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Abstract
We study the transverse momentum resummation for the azimuthal angular correlation in dijet

production in hadron collisions based on the Collins-Soper-Sterman formalism. The complete one-

loop calculations are carried out in the collinear framework for the differential cross sections at

low imbalance transverse momentum between the two jets. Important cross checks are performed

to demonstrate that the soft divergences are cancelled out between different diagrams, and in

particular, for those associated with the final state jets. The leading and sub-leading logarithms

are identified. All order resummation is derived following the transverse momentum dependent

factorization at this order. Its phenomenological applications are also presented.
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I. INTRODUCTION

Dijet production in hadronic collisions is one of the golden channels to study perturbative
QCD and hadron physics in high energy experiments. In these events, the two jets are
produced mainly in the kinematics of the back-to-back configuration in the transverse plane,

A+B → Jet1 + Jet2 +X , (1)

where A and B represent the two incoming hadrons with momenta P and P , respectively,
the azimuthal angle between the two jets is defined as φ = φ1 − φ2 with φ1,2 being the
azimuthal angles of the two jets. There have been comprehensive analyses of the azimuthal
angular correlation (or de-correlation) in dijet productions at the hadron colliders [1–3].
Dijet production can be calculated in perturbative QCD (pQCD). In the leading order of
pQCD, the Born diagrams contribute to a Delta function at φ = π. One gluon radiation will
lead to a singular distribution around φ = π, which will persist at even higher orders [4].
This divergence arises when the total transverse momentum of dijet (imbalance) is much

smaller than the individual jet momentum: q⊥ = |~P1⊥ + ~P2⊥| ≪ |P1⊥| ∼ |P2⊥| ∼ PT ,
where P1⊥ and P2⊥ are transverse momenta for the two final state jets, respectively. In
this kinematic region, large logarithms appear in every order of perturbative calculations,
which are normally referred as the Sudakov logarithms: αi

s ln
2i−1(P 2

T/q
2
⊥). Therefore, a QCD

resummation has to be included in order to have a reliable theoretical prediction. The goal
of this paper is to derive an all order resummation formula for dijet production. A brief
summary of our results has been published in Ref. [5].

In the kinematics region q⊥ ≪ PT , the appropriate resummation method is the so-
called transverse momentum dependent (TMD) resummation or the Collins-Soper-Sterman
(CSS) resummation [6]. The CSS resummation was derived for the massive neutral particle
production in hadronic collisions, such as the electroweak boson (or Higgs boson) production.
Due to the presence of the colored final state, the resummation of dijet production will be
much more complicated. Nevertheless, there have been theoretical progresses in the last few
years [7–10]. In particular, it was found that in the leading double logarithmic approximation
(LLA), each incoming parton contributes half of its color charge to Sudakov resummation
factor [7–10]. In this paper, we will go beyond the LLA and perform the resummation
calculation at the next-to-leading logarithm (NLL) level. The threshold resummation for
dijet production in hadronic collisions has been investigated in a series of publications by
Sterman and his collaborators [11, 12]. The methodology of our calculations for the TMD
resummation is very similar to those studies.

We will start our derivation by evaluating the differential cross sections as a function of
the imbalance transverse momentum q⊥ at the complete one-loop order. The leading order
contribution is a Delta function δ(2)(q⊥). One-loop corrections come from four contributions:
(a) virtual contributions; (b) soft gluon radiation (real); (c) jet contributions; (d) collinear
gluon radiation associated with the incoming parton distributions. The virtual graphs have
been studied in the literature [15]. The jet contributions are easy to derive following the
examples of the inclusive jet production. In order to calculate the analytical results, we will
adopt the narrow jet approximation (NJA) [13, 14], where explicit dependence on the jet
sizes R1 and R2 can be evaluated. The soft gluon (real) contribution is the most difficult
to calculate. This is because that not all soft gluon radiation contributes to the finite q⊥.
The radiation inside the jet will be part of the jet contribution and has to be excluded from
soft gluon radiation contribution. Collinear gluon radiation associated with the incoming
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parton distributions also contribute to the finite imbalance transverse momentum. This part
can be formulated according to the well-known DGLAP splitting. In the end, for a finite
imbalance transverse momentum q⊥, we add the soft gluon (real) and collinear gluon (real)
contributions together, which leads to the so-called asymptotic behavior for the differential
cross sections at low imbalance transverse momentum q⊥. An important cross check of our
derivation is to compare its numerical results with the dijet production codes available in
the literature. We will carry out these comparisons in this paper. We will also perform
another cross check to show that the soft divergences are cancelled out between the real
and virtual graphs. After the cancellation, we are left with only the collinear divergences
associated with the incoming parton distributions.

The large logarithms mentioned above will be evident from the complete one-loop calcula-
tions. Resummation of these large logarithms is the main goal of our paper. To perform the
resummation, we first show that the differential cross sections at this order can be factorized
into the transverse momentum distributions, soft factor, and hard factors, respectively. The
transverse momentum distributions follow the definitions for the Drell-Yan or Higgs boson
productions at low transverse momentum. The soft factor will have to take into account
the additional effects of gluon radiation associated with the two final state jets. The idea to
construct the soft factor follows the examples of threshold resummation studied by Sterman
et al. [11].

The final resummation formula can be summarized as

d4σ

dy1dy2dP
2
Td

2q⊥
=

∑

ab

σ0

[

∫

d2~b⊥
(2π)2

e−i~q⊥·~b⊥Wab→cd(x1, x2, b⊥) + Yab→cd

]

, (2)

where the first term W contains all order resummation and the second term Y comes from
the fixed order corrections. σ0 represents the overall normalization of the differential cross
section, y1 and y2 are rapidities of the two jets, PT the leading jet transverse momentum,
and q⊥ the imbalance transverse momentum between the two jets as defined above. All
order resummation for W from each partonic channel ab → cd can be written as

Wab→cd (x1, x2, b) = x1 fa(x1, µ = b0/b⊥)x2 fb(x2, µ = b0/b⊥)e
−SSud(Q

2,b⊥)

× Tr

[

Hab→cdexp

[

−
∫ Q

b0/b⊥

dµ

µ
γs†

]

Sab→cdexp

[

−
∫ Q

b0/b⊥

dµ

µ
γs

]]

, (3)

where Q2 = ŝ = x1x2S, representing the hard momentum scale. b0 = 2e−γE , with γE
being the Euler constant. fa,b(x, µ) are the integrated parton distributions for the incoming

partons a and b, and x1,2 = PT (e±y1 + e±y2) /
√
S are momentum fractions of the incoming

hadrons carried by the partons. In the above equation, the hard and soft factors H and S

are expressed as matrices in the color space of partonic channel ab → cd, and γs are the
associated anomalous dimensions for the soft factor (defined below). The Sudakov form
factor SSud resums the leading double logarithms and the universal sub-leading logarithms,

SSud(Q
2, b⊥) =

∫ Q2

b2
0
/b2

⊥

dµ2

µ2

[

ln

(

Q2

µ2

)

A+B +D1 ln
Q2

P 2
TR

2
1

+D2 ln
Q2

P 2
TR

2
2

]

, (4)

where R1,2 represent the cone sizes for the two jets, respectively. In the numeric calculations,
they will take the same size as the experiments. Here the parameters A, B, D1, D2 can be
expanded perturbatively in αs. At one-loop order, A = CA

αs

π
, B = −2CAβ0

αs

π
for gluon-

gluon initial state, A = CF
αs

π
, B = −3CF

2
αs

π
for quark-quark initial state, and A = (CF+CA)

2
αs

π
,
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B = (−3CF

4
− CAβ0)

αs

π
for gluon-quark initial state. Here, β0 = (11 − 2Nf/3)/12, with Nf

being the number of effective light quarks. At the next-to-leading logarithmic level, the jet
cone size enters as well [9]. That is the reason we have two additional factors in Eq. (4):
D1,2 = CA

αs

2π
for gluon jet and D1,2 = CF

αs

2π
for quark jet. The cone size R is introduced

to regulate the collinear gluon radiation associated with the final state jets. Only the soft
gluon radiation outside the jet cone will contribute to the imbalance q⊥ between the two
jets.

