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Instanton-dyons, also known as instanton-monopoles or instanton-quarks, are topological con-
stituents of the instantons at nonzero temperature and holonomy. We perform numerical simulations
of the ensemble of interacting dyons for the SU(2) pure gauge theory, using standard Metropolis
Monte Carlo and integration over parameter methods. We calculate the free energy as a function of
the holonomy (logarithm of the Polyakov line) , the dyon densities, and the Debye mass, and find
its minima as a function of those parameters. Unlike previous numerical study of such ensemble,
we show that the back reaction on the holonomy potential does generate confinement, provided the
density is sufficiently high (or the temperature sufficiently low). We then report various properties
of the self-consistent ensembles as a function of temperature.

I. INTRODUCTION

QCD description of strongly interacting matter at fi-
nite temperature T has originated from 1970’s. At first,
its high temperature phase – known as Quark-Gluon
Plasma, QGP – has been studied using weak coupling
methods, see e.g. reviews [1, 2]. The interest then
switched to non-perturbative phenomena, related with
the topological solitons of various dimensionality and two
basic non-perturbative phenomena: confinement and chi-
ral symmetry breaking. Instantons [3], the Euclidean 4-
dimensional topological solitons, have at high T the sizes
ρ ∼ 1/T and appear with the probability

ninstantons
T 4

∼ exp[−8π2/g2(T )] ∼
(

Λ

T

)b
, (1)

where the power is the one loop beta function coefficient,
b = 11Nc/3 for SU(Nc) gauge theory. So, at high T the
density is small and the topological solitons are unimpor-
tant. Conversely, as T decreases, the instanton density
rapidly grows, till they become an important ingredient
of the gauge fields in the QCD vacuum. Index theorems
ensure existence of the fermionic zero modes of topolog-
ical solitons. Those generate the so called ’t Hooft effec-
tive interaction of 2Nf fermions, which explicitly violates
the UA(1) chiral symmetry. Furthermore, collectivization
of the zero modes create the so called Zero Mode Zone
of quasi-zero eigenstates, which break spontaneously the
SU(Nf ) chiral symmetry. Although those states includes
only tiny subset of all fermionic states in lattice numer-
ical simulations, they are the key elements of the chiral
symmetry breaking and the hadronic spectroscopy. The
so called Interacting Instanton Liquid Model (IILM) has
been developed, including ’t Hooft interaction to all or-
ders, for a review see [4].

The presence of the topological solitons in the vac-
uum has been related with the issue of confinement. In
particular, in [5, 6] it has been noted that superposition
of regular gauge instantons, or merons, can disorder the
Wilson loop to an area law. These effects are due to
accumulated contributions of distant solitons, which are
assumed to have long-range (1/r) tails of the gauge fields.

However, already using more appropriate configurations
of singular gauge instantons, with fields decaying as 1/r3,
one finds only finite and non-confining heavy-quark po-
tential [7]. Similar confining effect can be generated by
the instanton-dyons [8]: in this case most components of
the gauge field obtain a mass due to nonzero holonomy,
but the diagonal (Abelian) gluons do not and remain
massless. So again, there are 1/r tails of the solitons,
also disordering the Wilson loop.

Some IR effects can be argued to be artifacts since
all physical correlators in the vacuum are exponentially
decaying with distance. In particular, the holonomy VEV
has a certain effective potential, and its second derivative
at the minimum provides a nonzero Debye screening mass
MD. If included consistently, it leads to exponentially
decaying tails and eliminates infrared artifacts. However,
Wilson lines can also be disordered by magnetic (center)
vortices [9] not related to the IR effects: in this paper we
will not discuss this aspect of confinement.

In this paper we focus instead on derivation of the (lo-
cal and average) effective holonomy potential. By “con-
finement” we will below imply its modification with tem-
perature, such that at T < Tc the minimum corresponds
to the “confining” value of the holonomy. More specif-
ically, the holonomy potential contains two terms. One
is the well known Gross-Pisarski-Yaffe one-loop effective
potential, coming from QGP effects on holonomy. The
second term – the main object approach discussed below
– is due to back reaction of the instanton-dyons. As we
show below, together they produce a holonomy potential
with minimum shifting with the dyon density, eventually
to its confining value. The second derivative – the Debye
mass – is always nonzero. This means there is always
exponential screening, and thus the long-range problem
discussed in the papers mentioned is in principle solved.
For the same reason long-distance effects are relatively
small in the simulations.

As the temperature decreases from the high-T regime,
another important phenomenon is the appearance of non-
trivial expectation value of the Polyakov line. For the
simplest SU(2) gauge theory we will be discussing in this
work, it is related to the so called holonomy parameter by
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〈P 〉 = cos(πν) (for explicit notations see Appendix A).
While at high T it vanishes ν → 0 and the Polyakov line
vacuum expectation value is 〈P 〉 = 1, at temperatures
at and below the critical value Tc it reaches the so called
“confining value” ν = 1/2 at which the Polyakov line van-
ishes itself. This leads to switching out quark and gluon
degrees of freedom, and transition from QGP to hadronic
matter. Study of the instantons at nonzero holonomy
has lead Lee,Lu,van Baal and Kraan [10, 11] to the so
called KvBLL caloron solution, which revealed that at
ν 6= 0 the instantons get split into Nc (number of col-
ors) (anti)dyons, (anti)self-dual 3d solitons with nonzero
(Euclidean) electric and magnetic charges. (Details are
in Appendix B). Because of the long-range nature of
forces between these objects, we will thus refer to the
instanton-dyon ensemble as the “dyonic plasma”.

Unlike instantons, protected by topology, the
instanton-dyons interact directly with the holonomy. Di-
akonov [12] suggested that back reaction of the dyon free
energy on holonomy is responsible for confinement phase
transition but was unable to show it.

Poppitz, Schaefer and Unsal [13] had shown that
instanon-dyon confinement does occur in a very specific
“controlled setting”, a supersymmetric theory compact-
ified on R3 ⊗ S1 with a small spatial circle and periodic
fermions. The smallness of the circle, like high T , makes
the coupling weak. The periodic fermions preserve su-
persymmetry and cancel the Gross-Pisarski-Yaffe (GPY)
holonomy potential VGPY (ν), which allows confinement
to be induced even by an exponentially small density of
the dyons. These authors have been able to trace the
crucial effect to the repulsive dyon-antidyon interaction
inside the dyon-antidyon pairs (which they call “bions”).

Simple phenomenological model showing that repul-
sive interaction between them, modeled by an excluded
volume, has been proposed for QCD-like theories by
Shuryak and Sulejmanpasic [14], which reached quali-
tative description of the deconfinement phase transition
and other properties of the thermal SU(2) pure gauge
system above Tc, in qualitative agreement with available
lattice data. We will discuss similar model in section II,
before we embark on numerical simulations.

Although the interaction between the instanton-dyons
have been studied for a long time, the leading-order ef-
fect – classical dyon-antidyon interaction has been miss-
ing. The corresponding studies, deriving the so called
“streamline” set of configurations via the gradient flow
method, has been done in our previous work [15]. While
it turns out to be weak in relative terms δS � S but, it is
still parametrically enhanced δS ∼ 1/g2 because of being
classical. What matters for the present work is that in-
teraction δS = O(1) is large enough to induce significant
correlations in the ensemble.

Liu, Shuryak and Zahed [16] have recently shown that
one can incorporate this classical interaction by the mean
field techniques, provided the ensemble is dense enough
to generate sufficient screening. In terms of the temper-
ature, their treatment applies only for some interval of

temperatures T < Tc.
The goal of our present work is to study the instanton-

dyon ensemble by the direct Monte-Carlo simulation,
without the mean field or any other approximations. As
we will show, this will allow us to cover any density
regimes, from dilute to dense, and follow the transforma-
tion of the holonomy potential in details. We thus can
discuss both sides of the deconfinement phase transition.
To complement [16], we will mainly focus on tempera-
tures T ≥ Tc.

Technically, the details of the setting to a large extent
follow the first Monte-Carlo simulations of the instanton-
dyon plasma by Faccioli and Shuryak [17]. One major
difference is the inclusion of the classical “streamline”
interaction which were not known at the time of that
work. The other is that that paper focused on the role
of fermions and chiral symmetry breaking rather than
confinement. (We expect to report on our next paper,
with fermions, soon.)

The paper is structured as follows: standard informa-
tion about our notations, the holonomy potential and
the instanton-dyons are delegated to sections of the Ap-
pendix. We start in section II by introducing a simple
model which illustrates the main physics under discus-
sion. Then in section III we explain the setting of the
simulations, the interaction between the instanton-dyons
and the moduli spaces which provides the measure in
the partition function. In section IV we describe how
we make the actual simulations and evaluate the free en-
ergy. The back reaction of the ensemble on the holon-
omy potential is described in section V, which is followed
by “self-consistency” study of the parameters in the sec-
tion VI. The physical results are summarized in the sec-
tion VII: those include the holonomy potential and the
screening masses, as well as the densities of all types of
dyons.

II. AN EXCLUDED VOLUME MODEL

To understand the main physics involved and the qual-
itative behavior of the ensemble, including the confine-
ment phase transition, we start by a discussion of a sim-
plified model in which the only interaction is the repul-
sive core, making the volume occupied by each particle
unavailable to others. It is similar in spirit to that pro-
posed by Shuryak and Sulejmanpasic [14], but is some-
what closer technically to the simulations to follow.

