2

(
|OW̃ | 2 + |Oh̃| 2

) ∑
s,s′

|vT` (p`, s)C
−1 up(pp, s

′)| 2. (26)

The factors AL and AS arise to due the renormalization of the d = 6 dressed operators,

from Mp to MSUSY and MSUSY to MU , respectively; their values have been calculated

in the literature as AL = 0.4 and AS = 0.9-1.0 [29]. The spinor factor can be evaluated

with the usual trace methods; in the rest frame of the proton where −pM = p` ≡ p, and

utilizing m2
` � |p| 2 (which is only marginally valid for the muon but clearly so otherwise),

the decay width expression simplifies to

Γ =
1

4π
β2
H (ALAS)2

(
|OW̃ | 2 + |Oh̃| 2

)
p, (27)

where

p ≡ |p| ' Mp

2

(
1− m2

M

M2
p

)
. (28)
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p

¯̀

M

FIG. 5: Proton decay to a meson and an anti-lepton for; the effective operator vertex contains hadronic

and renormalization factors as well as the sum of all d = 6 dressed operators contributing to the mode.

Note that p ∼ Mp/2 for pion modes, but that value is reduced by a factor of ∼ 25% for

kaon modes.

I now have all the pieces needed to write the working formulae for the partial decay

widths of the proton. Let me first define CA as extended forms of the Cijkl by

CA
W̃

= CA
W̃

(qq)(q`)

CA
h̃±

= CA
h̃±

(qq)(q`)

CA
h̃0

= CA
h̃0

(qq)(q`), (29)

so that these coefficients contain the U f/2 or yf factors as well as the Cijkl of the CA

operators in (20)-(22). Now I can easily translate an operator expression like

OW̃ (K+ν̄) '
(
iα2

4π

)
1

MT

(
MW̃

m2
q̃

)
{C I

W̃
+ C IV

W̃
} (30)

into a partial decay width statement,

ΓW̃ (p→ K+ν̄) ' 1

4π

(α2

4π

)2 1

M2
T

(
MW̃

m2
q̃

)2

β2
H (ALAS)2 p |CI

W̃
+ CIV

W̃
| 2, (31)

without losing either information or readability. Note though there is still a “black-box”

nature to the CA (it was there in the CA operators as well), in that without specifying

the generation indices of the external dj,i′ quarks, the sums in eqs. (30) and (31) could

just as easily apply to π+ν̄. Furthermore, there are at least several channels present in

each CA operator that contribute to any one mode, which are determined uniquely by
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the generations of the internal sfermions in addition to those of the external quarks.7 If

the reader wishes to examine the decay widths at the full level of detail, he or she should

utilize these expressions along with the operators in eqs. (20)-(22) and the diagrams in

Appendix A.

All remaining limitations aside, I can now present relatively compact and intelligible

expressions for the Wino- and Higgsino-dressed partial decay widths of the proton for

generic mode p→ M¯̀:

ΓW̃ (p→ M¯̀) ' 1

4π

(α2

4π

)2 1

M2
T

(
MW̃

m2
q̃

)2

β2
H (ALAS)2 p

∣∣∣∑
A∈M¯̀

CA
W̃

∣∣∣ 2

(32)

Γh̃(p→ M¯̀) ' 1

4π

(
1

16π2

)2
1

M2
T

(
µ

m2
q̃

)2

β2
H (ALAS)2 p

∣∣∣∑
A∈M¯̀

CA
h̃

∣∣∣ 2

. (33)

For the numerical analysis, I used the generic values MT = 2×1016 GeV, MW̃ = µ =

100 GeV, and mq̃ = 3 TeV. Also, let me repeat here that because of the two SUSY Yukawa

coupling factors in the CA
h̃

, which always come in opposite flavor,

Γh̃ ∝
(

1

v2
wk sin β cos β

)2

∼ tan2 β

v4
wk

.

Before moving on to the fermion sector fit results, let me remark that because the

Higgsinos vertices change the chiralities of the outgoing fermions, there can be no inter-

ference between Wino- and Higgsino-dressed diagrams, as suggested by eq. (27); however,

since diagrams for the right-handed CR operators have outgoing left-handed fermions by

the same Higgsino mechanism, diagrams for CR- and CL-type operators with the same

external particles of matching chiralities do interfere with each other, and so all such

contributions to a given mode do in fact go into the same absolute-squared sum factor,

as suggested by eq. (33).