There are two important issues we will not address in much detail. First, our resummation
formalism is based on a TMD factorization argument [16]. However, there is a potential
contribution at order of α3

s which violates the general TMD factorization [17–21]. It was
found, in particular, certain diagrams in dijet production in hadronic collisions can not
be factorized into the simple universal TMDs. In terms of resummation coefficients, this
will affect the coefficient A(3) in Eq. (4). In our numeric calculations, we will include both
A(1) and A(2) coefficients in the resummation formula (see detailed discussions in Sec. IIC).
Though we do not expect that the factorization violating effect will affect much the results
to be presented below, it will be useful to estimate the size of factorization breaking effect
in some future work.

Second, we derive our results, in both collinear and TMD approaches, by adopting the
narrow jet approximation. With that, we are able to demonstrate the explicit cancellation of
soft divergences, and to express the resummation Sudakov form factor in an analytic form in
terms of the jet sizes. Although the derivation itself is not limited to the NJA, we find that
the differential cross section expressions are much simplified under the NJA. How to extend
our results to the calculations without the NJA is very interesting subject. It is worthwhile
to come back to this question in the future. However, in the current paper, we will carry
out our calculations with the NJA.

The rest of this paper is organized as follows. We will dedicate Secs. II-V to the calcu-
lations of the differential cross sections at low q⊥ in the collinear factorization approach. In
Sec. II, we start with a brief introduction of the leading order results in which the overall
normalization factor for each production channel is presented. In Sec. III, we discuss the
generic features of the one-loop corrections to W (b⊥). This includes virtual graph contribu-
tions, jet contributions in the real gluon radiation, collinear gluon radiation associated with
the incoming partons, and the soft gluon radiation which contributes to a finite q⊥. Since
the soft gluon radiation is the most important contributions for dijet production, we dedi-
cate Sec. IV to show the details of our calculations. In Sec. V, we compare the asymptotic
results for dijet production to the fixed order calculation published in the literature. The
asymptotic behavior for dijet production is calculated by summing the soft gluon radiation
and collinear gluon radiation derived in Secs. III and IV. In Sec. VI, we derive the TMD
factorization and resummation. In particular, we will show that the collinear calculations
from Secs. III-IV at the one-loop order can be factorized into the TMDs, hard and soft
factors. The latter factors are expressed in a matrix form. The resummation is achieved
by solving the relevant renormalization group equations. In Sec. VII, we perform the phe-
nomenological studies based on our resummation formalism. We conclude our paper in Sec.
VIII.
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p1

p2 k2

k1

FIG. 1. Schematic diagram for dijet production at the leading order, with incoming parton mo-

menta: p1 and p2, and outgoing momenta: k1 and k2, respectively.

II. DIJET PRODUCTION AT THE LEADING ORDER

Dijet production at the leading order can be calculated from partonic 2 → 2 processes,

a(p1) + b(p2) → c(k1) + d(k2) , (5)

where p1,2 and k1,2 are momenta for incoming and outgoing two partons. Schematically, we
draw the diagrams in Fig. 1.

The partonic channels include the following subprocesses:

qiqj → qiqj , (6)

qiq̄i → qj q̄j , (7)

qiqi → qiqi , (8)

qg → qg , (9)

gg → qq̄ , (10)

qq̄ → gg , (11)

gg → gg . (12)

Their contributions can be summarized as

d4σ

dy1dy2dP 2
Td

2q⊥
=

∑

ab

σ0x1 fa(x1, µ)x2 fb(x2, µ)h
(0)
ab→cdδ

(2)(q⊥) , (13)

where the overall normalization of the differential cross section is σ0 = α2
sπ
s2

. The partonic

cross sections h(0) for all the production channels are listed below,

h(0)
qiqj→qiqj

=
4

9

s2 + u2

t2
, (14)

h
(0)
qiq̄i→qj q̄j =

4

9

t2 + u2

s2
, (15)

h(0)
qiqi→qiqi

=
4

9

(

s2 + u2

t2
+

s2 + t2

u2

)

− 8

27

s2

tu
, (16)

h
(0)
gg→qq̄ =

1

6

u2 + t2

tu
− 3

8

u2 + t2

s2
, (17)

h(0)
qg→qg =

4

9

u2 + s2

−us
+

u2 + s2

t2
, (18)

h(0)
gg→gg =

9

2

(

3− ut

s2
− us

t2
− st

u2

)

, (19)

(20)
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(a) (b) (c)

FIG. 2. Schematic diagrams for virtual graph contribution (a) and final state jet contributions

(b) and (c) at one-loop order. All of them are proportional to a Delta function of the imbalance

transverse momentum: δ(2)(q⊥).

where the usual Mandelstam variables are defined as s = (p1 + p2)
2, t = (p1 − k1)

2 and
u = (p1 − k2)

2. As mentioned above, at the leading order, they contribute to a Delta
function of q⊥, which corresponds to the back-to-back configuration of the two jets in the
transverse plane. If we translate this into the b⊥-space, we will obtain W (b⊥) at the leading
order,

W
(0)
ab→cd(b⊥) = x1fa(x1, µ)x2fb(x2, µ)h

(0)
ab→cd . (21)

The goal of the following three sections is to derive the one-loop corrections: W
(1)
ab→cd(b⊥).

III. GENERIC DISCUSSIONS ON ONE-LOOP CALCULATIONS

There are four types of radiative contributions at the one-loop order:

1. Virtual contributions, as shown in Fig. 2(a). These contributions have been calculated
in the literature, and they are proportional to the leading order contributions, leading
to a Delta function of q⊥.

2. Real gluon radiation: Jet contributions. In the real gluon radiation, one particular
contribution is also proportional to the leading order contribution: the jet contribution.
In this case, the gluon radiation is within the jet, where its momentum is collinear to
one of the final state partons. For example, as shown Fig. 2(b), the radiated gluon is
collinear to one parton in the final state, and they form a new jet at one-loop order.
Because of momentum conservation, this again leads to a Delta function of q⊥.

3. Real gluon radiation: collinear gluon associated with the incoming partons. These
collinear gluons contribute to a finite q⊥, and is proportional to 1/q2⊥ multiplied by the
splitting kernel of parton distribution functions. As shown in Fig. 3(a), they originate
from the incident partons, so that the collinear gluon contributions follow the generic
structure and are easy to calculate.

4. Real gluon radiation: soft gluon contribution. Soft gluon contributions are more
difficult to evaluate. They also contribute to a finite q⊥. To evaluate this part of
contribution, we apply the leading power expansion in the limit of q⊥ ≪ Q. Because
the final state jets also carry color, we will have to take into account the interactions
among initial and final state partons. In addition, we have to exclude the soft gluon
radiation within the final state (cone) jets whose contributions have already been
included in the final state jet contributions. Detailed calculations will be presented in
the following section.
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(a) (b)

FIG. 3. Schematic diagrams for real gluon radiation contribution to finite imbalance transverse

momentum: (a) collinear gluon radiation associated with the incoming partons; (b) soft gluon

radiation outside the jet cone of final state jets.