We work with dimensionless quantities, defining the 3-
volume as Ṽ3 = T 3V3, the density ni = Ni

Ṽ3
, and the free

energy density as F
TṼ3

= f . More information on units

and notations can be found in Appendix.
The effect of the excluded volume is accounted for in

a very schematic way, by cutting off the partition func-
tion when the amount of available volume vanishes. The
volume of the M and L dyons scale by 1/ν3 and 1/ν̄3

respectively, with ν̄ = 1 − ν. We thus define the parti-
tion function as a sum limited from above by some “close
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packing” condition

Z =

Ṽ3/(Ṽ0)<M/ν3+L/ν̄3∑

M,L

exp

(
−Ṽ3

4π2

3
ν2ν̄2

)
(2)

×
[

1

M !L!
(Ṽ3dν)M (Ṽ3dν̄)L

]2

dν = Λν8ν/3S2 exp(−Sν) (3)

S =
8π2

g2
. (4)

Without the upper limit, the free energy density is sim-

ply log(Z)/Ṽ3 → − 4π2

3 ν2ν̄2+2(dν+dν̄), the perturbative
Gross-Pisarski-Yaffe (GPY) potential plus the contribu-
tion of the noninteracting dyons. In this non-interacting
limit, the parameter dν – the semiclassical dyon ampli-
tude – coincides with their density. The parameter S is
in fact the classical action of the caloron, or L+M sys-
tem. The square comes from assuming the same amount
of dyons and antidyons.

In the confining phase, ν = ν̄ = 1/2, all dyons have
the same sizes, and it is easy to introduce the excluded
volume, for N dyons via

Ṽ N3 → Ṽ3

(
Ṽ3 − Vexcluded)...(Ṽ3 − (N − 1)Vexcluded

)
.

However, in general L,M dyons have different sizes, the
analogous expression becomes cumbersome. Experiment-
ing with those, we observe that similar results are ob-
tained by simply cutting out the sum at “closed packing”,
when there is no volume left, Ṽ3 < Ṽ0(M/ν3 + L/ν̄3).

where Ṽ0 is the excluded volume normalized for a dyon
at ν = 1.

Using Sterlings formula n! ≈
√

2πn
(
n
e

)n
for a large

volume, we rewrite the sum as

Z =

Ṽ3/(Ṽ0)<M/ν3+L/ν̄3∑

M,L

exp

[
− Ṽ3

(
4π2

3
ν2ν̄2

−2nM ln

[
dνe

nM

]
− 2nL ln

[
dν̄e

nL

])]
. (5)

The free energy given by F (ν) = −T logZ depends on
ν, located in the cutoff, in the dyon parameter dν , and
in the GPY potential VGPY . If dominant, the GPY term
would select trivial holonomy ν = 0 or ν̄ = 0, so to push
for a nontrivial ν ∼ 1/2 needed for confinement, the dyon
densities should be large enough.

The expression (5) is put into Mathematica and the
maximum is found, for large enough volume, say V =
900. One finds a sharp peak in N distribution, defining
the density. Finding the maximum as we vary ν, we get
f(ν) = −logZ/Ṽ3 plotted in Fig. 1 . At smaller g (larger
S and higher T ) the dyons are more suppressed and the
free energy density f has a minimum at smaller ν. For
increasing coupling g (decreasing S and T ), the minimum
shifts from zero, eventually to its confining value ν = 1/2.
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3 ⌫2⌫̄2+2(d⌫+d⌫̄), the perturbative
Gross-Pisarski-Ya↵e (GPY) potential plus the contribu-
tion of the noninteracting dyons. In this non-interacting
limit, the parameter d⌫ – the semiclassical dyon ampli-
tude – coincides with their density. The parameter S is
in fact the classical action of the caloron, or L + M sys-
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The free energy given by F (⌫) = �T logZ depends on
⌫, located in the cuto↵, in the dyon parameter d⌫ , and
in the GPY potential VGPY . If dominant, the GPY term
would select trivial holonomy ⌫ = 0 or ⌫̄ = 0, so to push
for a nontrivial ⌫ ⇠ 1/2 needed for confinement, the dyon
densities should be large enough.

The expression (5) is put into Mathematica and the
maximum is found, for large enough volume, say V =
900. One finds a sharp peak in N distribution, defining
the density. Finding the maximum as we vary ⌫, we get
f(⌫) = �logZ/Ṽ3 plotted in Fig. 1 . At smaller g (larger
S and higher T ) the dyons are more suppressed and the
free energy density f has a minimum at smaller ⌫. For
increasing coupling g (decreasing S and T ), the minimum
shifts from zero, eventually to its confining value ⌫ = 1/2.

0.25 0.30 0.35 0.40 0.45 0.50

-500

-400

-300

-200

-100

0

100

⌫

f

0.25 0.30 0.35 0.40 0.45 0.50
-200

-150

-100

-50

0

50

100

150

⌫

f

FIG. 1: (Color online). Free energy density f as function of

holonomy ⌫, for ⇤ = 0.5 and Ṽ0 = 0.3, for upper and Ṽ0 = 0.6
for the lower plot. Three curves correspond to g = 4, 3.5, 3,
bottom to top, in the upper figure and g = 4, 3.5, 3.25 in the
bottom one. It is seen how the maximum as a function of g
goes further and further towards the confining value of 1/2 as
g goes up, and S and T go down.

For twice larger excluded volume the density may get too
small to have confinement with physically meaningful –
negative – f .

A more familiar plot is obtained if, instead of plot-
ting ⌫ one plots the average Polyakov loop < P >=
cos(⇡⌫), versus S, see Fig. 2. The parameter S grows
monotonously with T and thus can be mapped to it (see
details in A). So, in this model the Polyakov loop con-
tinuously goes to 0 – the confinement regime – at some
critical Sc, slightly smaller than 6.

In Fig. 3 we show the densities of di↵erent type (M
and L) dyons, di↵erent at above the deconfinement tran-
sition. Direct evidences for nM > nL in the deconfined
phase have been found on the lattice. We will see sim-
ilar plots from of numerical simulations below: those of
course would include the dyon interactions.

III. THE INSTANTON-DYON INTERACTIONS

The leading order classical dyon-antidyon interaction,
recently studied in our previous paper [15] are the central
new element of this paper. We use a slightly di↵erent

FIG. 1: (Color online). Free energy density f as function of

holonomy ν, for Λ = 0.5 and Ṽ0 = 0.3, for upper and Ṽ0 = 0.6
for the lower plot. Three curves correspond to g = 4, 3.5, 3,
bottom to top, in the upper figure and g = 4, 3.5, 3.25 in the
bottom one. It is seen how the maximum as a function of g
goes further and further towards the confining value of 1/2 as
g goes up, and S and T go down.

For twice larger excluded volume the density may get too
small to have confinement with physically meaningful –
negative – f .

A more familiar plot is obtained if, instead of plot-
ting ν one plots the average Polyakov loop < P >=
cos(πν), versus S, see Fig. 2. The parameter S grows
monotonously with T and thus can be mapped to it (see
details in A). So, in this model the Polyakov loop con-
tinuously goes to 0 – the confinement regime – at some
critical Sc, slightly smaller than 6.

In Fig. 3 we show the densities of different type (M
and L) dyons, different at above the deconfinement tran-
sition. Direct evidences for nM > nL in the deconfined
phase have been found on the lattice. We will see sim-
ilar plots from of numerical simulations below: those of
course would include the dyon interactions.

III. THE INSTANTON-DYON INTERACTIONS

The leading order classical dyon-antidyon interaction,
recently studied in our previous paper [15] are the central
new element of this paper. We use a slightly different
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FIG. 2: (Color online). Polyakov loop P as a function of

action parameter S for ⇤ = 0.5 and Ṽ0 = 0.3.
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FIG. 3: (Color online). Densities ni of i = M or i = L dyons
as a function of the action parameter S, for ⇤ = 0.5 and
Ṽ0 = 0.3. Note that the two densities are di↵erent at S > 6.

parameterization of it

�SDD̄ = �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)

x = 2⇡⌫rT, (6)

for distances larger than x > 4, the repulsive core size.
At distance x = 4 the streamline terminates a metastable
configuration, followed by annihilation of the magnetic
charges.

If dyons are put at smaller distances, they repel till
distance 4, before annihilation. Those configurations
were not yet studied in detail, and thus our potential
for x < 4 constitutes a reasonable guess. Below distance
x0 = r0T (2⇡⌫) the potential is described by

�SDD̄ =
⌫V0

1 + exp [�(x � x0)]
, (7)

referred to as a “core”. Its scale by ⌫ is due to general
scaling behavior of the dyon sizes.

Let us also remind the long-distance behavior of the
potentials. Selfdual soliton interacting with antiselfdual
one have abelian electric and magnetic forces canceling
each other. Another long-range interaction comes via A4

and the non-linearity of the field strength tensor. Its
coe�cient is fixed in another channel, L+M (calorons)
where both electric and magnetic Abelian e↵ects are at-
tractive, and yet the total interaction is zero due to PBS
protection

VLM = (e1e2 + m1m2 � 2h1h2)
4⇡

g2

1

r
= 0. (8)

Returning to ML̄, LM̄ channel, one expect the non-
Abelian term simply to change sign. This conclusion that
has been checked by us numerically, see latest version of
[15].