7 Indeed I could have defined the coefficients with six indices: CAijklmn, thereby creating a means of

alleviating all degeneracy, but I don’t expect such information-dense objects to be so enlightening to

readers, especially since for most modes, at least the Higgsino-dressed expression would devolve into

an entire pageful of terms corresponding to the individual channels.
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IV. FITTING THE FERMION MASS MATRICES

Diagonalizing the mass matrices given in eq. (2), with the Yukawa textures shown in

(5), gives the GUT-scale fermion masses and mixing angles for a given set of values for the

mass matrix parameters hij, fij, ri, etc. In order to find the best fit to the experimental

data, I used the Minuit tool library for Python [30, 31] to minimize the sum of chi-squares

for the mass-squared differences ∆m2
21 (aka ∆m2

�) and ∆m2
32 (aka ∆m2

atm) and the PMNS

mixing angles in the neutrino sector as well as the mass eigenvalues and CKM mixing

angles in the charged-fermion sector. Type-I and type-II seesaw neutrino masses were

each fit independently, so I report the results for each separately.

Note that throughout the analysis, I have taken vu = 117.8 GeV, which is calculated

with tan β = 55 and for vwk run to the GUT scale [32]. The corresponding value for the

down-type vev is vd = 2.26 GeV.

Threshold corrections at the SUSY scale are ∝ tan β, and so should be large in

this analysis [34]. The most substantial correction is to the bottom quark mass, which is

dominated by gluino and chargino loop contributions; this correction also induces changes

to the CKM matrix elements involving the third generation. The explicit forms of these

corrections can be seen in a previous work on a related model [16]. Additionally, smaller

off-diagonal threshold corrections to the third generation parts of Md result in small

corrections to the down and strange masses as well as further adjustments to the CKM

elements. All such corrections can be parametrized in the model by

M′
d =Md +

r1

tan β


0 0 δVub

0 0 δVcb

δVub δVcb δmb

 , (34)

where Md is given by eq. (2). If I simply take this augmented form for Md as part of

the model input, the δ parameters are fixed by the mass matrix fitting, which results

in implied constraints on certain SUSY parameters and the mass values that depend on

them, namely, the Higgs and the light stop and sbottom masses. This entire prescription

and its implications were considered in detail in [16], and in comparing to that work,

one can see that for large tan β and relatively small threshold corrections, the resulting
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constraints on the Higgs and squark masses are less interesting, so I will not consider

them in more detail for this analysis.

Fit Results for Type II Seesaw

If one takes the 126 SM-singlet vev vR >∼ 1017 GeV (i.e., the GUT scale), and the

triplet vev vL ∼ 1 eV, then the type-II contribution (vL term) in eq. (3) dominates over the

type-I contribution (vR term) by an average of two orders of magnitude in the neutrino

mass matrix; therefore eq. (3) reduces to

Mν ' vLf (35)

Using this prescription, I find a fairly large parameter space for which the sum of chi-

squares is quite low, although some of the output values, such as θ13 and the down and

bottom masses, are quite sensitive to the variation in the minima. This is problematic

for θ13 especially, since it is known to high experimental precision [12]. Tables I and II

display the properties of one of the more favorable fits; Table I gives the values for the

adjusted model input parameters, and Table II gives the corresponding output values for

the fermion parameters, with experimentally measured values included for comparison.

Note that the down quark mass is seemingly a bit low, which seems to be a general feature

in this model, but I will discuss in the next section why this is not a problem. The precise

value of vL for this fit is 1.316 eV, which I chose to fix the overall neutrino mass scale at

m3 ∼ 0.05 eV.

In order to calculate the Cijkl proton decay coefficients, as well as for use in the

neutrino mass matrix (3), I needed to determine the “raw” Yukawa couplings, h, f, g,

from the dimensionful couplings, h̃, f̃ , g̃, of the mass matrices given in eq. (2), which are

obtained directly from the fit; to do so I need to extract the absorbed vev vu and doublet

mixing parameters f(UDIJ , V
D
IJ ) mentioned in section II. There is some freedom in the values

of those mixing elements from the viewpoint of this predominantly phenomenological

analysis, but they are constrained by both unitarity and the ratios ri and c`, which have

been fixed by the fermion fit. Again, see [19] for details, or see [16] for an example of such
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M (GeV) 106.6 r1/ tanβ 0.014601

f11 (GeV) -0.045564 r2 0.0090315

f12 (GeV) 0.048871 r3 1.154

f13 (GeV) -0.59148 ce -2.5342

f22 (GeV) -2.06035 cν n/a

f23 (GeV) -1.4013 δmb (GeV) -22.740

f33 (GeV) -1.40644 δVcb (GeV) 1.2237

g12 (GeV) 0.018797 δVub (GeV) 4.2783

g13 (GeV) -0.92510

g23 (GeV) -3.8353

TABLE I: Best fit values for the model parameters at the GUT scale with type-II seesaw. Note that

cν , which appears in the Dirac neutrino mass contribution to the type-I term, is not relevant for type-II.

a calculation. The resulting dimensionless couplings corresponding to this type-II fit are

h =


0

0

1.207

 f =


−0.00053748 0.00057649 −0.0069772

0.00057649 −0.024304 −0.016530

−0.0069772 −0.016530 −0.0165906



g = i


0 0.00033485 −0.016480

−0.00033485 0 −0.0683214

0.016480 0.0683214 0

 (36)