In the rest of this section, we will go through the first three contributions, whereas the soft
gluon radiation contribution will be calculated in Sec. IV.

We will carry out our calculations in the collinear factorization formalism, and apply the
dimensional regulation for IR and UV divergences with dimension D = 4 − 2ǫ. Various
divergences appear in individual contributions: 1/ǫ2 represents the soft divergence, whereas
1/ǫ for either soft or collinear divergence. Since we are dealing with jet production in the
final states, we will also encounter the divergences associated with the jet size R. The
explicit calculations of gluon radiation will depend on how we define the jet. Therefore, the
jet algorithm will play a role in formulating the one-loop corrections.

Two important cross checks will be performed in the derivations. First, the soft diver-
gences of 1/ǫ2 will be cancelled out completely among different terms. We notice that (1,2,4)
terms listed above will have 1/ǫ2 contributions. A crucial test of our calculations is that
these 1/ǫ2 terms are cancelled out by each other. This cancellation is not trivial, since they
come from different diagrams, and some with different color factors. However, we will show
that the total contribution is free of soft divergence of 1/ǫ2. Second, the divergences asso-
ciated with the final state jets are also cancelled out among various terms. The collinear
divergences associated with the jets are regulated by the jet sizes, and the individual con-
tributions contain terms of 1/ǫ ln(1/R) are cancelled out in the final results. We will show
that the cancellation indeed happens at this order.

A. Virtual Graphs

Virtual diagrams for dijet production in hadronic collisions have been calculated in the
classic paper of Ref. [15]. In our calculations, we will take their results.

B. Jet Contributions

Jet contributions contain the collinear gluon radiation and gluon to quark-antiquark
splitting in the final state. The schematic diagrams have been shown in Figs. 2(b) and (c).
Because we have two jets in the final state, one-loop jet corrections can come from either
of the jets, as shown in Fig. 2(b) and (c), respectively. The jet contribution needs to be
included to capture the collinear gluon radiation (or gluon splitting to quark-antiquark pair)
within the jet cone. These gluon radiations will not change the kinematics of the parenting
parton, and therefore contribute to a Delta function of q⊥, which is similar to the virtual
graph contributions. The requirement is that the two partons in the splitting process form a
jet according to the jet algorithm adopted in experimental measurements. In order to derive
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an analytic expression, we apply the narrow jet approximation (NJA) in our calculations. In
particular, we follow the technique and scheme of the subtraction developed in Refs. [13, 14].
The basic idea is to note that in the collinear gluon radiation limit for each final state jet,

|M(2 → 3)|2 ≈ |M0(2 → 2)|2 ×P1→2 , (22)

where M(2 → 3) represents the scattering amplitude of 2 → 3 subprocess, M0(2 → 2) for
the leading order 2 → 2 subprocess with one of the final state parton branching into two
parton final state represented by the splitting of P1→2.

Therefore, the jet contributions can be summarized as,
∫

d3k3
2E3(2π)3

EJ

E2

P1→2 , (23)

where the factor EJ/E2 accounts for the phase space difference from 3 parton final state to
2 parton final state. The phase space integral of the above equation is limited that the two
partons are within the jet cone. Here the difference from jet algorithms plays a role. Using
the NJA, the calculations follow what have been done in Refs. [13, 14], and in particular,
we find that the gluon jet in the final state contributes

J g =
αs

2π

1

Γ(1− ǫ)

1

−2ǫ

(

P 2
TR

2

4π

)−ǫ ∫ 1

0

dξ (ξ(1− ξ))−2ǫ [fgg(ξ) + fqg(ξ)] , (24)

for kt-type jet (including anti-kt) algorithm, where R defines the jet cone size: R =
√

(∆y)2 + (∆φ)2. Here, ∆y and ∆φ are the rapidity difference and azimuthal angle dif-
ference between the two partons which define the jet. In the above equation, fgg(ξ) and
fqg(ξ) are splitting kernels for gluon to gluon and gluon to quark-antiquark pair [13, 14],
respectively. By applying the MS subtraction, we obtain,

J g =
αsCA

2π

[

1

ǫ2
+

1

ǫ

(

2β0 − ln
P 2
TR

2

µ2

)

+ Ig
]

, (25)

where we have taken into account the contributions from both g → gg and g → qq̄ splittings.
We would like to emphasize that the singular terms (double and single poles) are independent
of jet algorithm. The jet algorithm dependent contributions arise from the finite term Ig.
The above jet function is universal, and can be used in many other cases as well. Similarly,
we find that the quark jet can be written as

J q =
αsCF

2π

[

1

ǫ2
+

1

ǫ

(

3

2
− ln

P 2
TR

2

µ2

)

+ Iq
]

. (26)

In the kt-type jet algorithms, the above mentioned Iq and Ig terms are already available:

Ig =
1

2

(

ln
P 2
TR

2

µ2

)2

− 2β0 ln
P 2
TR

2

µ2
+

67

9
− 3

4
π2 − 23

54
Nf , (27)

Iq =
1

2

(

ln
P 2
TR

2

µ2

)2

− 3

2
ln

P 2
TR

2

µ2
+

13

2
− 3

4
π2 . (28)

We note that the double logarithmic terms are independent of jet algorithm. These terms
will be cancelled out in the final results, as shown in Sec. IV.
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FIG. 4. Example of Feynman diagrams that contribute to the TMD factorization breaking effects

in two particle production via hadronic processes at O(α3
s) order [17] (left), where two gluon

exchanges between the incoming/outgoing particles induce non-universality of the TMDs in this

process as compared to other processes such as DIS and Drell-Yan processes. These diagrams

would contribute to A(3) in the resummation formula. The dominant contribution at this order

is illustrated in the right panel, which are factorizable and come from A(1) in the resummation

formula.

C. Collinear Gluon Radiation

The contributions from the collinear gluon radiation associated with the incoming partons
can be easily evaluated, and they are found to be proportional to the splitting kernel at the
one-loop order [16]:

αs

2π2

1

q2⊥

∫

dx′
1

x′
1

dx′
2

x′
2

fa′(x
′
1)fb′(x

′
2)
[

δ(ξ2 − 1)ξ1P(<)
a/a′(ξ1) + (ξ1 ↔ ξ2)

]

, (29)

where ξi = xi/x
′
i and P(<)

a/a′ represents the splitting kernel without the Delta function term.

To evaluate the contribution from soft gluon radiation requires more care. This is because
we have to exclude the collinear contributions associated with the final state jet which will
be factorized into a jet function and will not contribute to finite q⊥. Before we discuss its
details in the following section, we note that the TMD factorization breaking effects can
appear at higher orders in two particle production at hadron colliders [17–21]. These effects
come from the diagrams illustrated in Fig. 4 [17], which belong to a nontrivial contribution
at order α3

s to the parton distributions. They cannot be factorized into the conventional
transverse momentum dependent parton distributions, though they could contribute to the
A(3) coefficient in the resummation formula. Since it is beyond the perturbative order (up
to α2

s) discussed in this paper, we shall not discuss it further in this work.