The volume element of the metric in the space of collec-
tive variables is used in the form of the so called Diakonov
determinant

p
g = detG (9)

G = �mn�ij(4⇡⌫m � 2
X

k 6=i

1

T |xi,m � xk,m| (10)

+2
X

k

1

T |xi,m � xk,p 6=m| )

+2�mn
1

T |xi,m � xj,n| � 2�m 6=n
1

T |xi,m � xj,n| ,

where xi,m denote the position of the i’th dyon of type m.
This form is an interpolation of the exact metric between
a M and L dyon, true at any distance, with the metric of
the two dyons of same type at large distances. We intro-

duce a cuto↵ on the separation via r !
p

r2 + cutoff2,
such that for one pair of dyons of same type, the diagonal
goes to 0 for ⌫ = 0.5, instead of minus infinity. We use
the same metric for the antidyons also.

When the density of M and L dyons are di↵erent,
the total electric charge is nonzero. We therefore reg-
ularize all the Coulombic terms by certain screening
r ! reMDrT , referred to as the Debye mass. With this
the interaction is given by

�SDD̄ =
8⇡2⌫

g2

✓
(e1e2 � 2h1h2)

1

x
+ m1m2

1

x

◆
e�MDrT

x = 2⇡⌫rT, (11)

for r larger than the core of size x0/(2⇡⌫T ) for all com-
binations except between dyons and their antidyon. For
the dyon antidyon potential we have

�SDD̄ = �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)e�MDrT

x = 2⇡⌫rT. (12)

We include the core for both dyon antidyon interactions,
but also for dyon dyon interactions due to the lack of a
repulsion, which otherwise destroys the simulation. We
hope that such an interaction can be found due to cor-
rections to the metric between dyons of the same type.

�SDD̄ =
⌫V0

1 + exp [�T (x � x0)]
(13)

x = 2⇡⌫rT.
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goes to 0 for ⌫ = 0.5, instead of minus infinity. We use
the same metric for the antidyons also.

When the density of M and L dyons are di↵erent,
the total electric charge is nonzero. We therefore reg-
ularize all the Coulombic terms by certain screening
r ! reMDrT , referred to as the Debye mass. With this
the interaction is given by

�SDD̄ =
8⇡2⌫

g2

✓
(e1e2 � 2h1h2)

1

x
+ m1m2

1

x

◆
e�MDrT

x = 2⇡⌫rT, (11)

for r larger than the core of size x0/(2⇡⌫T ) for all com-
binations except between dyons and their antidyon. For
the dyon antidyon potential we have

�SDD̄ = �2
8⇡2⌫

g2
(
1

x
� 1.632e�0.704x)e�MDrT

x = 2⇡⌫rT. (12)

We include the core for both dyon antidyon interactions,
but also for dyon dyon interactions due to the lack of a
repulsion, which otherwise destroys the simulation. We
hope that such an interaction can be found due to cor-
rections to the metric between dyons of the same type.

�SDD̄ =
⌫V0

1 + exp [�T (x � x0)]
(13)

x = 2⇡⌫rT.

FIG. 3: (Color online). Densities ni of i = M or i = L dyons
as a function of the action parameter S, for Λ = 0.5 and
Ṽ0 = 0.3. Note that the two densities are different at S > 6.

parameterization of it

∆SDD̄ = −2
8π2ν

g2
(
1

x
− 1.632e−0.704x)

x = 2πνrT, (6)

for distances larger than x > 4, the repulsive core size.
At distance x = 4 the streamline terminates a metastable
configuration, followed by annihilation of the magnetic
charges.

If dyons are put at smaller distances, they repel till
distance 4, before annihilation. Those configurations
were not yet studied in detail, and thus our potential
for x < 4 constitutes a reasonable guess. Below distance
x0 = r0T (2πν) the potential is described by

∆SDD̄ =
νV0

1 + exp [σ(x− x0)]
, (7)

referred to as a “core”. Its scale by ν is due to general
scaling behavior of the dyon sizes.

Let us also remind the long-distance behavior of the
potentials. Selfdual soliton interacting with antiselfdual
one have abelian electric and magnetic forces canceling
each other. Another long-range interaction comes via A4

and the non-linearity of the field strength tensor. Its
coefficient is fixed in another channel, L+M (calorons)
where both electric and magnetic Abelian effects are at-
tractive, and yet the total interaction is zero due to PBS
protection

VLM = (e1e2 +m1m2 − 2h1h2)
4π

g2

1

r
= 0. (8)

Returning to ML̄,LM̄ channel, one expect the non-
Abelian term simply to change sign. This conclusion that
has been checked by us numerically, see latest version of
[15].

The volume element of the metric in the space of collec-
tive variables is used in the form of the so called Diakonov
determinant

√
g = detG (9)

G = δmnδij(4πνm − 2
∑

k 6=i

1

T |xi,m − xk,m|
(10)

+2
∑

k

1

T |xi,m − xk,p 6=m|
)

+2δmn
1

T |xi,m − xj,n|
− 2δm6=n

1

T |xi,m − xj,n|
,

where xi,m denote the position of the i’th dyon of type m.
This form is an interpolation of the exact metric between
a M and L dyon, true at any distance, with the metric of
the two dyons of same type at large distances. We intro-

duce a cutoff on the separation via r →
√
r2 + cutoff2,

such that for one pair of dyons of same type, the diagonal
goes to 0 for ν = 0.5, instead of minus infinity. We use
the same metric for the antidyons also.

When the density of M and L dyons are different,
the total electric charge is nonzero. We therefore reg-
ularize all the Coulombic terms by certain screening
r → reMDrT , referred to as the Debye mass. With this
the interaction is given by

∆SDD̄ =
8π2ν

g2

(
(e1e2 − 2h1h2)

1

x
+m1m2

1

x

)
e−MDrT

x = 2πνrT, (11)

for r larger than the core of size x0/(2πνT ) for all com-
binations except between dyons and their antidyon. For
the dyon antidyon potential we have

∆SDD̄ = −2
8π2ν

g2
(
1

x
− 1.632e−0.704x)e−MDrT

x = 2πνrT. (12)

We include the core for both dyon antidyon interactions,
but also for dyon dyon interactions due to the lack of a
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repulsion, which otherwise destroys the simulation. We
hope that such an interaction can be found due to cor-
rections to the metric between dyons of the same type.

∆SDD̄ =
νV0

1 + exp [σT (x− x0)]
(13)

x = 2πνrT.

IV. THE SETUP

Like in [17], instead of the usual toroidal box with peri-
odic boundary conditions in all coordinates, our simula-
tions have been done on a S3 sphere (in four dimensions),
to simplify treatment of the long range Coulombic forces.
In this pilot study we fix the total number of dyons to
64. We do not use supercomputers or clusters, relying
instead on multiple cores of standard GPU’s of one stan-
dard computer.

The radius of the sphere together with the ratio of M
dyons to L dyons have been used to change their density.

Iteration of the system is defined as a loop in which
each dyon has had its position changed and the new
action has then been accepted with the probability of
exp(−∆S) via the Metropolis algorithm. The typical
number of iterations, for equilibration is 400 and produc-
tive runs after equilibration are typically 1600 iterations.

In order to get the free energy we also use a standard
method. One can differentiate with respect to an aux-
iliary parameter λ introduced in front of the action and
get

e−F (λ)/T =

∫
Dx exp(−λS(x)) (14)

∂F

∂λ
= T 〈S〉. (15)

Since the free energy at λ = 0 is known analytically, one
can integrate up to get the free energy at λ = 1. When
we do this we of course need to be careful about regions
with a quick change in the action.

For the calculation of detG it has been observed by
Bruckmann et al [18] that it only make sense if all eigen-
values are positive. It was observed [18] that, for ran-
domly placed dyons this is typically not the case, unless
density is very low. In [16] this issue has been discussed
further, with a conclusion that the Diakonov determinant
can remain positive definite at higher densities needed,
but only provided certain correlations in the dyon loca-
tions are enforced. We have therefore used the House-
holder QR algorithm together with tri-diagolization of
the matrix G [19] to find the eigenvalues. We also rede-
fine the potential as follows:

If all eigenvalues are positive

VD = − log[Det(G)] : VD < Vmax (16)

VD = Vmax : VD > Vmax (17)

and for one or more negative eigenvalues

VD = Vmax. (18)
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Since the free energy at � = 0 is known analytically, one
can integrate up to get the free energy at � = 1. When
we do this we of course need to be careful about regions
with a quick change in the action.

For the calculation of det G it has been observed by
Bruckmann et al [18] that it only make sense if all eigen-
values are positive. It was observed [18] that, for ran-
domly placed dyons this is typically not the case, unless
density is very low. In [16] this issue has been discussed
further, with a conclusion that the Diakonov determinant
can remain positive definite at higher densities needed,
but only provided certain correlations in the dyon loca-
tions are enforced. We have therefore used the House-
holder QR algorithm together with tri-diagolization of
the matrix G [19] to find the eigenvalues. We also rede-
fine the potential as follows:

If all eigenvalues are positive

VD = � log[Det(G)] : VD < Vmax (16)

VD = Vmax : VD > Vmax (17)

and for one or more negative eigenvalues

VD = Vmax. (18)

The excluded volume from the regions of negative eigen-
values are there, yet at the same time we do not create
a region where the configuration can be trapped inside
the region of negative eigenvalues. Excluded volume in-
duces strong variation of the free energy at small �: so
we found it necessary to integrate the free energy up to
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FIG. 4: (Color online). Free Energy density f as a function of
density n for NTotal = 64 (sphere) and NTotal = 128 (square)
at ⌫ = 0.5 and NM = NL.

� = 0.1 finely with 10 points. From � = 0.1 to � = 1 we
use 9 points. Vmax = 100 was used.

