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The proton radius puzzle, the discrepancy between the proton radius measured in muonic hydro-
gen and electronic hydrogen, has yet to be resolved. There are suggestions that beyond the standard
model (BSM) physics could resolve both this puzzle and the muon anomalous magnetic moment
discrepancy. Karshenboim et al. point out that simple, nonrenormalizable, models in this direction
involving new vector bosons have serious problems when confronting high energy data. The prime
example is radiative corrections to W → µν decay which exceed experimental bounds. We show
how embedding the model in a larger and arguably renormalizable theory restores gauge invariance
of the vector particle interactions and controls the high energy behavior of decay and scattering
amplitudes. Thus BSM explanations of the proton radius puzzle can still be viable.

I. INTRODUCTION

The 7σ discrepancy between the proton radius mea-
sured via muonic hydrogen Lamb shift [1, 2], and mea-
sured via electron scattering or electronic hydrogen
atomic level splittings (including the Lamb shift in or-
dinary hydrogen) [3], remains unresolved. Assuming the
discrepancy is not due to experimental error, we can con-
sider the explanation that there exists unaccounted for
physics which masks itself as a difference in proton size.
Such an effect must lower the muonic hydrogen 2S state
by 310 µeV to match experiment. There have been sev-
eral proposed beyond-the-standard-model (BSM) theo-
ries that could explain such an effect. See [4, 5] for re-
views.

Furthermore, there exists a discrepancy of 3 or more σ
between the measured muonic g − 2 and that predicted
by the standard model [6–9]. A tantalizing hope and goal
of these BSM theories is to solve both the proton radius
and the muonic g − 2 problems simultaneously.

One idea in the BSM regime is the existence of a new
force that couples preferentially to muons [10–12]. How-
ever, a number of constraints must be addressed [13–
15]. Many of them can be avoided if we suppose the
new force carrier(s) couple only to muons on the leptonic
side (or at least much more strongly to muons than to
other leptons), and only to first generation particles on
the hadronic side, with the hadronic coupling propor-
tional to the electric charge. A neat scheme of this sort
has been proposed by Batell et al. [11] and further stud-
ied by Karshenboim et al. [15]. Our own study will be
more generic, along the lines of models studied by Rislow
and one of the present authors [12]; these models in par-
ticular have smaller electron couplings than in [11, 15]
and a different pattern of parity violation such that cor-
rections to the muonium hyperfine splitting and 133Cs
weak charge will not arise.
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The new muon coupling will affect other processes in-
volving muons, and one immediately thinks of the muon’s
anomalous magnetic moment, (g − 2)µ, with its circa
2.1±0.7 part-per-million (ppm) discrepancy between the
standard model and experiment. In the present context,
it was early noted [10] that if the mass of the BSM force
carrier is very light, its effect on (g− 2)µ can explain the
discrepancy directly. If the mass of the new force carrier
is not very light, one has to arrange a fine-tuning involv-
ing at least one more BSM force carrier to keep the effect
of the new physics on (g−2)µ at the correct size. This is
by now well understood [11, 12], and one can even turn
it into a positive by solving the (g−2)µ problem and the
proton radius puzzle with the same model.

Further, if the BSM force carrier is not too heavy, it
can contribute as a bremsstrahlung or radiative correc-
tion to decays involving muons. For example, the decay
K → µνφ, where φ is the new force carrier was studied by
Barger et al. [14] for the case where φ does not visibly de-
cay. If there is a small coupling allowing φ→ e+e−, then
the e+e− spectrum would show a visible bump above the
QED background in K → µνe+e−, as was considered
in [16].

Karshenboim et al. [15] called special attention to the
need for embedding any new vector force carrier into a
renormalizable theory, or at least into a theory where
the scattering or decay amplitudes do not grow with en-
ergy when the energy is high. They did this by studying
radiative corrections to W → µν decay. The width of
this decay is unambiguously predicted in the standard
model, and is measured with an uncertainty of about
2%. Karshenboim et al. showed that if there be just a
low mass vector boson that coupled to muons (but not to
W ’s or ν’s), with a coupling chosen to explain the energy
splitting deficit in muonic hydrogen, then its contribu-
tion Γ(W → µνV ) would exceed the measured width of
the W by a large margin.