IV. SOFT GLUON RADIATION AT ONE-LOOP ORDER

For soft gluon radiations, we can apply the leading power expansion and derive the dom-
inant contribution by utilizing the Eikonal approximation. This analysis has been applied
in Ref. [8] to obtain the leading double logarithmic contributions to dijet production. In the
current paper, we will extend that analysis to include the subleading logarithmic contribu-
tions as well. In particular, we will derive the contributions which depend on the jet cone
size. The relevant Feynman rules have been listed in Ref. [8]. For completeness, we copy
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(a) (b) (c)

FIG. 5. Soft gluon radiation contribution to finite imbalance transverse momentum q⊥: (a) initial

state radiation, and (b) and (c) final state radiations. Because we have chosen the gluon polarization

vector along p2, there is no contribution connecting to p2 line.

these results here. For outgoing quark, antiquark and gluon lines, we have

2kµ
i

2ki · kg + iǫ
g , − 2kµ

i

2ki · kg + iǫ
g ,

2kµ
i

2ki · kg + iǫ
g , (30)

respectively, where ki represents the momentum of the outgoing particles. For incoming
quark, antiquark and gluon lines, we have,

− 2pµ1
2p1 · kg − iǫ

g ,
2pµ1

2p1 · kg − iǫ
g ,

2pµ1
2p1 · kg − iǫ

g , (31)

respectively, where p1 represents the momentum for the incoming particle.
Following Ref. [8], we choose the physical polarization for the soft gluon along the incom-

ing particle p2. Therefore, the soft gluon radiation from the incoming particle p2 vanishes.
From that, we can derive the soft gluon radiation contribution easily, with the polarization
tensor for the radiated gluon,

Γµν(kg) =

(

−gµν +
kµ
g p

ν
2 + kν

gp
µ
2

kg · p2

)

. (32)

For example, from the amplitude squared of the soft gluon radiation terms in the above, we
have

2pµ1
2p1 · kg

2pν1
2p1 · kg

Γµν = Sg(p1, p2) , (33)

2kµ
1

2k1 · kg
2kν

1

2k1 · kg
Γµν = Sg(k1, p2) , (34)

2kµ
2

2k2 · kg
2kν

2

2k2 · kg
Γµν = Sg(k2, p2) , (35)

where Sg(p, q) is a short-handed notation for

Sg(p, q) =
2p · q

p · kgq · kg
. (36)

Similarly, we derive the interferences between them,

2
2kµ

1

2k1 · kg
2pν1

2p1 · kg
Γµν = Sg(k1, p2) + Sg(p1, p2)− Sg(k1, p1) , (37)

2
2kµ

2

2k2 · kg
2pν1

2p1 · kg
Γµν = Sg(k2, p2) + Sg(p1, p2)− Sg(k2, p1) , (38)

2
2kµ

1

2k1 · kg
2kν

2

2k2 · kg
Γµν = Sg(k1, p2) + Sg(k2, p2)− Sg(k1, k2) . (39)
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In order to evaluate the contributions from soft gluon radiation, we integrate out the phase
space of the gluon whose transverse momentum leads to the imbalance between the two jets,
e.g.,

g2
∫

dD−1kg
(2π)D−12Ekg

δ(2)(q⊥ − kg⊥)Sg(p1, p2) , (40)

where we have chosen dimensional regulation for the phase space integral. The derivation
of the above term is straightforward, by noticing that the lower limit in the longitudinal
momentum fraction integral,

∫ 1

xmin

dx

x

1

k2
g⊥

, (41)

where we have defined x as momentum fraction of p1 carried by the soft gluon. Because of

momentum conservation, we have lower limit for the x-integral: xmin =
k2
g⊥

Q2 . Therefore, the
above integral leads to the following leading contribution,

1

q2⊥
ln

Q2

q2⊥
. (42)

Substituting the above equation into Eq. (40), we have

g2
∫

dD−1kg
(2π)D−12Ekg

δ(2)(q⊥ − kg⊥)Sg(p1, p2) =
αs

2π2

1

q2⊥

(

2 ln
Q2

q2⊥

)

. (43)

Because there is no ǫ = (4−D)/2 term in the dx integral, we have taken D = 4 in the above
equation. The other terms are more difficult to calculate, because the phase space integral
will contain jet contributions. To avoid double-counting, we have to subtract this part of
contribution. That means the phase space integral has to exclude the jet (cone) region. It
is interesting to note that the final result does not depend on the jet algorithm. This is
because, here we are considering the soft gluon radiation, whereas the jet algorithm mainly
focuses on the collinear gluons associated with the jet.

A. Out of the Jet-cone Radiation

As a general discussion, let us take the example of a particular term,

∫

dD−1kg
2Ekg

δ(2)(q⊥ − kg⊥)Sg(k1, p1) =

∫

dD−2kg⊥δ
(2)(q⊥ − kg⊥)

∫

dξ1
ξ1

2

(kg⊥ − ξ1k1⊥)2
, (44)

where k1⊥ represents the transverse momentum for the final state jet with momentum k1,
and ξ1 is defined as ξ1 = kg · p1/k1 · p1. Clearly, there is collinear divergence associated
with the jet. That means, if the gluon radiation is within the jet cone, it will generate a
collinear divergence. In order to regulate this collinear jet divergence, we can limit the phase
space integral to require that the gluon radiation being outside of the jet cone. With this
restriction, there will be no divergence associated with the jet. Instead, the jet (cone) size
R will be introduced to regulate the collinear divergence from the jet.
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There are different ways to regulate the above integral. In the above example, the integral
diverges when kg is parallel to k1, where the invariant mass of k1 + kg becomes small. The
out of cone radiation requires that the invariant mass has a minimum, say, Λ, i.e.,

(k1 + kg)
2 > Λ2 . (45)

Clearly, Λ depends on the jet size. In other words, if (k1 + kg)
2 is smaller than Λ2, we have

to exclude its contribution, because it belongs to the jet contribution calculated in previous
section.

Following the similar analysis as done for the jet contribution, we can find out the size
of Λ. For example, if we substitute the kinematics of k1 and kg into the above equation, we
will obtain

(k1 + kg)
2 ≈ k1⊥kg⊥

(

ey1−yg + eyg−y1
)

− 2k1⊥kg⊥ cos(φ1 − φg) ≈ k1⊥kg⊥R
2
1g , (46)

where y1 and yg are rapidities for k1 and kg, φ1 and φg are the azimuthal angles, respectively,
and R1g represents the cone size between k1 and kg. In other words, if R1g is smaller than
R, the gluon radiation will be considered inside the jet cone. Therefore, in the phase space
integral of Eq. (44), we have to impose the following kinematic restriction: Θ(2k1 · kg −Λ2)
with Λ2 = k1⊥kg⊥R

2. Equivalently, we find it is much easier to adapt a slight off-shell-ness
for the jet momentum k1 to regulate the divergence: k2

1 = m2
1 = k2

1⊥R
2. By doing that we do

not need to impose any kinematic constraints, and the phase space integral is much easier
to carry out. The choice of m2

1 is to make sure that (k1+kg)
2 is always larger than Λ2. This

can be verified as follows,

(k1 + kg)
2 =

√

k2
1⊥ +m2

1kg⊥
(

ey1−yg + eyg−y1
)

− 2k1⊥kg⊥ cos(φ1 − φg)

≈
√

k2
1⊥ +m2

1kg⊥(∆y)2 + k1⊥kg⊥(∆φ)2 + 2kg⊥

(

√

k2
1⊥ +m2

1 − k1⊥

)

. (47)

By choosing m2
1 = k2

1⊥R
2, it is guaranteed that (k1 + kg)

2 is larger than Λ2 for any values of
∆y and ∆φ.