In the simulation, all interactions are assumed to have
Yukawa-like large distance behavior with certain Debye
screening mass MD. Since our “box size” can be defined
as the distance between poles of our sphere, ⇡ ⇤ r. In the
smallest box we have a box size of about 4 units. The
smallest Debye mass employed is, in the same units, 2.
Thus the exponential tails are e�MDr = e�8, and all IR
artifacts are well suppressed.

This was tested on a few configurations as shown in
Fig. 4, since it is not possible to do it for all configura-
tions due to the computational power needed. We find
that the configurations do indeed give the same results
for double the volume in the area of interest, and only
at densities higher than explored in this paper do we see
a di↵erence. The di↵erence at higher densities is due
to the sharpened behavior of < S(�) >, and should be
fixed in case one want to do larger volumes, by increasing
the density of points in the integration to obtain the free
energy F.

V. THE DYON BACK REACTION:
HOLONOMY POTENTIAL

Lattice gauge simulations had shown how the peak of
the holonomy distribution shifts to its confining value at
T < Tc. The corresponding e↵ective potential V (⌫, T )
has been numerically studies and parameterized, used in
various models such as the so called Polyakov-Nambu-
Jona-Lasinio model (PNJL).

Now our task is to derive this potential, stemming from
the back reaction of the instanton-dyons. We add the
perturbative GPY potential VGPY eq. (A2) to the dyon
free energy obtained from our simulations and determine
the total free energy of the system (obviously, assuming
that there are no other relevant non-perturbative contri-
butions). The dyon-induced partition function is further

FIG. 4: (Color online). Free Energy density f as a function of
density n for NTotal = 64 (sphere) and NTotal = 128 (square)
at ν = 0.5, MD = 2, S = 6 and n = nM = nL. Volume effects
are seen to not be important in the region of interest around
n = 0.3 and difference is expected to come from the sharper
shape of 〈S(λ)〉 in the case of NTotal = 128, which require a
higher amount of points to obtain the free energy F.

The excluded volume from the regions of negative eigen-
values are there, yet at the same time we do not create
a region where the configuration can be trapped inside
the region of negative eigenvalues. Excluded volume in-
duces strong variation of the free energy at small λ: so
we found it necessary to integrate the free energy up to
λ = 0.1 finely with 10 points. From λ = 0.1 to λ = 1 we
use 9 points. Vmax = 100 was used.

In the simulation, all interactions are assumed to have
Yukawa-like large distance behavior with certain Debye
screening mass MD. Since our “box size” can be defined
as the distance between poles of our sphere, π ∗ r. In the
smallest box we have a box size of about 4 units. The
smallest Debye mass employed is, in the same units, 2.
Thus the exponential tails are e−MDr = e−8, and all IR
artifacts are well suppressed.

That finite volume effects are not important was tested
on a few configurations as shown in Fig. 4, since it is not
possible to do it for all configurations due to the compu-
tational power needed. We find that the configurations
do indeed give the same results for double the volume
in the area of interest, and only at densities higher than
explored in this paper do we see a difference. The differ-
ence at higher densities is due to the sharpened behavior
of 〈S(λ)〉, and should be fixed in case one want to do
higher total number of dyons, by increasing the density
of points in the integration to obtain the free energy F.
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V. THE DYON BACK REACTION:
HOLONOMY POTENTIAL

Lattice gauge simulations had shown how the peak of
the holonomy distribution shifts to its confining value at
T < Tc. The corresponding effective potential V (ν, T )
has been numerically studies and parameterized, used in
various models such as the so called Polyakov-Nambu-
Jona-Lasinio model (PNJL).

Now our task is to derive this potential, stemming from
the back reaction of the instanton-dyons. We add the
perturbative GPY potential VGPY eq. (A2) to the dyon
free energy obtained from our simulations and determine
the total free energy of the system (obviously, assuming
that there are no other relevant non-perturbative contri-
butions). The dyon-induced partition function is further
split into two factors: one containing all factors which de-
pend on parameters unchanged in the simulations, and
the second one related to dyons’s collective variables.

Z = ZunchangedZchanged. (19)

The weight for one caloron (L + M pair) was explicitly
calculated in [20]: at zero holonomy it agrees with the
instanton result by ’t Hooft. Part of the answer is the
factor coming from the metric volume element

√
g in the

space of L,M collective variables. Later Diakonov [12]
combined this result with the previously known answer
for the metric of two monopoles of the same kind (e.g.
M,M pair) into an elegant expression for any number of
L,M dyons now called Diakonov determinant detG.

Taking the dilute limit r12 → ∞ in both cases both
formulas reduce to the same r12 dependence and one finds
that the caloron weight from [20] needs to be divided by
the factor (4πν)(4πν̄) (see appendix C)

Zunchanged =
Λ2

(4π)2

(
8π2

g2

)4

e
− 8π2

g2 ν
8ν
3 −1ν̄

8ν̄
3 −1

× exp(−Ṽ3
4π2

3
ν2ν̄2) (20)

Note that at the trivial holonomy ν → 0 limit, Zunchanged
is ∼ 1/ν: it is to be canceled by the diagonal part of the
det(G) in the second part.

We need to do the simulation for different amount of
M and L dyons. We divide the weight into a M part and
a L part, and sum over all number of particles

Zunchanged =
∑

NM ,NL

exp(−Ṽ3
4π2

3
ν2ν̄2) (21)


 1

NM !

(
ΛṼ3

(
8π2

g2

)2

e
− ν8π2

g2 ν
8ν
3 −1/(4π)

)NM


2

×


 1

NL!

(
ΛṼ3

(
8π2

g2

)2

e
− ν̄8π2

g2 ν̄
8ν̄
3 −1/(4π)

)NL


2

,

where we use that the amount of dyons and antidyons is
the same. We simplify this as

Zunchanged =
∑

NM ,NL

exp(−Ṽ3
4π2

3
ν2ν̄2)

×
[

1

NM !

(
Ṽ3dν

)NM]2 [
1

NL!

(
Ṽ3dν̄

)NL]2

dν = Λ

(
8π2

g2

)2

e
− ν8π2

g2 ν
8ν
3 −1/(4π). (22)

Zchanged is the interactions explained in section III and
thus also depends on the number of particles

Zchanged =
1

Ṽ
2(NL+NM )
3

∫
D3x det(G) exp(−∆DDD̄(x))

∆f ≡ − log(Zchanged)/Ṽ3, (23)

normalized such that Zchanged = 1 for no interactions
included. Combining Zchanged with Zunchanged we get in

the limit Ṽ3 →∞

Z =
∑

NM ,NL

exp

(
− Ṽ3

[
4π2

3
ν2ν̄2 − 2nM ln

[
dνe

nM

]

−2nL ln

[
dν̄e

nL

]
+ ∆f

])
. (24)

For Ṽ3 →∞ the partition function is completely domi-
nated by the maximum of the exponent. Finding the free
energy corresponds to finding the minimum of

f =
4π2

3
ν2ν̄2 − 2nM ln

[
dνe

nM

]

−2nL ln

[
dν̄e

nL

]
+ ∆f. (25)

Note that as the dyon density increases, it changes
its shape, producing a non-trivial minimum at ν 6= 0.
Furthermore, at high density this minimum moves to ν =
1/2, the confining value.

VI. SELF CONSISTENCY

The partition function we simulate depends on several
parameters, changed from one simulation set to another.
Those include (i) the number of the dyons NM , NL; (ii)
the radius of the S3 sphere r; (iii) the action parameter
S; (iv) the value of the holonomy ν, (v) the value of the
Debye mass MD; (vi) the auxiliary factor λ, which is then
integrated over as explained in section IV.

In principle, the aim of our study is to obtain the de-
pendence of the free energy on all of those parameters (i-
v). While the practical cost of the simulations restricts
the number of points one can study, we still had gen-
erated more than hundred thousand runs and multiple
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split into two factors: one containing all factors which de-
pend on parameters unchanged in the simulations, and
the second one related to dyons’s collective variables.

Z = ZunchangedZchanged. (19)

The weight for one caloron (L + M pair) was explicitly
calculated in [20]: at zero holonomy it agrees with the
instanton result by ’t Hooft. Part of the answer is the
factor coming from the metric volume element

p
g in the

space of L, M collective variables. Later Diakonov [12]
combined this result with the previously known answer
for the metric of two monopoles of the same kind (e.g.
M, M pair) into an elegant expression for any number of
L, M dyons now called Diakonov determinant det G.

Taking the dilute limit r12 ! 1 in both cases both
formulas reduce to the same r12 dependence and one finds
that the caloron weight from [20] needs to be divided by
the factor (4⇡⌫)(4⇡⌫̄) (see appendix C)

Zunchanged =
⇤2

(4⇡)2

✓
8⇡2

g2

◆4

e
� 8⇡2

g2 ⌫
8⌫
3 �1⌫̄

8⌫̄
3 �1

⇥ exp(�Ṽ3
4⇡2

3
⌫2⌫̄2) (20)

Note that at the trivial holonomy ⌫ ! 0 limit, Zunchanged

is ⇠ 1/⌫: it is to be canceled by the diagonal part of the
det(G) in the second part.

We need to do the simulation for di↵erent amount of
M and L dyons. We divide the weight into a M part and
a L part, and sum over all number of particles

Zunchanged =
X

NM ,NL

exp(�Ṽ3
4⇡2

3
⌫2⌫̄2) (21)

2
4 1

NM !