However, in a well behaved and renormalizable the-
ory, the growth of amplitudes with energy cannot go
unchecked. Unitarity imposes limits on the energy be-
havior of scattering amplitudes, and if one is using the
conventions of (say) Bjorken and Drell [17] or of Peskin
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and Schroeder [18], an amplitude in a single partial wave
must not grow with energy at high energy (i.e., if the
amplitude grows like (energy)n for large energies, then
n ≤ 0). Nonrenormalizable theories are known for their
ultraviolet divergences in loops, but their excessive en-
ergy dependence can also appear at tree level in the form
of unitarity violations. A known historical example is
the amplitude for νeν̄e →W+W− in a simple vector bo-
son theory [19]. The calculation from just diagram 1(a)
gives an amplitude that is asymptotically in a single par-
tial wave that grows like E2 as the center-of-mass energy
E → ∞. The Weinberg-Salam extension of the theory
also has a Z-boson diagram, 1(b), which is significantly
smaller than 1(a) at threshold but asymptotically cancels
the offending energy behavior and restores perturbative
unitarity [20]. A general study by Llewellyn Smith has
shown that the need to satisfy unitarity bounds leads to
a Yang-Mills structure for many theories involving vector
bosons [21].
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FIG. 1: The illustrative process νν̄ → W+W−.

In this paper, we consider new vector and (when
needed) axial-vector bosonic interactions that couple to
the muon and the proton but do not couple or couple
weakly to the electron and most other particles. Again, if
this is all we have, the result of Karshenboim et al. shows
that the region of parameter space which solves the pro-
ton radius problem does not occur in the allowed param-
eter space given by the known decay of the W . Inspired
by [20, 21], we add an additional triple boson vertex in
the Lagrangian, giving an interaction involving the stan-
dard W -boson, the new vector particle φV , and a fur-
ther vector boson with the same mass as the W . We
call this newest boson a “shadow W ,” denoted Ws with
m(Ws) = mW . We also include, when needed, a corre-
sponding axial vector triple boson interaction, involving
the shadow Ws, the ordinary W , and the φA. The inclu-
sion of the Ws makes the φ interactions gauge invariant
or current conserving, arguably fixes the nonrenormaliz-
ability of the original interaction, and, as we shall show,
definitively pushes the constraints on the couplings due
to W decay far away from the coupling strength param-
eter region necessary to solve the proton radius problem.
Thus it can be a plausible candidate for a BSM solution
to the proton radius problem.

We note that a current conserving theory with mas-
sive bosons (φV and φA) and shadow W ’s, gives high
energy results, e.g. for radiative corrections to W decay,
very much like a theory with a massive scalar boson φs

plus, when needed, a corresponding pseudoscalar boson

φp. We briefly display such a scalar theory, and show
that decays of the W involving such a scalar and pseu-
doscalar do not restrict the necessary parameter space
needed for solving the proton radius problem with scalar
exchanges.

We should also note that though our theory is well-
behaved and seems likely to be renormalizable (as argued
by Llewelyn Smith [21]), it is not yet a full theory em-
bedded into the standard model (SM). Further work will
be required to show how such a theory can be embed-
ded into the SM. For now, we simply consider our theory
as a phenomenological application of some BSM physics,
containing features that a full theory must contain and
controlling the high energy behavior of scattering and
decay amplitudes.

In the following, the bulk of our work concerns the
new vector or axial vector bosons, and is described in
Sec. II. We also include some comments on why the cor-
responding radiative corrections to Z → µ+µ− decay are
innocuous. Results for the scalar case are given in a short
Sec. III, and conclusions are offered in Sec. IV.