In the narrow jet approximation, i.e., in the R → 0 limit, the phase space cut-off technique
results into the same leading contributions in terms of ln(1/R). After adding an off-shell-ness
to the jet momentum, the integral in Eq. (44) can be written as

∫

dD−2kg⊥δ
(2)(q⊥ − kg⊥)

∫

dξ1
ξ1

2

ξ21k
2
1⊥(1 +R2) + k2

g⊥ − 2ξ1k1⊥ · kg⊥
. (48)

To proceed, we average the azimuthal angle of the jet but fix the azimuthal angle of kg⊥.
This corresponds to keeping the imbalance transverse momentum direction ~q⊥. With that,
we obtain

∫

dξ1
ξ1

∫ π

0

dφ

π

2

ξ21k
2
1⊥(1 +R2) + k2

g⊥ − 2ξ1k1⊥kg⊥ cos(φ)
,

=

∫

dξ1
ξ1

1
√

(

ξ21k
2
1⊥(1 +R2) + k2

g⊥
)2 − 4ξ21k

2
1⊥k

2
g⊥

, (49)

where the lower limit of ξ1 is
(

k2
g⊥

−t

)

. As an illustration, we have taken D = 4 in the average

of φ angle in the above equation. There is a ǫ-term correction if we keep D-dimension, which
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can be calculated accordingly. In the final results shown below, we have kept those terms
for completeness. After taking the limit of q⊥ ≪ Q and R → 0, we obtain the leading power
contribution as

1

q2⊥

1

2

[

ln
Q2

q2⊥
+ ln

(

t

u

)

+ ln
1

R2

]

. (50)

Therefore, the final result for the integration of the Sg(k1, p1) term can be written as

g2
∫

d3kg
(2π)32Ekg

δ(2)(q⊥ − kg⊥)Sg(k1, p1) =
αs

2π2

1

q2⊥

[

ln
Q2

q2⊥
+ ln

1

R2
1

+ ln

(

t

u

)]

. (51)

Evaluation of the other terms are similar, we summarize their final results as

Sg(p1, p2) ⇒
αs

2π2

1

q2⊥

(

2 ln
Q2

q2⊥

)

, (52)

Sg(k1, p1) ⇒
αs

2π2

1

q2⊥

[

ln
Q2

q2⊥
+ ln

1

R2
1

+ ln

(

t

u

)

+ ǫ

(

1

2
ln2 1

R2
1

+
π2

6

)]

, (53)

Sg(k2, p1) ⇒
αs

2π2

1

q2⊥

[

ln
Q2

q2⊥
+ ln

1

R2
2

+ ln
(u

t

)

+ ǫ

(

1

2
ln2 1

R2
2

+
π2

6

)]

, (54)

Sg(k1, p2) ⇒
αs

2π2

1

q2⊥

[

ln
Q2

q2⊥
+ ln

1

R2
1

+ ln
(u

t

)

+ ǫ

(

1

2
ln2 1

R2
1

+
π2

6

)]

, (55)

Sg(k2, p2) ⇒
αs

2π2

1

q2⊥

[

ln
Q2

q2⊥
+ ln

1

R2
2

+ ln

(

t

u

)

+ ǫ

(

1

2
ln2 1

R2
2

+
π2

6

)]

, (56)

Sg(k1, k2) ⇒
αs

2π2

1

q2⊥

[

ln
1

R2
1

+ ln
1

R2
2

+ 2 ln

(

s2

tu

)

+ ǫ

(

1

2
ln2 1

R2
1

+
1

2
ln2 1

R2
2

+
π2

3

−4 ln
s

−t
ln

s

−u

)]

, (57)

where we have kept the ǫ-terms. They will make finite contributions to the one-loop calcu-
lation of W (b), when Fourier transforming from q⊥ to b⊥-space.

The above results are the basic elements to be used in our calculation to derive the low
q⊥ behavior of a scattering process, induced by soft gluon radiation. In the following, we
will apply these results to all the partonic processes which contribute to the inclusive dijet
production in hadronic collisions.

B. qiqj → qiqj

Quark-quark channel (with different quark flavors i and j) is the simplest case to calculate.
Its leading Born amplitude can be written as

M0 = ū(k1)T
aγµu(p1)ū(k2)T

aγνu(p2) (Gµν(k1 − p1)) , (58)

where Gµν represents the gluon propagator with momentum k1 − p1. For simplicity, we
separate the color factor in the above amplitude,

M0 = A0(p1, p2, k1, k2)ūkT
auiūlT

auj , (59)
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where i, j and k, l are color indices for the incoming and outgoing quarks, respectively. Soft
gluon radiation can be summarized as

− 2pµ1
2p1 · kg

A0ūT
aT cuūT au (60)

+
2kµ

1

2k1 · kg
A0ūT

cT auūT au (61)

+
2kµ

2

2k2 · kg
A0ūT

auūT cT au , (62)

where kg is the radiated gluon momentum, µ and c for its polarization vector and color
index, respectively. To calculate the soft gluon contribution via this partonic channel, we
need to perform the phase space integration over its amplitude squared, as discussed in the
previous subsection.

Let us first work out the color factors for various terms in its amplitude squared:

kµ
1k

ν
1 ⇒ CF |M0|2 ,

kµ
2k

ν
2 ⇒ CF |M0|2 ,

pµ1p
ν
1 ⇒ CF |M0|2 ,

kµ
1k

ν
2 ⇒ −1

4
CF |M0|2 ,

kµ
1 p

ν
1 ⇒ − 1

2Nc
|M0|2 ,

kµ
2 p

ν
1 ⇒

1

4
(2CA − CF ) |M0|2 . (63)

Including the proper color factors, the amplitude squared contributes

CF [Sg(p1, p2) + Sg(k1, p2) + Sg(k2, p2)]

+
1

2NC
[Sg(k1, p2) + Sg(p1, p2)− Sg(k1, p1)]

−1

4
(2CA − CF ) [Sg(k2, p2) + Sg(p1, p2)− Sg(k2, p1)]

−1

4
CF [Sg(k2, p2) + Sg(k1, p2)− Sg(k1, k2)] . (64)

After integrating the (restricted) phase space of the radiated gluon, we obtain the following
contribution of the soft gluon radiation to the qiqj → qiqj channel:

αs

2π2

1

q2⊥

{

h(0)
qiqj→qiqj

[

2CF ln
Q2

q2⊥
+ CF

(

ln
1

R2
1

+ ln
1

R2
2

)]

+ Γ(qq′)
sn

}

, (65)

where

Γ(qq′)
sn = h(0)

qiqj→qiqj

[

2 (CA − CF ) ln
s

−t
− 2 ln

s

−u

]

. (66)

An important cross check of the above result is to show that the infrared divergences of the
soft gluon radiation are cancelled by those from the virtual diagrams and jet contributions.
The only left divergences are associated with the collinear divergences for the incoming
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two quark distributions, which can be absorbed into the definition of renormalized parton
distribution functions.