 
⇤Ṽ3

✓
8⇡2

g2

◆2

e
� ⌫8⇡2

g2 ⌫
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3
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2
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◆2
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!NL
3
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2

,

where we use that the amount of dyons and antidyons is
the same. We simplify this as

Zunchanged =
X

NM ,NL

exp(�Ṽ3
4⇡2

3
⌫2⌫̄2)

⇥


1

NM !

⇣
Ṽ3d⌫

⌘NM
�2 

1

NL!

⇣
Ṽ3d⌫̄

⌘NL
�2

d⌫ = ⇤

✓
8⇡2

g2

◆2

e
� ⌫8⇡2

g2 ⌫
8⌫
3 �1/(4⇡). (22)

Zchanged is the interactions explained in section III and
thus also depends on the number of particles

Zchanged =
1

Ṽ
2(NL+NM )
3

Z
D3x det(G) exp(��DDD̄(x))

�f ⌘ � log(Zchanged)/Ṽ3, (23)

●

●
●

●

●● ●● ●● ●● ●● ●

■

■

■
■

■
■

■
◆

◆
◆ ◆ ◆ ◆ ◆ ◆

◆

▲

▲
▲ ▲ ▲ ▲ ▲ ▲ ▲

▲

▲

▼

▼ ▼
▼ ▼ ▼ ▼ ▼

▼ ▼

▼

○

○ ○
○

○
○ ○ ○

○
○

○ ○

○

0.2 0.3 0.4 0.5 0.6 0.7 0.8
-1.4

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

⌫

f

FIG. 5: (Color online). Free Energy density f as a function of
⌫ at S = 6, MD = 2 and NM = NL = 16. The di↵erent curves
corresponds to di↵erent densities. • n = 0.53, ⌅ n = 0.37,
⌥ n = 0.27, N n = 0.20, H n = 0.15, � n = 0.12. Not all
densities are shown.

normalized such that Zchanged = 1 for no interactions
included. Combining Zchanged with Zunchanged we get in

the limit Ṽ3 ! 1

Z =
X

NM ,NL

exp

✓
� Ṽ3


4⇡2

3
⌫2⌫̄2 � 2nM ln


d⌫e

nM

�

�2nL ln


d⌫̄e

nL

�
+ �f

�◆
. (24)

For Ṽ3 ! 1 the partition function is completely domi-
nated by the maximum of the exponent. Finding the free
energy corresponds to finding the minimum of

f =
4⇡2

3
⌫2⌫̄2 � 2nM ln


d⌫e

nM

�

�2nL ln


d⌫̄e

nL

�
+ �f. (25)

Note that as the dyon density increases, it changes
its shape, producing a non-trivial minimum at ⌫ 6= 0.
Furthermore, at high density this minimum moves to ⌫ =
1/2, the confining value.

VI. SELF CONSISTENCY

The partition function we simulate depends on several
parameters, changed from one simulation set to another.
Those include (i) the number of the dyons NM , NL; (ii)
the radius of the S3 sphere r; (iii) the action parameter
S; (iv) the value of the holonomy ⌫, (v) the value of the
Debye mass MD; (vi) the auxiliary factor �, which is then
integrated over as explained in section IV.

In principle, the aim of our study is to obtain the de-
pendence of the free energy on all of those parameters (i-
v). While the practical cost of the simulations restricts

FIG. 5: (Color online). Free Energy density f as a function of
ν at S = 6, MD = 2 and NM = NL = 16. The different curves
corresponds to different densities. • n = 0.53, � n = 0.37,
� n = 0.27, N n = 0.20, H n = 0.15, ◦ n = 0.12. Not all
densities are shown.

plots. However, most of it neither can nor should be
included in the paper. Since our physics goal is to un-
derstand the back reaction of the dyon ensemble on the
holonomy, we study the range of holonomies, from ν = 0
to ν = 1/2, and only then locate its minimum. As for
the Debye mass, we will find it from the potential and
then show only the “selfconsistent” input set.

What we actually need to describe at the end is not
the free energy in the whole multi-dimensional space of
all parameters, but the location of the free energy min-
ima. The resulting set should be of co-dimension 1, since
the original physical setting of the problem – the gauge
theory at finite temperature – has only one input param-
eter, T .

Using the definition of the Debye mass g2

2V
∂2F
∂2v = M2

D
for fixed density we get the configurations response to
changing the holonomy which is the Debye mass. We
require that the used value for the Debye mass is the
same as the one found from the derivative of F , or atleast
not more than 0.4 below the used value.

The results shows that as the Debye mass goes towards
zero around the phase transition the only configuration
that is consistent with this is that of equal M and L
dyons.

VII. THE PHYSICAL RESULTS

We now show only the results which fulfill the self-
consistency requirement. Without fermions the results
are symmetric in ν → 1 − ν and are therefore only for
ν ≤ 1/2. We have included the Diakonov determinant,
though its impact is not too great due to the not so small
Debye mass which has been calculated using 3 points.
The results here are shown for a wall of x0 = 2, which was
chosen in order to have a large enough density of dyons to
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holonomy, we study the range of holonomies, from ⌫ = 0
to ⌫ = 1/2, and only then locate its minimum. As for
the Debye mass, we will find it from the potential and
then show only the “selfconsistent” input set.

What we actually need to describe at the end is not
the free energy in the whole multi-dimensional space of
all parameters, but the location of the free energy min-
ima. The resulting set should be of co-dimension 1, since
the original physical setting of the problem – the gauge
theory at finite temperature – has only one input param-
eter, T .

Using the definition of the Debye mass g2

2V
@2F
@2v = M2

D
for fixed density we get the configurations response to
changing the holonomy which is the Debye mass. We
require that the used value for the Debye mass is the
same as the one found from the derivative of F , or atleast
not more than 0.4 below the used value.

The results shows that as the Debye mass goes towards
zero around the phase transition the only configuration
that is consistent with this is that of equal M and L
dyons.

VII. THE PHYSICAL RESULTS

We now show only the results which fulfill the self-
consistency requirement. Without fermions the results
are symmetric in ⌫ ! 1 � ⌫ and are therefore only for
⌫  1/2. We have included the Diakonov determinant,
though its impact is not too great due to the not so small
Debye mass which has been calculated using 3 points.
The results here are shown for a wall of x0 = 2, which was
chosen in order to have a large enough density of dyons to
overcome the purturbative potential, without completely
making the GPY potential irrelevant. We used ⇤ = 1.5
to obtain a phase shift around S = 6. Action is related
to temperature as explained in appendix A. This should
of course be fitted to numerical data, but the present
data on dyons does not have a high enough e�ciency
of detection to do this. The action goes up to S = 13,
beyond this value the number of L dyons become too
close to 1, and we would need a higher total of dyons to
proceed.

Due to the repulsive Coulomb term between dyons and
antidyons of di↵erent type, the free energy preferred to
have a large Debye mass due to cutting o↵ this repul-
sion. This meant that when the free energy spectrum
as a function of holonomy for a fixed density becomes
flat, the small Debye mass created a rise in energy. This
resulted in a small jump in holonomy, since the configura-
tions with holonomy ⌫ = 0.5 but with slightly higher den-
sity than the flat ones, would end up with a smaller free
energy. As a result we do not get a completely smooth
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transition, though that is hidden by the size of the errors
as seen in Figure 6 and it also means that at S = 6 the
Debye mass never goes completely to zero, as shown in
Figure 7, and the density goes slightly more up also as
shown in Fig. 8.

FIG. 6: Self-consistent value of the holonomy ν (upper plot)
and Polyakov line (lower plot) as a function of action S (lower
scales), which is related to T/Tc (upper scales). The error bars
are estimates based on the fluctuations of the numerical data.

overcome the purturbative potential, without completely
making the GPY potential irrelevant. We used Λ = 1.5
to obtain a phase shift around S = 6. Action is related
to temperature as explained in appendix A. This should
of course be fitted to numerical data, but the present
data on dyons does not have a high enough efficiency
of detection to do this. The action goes up to S = 13,
beyond this value the number of L dyons become too
close to 1, and we would need a higher total of dyons to
proceed.

Due to the repulsive Coulomb term between dyons and
antidyons of different type, the free energy preferred to
have a large Debye mass due to cutting off this repul-
sion. This meant that when the free energy spectrum
as a function of holonomy for a fixed density becomes
flat, the small Debye mass created a rise in energy. This
resulted in a small jump in holonomy, since the configura-
tions with holonomy ν = 0.5 but with slightly higher den-
sity than the flat ones, would end up with a smaller free
energy. As a result we do not get a completely smooth
transition, though that is hidden by the size of the errors
as seen in Figure 6 and it also means that at S = 6 the
Debye mass never goes completely to zero, as shown in
Figure 7, and the density goes slightly more up also as
shown in Fig. 8.
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require that the used value for the Debye mass is the
same as the one found from the derivative of F , or atleast
not more than 0.4 below the used value.
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though its impact is not too great due to the not so small
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overcome the purturbative potential, without completely
making the GPY potential irrelevant. We used ⇤ = 1.5
to obtain a phase shift around S = 6. Action is related
to temperature as explained in appendix A. This should
of course be fitted to numerical data, but the present
data on dyons does not have a high enough e�ciency
of detection to do this. The action goes up to S = 13,
beyond this value the number of L dyons become too
close to 1, and we would need a higher total of dyons to
proceed.