Note that in addition to f11 ∼ f12 ∼ 0, this fit satisfies g12, f13 � 1 as is desired for proton

decay.
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best fit exp value best fit exp value

mu (MeV) 0.7172 0.72+0.12
−0.15 Vus 0.2245 0.2243± 0.0016

mc (MeV) 213.8 210.5+15.1
−21.2 Vub 0.00326 0.0032± 0.0005

mt (GeV) 106.8 95+69
−21 Vcb 0.0349 0.0351± 0.0013

md (MeV) 0.8827 1.5+0.4
−0.2 J × 10−5 2.38 2.2± 0.6

ms (MeV) 34.04 29.8+4.18
−4.5 ∆m2

21/∆m
2
32 0.03065 0.0309± 0.0015

mb (GeV) 1.209 1.42+0.48
−0.19 θ13 (◦) 9.057 8.88± 0.385

me (MeV) 0.3565 0.3565+0.0002
−0.001 θ12 (◦) 33.01 33.5± 0.8

mµ (MeV) 75.297 75.29+0.05
−0.19 θ23 (◦) 47.70 44.1± 3.06

mτ (GeV) 1.635 1.63+0.04
−0.03 δCP (◦) -7.506∑

χ2 6.0

TABLE II: Best fit values for the charged fermion masses, solar-to-atmospheric mass squared ratio,

and CKM and PMNS mixing parameters for the fit with Type-II seesaw. The 1σ experimental values

are also shown for comparison [32], [24], where masses and mixings are extrapolated to the GUT scale

using the MSSM renormalization group equations (RGEs). Note that the fit values for the bottom

quark mass and the CKM mixing parameters involving the third generation shown here include the

SUSY-threshold corrections

Fit Results for Type I Seesaw

If one instead takes vR <∼ 1016 GeV and vL � 1 eV, then the type-I contribution is

dominant over the type-II contribution, and eq. (3) becomes

Mν ' −MνD (vRf)−1 (MνD)T , (37)

In this case, initial searches again showed that certain output parameters were quite

sensitive to the input and were often in contention with each other or with the de-facto

upper bounds on the fij needed for proton decay. In the first cluster of minima found

by the fitting, the output values for one or more of charm mass, bottom mass, or θ23

was much too small; furthermore, those results came with odd, large tunings of certain
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input parameters, such as ce,ν ∼ O(100) or δmb > 40 GeV. The addition of a small

type-II correction to the neutrino matrix led me to a new swath of parameter space, and

ultimately I found a new cluster of minima that did not require the correction. Table

III gives the values for the adjusted model input parameters for one such pure type-I fit,

and Table IV gives the corresponding output values for the fermion parameters. Fits in

this swath of parameter space still have cν ∼ 50 and δmb ∼ 25 GeV, but this value for cν ,

while slightly strange, is quite readily accommodated by the doublet mixing parameters,

and such a value for the largest SUSY threshold correction is actually quite moderate for

large tan β. The precise values for the 126 vevs used in this fit are vL = 3.48 meV and

vR = 1.21×1015 GeV.

Note also that the top and strange masses are quite a bit lower than in the type-II

fit; however, note I have also quoted different experimental values with which agreement is

maintained. The differences here come from an update to the work in [32] in determining

two-loop MSSM RGEs for fermion masses. The update [33] reports notably lower masses

for all the quarks at tan β = 55 and µ = 2.0×1016 GeV, especially for the up, down,

strange, and top masses, due to updates in initial values and methodology. Hence, one

should not give the specific values too much weight in such a fit, and I do not consider

the reported differences to be significant. This same thinking applies for the type-II down

mass value in Table II.

Again I need to determine the raw Yukawa couplings for proton decay analysis. The

resulting couplings corresponding to this type-I fit are

h =


0

0

1.6152

 f =


0.0001623 −0.00143525 0.01505699

−0.00143525 0.01387415 0.02384774

0.01505699 0.02384774 0.05687217



g = i


0 0.0068081 0.0018175

−0.0068081 0 0.0119376

−0.0018175 −0.0119376 0

 (38)

Here, we still see f11 ∼ 0, but each of f12, f13, and g12 is larger by an order of magnitude

than in the type-II case, which is thought to be unfavorable for proton decay. At the
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M (GeV) 76.10 r1/ tanβ 0.024701

f11 (GeV) 0.010130 r2 0.24414

f12 (GeV) -0.089576 r3 0.00600

f13 (GeV) 0.93973 ce -3.3279

f22 (GeV) 0.8659 cν 45.218

f23 (GeV) 1.4884 δmb (GeV) -28.000

f33 (GeV) 3.5495 δVcb (GeV) -0.84394

g12 (GeV) 0.20048 δVub (GeV) 0.51486

g13 (GeV) 0.05352

g23 (GeV) 0.35153

TABLE III: Best fit values for the model parameters at the GUT scale with type-I seesaw.

same time, g13 and g23 are smaller by an order of magnitude, so it is not clear that the

net benefit lost is substantial. In the end, a different distinction will give way to success

for this type-I fit; I will discuss those details in the next section.