II. VECTOR THEORY

We start with an interaction Lagrangian similar to [12]
where φV interacts with a muon (and proton) via the the
explicit vector coupling Cµ

V (Cp
V ) and where φA interacts

with a muon (and proton) through the axial vector cou-
pling Cµ

A (Cp
A). For brevity of notation, it is understood

that φ without a subscript represents either φV or φA in
this section. We also include an additional 3-boson inter-
action [21] term involving the φ, the ordinary W , and a
third boson, with coupling strength equal to Cµ

V (or Cµ
A)

as is necessary to make the decay W → µνφ gauge in-
variant. The third boson is the shadow W , denoted Ws,
which couples to the muon in the same manner as the W
and has mWs

= mW .
The new interaction terms in the Lagrangian are,

Lint = − φV
λ

[
Cµ

V ψ̄µγ
λψµ + Cp

V ψ̄pγ
λψp

]

− φA
λ

[
Cµ

Aψ̄µγ
λγ5ψµ + Cp

Aψ̄pγ
λγ5ψp

]

− iCµ
V εijkW i

αW j
β ∂

αW k,β + i {Cµ
A terms}

− g

2
√

2
ψ̄µγ

λ(1 − γ5)ψν W−
s,λ + h.c. , (1)

where in the Cµ
V terms,

W 1
α ↔ W−
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W 2
α ↔ W+

s,α ,

W 3
α ↔ φV
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with V → A for the Cµ
A terms; εijk is the totally anti-

symmetric Levi-Civita symbol. Note that we could use
two shadow W ’s (one vector and one axial vector), but
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two shadow W ’s (one vector and one axial vector), but
appear to need only one. Further note the different signs
of the CµV and CµA Yang-Mills terms necessary for gauge
invariance, and that we have included an interaction of
the Ws with the charge changing muon current.

If the CµV and CpV have the opposite sign then there
exists an additional attractive force between the muon
and the proton through the interaction with the φV . This
additional force will create a difference between the 2S-
2P Lamb shift in muonic hydrogen and hydrogen as [10–
12]

∆E(2S-2P ) = −|C
µ
V C

p
V |

4π

m2
φ(mrα)3

2(mφ +mrα)4
(3)

where mr is the reduced mass of the (muonic) hydrogen
system. The contribution to ∆E(2S-2P ) from the axial
coupling CµA is very small.

To account for the energy difference that can be inter-
preted as a proton radius difference, there must be an
extra 310µeV in the 2S-2P Lamb shift of muonic hydro-
gen [1, 2]. The parameter CV necessary to satisfy this
constraint is plotted as the green band outlined by solid
lines in Fig. 3 where |CµV | = |CpV | = CV .

Furthermore, the introduction of new φV and φA in-
teractions with the muon will shift the muon anomalous
magnetic moment. The vector and axial vector couplings
affect the anomalous moment with opposite signs and can
be tuned to account for the known discrepancy between
theory and experiment of muonic g − 2 [12]. If CµV is set
to satisfy the proton radius problem, then the allowed
region for CµA from the muon g − 2 constraint is shown
by the green band outlined by dashed lines in Fig. 3.

We now move on to consider a constraint emphasized
by Karshenboim et al. [15], that the branching ratio of
W → µνφV plus W → µνφA must be less than 4 per-
cent (twice the error in the W width as measured by the
Tevatron). Without the inclusion of a 3-boson interac-
tion, this constraint eliminates the region of the (CµV ,mφ)
parameter space required to explain the proton radius
puzzle. This decay is calculated from the Feynman dia-
grams given in Fig. 2.
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From (1) we can derive the necessary Feynman rules
to compute this decay amplitude as

iM =
iCµ

V gW

2
√

2
εα(k)ε∗β(p3)ū(p1)

{
γβ(/p1

+ /p3
)

(p1 + p3)2
γα(1 − γ5)

− γµ(1 − γ5)

(
gµν − (p1+p2)µ(p1+p2)ν

m2
W

(p1 + p2)2 − m2
W

)

×
(
gαβ(k + p3)

ν + gβν(−p3 + p1 + p2)
α

+ gαν(−p1 − p2 − k)β
)}

ν(p2) (4)

where k is the W 4-momentum, p1 is the muon 4-
momentum, p2 is the neutrino 4-momentum, and p3 is
the φV 4-momentum. Here we have focused on the vec-
tor contribution to the W decay, but one can easily show
that the axial vector contribution is equivalent up to an
overall minus sign (which is irrelevant to the decay am-
plitude squared).