Due to the repulsive Coulomb term between dyons and
antidyons of di↵erent type, the free energy preferred to
have a large Debye mass due to cutting o↵ this repul-
sion. This meant that when the free energy spectrum
as a function of holonomy for a fixed density becomes
flat, the small Debye mass created a rise in energy. This
resulted in a small jump in holonomy, since the configura-
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sity than the flat ones, would end up with a smaller free
energy. As a result we do not get a completely smooth
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When we are in the confined region we observe the
free energy for a fixed density as a single minimum in
the middle at ⌫ = 0.5. As the action S increases, the
density of dyons decrease and it becomes more favorable
to have some bigger, but lighter dyons, thus shifting the
minimum away from the confining value of the Polyakov
loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.
This, at the same time, makes the lighter M dyons more
abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-
tions behaves as a liquid with a cuto↵ at small range.
We show the case for S = 6 in Fig. 11 for MM and
ML. Note the correlation function CMM vanishes at
small distances due to the core. The other correlation
function CML for ML, displays attraction even at small
distances, tripling the density at r = 0. The integrated
number of particles in the region in which the correlation
function CML(r) > 1 is 0.50 particles, while for CMM it
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The lower the action the lower the minimum of the free energy.
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and ML for S = 6 (upper) and S = 9 (lower). In the MM
case the correlation function vanishes at small distances due
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corresponds to 0.34 particles: thus the di↵erence is not
that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to de-
scribe how the deconfinement phase transition happens.
We were reaching for a self-consistent description of the
system, in which all parameters being at the values cor-
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dyons) as a function of action S (lower scale) which is related
to T/Tc (upper scale) for M dyons(higher line) and L dyons
(lower line). The error bars are estimates based on the density
of points and the fluctuations of the numerical data.

When we are in the confined region we observe the
free energy for a fixed density as a single minimum in
the middle at ν = 0.5. As the action S increases, the
density of dyons decrease and it becomes more favorable
to have some bigger, but lighter dyons, thus shifting the
minimum away from the confining value of the Polyakov
loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.
This, at the same time, makes the lighter M dyons more
abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-
tions behaves as a liquid with a cutoff at small range.
We show the case for S = 6 in Fig. 11 for MM and
ML. Note the correlation function CMM vanishes at
small distances due to the core. The other correlation
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When we are in the confined region we observe the
free energy for a fixed density as a single minimum in
the middle at ⌫ = 0.5. As the action S increases, the
density of dyons decrease and it becomes more favorable
to have some bigger, but lighter dyons, thus shifting the
minimum away from the confining value of the Polyakov
loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.
This, at the same time, makes the lighter M dyons more
abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-
tions behaves as a liquid with a cuto↵ at small range.
We show the case for S = 6 in Fig. 11 for MM and
ML. Note the correlation function CMM vanishes at
small distances due to the core. The other correlation
function CML for ML, displays attraction even at small
distances, tripling the density at r = 0. The integrated
number of particles in the region in which the correlation
function CML(r) > 1 is 0.50 particles, while for CMM it
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When we are in the confined region we observe the
free energy for a fixed density as a single minimum in
the middle at ⌫ = 0.5. As the action S increases, the
density of dyons decrease and it becomes more favorable
to have some bigger, but lighter dyons, thus shifting the
minimum away from the confining value of the Polyakov
loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.
This, at the same time, makes the lighter M dyons more
abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-
tions behaves as a liquid with a cuto↵ at small range.
We show the case for S = 6 in Fig. 11 for MM and
ML. Note the correlation function CMM vanishes at
small distances due to the core. The other correlation
function CML for ML, displays attraction even at small
distances, tripling the density at r = 0. The integrated
number of particles in the region in which the correlation
function CML(r) > 1 is 0.50 particles, while for CMM it
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FIG. 10: (Color online). (Not-self-consistent in holonomy ν)
free energy density f , here shown as a function of the value of
the holonomy (in form of the Polyakov loop P ) at S = 6, 7, 9.
The lower the action the lower the minimum of the free energy.

function CML for ML, displays attraction even at small
distances, tripling the density at r = 0. The integrated
number of particles in the region in which the correlation
function CML(r) > 1 is 0.50 particles, while for CMM it
corresponds to 0.34 particles: thus the difference is not
that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to de-
scribe how the deconfinement phase transition happens.
We were reaching for a self-consistent description of the
system, in which all parameters being at the values cor-
responding to the free energy minima.

Yet the self-consistency of the calculation remains in a
way incomplete. In this section we make one more step
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When we are in the confined region we observe the
free energy for a fixed density as a single minimum in
the middle at ⌫ = 0.5. As the action S increases, the
density of dyons decrease and it becomes more favorable
to have some bigger, but lighter dyons, thus shifting the
minimum away from the confining value of the Polyakov
loop, P = 0, as can be seen in Fig. 10 for S = 6, 7, 9.
This, at the same time, makes the lighter M dyons more
abundant than the more heavy L dyons.

Due to the size of the Debye mass, the correlation func-
tions behaves as a liquid with a cuto↵ at small range.
We show the case for S = 6 in Fig. 11 for MM and
ML. Note the correlation function CMM vanishes at
small distances due to the core. The other correlation
function CML for ML, displays attraction even at small
distances, tripling the density at r = 0. The integrated
number of particles in the region in which the correlation
function CML(r) > 1 is 0.50 particles, while for CMM it

●

●●●●

●

■

■

■■■

■

▲
▲▲

▲
▲

▲

0.0 0.2 0.4 0.6 0.8

-1.2

-1.0

-0.8

-0.6

-0.4

-0.2

0.0

P

f

FIG. 10: (Color online). (Not-self-consistent in holonomy ⌫)
free energy density f , here shown as a function of the value of
the holonomy (in form of the Polyakov loop P ) at S = 6, 7, 9.
The lower the action the lower the minimum of the free energy.

0 1 2 3 4
0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cij

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

r

Cij

FIG. 11: (Color online). Correlation function Cij for MM
and ML for S = 6 (upper) and S = 9 (lower). In the MM
case the correlation function vanishes at small distances due
to the core.

corresponds to 0.34 particles: thus the di↵erence is not
that large.

VIII. POSSIBLE IMPROVEMENTS

In this round of simulations we have been able to de-
scribe how the deconfinement phase transition happens.
We were reaching for a self-consistent description of the
system, in which all parameters being at the values cor-

FIG. 11: (Color online). Correlation function Cij for MM
and ML for S = 6 (upper) and S = 9 (lower). In the MM
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towards it, but, as we will soon see, further ones may
perhaps be needed.

We start this work with an idealized classical solution
minimizing classical Yang-Mills action, the BPS soliton,
with zero holonomy potential. Quantum fluctuations in
one-loop order generates the GPY potential. Further-
more, our ensemble of many dyons also contribute, re-
sulting in a potential displaying confinement. The calcu-
lated Debye mass is of the right magnitude.

One may now wonder how the presence of the holon-
omy potential affects the dyon solution itself. Let us add
a (simplified) potential

VMD
=

M2
D

2
(v − Tr(τ3U4))

2
(26)

and look for the action minimum. For technical rea-
sons, instead of solving nonlinear differential equations,
we minimized the action using the gradient flow for a sin-
gle dyon on the lattice. The resulting action as a function
of the Debye mass is shown in Fig. 12 and the shape of
the solutions in Fig. 13. One can see, that the role of a
nonzero Debye mass is to suppress the tails of the fields.
This, in turn, somewhat increases the action.

To illustrate the effect of the increased dyon action
on the ensemble, consider an example. For the confined
holonomy ν = 0.5 at Tc with MD = 2.2 we get an action
of 35 per dyon, compared to 28 for MD = 0. As a result
the free density of dyons becomes 1.7 times smaller.
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responding to the free energy minima.
Yet the self-consistency of the calculation remains in a

way incomplete. In this section we make one more step
towards it, but, as we will soon see, further ones may
perhaps be needed.

We start this work with an idealized classical solution
minimizing classical Yang-Mills action, the BPS soliton,
with zero holonomy potential. Quantum fluctuations in
one-loop order generates the GPY potential. Further-
more, our ensemble of many dyons also contribute, re-
sulting in a potential displaying confinement. The calcu-
lated Debye mass is of the right magnitude.

One may now wonder how the presence of the holon-
omy potential a↵ects the dyon solution itself. Let us add
a (simplified) potential

VMD
=

M2
D

2
(v � Tr(⌧3U4))

2
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and look for the action minimum. For technical rea-
sons, instead of solving nonlinear di↵erential equations,
we minimized the action using the gradient flow for a sin-
gle dyon on the lattice. The resulting action as a function
of the Debye mass is shown in Fig. 12 and the shape of
the solutions in Fig. 13. One can see, that the role of a
nonzero Debye mass is to suppress the tails of the fields.
This, in turn, somewhat increases the action.

To illustrate the e↵ect of the increased dyon action
on the ensemble, consider an example. For the confined
holonomy ⌫ = 0.5 at Tc with MD = 2.2 we get an action
of 35 per dyon, compared to 28 for MD = 0. As a result
the free density of dyons becomes 1.7 times smaller.

Further improvements may be done including higher
order quantum corrections. We have just demonstrated
that the action and size of a dyon are modified by the
holonomy potential. Obviously, other ingredients, such
as the zero mode metric and the nonzero mode determi-
nant, are modified as well. In principle, it is known how
to approach this problem: since our configurations are al-
ready defined on the lattice, one can switch in quantum
fluctuations, following standard lattice definition. A vari-
ant of the lambda-trick can produce the value of quantum
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FIG. 13: (Color online). Higgs field A3
4 of a single dyon, along

the z-axis, through the center of the dyon for di↵erent Debye
masses. From top to button: MD/v = 0, MD/v = 0.45 and
MD/v = 1.41.

corrections to the deformed non-BPS dyons as well. At
this point this calculation is not yet done.