V. RESULTS OF CALCULATING PROTON PARTIAL LIFETIMES

In order to give an actual number for any decay width, in addition to choosing

representative values for the triplet, sfermion, and Wino or Higgsino masses, I also need

values for the xi and yi triplet mixing parameters in order to calculate the Cijkl values.

Recall that the 10 mass parameter x0 must be O(1) to allow the SUSY Higgs fields to

be light; the remaining mixing parameters are functions of many undetermined GUT-

scale masses and couplings found in the full superpotential for the heavy Higgs fields, the

details of which can be seen in [21]. There are nearly as many of those GUT parameters

as there are independent xs and ys, so it is not unreasonable to simply treat the latter as

free parameters.

Ideally, one would find that the width for any particular mode would be essentially

independent of those parameter values, i.e., that for arbitrary choices 0 < |xi|, |yi| < 1,
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best fit exp value best fit exp value

mu (MeV) 0.72155 0.72+0.12
−0.15 Vus 0.2240 0.2243± 0.0016

mc (MeV) 212.2 210.5+15.1
−21.2 Vub 0.00310 0.0032± 0.0005

mt (GeV) 76.97 80.45+2.9 ∗
−2.6 Vcb 0.0352 0.0351± 0.0013

md (MeV) 1.189 0.930± 0.38∗ J × 10−5 2.230 2.2± 0.6

ms (MeV) 20.81 17.6+4.9 ∗
−4.7 ∆m2

21/∆m
2
32 0.0309 0.0309± 0.0015

mb (GeV) 1.278 1.24± 0.06∗ θ13 (◦) 8.828 8.88± 0.385

me (MeV) 0.3565 0.3565+0.0002
−0.001 θ12 (◦) 33.58 33.5± 0.8

mµ (MeV) 75.29 75.29+0.05
−0.19 θ23 (◦) 41.76 44.1± 3.06

mτ (GeV) 1.627 1.63+0.04
−0.03 δCP (◦) -46.3∑

χ2 1.75

TABLE IV: Best fit values for the charged fermion masses, solar-to-atmospheric mass squared ratio,

and CKM and PMNS mixing parameters for the fit with Type-I seesaw. The 1σ experimental values

are shown [32] (∗ - [33]), [24]; masses and mixings are extrapolated to the GUT scale using the MSSM

RGEs. Note that again that pertinent fit values include threshold corrections.

devoid of unlucky relationships leading to severe enhancements, all mode lifetimes would

be comfortably clear of the experimentally determined lower limits, given in Table V.

The reality is quite bleak in comparison. For a typical GUT model, if the proton decay

lifetimes can be satisfied at all, one is required to choose x and y values very carefully such

that either individual Cs or
∣∣∣∑CA

∣∣∣ are small through cancellations among terms. These

tunings may need to be several orders of magnitude in size (e.g., CA = −CB +O(10−3)),

and many such relationships may be needed.

The Yukawa textures shown in eq. (5) are intended to naturally suppress the values

of some crucial C values so that the need for such extreme tuning is alleviated. In order

to test the ansatz, I “simply” needed to find a set of values for the mixing parameters

yielding partial decay widths that satisfy the experimental constraints; the difficulty in

determining those values inversely corresponds to success of the ansatz. If the ansatz does

indeed work optimally, I should be able to choose arbitrary xi and yi values as suggested
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decay mode τ exp lower limit (yrs)

p→ K+ν̄ 6.0×1033

p→ K0e+ 1.0×1033

p→ K0µ+ 1.3×1033

p→ π+ν̄ 2.7×1032

p→ π0e+ 1.3×1034

p→ π0µ+ 1.0×1034

TABLE V: Experimentally determined lower limits [35] on the partial lifetimes of dominant proton

decay modes considered in this work.

above. Realistically though, the authors of [18] and I expected some searching for a valid

region of parameter space to be required.

To perform that search, I designed a second Python program to find maximum

partial lifetimes based on user-defined mixing values as well as the raw Yukawa couplings

fixed by the fermion sector fitting. Parameter values are defined on a per-trial basis for

any number of trials. I started with the most optimistic case by generating random initial

values for xi and yi (but x0 ∼ 1 fixed), with the decay width for K+ν̄ minimized by

adjusting those values in each trial. The minimization was again performed using the

Minuit tool library.