Letting the muon and neutrino mass be zero, we find
(to leading order in mφ/mW )

ΓW =
GF m3

W

[
(Cµ

V )2 + (Cµ
A)2
]

96
√

2π3

×
{

log2 m2
W

m2
φ

− 5 log
m2

W

m2
φ

+
37

3
− π2

3

}
. (5)

Keeping the muon mass would only give multiplicative
corrections to the coefficients like (1 + O(m2

µ/m2
W )).

This decay width has a strikingly different dependence
on mφ compared to [15]. The 1/m2

φ dependence found
there that came from the longitudinal component of the φ
polarization is canceled by the inclusion of the Ws prop-
agator in the second diagram of Fig. 2. Thus at lead-
ing order in mφ/mW , the mass divergence is logarithmic
and not inverse polynomial. This logarithmic dependence
pushes the constraints from W decay far away from the
desired parameter space of Cµ

V and mφ.
The contribution of Cµ

A in (5) can be obtained in terms
of Cµ

V using the constraint from (g − 2)µ [12]. The con-
straint from W decay eliminates the region of (Cµ

V ,mφ)
above the top curve, the shaded red area, in Fig. 3. The
values of Cµ

V below this area are allowed by this con-
straint.

Another constraint on Cµ
V occurs from transitions be-

tween 3d and 2p orbitals in muonic 24Mg and 28Si [13,
15, 22]. At two standard deviations, this constraint is
plotted as the shaded orange area bordered below by a
solid black line in Fig. 3 where allowed values of Cµ

V exist
on and below this line.

Note that an additional constraint due to muonium
hyperfine splitting discussed in [15] is not relevant here
since φ does not couple to the electron (or the coupling
can be kept quite small). For similar reasons, we do not
have a constraint on Cµ

A from a new parity nonconserv-
ing interaction contributing to the weak charge in 133Cs,
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FIG. 3: The parameter space necessary to satisfy experimen-
tal constraints. Solid lines refer to constraints on CµV . Dashed
lines refer to constraints on CµA. The green band, outlined by
solid lines, is the constraint on CµV necessary to solve the
proton radius problem (±2σ). The shaded red region is the
restricted region of CµV due to the constraint that the branch-
ing ratio for W goes to µνφV + µνφA must be less than 4%
under the assumption that CµA solves the muonic g − 2 prob-
lem. The shaded orange region is the restricted region on CµV
due to energy splittings in muonic Mg and Si at 2σ. The
green band, outlined by dashed lines, is the constraint on CµA
necessary to solve the muonic g− 2 problem (±2σ) under the
assumption CµV solves the proton radius problem (±2σ).

significantly opening up the allowed parameter space for
(CA,mφ).

In Fig. 3 we see that there are broad regions of param-
eter space for which we can find values of CµV , CµA, and
mφ that simultaneously solve the proton radius puzzle
and the muonic g − 2 discrepancy while satisfying the
considered experimental constraints.

For completeness, we also comment on radiative cor-
rections to Z → µ+µ− decay, namely Z → µ−µ+φV and
µ−µ+φA decay as represented in Fig. 4.
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under the assumption that Cµ

A solves the muonic g − 2 prob-
lem. The shaded orange region is the restricted region on Cµ

V

due to energy splittings in muonic Mg and Si at 2σ. The
green band, outlined by dashed lines, is the constraint on Cµ

A

necessary to solve the muonic g− 2 problem (±2σ) under the
assumption Cµ

V solves the proton radius problem (±2σ).

significantly opening up the allowed parameter space for
(CA, mφ).