The reason we mention it here is related with the fol-
lowing comment. For the pure holonomy, in the bulk,
the field strengths and thus classical action are zero. The
GPY potential is non-zero result of a one loop calcula-
tion [2]. Two-loop correction has been calculated recently
[22] and the result is proportional to the first order re-
sult, with the factor 1 � 5/S + ..., where S = 8⇡2/g2.
One finds therefore that for the values of the parameter
S ⇠ 6� 10 we work with, this two-loop correction is not
small: so the holonomy itself is not classical, it is subject
to strong quantum fluctuations.

Two-loop and three-loop corrections to instants are
only calculated so far in quantum mechanical models, and
similar calculations for gauge theory instants and dyons
are of interest. We do not expect those to be as large as
for the holonomy potential: in quantum mechanics it is
of the type 1 � 1/S instead.

IX. SUMMARY AND DISCUSSION

As emphasized in the Introduction, an idea that it
should be possible to understand confinement (as well
as chiral symmetry breaking) via statistical mechanics in
terms of collective coordinates of certain topological soli-
tons goes back to 1970’s. Four decades later we now are
able to calculate the contribution of the topology to the
holonomy potential and explain why its minimum shifts
to the confining value at T < Tc.

In particular, by identifying classical interaction be-
tween instanton-dyons [15] and including them in direct
Monte-Carlo simulation of the ensemble, together with
one-loop e↵ects in the measure, we calculated the free
energy as a function of all parameters of the model, such
as the value of the holonomy, dyon densities, and the De-
bye mass. We then proceed to one-parameter set of its
minimum, corresponding to dependence on the only left
variable, the temperature. The results display the de-

FIG. 12: Action S3 of a single dyon as a function of Debye
mass over holonomy MD/v in the potential described by eq.
(26) normalized by the action S0 for MD = 0.
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responding to the free energy minima.
Yet the self-consistency of the calculation remains in a

way incomplete. In this section we make one more step
towards it, but, as we will soon see, further ones may
perhaps be needed.

We start this work with an idealized classical solution
minimizing classical Yang-Mills action, the BPS soliton,
with zero holonomy potential. Quantum fluctuations in
one-loop order generates the GPY potential. Further-
more, our ensemble of many dyons also contribute, re-
sulting in a potential displaying confinement. The calcu-
lated Debye mass is of the right magnitude.

One may now wonder how the presence of the holon-
omy potential a↵ects the dyon solution itself. Let us add
a (simplified) potential

VMD
=

M2
D

2
(v � Tr(⌧3U4))

2
(26)

and look for the action minimum. For technical rea-
sons, instead of solving nonlinear di↵erential equations,
we minimized the action using the gradient flow for a sin-
gle dyon on the lattice. The resulting action as a function
of the Debye mass is shown in Fig. 12 and the shape of
the solutions in Fig. 13. One can see, that the role of a
nonzero Debye mass is to suppress the tails of the fields.
This, in turn, somewhat increases the action.

To illustrate the e↵ect of the increased dyon action
on the ensemble, consider an example. For the confined
holonomy ⌫ = 0.5 at Tc with MD = 2.2 we get an action
of 35 per dyon, compared to 28 for MD = 0. As a result
the free density of dyons becomes 1.7 times smaller.

Further improvements may be done including higher
order quantum corrections. We have just demonstrated
that the action and size of a dyon are modified by the
holonomy potential. Obviously, other ingredients, such
as the zero mode metric and the nonzero mode determi-
nant, are modified as well. In principle, it is known how
to approach this problem: since our configurations are al-
ready defined on the lattice, one can switch in quantum
fluctuations, following standard lattice definition. A vari-
ant of the lambda-trick can produce the value of quantum
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masses. From top to button: MD/v = 0, MD/v = 0.45 and
MD/v = 1.41.

corrections to the deformed non-BPS dyons as well. At
this point this calculation is not yet done.

The reason we mention it here is related with the fol-
lowing comment. For the pure holonomy, in the bulk,
the field strengths and thus classical action are zero. The
GPY potential is non-zero result of a one loop calcula-
tion [2]. Two-loop correction has been calculated recently
[22] and the result is proportional to the first order re-
sult, with the factor 1 � 5/S + ..., where S = 8⇡2/g2.
One finds therefore that for the values of the parameter
S ⇠ 6� 10 we work with, this two-loop correction is not
small: so the holonomy itself is not classical, it is subject
to strong quantum fluctuations.

Two-loop and three-loop corrections to instants are
only calculated so far in quantum mechanical models, and
similar calculations for gauge theory instants and dyons
are of interest. We do not expect those to be as large as
for the holonomy potential: in quantum mechanics it is
of the type 1 � 1/S instead.

IX. SUMMARY AND DISCUSSION

As emphasized in the Introduction, an idea that it
should be possible to understand confinement (as well
as chiral symmetry breaking) via statistical mechanics in
terms of collective coordinates of certain topological soli-
tons goes back to 1970’s. Four decades later we now are
able to calculate the contribution of the topology to the
holonomy potential and explain why its minimum shifts
to the confining value at T < Tc.

In particular, by identifying classical interaction be-
tween instanton-dyons [15] and including them in direct
Monte-Carlo simulation of the ensemble, together with
one-loop e↵ects in the measure, we calculated the free
energy as a function of all parameters of the model, such
as the value of the holonomy, dyon densities, and the De-
bye mass. We then proceed to one-parameter set of its
minimum, corresponding to dependence on the only left
variable, the temperature. The results display the de-

FIG. 13: (Color online). Higgs field A3
4 of a single dyon, along

the z-axis, through the center of the dyon for different Debye
masses. From top to button: MD/v = 0, MD/v = 0.45 and
MD/v = 1.41.

Further improvements may be done including higher
order quantum corrections. We have just demonstrated
that the action and size of a dyon are modified by the
holonomy potential. Obviously, other ingredients, such
as the zero mode metric and the nonzero mode determi-
nant, are modified as well. In principle, it is known how
to approach this problem: since our configurations are al-
ready defined on the lattice, one can switch in quantum
fluctuations, following standard lattice definition. A vari-
ant of the lambda-trick can produce the value of quantum
corrections to the deformed non-BPS dyons as well. At
this point this calculation is not yet done.

The reason we mention it here is related with the fol-
lowing comment. For the pure holonomy, in the bulk,
the field strengths and thus classical action are zero. The
GPY potential is non-zero result of a one loop calcula-
tion [2]. Two-loop correction has been calculated recently
[22] and the result is proportional to the first order re-
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sult, with the factor 1 − 5/S + ..., where S = 8π2/g2.
One finds therefore that for the values of the parameter
S ∼ 6− 10 we work with, this two-loop correction is not
small: so the holonomy itself is not classical, it is subject
to strong quantum fluctuations.

Two-loop and three-loop corrections to instants are
only calculated so far in quantum mechanical models, and
similar calculations for gauge theory instants and dyons
are of interest. We do not expect those to be as large as
for the holonomy potential: in quantum mechanics it is
of the type 1− 1/S instead.

IX. SUMMARY AND DISCUSSION

As emphasized in the Introduction, an idea that it
should be possible to understand confinement (as well
as chiral symmetry breaking) via statistical mechanics in
terms of collective coordinates of certain topological soli-
tons goes back to 1970’s. Four decades later we now are
able to calculate the contribution of the topology to the
holonomy potential and explain why its minimum shifts
to the confining value at T < Tc.

In particular, by identifying classical interaction be-
tween instanton-dyons [15] and including them in direct
Monte-Carlo simulation of the ensemble, together with
one-loop effects in the measure, we calculated the free
energy as a function of all parameters of the model, such
as the value of the holonomy, dyon densities, and the De-
bye mass. We then proceed to one-parameter set of its
minimum, corresponding to dependence on the only left
variable, the temperature. The results display the de-
confinement transition at a certain density of the dyons.
The key to this is the volumes of the dyon repulsive cores,
which scale as an inverse cube of the holonomy.

One of the key questions is whether the objects we
study are sufficiently semiclassical. The action per M
dyon, Sν, varies in the region studied in this work in
the range from 2.5 to 3.3. Its exponent exp(−Sν) varies
between 0.082 and 0.037. The input formula we use in-
clude classical and one-loop effects. By selecting specially
tuned Λ parameter, one basically includes the two-loop
effects as well. So, we think that the accuracy of these
expressions O(1/S) is sufficient for our purposes.

Direct simulations of the ensemble have no general ap-
proximations, and the accuracy of the results is limited
by size of the system and the statistical errors of the
Monte Carlo sampling. We demonstrated in this work
that the ensemble of instanton-dyons, coupled to holon-
omy, does undergo a deconfinement phase transition at
certain value of their density. It is physically driven by
repulsive interactions, which enforce “equality” between
M and L dyons, broken in the dilute regime by their
different actions. We see how it happens in detail: first
by performing multiple simulations as a function of all
parameters of the model – dyon densities, holonomy, the
value of the Debye mass – and then identifying a co-
dimension 1 set of the free energy minima, correspond-

ing to physical dyon ensemble as a function of the tem-
perature T . All these results – the holonomy potential
and the mean Polyakov line 〈P (T )〉, the dyon densities
nM (T ), nL(T ) can and should be compared to the lattice
data.