The search based on fully random initial values was unsuccessful, in that the K+ν̄

mode lifetime consistently fell in the 1031-32 year-range for the type-II solution and was
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typically ∼1×1033 years for the type-I case;8 at the same time however all five other modes

in question were usually near or above their respective limits for those same arbitrary

mixing values. Hence it was clear that, even with the K+ν̄ mode failure, that the ansatz

was having the desired effect to some extent. Also, note that this type-I solution for

K+ν̄ was short of the limit by only about a factor of five. This is surprising since the

type-I-based Yukawas reported in eq. (38) fell short of meeting the ansatz criteria. Given

the differing behaviors of the two solutions, I will report the remaining details in separate

subsections once again.

Proton Partial Lifetimes for Type II Seesaw

To further explore the properties of the “default behavior” of the lifetime values

in the model, I considered the case in which x0 ∼ 1 and all other xi and yi are set to

zero; one can see this case as defining a baseline for the partial lifetimes, in that any x0

terms in the Cs not suppressed by the Yukawa textures are necessarily large, and whereas

problematic contributions from some other xk with k 6= 0 may be suppressed simply by

setting xk � 1, the x0 contributions can be mitigated only through cancellation.

The corresponding baseline lifetimes for the dominant modes in the type-II case

are given in Table VI. One can see that the K+ν̄ mode decay width must be lowered

by two orders of magnitude through cancellation of x0 terms by the others. Since it is

|C| 2 that appears in the decay width expressions, the needed cancellation amounts to an

O(10−1) tuning among the CA factors. Furthermore, as it would be equally unnatural

to see xk � 1 for all k 6= 0, one should expect O(1) cancellations to be present anyway;

therefore, the needed “tuning” is little more than a very ordinary restriction of parameter

space.

In order to elucidate the significance of the improvement created by the Yukawa

ansatz, let us consider the outcome of this baseline calculation for a case with more general

Yukawa texture. The model from a 2010 paper by G. Altarelli and G. Blankenburg [14]

has the same 10-126-120 Yukawa structure but with general h and g as in eq. (4) and a

8 The Minuit tool used, Migrad, works using a local gradient-based algorithm, so that in large parameter

spaces, initial values are crucial in locating global minima.
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decay mode baseline for τ (yrs) baseline in ref. [14] (yrs)

p→ K+ν̄ 8.29×1031 6.38×1028

p→ K0e+ 9.73×1034 2.52×1030

p→ K0µ+ 5.68×1033 6.15×1029

p→ π+ν̄ 4.25×1033 4.45×1029

p→ π0e+ 1.08×1036 3.90×1030

p→ π0µ+ 6.45×1034 6.00×1029

TABLE VI: Hypothetical baseline partial lifetimes determined using type-II solution Yukawas and

x0 = 0.95 with all other xi, yi = 0. For comparison, I give the analogous results for calculation using

type-II Yukawas from the 2010 paper by Alterelli and Blankenburg [14], which use general Yukawa

texture. Note in comparing with Table V that for our model, only the K+ν̄ mode fails to satisfy the

lower limit, while all modes are well below the limits for the model in [14].

tri-bimaximal f having no hierarchical texture.9 Using the parameters reported to give

a successful fermion fit in the work (see footnote), I obtain the baseline results shown in

the final column of Table VI. One can see here that lifetimes for all modes are far below

the experimental limits, by factors of O(103-5); hence cancellation among the CA factors

must beO(10−2-4). Such sensitive relationships among these factors are considerably more

restrictive than the result from our model, and, in the absence of some new symmetry,

there is no good explanation for those restrictions.

In order to locate an area of mixing parameter space which yields a sufficient K+ν̄

lifetime, I wrote a supplementary Mathematica code to search for minima among strongly

abridged versions of |CI
W̃

+CIV
W̃
| and |CIV

h̃±
| that contribute to the decay width.10 Specifi-

cally I started with x0 terms only, corresponding to the baseline case, and then iteratively

added back the largest contributions one by one while readjusting the initial values each

time. Once all of the most important terms were present, I took the resulting mixing

parameters as my initial values in the Python code. The resulting minimization gave a

9 This model has already been ruled out due to θ13 ∼ 6-7◦ typical of tri-bimaximal models.
10 CIII

h̃± and CIII
h̃0

cancel identically for all contributing channels of both the K+ν̄ and π+ν̄ modes.
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FIG. 6: Comparisons of K+ν̄ partial lifetime to those of other dominant modes in the model, and that

lifetime as a function of the 10 mass parameter x0, for the type-II case. Note the unsurprising

preference for smaller x0.

large percentage of trials with all six modes exceeding the lifetime bounds.