To check the cancellation, we have to Fourier transform the above expression into the
impact parameter b⊥-space,

W (s+c)(b⊥)=
αs

2π

∫

dx′
1

x′
1

dx′
2

x′
2

fq(x
′
1)fq(x

′
2)
{

h(0)
qiqj→qiqj

×
[(

−1

ǫ
+ ln

b20
b2⊥µ

2

)

CF

(

1 + ξ21
(1− ξ1)+

δ(1− ξ2) + (ξ1 ↔ ξ2)

)

+ δ(1− ξ1)δ(1− ξ2)

×
((

−1

ǫ
+ ln

b20
b2⊥µ

2

)(

CF ln
1

R2
1R

2
2

+ ǫCF

(

1

2
ln2 1

R2
1

+
1

2
ln2 1

R2
2

+
π2

3

))

+CF

(

2

ǫ2
− 2

ǫ
ln

Q2

µ2
+ ln2

(

Q2

µ2

)

− ln2

(

Qbb2⊥
b20

)

− π2

6
+ ln

s

−t
ln

s

−u

))]

+δ(1− ξ1)δ(1− ξ2)

(

−1

ǫ
+ ln

b20
b2⊥µ

2

)

Γ(qq′)
sn

}

, (67)

where ξ1 = x1/x
′
1 and ξ2 = x2/x

′
2, and we have also included the collinear gluon radiation

contributions associated with the incoming two quarks (see Eq. (29)).
The virtual graphs have been calculated in the literature, and can be summarized as

follows [15],

αs

2π

{

CF

[

− 4

ǫ2
+

1

ǫ

(

4 ln
Q2

µ2
− 2 ln

Q2

P 2
T

+ 2 ln
u

t
− 6

)]

+
1

ǫ

1

2NC
4 ln

s2

tu

}

+ · · · , (68)

where we only kept the singular terms to check the cancellations between real and virtual
diagrams. In addition, we have two jets contributions

Jet1 + Jet2 =
αs

2π
CF

[

2

ǫ2
+

1

ǫ

(

3− 2 ln
P 2
T

µ2
+ ln

1

R2
1R

2
2

)

+ Iq1 + Iq2
]

, (69)

where Iqi are finite terms associated with jet functions. Clearly, the 1/ǫ2 and 1/ǫ terms all
cancel out after summing up all the above three contributions, except those associated with
the splitting of quark distribution:

−1

ǫ
CF

[(

1 + ξ21
(1− ξ1)+

δ(1− ξ2) + (ξ1 ↔ ξ2)

)

+ 3δ(1− ξ1)δ(1− ξ2)

]

= −1

ǫ
[Pqq(ξ1)δ(1− ξ2) + Pqq(ξ2)δ(1− ξ1)] , (70)

where Pqq is the quark splitting kernel. The complete expression for the finite terms will
be much involved. To facilitate the discussion on factorization, to be presented in Sec. VI,
we show below the most important terms in the finite contributions, in particular, those
with large logarithms of ln(Q2b2⊥/b

2
0) and ln(µ2b2⊥/b

2
0). This will clear show how the TMD

factorization works.

W (1)(b⊥)|logs.=
αs

2π

{

h(0)
qiqj→qiqj

[

− ln

(

µ2b2⊥
b20

)

(Pqq(ξ1)δ(1− ξ2) + Pqq(ξ2)δ(1− ξ1))− δ(1− ξ1)

×δ(1 − ξ2)

(

CF ln2

(

Q2b2⊥
b20

)

+ ln

(

Q2b2⊥
b20

)(

−3CF + CF ln
1

R2
1

+ CF ln
1

R2
2

))]

−δ(1 − ξ1)δ(1− ξ2) ln

(

Q2b2⊥
b20

)

Γ(qq′)
sn

}

, (71)
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where an overall integrand factor of
∫ dx′

1

x′

1

dx′

2

x′

2

fq(x
′
1)fq(x

′
2) was omitted for simplicity. We

would like to emphasize a number of important observations from the above calculations.
First, the factorization scale µ dependence only exists in terms associated with the parton
splitting kernel. This scale dependence shall be cancelled by the relevant scale evolution
for the integrated parton distributions. Second, in the final results, ln2(1/R2) terms are
cancelled out between the jet contribution and the soft gluon contribution. Third, the large
logarithms appear in the one-loop calculations contain three terms: (a) the double logarithms
in terms of ln2(Q2b2⊥/b

2
0) proportional to incoming partons color factors (here, it is CF +CF );

(b) single logarithms in terms of ln(µ2b2⊥/b
2
0) associated with parton distributions; (c) the left

single logarithms of ln(Q2b2⊥/b
2
0) contains similar terms as Drell-Yan process (the−3CF term)

and those associated with dijet production in this particular channel (jet size dependent
contributions and additional contributions which is process-dependent). All these features
point to a possible factorization in terms of TMDs, for which we will discuss in Sec. VI.

C. qg → qg

In this process, we have two different color structure at the Born level,

A1ūT
aT bu+ A2ūT

bT au , (72)

where a and b represent the color indexes for the incoming and outgoing gluons, the ampli-
tudes A1 and A2 depend on momenta of two incoming particles: p1 and p2, and two outgoing
particles: k1 and k2 for the quark and gluons, respectively. The leading order amplitude
squared reads as,

|A0|2 = CF (A1 + A2)
2 − CAA1A

∗
2 , (73)

where the two terms are separately gauge invariant. Soft gluon radiation follows previous
example, and can be decomposed into the following three terms,

2kµ
1

2k1 · kg
[

A1ūT
cT aT bu+ A2ūT

cT bT au
]

+
−2pµ1
2p1 · kg

[

A1ūT
aT bT cu+ A2ūT

bT aT cu
]

+
2kµ

2

2k2 · kg
(−ifcbd)

[

A1ūT
aT du+ A2ūT

dT au
]

, (74)

from the initial state and final state radiations, where c represents the color index for the
radiated gluon.

The amplitude squared of the soft gluon radiation can be summarized into the following
form,

|A0|2 [CFSg(p1, p2) + CFSg(k1, p2) + CASg(k2, p2)]

+

[

1

4
(A1 + A2)

2 − N2
c

4
A2

1

]

(Sg(k1, p2) + Sg(k2, p2)− Sg(k1, k2))

−
[

1

4N2
c

(A1 + A2)
2 +

1

4
2A1A

∗
2

]

(Sg(k1, p2) + Sg(p1, p2)− Sg(k1, p1)) ,

−
[

−1

4
(A1 + A2)

2 +
N2

c

4
A2

2

]

(Sg(k2, p2) + Sg(p1, p2)− Sg(k2, p1)) . (75)
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Adding them together and applying the phase space integral, we obtain the leading contri-
bution induced by soft gluon radiation in the qg → qg channel:

αs

2π2

1

q2⊥

{

h(0)
qg→qg

[

(CA + CF ) ln
Q2

q2⊥
+ CF ln

1

R2
1

+ CA ln
1

R2
2

]

+ Γ(qg)
sn

}

, (76)

where Γ
(qg)
sn represents additional contribution in the sub-leading logarithm,

Γ(qg)
sn = ln

s

−u

[

−2(N2
c + 1)

N3
c

s2 + u2

−su
+

u(s2 + u2)

−t2s
Nc −

s2 + u2

t2
(CA − CF )

]

+ ln
s

−t

[

s2 + u2

−su

N2
c + 2

N3
c

+
s2 + u2

t2
(CA − CF )

]

. (77)

The Fourier transformation of the above results into the impact parameter b⊥-space leads
to the following contributions,

W (s+c)(b⊥) =
αs

2π

{

h(0)
qg→qg

[(

−1

ǫ
+ ln

b20
b2⊥µ

2

)

(CFPqq(ξ1)δ(1− ξ2) + CAPgg(ξ2)δ(1− ξ1))

+δ(1− ξ1)δ(1− ξ2)

(

CA + CF

2

(

2

ǫ2
− 2

ǫ
ln

Q2

µ2
+ ln2

(

Q2

µ2

)

− ln2

(

Qbb2⊥
b20

)

− π2

6

)

+

(

−1

ǫ
+ ln

b20
b2⊥µ

2

)(

−2β0CA − 3

2
CF + CF ln

1

R2
1

+ CA ln
1

R2
2

))]