This approach can straightforwardly be generalized to
the QCD-like theories with an arbitrary number of colors
and quark flavors. We plan to do larger scale simulations
of those in subsequent publications.

Finally, let us address a very general question often
asked: why should one study statistical mechanics of
some solitons, rather than directly simulate gauge fields
on the lattice, from the first principles?

Quantum field theories have infinitely many degrees
of freedom, and an understanding of which ones are re-
sponsible for a particular phenomenon is very important.
Using an analogy to condense matter physics: One can in
principle do direct simulations of all electrons in a piece
of metal. And yet, understanding the zone structure,
location and shape of the Fermi surfaces offer a much
simpler and more intuitive approaches to metal thermo-
dynamics and kinetics. To a large extent, the same is
true for quarks in the “zero mode zone” of the topolog-
ical solitons. Now we see that instanton-dyons generate
confinement as well as chiral symmetry breaking. The
model we use have only few variables per fm3 volume,
5-6 orders of magnitude less than current lattice simula-
tions.
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Appendix A: Units and holonomy

The main physical quantity of the problem is the tem-
perature T : it defines the magnitude of the A3

4 = 2πνT
(holonomy), the physical size of the dyons and every
other dimensional parameter of the problem. Yet, pre-
cisely because of its omnipresence in the theory at its
classical level, dealing only with the dimensionless quan-
tities – e.g. the dyon density normalized as n/T 3 – one
can in zeroth approximation cancel all powers of T . At
this level, our theory has only dimensionless input pa-
rameters. Most of them – the dimensionless dyon densi-
ties, holonomy and the the Debye screening mass – will
be defined selfconsistently, from the minimum of the free
energy. The remaining input will be the instanton action
parameter S, used in many plots in the text.

Standard Euclidean formulation of the gauge theory
at finite temperature T introduces periodic (Matsubara)
time τ defined on a circle with a period equal to the
inverse temperature 1/T . The exponential of the gauge
invariant integral over this circle, known as the Polyakov
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line

P =
1

Nc
TrPexp[i

∮
A3

4(σ3/2)dτ ], (A1)

which is gauge invariant due to periodicity. Here σ3 is
the 3rd Pauli matrix.

As a function of temperature its expectation value 〈P 〉
changes from 1 at high T to (near) zero at the decon-
finement temperature Tc. In the simplest SU(2) gauge
theory we will discuss in this work 〈P 〉 = cos(νπ), and
the holonomy parameter (or just holonomy, for short) ν
changes from 0 to 1/2. What remains unknown is the
physical origin of this potential.

Perturbatively, the effect of the holonomy is the
appearance of nonzero masses of quarks and (non-
diagonal) gluons, and the corresponding Gross-Pisarski-
Yaffe holonomy potential [2]

VGPY (ν)

T 4V3
=

(2π)2ν2ν̄2

3
, (A2)

where V3 is the 3-volume of the box and

ν̄ = 1− ν (A3)

is “dual holonomy” . We proceed in the text to use
dimensionless units for volume Ṽ3 = T 3V3, densities
nM = NM

Ṽ3
, nL = NL

Ṽ3
, distances rT = x and free en-

ergy density F
TṼ3

= f . Potential VGPY has a minimum

at trivial holonomy ν = 0 and a maximum at confining
holonomy ν = 1/2, thus disfavoring confinement.

In the next approximation the so called quantum loop
effects are incorporated. As is well known, they lead to
a running coupling constant. Thus the action parameter
(and all others, of course) become a function of the basic
physical scale given by the temperature T . For example,
recalling classical instanton action and the asymptotic
freedom formula

S(T ) =
8π2

g2(T )
= b · ln

(
T

Λ

)
, b =

11

3
Nc, (A4)

with the power given by the one-loop beta function. If
so, the semiclassical factors defining the caloron density
now depend on T , basically as a power

ncalorons(T )

T 4
∼ e−S ∼

(
Λ

T

)b
. (A5)

Since the caloron density has been measured on the lat-
tice at different T , one can test this expression against
the lattice data. In fact it does work, see Fig.1 of Ref.[14],
which confirms that the topological solitons remain semi-
classical at the temperatures we discuss.

The next question is the value of the parameter Λ in
the expression for S above. Note, that our parameter Λ
is proportional to that in multiple other definitions, such
as Λlattice or ΛM̄S , but is not equal to them. In principle,
the relation between them is known, and the reader may

thus ask why we don’t use such relations, obtained from
the first principles. The answer is pragmatic: we believe
that the current accuracy of them raised in high power,
e.g. Λb

M̄S
, is still lower than what was found from the fit

to the caloron data just mentioned. In other words, the
measurements of the caloron density is basically the mea-
surements of the high power of Λ, and they thus provide
more accurate values than what can possibly be done by
(much more accurate) measurements but of quantities
depending on this parameter logarithmically.

Not surprisingly, in practice the meaning (and the
value) of Λ depends on the context in which it is used.
The fit shown in Fig.1 of Ref.[14] corresponds to non-
interacting gas of calorons, and it give

Λcalorons = 0.36Tc, (A6)

where Tc is the deconfinement transition temperature,
defined in the same lattice work. If so, the (instanton
action) parameter is S ≈ 7.5 at Tc.

In our work we worked out much more sophisticated
model of the interacting dyon plasma. In this model the
deconfinement transition happens at a somewhat differ-
ent value of the (instanton action) parameter S ≈ 6. In
other words,

Λdyonic plasma = 0.44Tc. (A7)

This value is assumed in all plots in section VII in which
our input parameter S is mapped to the temperature T .

The reader should however keep in mind, that this
mapping between the input parameter of the model S
and physical T is provisional, it depends on the model
itself. No doubt it should be subject to future improve-
ments, both in the lattice data quality used for such fits,
or the fit itself. In particular, one should include mea-
surements of the instanton-dyons, including the effects of
their interaction as discussed in the bulk of our paper.

M M̄ L L̄

e 1 1 -1 -1

m 1 -1 -1 1

h 1 1 -1 -1

TABLE I: Quantum numbers of the four different kinds of
the instanton-dyons of the SU(2) gauge theory. The first two
rows are electric and magnetic charges, while by h we mean
the contribution from nonlinear terms including the holonomy
field.

Appendix B: Instanton-dyons

We do not present here extensive introduction on the
configurations and their history, which can be found in
literature such as [12].

“Higgsing” the SU(2) gauge theory by nonzero VEV of
A4 called v leads to two massive and one massless gluons.
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The simplest gauge is the so called regular (hedgehog)
gauge, in which the color direction of the “Higgs” field is
at large r along the unit radial vector Am4 → vr̂m. The
solutions are

Aa4 = ±r̂a
(

1

r
− v coth(vr)

)

Aai = εaij r̂j

(
1

r
− v

sinh(vr)

)
. (B1)

+ corresponds to the M dyon and − corresponds to the
M̄ dyon. r is the length in position space. The L and
L̄ dyon are obtained by a replacement v → 2πT − v.
To study the classical interaction of the dyons, a gauge
transformation is done to make A4 field point in a spe-
cific direction (normally this is chosen to be A3

4), which
introduced a time dependence in the L dyons in order to
to compensate for the extra 2πT . The classical interac-
tion between the dyons can at long range be described
by the same formula for all

V (r) =
8π2ν

g2

(
(e1e2 − 2h1h2)

1

x
+m1m2

1

x

)
(B2)

x = 2πνr.

e,m, h are listed in the Table I.
As a result sectors that are completely self-dual or anti-

self-dual have no interaction, while dyons and antidyons
of same type attract and dyons and antidyons of different
type repel.

Appendix C: The dyon weights in the partition
function

The KvBLL caloron partition function [20] has the
form

ZKvBLL =

∫
d3z1d

3z2T
6C

(
8π2

g2

)(
e
− 8π2

g2

)(
1

Tr12

) 5
3

× (2π + 4π2νν̄Tr12)(2πνTr12 + 1)
8ν
3 −1

× (2πν̄Tr12 + 1)
8ν̄
3 −1 exp(−V3T

3 4π2

3
ν2ν̄2)(C1)

Taking the limit to very dilute situation we find that all
powers of Tr12 not in the exponential cancel, and we end
with

ZKvBLL =

∫
d3z1d

3z2T
6C

(
8π2

g2

)(
e
− 8π2

g2

)

× (2πν)
8ν
3 (2πν̄)

8ν̄
3

× exp(−V3T
3 4π2

3
ν2ν̄2). (C2)

The term in the exponential corresponds to the GPY
holonomy potential in eq. (A2). The Diakonov deter-
minant, which we have included, is seen to return to a
product of the holonomies in the dilute limit

lim
Tr12→∞

detG =
∏

i

4πνi. (C3)

By comparison we see that we have to take equation C2
and divide by equation C3 in order to get the correct
weight for our partition function. We thus end up with
the partition function for a M and L dyon given by

ZKvBLL =

∫
d3z1d

3z2T
6C

(
8π2

g2

)(
e
− 8π2

g2

)

× (2π)8/3

(4π)2
ν

8ν
3 −1ν̄

8ν̄
3 −1

× exp(−V3T
3 4π2

3
ν2ν̄2). (C4)

We redefine the constant Λ so the equation is easier to
work with

ZKvBLL =

∫
d3z1d

3z2T
6 Λ2

(4π)2

(
8π2

g2

)4

e
− 8π2

g2

×ν 8ν
3 −1ν̄

8ν̄
3 −1 exp(−V3T

3 4π2

3
ν2ν̄2)(C5)
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