In Fig. 3 we see that there are broad regions of param-
eter space for which we can find values of Cµ

V , Cµ
A, and

mφ that simultaneously solve the proton radius puzzle
and the muonic g − 2 discrepancy while satisfying the
considered experimental constraints.

For completeness, we also comment on radiative cor-
rections to Z → µ+µ− decay, namely Z → µ−µ+φV and
µ−µ+φA decay as represented in Fig. 4.
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FIG. 4. Z → µ−µ+φ
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where k is the Z 4-momentum, p1 is the muon 4-
momentum, p2 is the anti-muon 4-momentum, and p3

is the φV 4-momentum. As with the W decay, here we
only focus on the vector contribution to the Z decay, but
one can easily show that the axial vector contribution is
equivalent up to an overall minus sign (which is irrelevant
to the decay amplitude squared).

In this case, cancellations between the two diagrams
ensure the Ward identity is satisfied. Therefore, there is
no poor behavior at high energies when the φ is longi-
tudinally polarized. This is seen in the logarithmic de-
pendence of the decay width (7) on mφ (which resembles
that of the W decay (5)),
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As in the calculation of the W → µνφ decay, we have
neglected the muon mass, and we have expanded the Z’s
decay width in (7) to leading order in mφ/mZ . These
steps are motivated by the arguments given in the para-
graph following (5).

III. SCALAR THEORY

We also consider a scalar theory which is well behaved
without the addition of any shadow particles. The inter-
action Lagrangian is

Lint,S = φS

[
Cµ

S ψ̄µψµ + Cp
Sψ̄pψp

]
(8)

+ φP

[
Cµ

P ψ̄µγ
5ψµ + Cp

P ψ̄pγ
5ψp

]

where φS is the scalar field, φP is the pseudo-scalar field
where mφS

≡ mφP
, and the C’s (with corresponding su-

perscripts and subscripts) are the corresponding coupling
strengths. In this section it is understood that φ refers
to either φS or φP .

As with the vector theory, we again consider the con-
straint due to the branching ratio of W → µνφS plus
W → µνφP . The decay amplitude for both scalar and
psuedoscalar cases is given by the Feynman diagram in
Fig. 5.
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The result for the decay width is
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where, as with the vector case, we have taken the muon
and neutrino mass to be zero.

As with the vector theory, this logarithmic dependence
in (9) opens the parameter range in Cµ

S necessary to solve
the proton radius problem. This is seen in the constraint
plot Fig. 6.

IV. CONCLUSION

We have considered some of the constraints faced by
proton radius puzzle explanations that hypothesize a new
muon-specific force.

In particular, we have considered some of the necessary
features required for a vector mediator to be embedded
into a larger renormalizable model. Without the em-
bedding, amplitudes grow quickly with energy, and the
energy in W decay is enough to cause trouble. The ra-
diative corrections to W → µν would be larger than the
uncertainties in the measured and well calculated W de-
cay rate, using couplings that could explain the proton
radius puzzle. However, with a theory which also con-
tains Yang-Mills couplings, the unphysical energy depen-
dence is ameliorated and the W width constraint causes
no problem for BSM models solving the proton radius
puzzle.

The tightest remaining constraint follows from some
measured energy splittings in muonic Mg and Si, which
are well calculated in the standard model, and new
physics cannot cause a deviation larger than the exper-
imental uncertainty. Though this constraint is tight, it
does eliminate the muon-specific interaction at the level
required for the proton radius problem.