+

(

−1

ǫ
+ ln

b20
b2⊥µ

2

)

δ(1− ξ1)δ(1− ξ2)Γ
(qg)
sn

}

. (78)

Virtual graphs contribute to the following terms in W (b⊥) can be obtained following the
results in Ref. [15],

W (v)(b⊥) =
αs

2π

{

h(0)
qg→qg

[

(−2CF − 2CA)

(

− 1

ǫ2
− 1

ǫ
ln

Q2

µ2

)

+
1

ǫ
(−3CF − 2β0)

]

+
1

ǫ

1

Nc

[

ln
−t

s

(

(N2
c − 1)

s2 + u2

t2
−

(

1

2N2
c

+
N2

c

2

)

s2 + u2

su

)

+ ln
−u

s

(

N2
c

(

2s2

t2
− s

u

)

+
s2 + u2

su

)]}

. (79)

Furthermore, the jet contribution, including both quark and gluon jets in the final state,
yields

W (j)(b⊥) =
αs

2π

[

(CA + CF )

(

1

ǫ2
− 1

ǫ
ln

P 2
T

µ2

)

+
1

ǫ

(

3

2
CF + 2β0CA + CF ln

1

R2
1

+ CA ln
1

R2
2

)]

.(80)

Clearly, all the divergences are cancelled out between the above terms, except the collinear
divergences associated with the incoming quark and gluon distribution functions.
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Again, the finite contributions take the following form, if we only keep the logarithmic
terms,

W (1)(b⊥)|logs.=
αs

2π
h(0)
qg→qg

{

− ln

(

µ2b2⊥
b20

)

[Pqq(ξ1)δ(1− ξ2) + Pgg(ξ2)δ(1− ξ1)]− δ(1− ξ1)δ(1− ξ2)

×
[

CF + CA

2
ln2

(

Q2b2⊥
b20

)

+ ln

(

Q2b2⊥
b20

)(

−3

2
CF − 2β0 + CF ln

1

R2
1

+ CA ln
1

R2
2

)

+ ln

(

Q2b2⊥
b20

)

Γ
(qg)
sn

h
(0)
qg→qg

]}

. (81)

D. gg → qq̄

Similarly, the Born amplitude for the gg → qq̄ channel is

A1ūT
aT bv + A2ūT

bT av , (82)

with two momenta for incoming gluons: p1 and p2, and two momenta for outgoing quark
and antiquark: k1 and k2. The leading order amplitude squared can be written as

|A0|2 = CF

(

A2
1 + A2

2

)

− CAA1A
∗
2 , (83)

with crossing symmetry to the above qg → qg channel. Soft gluon radiation can be derived
as

2kµ
1

2k1 · kg
[

A1ūT
cT aT bv + A2ūT

cT bT av
]

+
−2kµ

2

2k2 · kg
[

A1ūT
aT bT cv + A2ūT

bT aT cv
]

+
2pµ1

2p1 · kg
(−ifcad)

[

A1ūT
dT bv + A2ūT

bT dv
]

, (84)

where c represents the color index for the radiated gluon. Its amplitude squared, including
proper color factors, yields

|A0|2 [CASg(p1, p2) + CFSg(k1, p2) + CFSg(k2, p2)]

−
[

1

4N2
c

(A1 + A2)
2 +

1

4
2A1A

∗
2

]

(Sg(k1, p2) + Sg(k2, p2)− Sg(k1, k2))

+

[

−N2
c

4
A2

1 +
1

4
(A1 + A2)

2

]

(Sg(k1, p2) + Sg(p1, p2)− Sg(k1, p1)) ,

−
[

N2
c

4
A2

2 −
1

4
(A1 + A2)

2

]

(Sg(k2, p2) + Sg(p1, p2)− Sg(k2, p1)) , (85)

After applying the integral over the phase space of the radiated gluon, we obtain

αs

2π2

1

q2⊥

{

h
(0)
gg→qq̄

[

2CA ln
Q2

q2⊥
+ CF ln

1

R2
1

+ CF ln
1

R2
2

]

+ Γ(qq̄)
sn

}

, (86)
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where

Γ(qq̄)
sn =

1

4
ln

s

−u

[

t2 + u2

s2
u2 − t2

tu

N2
c

4
+

1

2Nc

1

2Nc

t2 + u2

tu
+

1

2

t2 + u2

s2

]

+
1

4
ln

s

−t

[

t2 + u2

s2
t2 − u2

tu

N2
c

4
+

1

2Nc

1

2Nc

t2 + u2

tu
+

1

2

t2 + u2

s2

]

. (87)

The above result shows the leading contribution at low imbalance transverse momentum q⊥.
After Fourier transformation, we have the following contribution to W (b⊥):

W (s+c)(b⊥) =
αs

2π

{

CAh
(0)
gg→qq̄

[(

−1

ǫ
+ ln

b20
b2⊥µ

2

)

(Pgg(ξ1)δ(1− ξ2) + (ξ1 ↔ ξ2))

+δ(1− ξ1)δ(1− ξ2)

(

2

ǫ2
− 2

ǫ
ln

Q2

µ2
+ ln2

(

Q2

µ2

)

− ln2

(

Qbb2⊥
b20

)

− π2

6

+

(

−1

ǫ
+ ln

b20
b2⊥µ

2

)(

−4β0 +
CF

CA

ln
1

R2
1R

2
2

))]

+

(

−1

ǫ
+ ln

b20
b2⊥µ

2

)

δ(1− ξ1)δ(1− ξ2)Γ
(qq̄)
sn

}

. (88)

The virtual graph contribution can be summarized as [15]

W (v)(b⊥) =
αs

2π

{

h
(0)
gg→qq̄

[

(−2CF − 2CA)

(

− 1

ǫ2
− 1

ǫ
ln

Q2

µ2

)

+
1

ǫ
(−3CF − 2β0)

]

+
1

ǫ

[

Nc

(

ln
−t

s

(

u

t
− 2u2

s2

)

+ ln
−u

s

(

t

u
− 2t2

s2

))

+
1

Nc

t2 + u2

tu
ln

s2

tu

]

.(89)

Again, we find out the soft divergences are cancelled out between the above terms and the jet
contribution which is the same as that of Eq. (69). Here, the remaining collinear divergences
are associated with the incoming gluon distributions.

Keeping only the logarithmic terms, we obtain its finite contribution to W (1)(b⊥) as
follows.

W (1)(b⊥)|logs.=
αs

2π
h
(0)
gg→qq̄

{

− ln

(

µ2b2⊥
b20

)

[Pgg(ξ1)δ(1− ξ2) + Pgg(ξ2)δ(1− ξ1)]− δ(1− ξ1)δ(1− ξ2)

×
[

CA ln2

(

Q2b2⊥
b20

)

+ ln

(

Q2b2⊥
b20

)(

−4β0 + CF ln
1

R2
1

+ CF ln
1

R2
2

)

+ ln

(

Q2b2⊥
b20

)

Γ
(qq̄)
sn

h
(0)
gg→qq̄

]}

. (90)

E. gg → gg

For gg → gg channel, we can simply write down the following decomposition for the Born
amplitude,

A1fabefcde + A2facefbde + A3fadefbce , (91)

where a, b, c, d are color indices for the gluons, with momenta for incoming gluons: p1 and
p2, and for outgoing gluons: k1 and k2. The leading order amplitude squared can be written
as

|A0|2 =
(

A2
1 + A2

2 + A2
3 + A1A

∗
2 −A1A

∗
3 + A2A

∗
3

)