With an allowed region of parameter space found, I expanded my searches to include

a wider range of values for x0. Using six different “seeds” for parameter values, all of which

give every mode sufficient with τ(K+ν̄) roughly twice the experimental bound, I created

a large number of trials for which the initial values were distributed normally around the

seed values and with large standard deviations. The resulting data for such a search is

shown in scatter plots below. Figure 6 gives the relationships between the K+ν̄ mode

and other representative modes and also the distribution of K+ν̄ lifetime for varying

x0. Figure 7 shows the relationships between other more closely correlated modes for

completeness.
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FIG. 7: Comparisons of partial lifetimes among highly-correlated sub-dominant modes in the model

for the type-II case.

Note the strong correlation between π+ν̄ and π0µ+, which are related by isospin, and

the extreme correlation between K0e+ and K0µ+. The latter is due to a manifestation of

the hierarchical nature of the Yukawas in the Cijkl, as well as minor features such f11 ∼ f12;

similar structure is present in the yf and U f , which tend to also have 11 ∼ 12 or 11� 12;

these properties result in a straightforward scaling under the replacement l : 1 → 2.

Furthermore, the same relationship is present between π0e+ and π0µ+. These relationships

imply that the remaining plots I omitted differ only trivially from the representatives

present.

I also performed simple scans in search of a maximum value for τ(K+ν̄), as well as

taking note of any especially large values in the previous searches. While there does not

seem to be any analytically-enforced maximum present in the model, I did consistently find

that τ > 1035 years was extremely rare, and I never saw a value higher than ∼ 6×1035 yr.

Given those findings, combined with the apparent smallness of the swath of parameter

space yielding the above results and the low likelihood of a more global minimum based

on my search methods, I believe that τ(K+ν̄) >∼ 1036 yr is statistically infeasible in this

model for type-II seesaw. If such a value does exist, it is likely contained in a vanishingly

small area of allowed parameter space and accomplished through truly extreme tuning.

Therefore I will take 1036 years as a de facto upper limit on τ(K+ν̄) for the type-II case,

which will not be accessible by Hyper-K and similar experiments [36, 37] in the near

38



future, but should nonetheless allow the model to be tested eventually.

The other modes of course have similar limits, but it would seem that all the others

are substantially higher and thus either far beyond the reach of the forthcoming exper-

iments or beyond the contributions from gauge boson exchange, if not both, with the

possible exception of τ(π+ν̄), which is rather highly correlated with K+ν̄ in this model.

Determining that value is tricky though because if I simply maximize the π+ν̄ mode, then

the K+ν̄ mode will be below its bound; thus, there is some question as to how one defines

the maximization.

Proton Partial Lifetimes for Type I Seesaw

I begin again by examining the same baseline case for the partial lifetimes, with

x0 ∼ 1 and all other xi, yi = 0. The resulting values for the dominant modes in the type-I

case are given in Table VII. Here we see a much more favorable situation, in that even

the K+ν̄ mode decay width is sufficient, and in fact the other modes exceed the bounds

by 2-4 orders of magnitude. Hence we expect that virtually all solutions will be adequate

for modes other than K+ν̄, and as long as there is no enhancement due to (de)tuning

among the CA factors, that mode will be adequate as well.

This is of course a remarkable improvement over traditional models, yet it seems

to contradict our expectations given then properties of the fermion fit. Why then is the

model successful? There are two primary reasons, both of which are quite subtle. The

first reason is that the smaller values for g13 and g23 seen in eq. (38) do in fact improve

the situation, as I suggested, while the larger f12 and g12 seem to have less impact. Since

M (h33) is such an extremely dominant factor in the Yukawas, it is generally the case that

contributions involving third generation are larger and more important than the others.

The second reason is even more unexpected, to the point that it was not even

examined in the preceding works on this ansatz. The unitary matrices U f for the charged

fermions are generally ∼ 1, just as one would expect, given the texture of CKM. This

model is no exception, with off-diagonal terms generally O(10−1-3); however, with such

sparse or hierarchical (flavor basis) Yukawas due to the ansatz, these “small” off-diagonal

elements lead to “small” rotations of h, f, g resulting in relatively substantial chanes to
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decay mode baseline for τ (yrs)

p→ K+ν̄ 7.87×1033

p→ K0e+ 5.93×1035

p→ K0µ+ 2.45×1035

p→ π+ν̄ 2.37×1036

p→ π0e+ 6.11×1038

p→ π0µ+ 2.27×1038

TABLE VII: Hypothetical baseline partial lifetimes determined using type-I solution Yukawas and

x0 = 0.95 with all other xi, yi = 0. Note in comparing with Table V that all modes satisfy the lower

limits, and most do so by several orders of magnitude.

the textures of ĥ, f̂ , ĝ. Especially noteworthy are the changes in h → ĥ, where some

previously-zero off-diagonal elements are replaced by the same O(10−1-3) values seen in

the U f .