Thus, it is fair to say that a theory involving a new
vector (and axial vector) boson, φ, along with vector
(and axial vector) couplings to the muon and proton,
as described by the Lagrangian in Eq. (1), gives a viable
representation of the results for some to-be-determined
complete solution to the proton radius puzzle. Such a
theory necessitates the existence of an additional W -like
boson, the shadow W denoted Ws, which fixes the other-
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FIG. 6. The parameter space necessary to satisfy experimen-
tal constraints on the scalar coupling Cµ

S . The green band,
outlined by solid lines, is the constraint on Cµ

S necessary to
solve the proton radius problem (±2σ). The shaded red re-
gion is the restricted region on Cµ

S due to the requirement
that the branching ratio for W goes to µνφS +µνφP must be
less than 4% under the assumption that Cµ

P solves the muonic
g − 2 problem. The shaded orange region is the restricted re-
gion on Cµ

S due to energy splittings in muonic Mg and Si at
2σ. The dashed green line is the constraint on Cµ

P necessary
to solve both the proton radius and muonic g−2 discrepancies
(for clarity, only the central value is shown).

wise poor high energy behavior in radiative corrections to
W → µν decay first noticed by Karshenboim et al. [15].

The arguable success of the vector and axial vector
theory, or the scalar and pseudoscalar analog, motivates
finding a suitable complete embedding into the Standard
Model. Such an embedding must be renormablizable.
The addition of a shadow W and corresponding triple
boson interactions is one step in this direction (as pointed
out by Llewellyn Smith [21]).

Finding such an embedding may necessitate new in-
teractions which may lead to additional constraints. For
example, one must consider the process by which the
new bosons acquire their mass. We also expect loop cor-
rections to the self energy of the W . Corrections with
loops of new particles correlate with contributions to
the Peskin-Takeuchi parameters [23–25]. Though these
parameters are only defined under certain conditions,
e.g., for BSM theories in which new particles are heavy,
one can find analogous parameters for theories in which,
as in our case, the new boson is light. Contributions to
these parameters will be calculated and compared against
experimental constraints.

It is also relevant to note that the addition of a new
muonic interaction necessitates new radiative corrections
beyond just W decay. For example, one may also con-
sider muon decay, pion decay, and the like. Such pro-
cesses are at a significantly lighter mass scale compared
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outlined by solid lines, is the constraint on CµS necessary to
solve the proton radius problem (±2σ). The shaded red re-
gion is the restricted region on CµS due to the requirement
that the branching ratio for W goes to µνφS +µνφP must be
less than 4% under the assumption that CµP solves the muonic
g− 2 problem. The shaded orange region is the restricted re-
gion on CµS due to energy splittings in muonic Mg and Si at
2σ. The dashed green line is the constraint on CµP necessary
to solve both the proton radius and muonic g−2 discrepancies
(for clarity, only the central value is shown).

wise poor high energy behavior in radiative corrections to
W → µν decay first noticed by Karshenboim et al. [15].

The arguable success of the vector and axial vector
theory, or the scalar and pseudoscalar analog, motivates
finding a suitable complete embedding into the Standard
Model. Such an embedding must be renormablizable.
The addition of a shadow W and corresponding triple
boson interactions is one step in this direction (as pointed
out by Llewellyn Smith [21]).

Finding such an embedding may necessitate new in-
teractions which may lead to additional constraints. For
example, one must consider the process by which the
new bosons acquire their mass. We also expect loop cor-
rections to the self energy of the W . Corrections with
loops of new particles correlate with contributions to
the Peskin-Takeuchi parameters [23–25]. Though these
parameters are only defined under certain conditions,
e.g., for BSM theories in which new particles are heavy,
one can find analogous parameters for theories in which,
as in our case, the new boson is light. Contributions to
these parameters will be calculated and compared against
experimental constraints.

It is also relevant to note that the addition of a new
muonic interaction necessitates new radiative corrections
beyond just W decay. For example, one may also con-
sider muon decay, pion decay, and the like. Such pro-
cesses are at a significantly lighter mass scale compared
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to that of W decay and thus are less likely to cause trou-
ble. We plan to asses if this is true in the near future.
Furthermore, changes to the rate of muon pair produc-
tion from proton collider experiments may provide fur-
ther constraints on the theory.