In light of the surprising non-triviality of the basis rotations, if we compare Uu,d for

the type-I case:

Uu =


0.994 −0.1085 + 0.0057i 0.00298 + 10−5i

0.1084 + 0.0057i 0.994 0.0047 + 10−5i

−0.0035− 10−5i −0.0044 + 10−5i 0.99998



Ud =


0.967 −0.1087 + 0.2309i 0.00175 + 0.001175i

0.1086 + 0.2308i 0.966 0.03935 + 0.00690i

−0.0076− 0.0072i −0.0381 + 0.00613i 0.9992

 , (39)

to those for the type-II case:

Uu =


0.972 0.2098− 0.1044i −10−5 − 0.010i

−0.210− 0.1043i 0.971 −0.00012− 0.0414i

−0.0043− 0.001i −0.001− 0.0423i 0.999
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Ud =


0.9998 0.00633− 0.0095i 0.00765− 0.01117i

−0.00708− 0.0095i 0.9983 0.03386− 0.04514i

−0.00785− 0.01054i −0.03401− 0.04514i 0.9983

 , (40)

we see that the off-diagonal entries are the same size or smaller for the type-I case in every

entry except Ud
12; furthermore, several of the elements involving the third generation

are smaller by an order of magnitude. These differences may seem rather benign, but

in fact each of these slightly suppressed values individually translates into a factor of

10 suppression in most of the dominant Cs, which all tend to involve third generation

elements. In some cases two or even three such suppressions may affect a single CA factor.

The squaring of factors in the decay width then gives suppressions of generally 2-4 orders

of magnitude in the lifetimes, which is precisely what one can see when comparing Tables

VI and VII.

Due to the more favorable circumstances, I was able to locate an allowed region of

parameter space for type-I simply by running a large number of trials with the type-II

parameter seeds. I repeated the process of expanding the range of x0 by again choosing

five seeds that gave every mode sufficient and τ(K+ν̄) roughly twice the experimental

bound, and I again used those seeds to create scatter plots for a large number of trials.

Figure 8 gives the relationships between the K+ν̄ mode and other representative modes

and the distribution of τ(K+ν̄) as a function of x0, and Figure 9 shows the relationships

between other more closely related modes. Note the bifurcation of the solution set in each

plot; I have not yet been able to discover the cause of this behavior.

Again I performed scans to determine a statistical upper bound for the value of

τ(K+ν̄) in the model. I consistently found that τ > 1037 years was rare and did not see

a value higher than ∼ 3×1037 yr. Given those findings, I suspect that the de facto upper

limit on τ(K+ν̄) for the type-II case is slightly lower than 1038 years for the type-I seesaw

case. Such a value is clearly out of reach of Hyper-K and other imminent experiments.

Note that as values for the neutral Kaon and pion lifetimes often exceeded 1038 years in

my findings involving K+ν̄ minimization, the upper limits for those modes are surely

sub-dominant to gauge exchange as well as out of reach of experiments and so not of

interest.
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FIG. 8: Comparisons of K+ν̄ partial lifetime to those of other dominant modes in the model, and that

lifetime as a function of the 10 mass parameter x0, for the type-I case. Note the unsurprising preference

for smaller x0.

VI. CONCLUSION

In this work I have presented a full analysis of the nature of proton decay in an

SO(10) model that has 10, 126, and 120 Yukawa couplings with restricted textures

intended to naturally give favorable results for proton lifetime as well as a realistic fermion

sector. The model is capable of supporting either type-I or type-II dominance in the

neutrino mass matrix, and I have analyzed both types throughout. Using, numerical

minimization of chi-squares, I was able to obtain successful fits for all fermion sector

parameters, including the θ13 reactor mixing angle, and for both seesaw types. Using the

Yukawa couplings fixed by those fermion sector fits as input, I then searched the parameter
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FIG. 9: Comparisons of partial lifetimes among highly-correlated sub-dominant modes in the model

for the type-I case.

space of the heavy triplet Higgs sector mixing for areas yielding adequate partial lifetimes,

again using numerical minimization to optimize results. For the case with type-II seesaw,

I found that lifetime limits for five of the six decay modes of interest are satisfied for

nearly arbitrary values of the triplet mixing parameters, with an especially mild O(10−1)

cancellation required in order to satisfy the limit for the K+ν̄ mode. Additionally, I

deduced that partial lifetime values of τ(K+ν̄) >∼ 1036 years are vanishingly unlikely in

the model, implying the value can be taken as a de facto lifetime for the mode, which makes

the model ultimately testable. For the case with type-I seesaw, I found that limits for all

six decay modes of interest are satisfied for values of the triplet mixing parameters that do

not result in substantial enhancement, with limits for modes other than K+ν̄ satisfied for

nearly arbitrary parameter values; furthermore, I deduced a statistical maximum lifetime

for K+ν̄ of just under 1038 years. Given these results, I conclude that the well-motivated

Yukawa texture ansatz proposed by Dutta, Mimura, and Mohapatra is a phenomenological

success, capable of suppressing proton decay without the usual need for cancellation and

without compromising any aspect of the corresponding fermion mass spectrum.
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Appendix A:

Feynman Diagrams for All d = 6 Operators Contributing to Proton Decay

Channels for p → π+ν̄. i, l = 1, 2, 3; φ̃T is the Higgsino component of a heavy color-

triplet Higgs superfield, φ = H, ∆̄,Σ

(a)

ẽl c̃, t̃

φ̃T φ̃T

W̃− W̃+

u

νl

d

d

(b)

s̃, b̃ ũi

φ̃T φ̃T

W̃− W̃+

νl

u

d

d

−

(c)

s̃, b̃

h̃+u

ũi

h̃−d

φ̃T φ̃T

νl

uC

d

dC

−

(d)

s̃, b̃

h̃0u

ũi

h̃0d

φ̃T φ̃T

νl

dC

d

uC

(e)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃−d h̃+u

uC

νl

dC

d
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Channels for p → π0`+. j = 1, 2, 3; l = 1, 2 (↔ ` = e, µ), or for diagrams including l′,

instead l = 1, 2, 3 and l′ = 1, 2

(a)

c̃, t̃ d̃j

φ̃T φ̃T

W̃+ W̃−

el

d

u

u

(b)

ν̃l s̃, b̃

φ̃T φ̃T

W̃+ W̃−

d

el′

u

u

−

(c)

c̃, t̃

h̃−d

d̃j

h̃+u

φ̃T φ̃T

el

dC

u

uC

(d)

c̃, t̃

h̃0d

d̃j

h̃0u

φ̃T φ̃T

el

uC

u

dC

−

(e)

c̃, t̃

h̃0d

ẽl

h̃0u

φ̃T φ̃T

d

uC

u

eCl′

−

(f)

ν̃l

h̃−d

s̃, b̃

h̃+u

φ̃T φ̃T

d

eCl′

u

uC

−

(g)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃+u h̃−d

eCl

d

uC

u

(h)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃0u h̃0d

eCl

u

uC

d

−

(i)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃0d h̃0u

uC

el′

dC

u

−
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Channels for p → K+ν̄. i, l = 1, 2, 3; parentheses indicate coupled choices; the absence

of a diagrams containing ũduẽ dressed by h̃± and ud̃dν̃ dressed by h̃0 is due to resulting external νC

(a)

ẽl c̃, t̃

φ̃T φ̃T

W̃− W̃+

u

νl

(d, s)

(s, d)

(b)

(s̃, d̃), b̃ ũi

φ̃T φ̃T

W̃− W̃+

νl

u

(d, s)

(s, d)

−

(c)

(s̃, d̃) ũ

φ̃T φ̃T

W̃ 0 W̃ 0

νl

(s, d)

(d, s)

u

(d)

s̃ d̃

φ̃T φ̃T

W̃ 0 W̃ 0

νl

s

u

d

−

(e)

ν̃l (s̃, d̃)

φ̃T φ̃T

W̃ 0 W̃ 0

(d, s)

νl

u

(s, d)

(f)

ν̃l ũ

φ̃T φ̃T

W̃ 0 W̃ 0

d

νl

s

u

−

(g)

(s̃, d̃), b̃

h̃+u

ũi

h̃−d

φ̃T φ̃T

νl

uC

(d, s)

(sC , dC)

−

(h)

(s̃, d̃), b̃

h̃0u

ũi

h̃0d

φ̃T φ̃T

νl

(sC , dC)

(d, s)

uC

(i)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃−d h̃+u

uC

νl

(dC , sC)

(s, d)

47



Channels for p → K0`+. j = 1, 2, 3; l = 1, 2 (↔ ` = e, µ), or for diagrams including l′,

instead l = 1, 2, 3 and l′ = 1, 2

(a)

c̃, t̃ d̃j

φ̃T φ̃T

W̃+ W̃−

el

s

u

u

(b)

ν̃l d̃, b̃

φ̃T φ̃T

W̃+ W̃−

s

el′

u

u

−

(c)

c̃, t̃

h̃−d

d̃j

h̃+u

φ̃T φ̃T

el

sC

u

uC

(d)

c̃, t̃

h̃0d

d̃j

h̃0u

φ̃T φ̃T

el

uC

u

sC

−

(e)

c̃, t̃

h̃0d

ẽl

h̃0u

φ̃T φ̃T

s

uC

u

eCl′

−

(f)

ν̃l

h̃−d

d̃, b̃

h̃+u

φ̃T φ̃T

s

eCl′

u

uC

−

(g)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃+u h̃−d

eCl

s

uC

u

(h)

c̃C , t̃C

φ̃T

d̃Cj

φ̃T

h̃0u h̃0d

eCl

u

uC

s

−

(i)

ẽCl

φ̃T

c̃C , t̃C

φ̃T

h̃0d h̃0u

uC

el′

sC

u

−
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