These are just some examples of how a vector boson
theory may be more restricted than Fig. 3 appears. How-
ever, successes so far point to the still possible viability
of these theories as solutions to the proton radius (and
muonic g − 2) puzzle. Thus, continuation of research
down this track is well motivated.

Acknowledgments

We thank Josh Erlich, Henry Lamm, Marc Sher,
and Marc Vanderhaeghen for helpful conversations. We
thank the National Science Foundation for support under
Grant PHY-1205905, and MF thanks the U.S. Depart-
ment of Energy for support under contract DE-AC05-
06OR23177, under which Jefferson Science Associates
manages Jefferson Lab.

[1] R. Pohl, A. Antognini, F. Nez, F. D. Amaro, F. Biraben,
et al., Nature 466, 213 (2010).

[2] A. Antognini, F. Nez, K. Schuhmann, F. D. Amaro,
F. Biraben, et al., Science 339, 417 (2013).

[3] P. J. Mohr, B. N. Taylor, and D. B. Newell,
Rev.Mod.Phys. 84, 1527 (2012), 1203.5425.

[4] R. Pohl, R. Gilman, G. A. Miller, and K. Pachucki,
Ann.Rev.Nucl.Part.Sci. 63, 175 (2013), 1301.0905.

[5] C. E. Carlson, Prog.Part.Nucl.Phys. 82, 59 (2015),
1502.05314.

[6] K. Hagiwara, R. Liao, A. D. Martin, D. Nomura, and
T. Teubner, J.Phys. G38, 085003 (2011), 1105.3149.

[7] F. Jegerlehner and R. Szafron, Eur.Phys.J. C71, 1632
(2011), 1101.2872.

[8] M. Davier, A. Hoecker, B. Malaescu, and Z. Zhang,
Eur.Phys.J. C71, 1515 (2011), 1010.4180.

[9] T. Aoyama, M. Hayakawa, T. Kinoshita, and M. Nio,
Phys.Rev.Lett. 109, 111808 (2012), 1205.5370.

[10] D. Tucker-Smith and I. Yavin, Phys.Rev. D83, 101702
(2011), 1011.4922.

[11] B. Batell, D. McKeen, and M. Pospelov, Phys.Rev.Lett.
107, 011803 (2011), 1103.0721.

[12] C. E. Carlson and B. C. Rislow, Phys.Rev. D86, 035013
(2012), 1206.3587.

[13] V. Barger, C.-W. Chiang, W.-Y. Keung, and D. Marfatia,
Phys.Rev.Lett. 106, 153001 (2011), 1011.3519.

[14] V. Barger, C.-W. Chiang, W.-Y. Keung, and D. Marfatia,
Phys.Rev.Lett. 108, 081802 (2012).

[15] S. G. Karshenboim, D. McKeen, and M. Pospelov,
Phys.Rev. D90, 073004 (2014), 1401.6154.

[16] C. E. Carlson and B. C. Rislow, Phys.Rev. D89, 035003
(2014), 1310.2786.

[17] J. D. Bjorken and S. D. Drell, Relativistic Quantum
Fields (McGraw-Hill, 1965).

[18] M. E. Peskin and D. V. Schroeder, An Introduction to
Quantum Field Theory (Addison-Wesley, 1995).

[19] M. Gell-Mann, M. Goldberger, N. Kroll, and F. Low,
Phys.Rev. 179, 1518 (1969).

[20] S. Weinberg, Phys.Rev.Lett. 27, 1688 (1971).
[21] C. H. Llewellyn Smith, Phys.Lett. B46, 233 (1973).
[22] I. Beltrami, B. Aas, W. Beer, G. de Chambrier,

P. Goudsmit, et al., Nucl.Phys. A451, 679 (1986).
[23] M. E. Peskin and T. Takeuchi, Phys.Rev.Lett. 65, 964

(1990).
[24] M. E. Peskin and T. Takeuchi, Phys.Rev. D46, 381

(1992).
[25] J. Hewett, TASI lectures, 1997, hep-ph/9810316.