. (92)
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One soft gluon radiation takes the form,

2kµ
1

2k1 · kg
fgcf [A1fabeffde + A2fafefbde + A3fadefbfe]

+
2kµ

2

2k2 · kg
fgdf [A1fabefcfe + A2facefbfe + A3fafefbce]

+
2pµ1

2p1 · kg
fgaf [A1ffbefcde + A2ffcefbde + A3ffdefbce] . (93)

The amplitude squared of the above radiation can be written as,

|A0|2CA [Sg(p1, p2) + Sg(k1, p2) + Sg(k2, p2)]

+ (Sg(k1, p2) + Sg(k2, p2)− Sg(k1, k2))

[

−Nc

2
A2

1 −
Nc

4

(

A2
2 + A2

3 + 2A1A
∗
2 − 2A1A

∗
3

)

]

+ (Sg(k1, p2) + Sg(p1, p2)− Sg(k1, p1))

[

−Nc

2
A2

2 −
Nc

4

(

A2
1 + A2

3 + 2A1A
∗
2 + 2A2A

∗
3

)

]

,

+ (Sg(k2, p2) + Sg(p1, p2)− Sg(k2, p1))

[

−Nc

2
A2

3 −
Nc

4

(

A2
1 + A2

2 + 2A2A
∗
3 − 2A1A

∗
3

)

]

.(94)

After integrating the phase space, we obtain the leading contribution for soft gluon radiation
in this channel as

αs

2π2

1

q2⊥

{

h(0)
gg→ggCA

[

2 ln
Q2

q2⊥
+ ln

1

R2
1R

2
2

]

+ Γ(gg)
sn

}

, (95)

where

Γ(gg)
sn = CAh

(0)
gg→gg

[

t2

s2 − tu
ln

s

−t
+

u2

s2 − tu
ln

s

−u

]

. (96)

Again, to check the cancellation between different contributions, we perform the Fourier
transformation to the impact parameter-b⊥ space, and find

W (s+c)(b⊥) =
αs

2π
CAh

(0)
gg→gg

{(

−1

ǫ
+ ln

b20
b2⊥µ

2

)

[Pgg(ξ1)δ(1− ξ2) + (ξ1 ↔ ξ2)]

+δ(1− ξ1)δ(1− ξ2)

[

2

ǫ2
− 2

ǫ
ln

Q2

µ2
+ ln2

(

Q2

µ2

)

− ln2

(

Qbb2⊥
b20

)

− π2

6
(

−1

ǫ
+ ln

b20
b2⊥µ

2

)(

−4β0 + ln
1

R2
1R

2
2

+
t2

s2 − tu
ln

s

−t
+

u2

s2 − tu
ln

s

−u

)

+
1

2
ln2 1

R2
1

+
1

2
ln2 1

R2
2

+
π2

3

]}

, (97)

where we have also included the collinear gluon contributions, and Pgg(ξ) is the gluon-gluon
splitting kernel. The virtual graphs have been calculated in the literature [15], and they
contribute,

W (v)(b⊥) =
αs

2π
CA

[

− 4

ǫ2
+

(

1

ǫ
− ln

Q2

µ2

)(

4 ln
Q2

µ2
− 8β0 −

u2 + s2

s2 − tu
ln

s

−t
− t2 + s2

s2 − tu
ln

s

−u

)]

+finite terms . (98)
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The two outgoing gluon jets contribute

W (j)(b⊥) =
αs

2π
CA

[

2

ǫ2
+

2

ǫ

(

2β0 − ln
P 2
T

µ2

)

+
1

ǫ
ln

1

R2
1R

2
2

+ Ig1 + Ig2
]

. (99)

Comparing the above results, we find that the divergences do cancel each other except the
collinear divergences associated with the gluon splitting functions.

If we only keep the logarithmic terms, we will find the finite contributions as

W (1)(b⊥)|logs.=
αs

2π
h(0)
gg→gg

{

− ln

(

µ2b2⊥
b20

)

[Pgg(ξ1)δ(1− ξ2) + Pgg(ξ2)δ(1− ξ1)]− δ(1− ξ1)δ(1− ξ2)

×
[

CA ln2

(

Q2b2⊥
b20

)

+ ln

(

Q2b2⊥
b20

)(

−4β0 + CA ln
1

R2
1

+ CA ln
1

R2
2

)

+ ln

(

Q2b2⊥
b20

)

Γ
(gg)
sn

h
(0)
gg→gg

]}

. (100)

V. ASYMPTOTIC BEHAVIOR AND COMPARE TO FIXED ORDER COMPU-

TATIONS

An important cross check we will carry out in this section is to compare the asymptotic
result of the dijet differential cross section in low q⊥ region to the fixed order computation
derived in the literature. As discussed in Sec. III, the dominant contributions in the low
q⊥ region arise from collinear gluon radiation associated with the incoming partons and soft
gluon radiation derived in Sec. IV. Hence, the asymptotic result is obtained by adding these
two contributions together.

From the derivations of Secs. III and IV, we find that at low transverse momentum the
differential cross section has the following generic form:

d4σ

dy1dy2dP 2
Td

2q⊥
=

αs

2π2

1

q2⊥

∑

ab,a′b′

σ0

∫

dx′
1

x′
1

dx′
2

x′
2

x′
1 fa(x

′
1, µ)x

′
2 fb(x

′
2, µ)

×
{

h
(0)
a′b′→cd

[

ξ1Pa′/a(ξ1)δ(1− ξ2) + ξ2Pb′/b(ξ2)δ(1− ξ1)

+δ(1− ξ1)δ(1− ξ2)δaa′δbb′

(

(Ca + Cb) ln
Q2

q2⊥
+ Cc ln

1

R2
1

+ Cd ln
1

R2
2

)]

+δ(1− ξ1)δ(1− ξ2)δaa′δbb′Γ
ab→cd
sn

}

, (101)

where Ca, Cb, Cc, and Cd are the associated color factors for the incoming and outgoing
partons: C = CF for quark and C = CA for gluon. The calculations in the last section
have presented the result of Γsn for some partonic channels. All other channels can be found
accordingly.

In Fig. 6, we compare the above differential cross section, for dijet production at the
Tevatron for the kinematics specified by the D0 Collaboration [1], to the fixed order pertur-
bative calculation with one gluon radiation contributions. In this comparison, we set both
the factorization scale and the renormalization scale to be µF = µR = 2PT . We have checked
that the relative comparison of the above two calculations, as shown in Fig. 6, is not sensitive
to the choice of the scales, though the result of the individual calculation depends on the
scale choice [1]. From these plots, we can see that the above asymptotic results capture the
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FIG. 6. The comparisons between the asymptotic derivations of Eq. (101) and the full LO calcu-

lations for the kinematics specified by the D0 collaboration at the Tevatron. The LO curves come

from Ref. [1].

leading contributions at low transverse momentum where φ is close to π for the back-to-back
azimuthal correlation region. We would like to emphasize that the jet size dependent terms
are crucial to make these comparisons. Without them, the agreements between the full LO
calculations and our asymptotic derivation results will not be as evident as shown in Fig. 6.

VI. FACTORIZATION AND RESUMMATION

Clearly, from the derivations in the last section, and the plots of the differential cross
sections shown in Fig. 6, we see that the collinear factorization calculations for the dijet
production lead to divergent behavior at low imbalance transverse momentum q⊥, which
corresponds to the back-to-back azimuthal angular correlation between the two final state
jets. In this region, to have a reliable prediction, we need to perform the resummation.
Since we are interested in the dependence of the differential cross sections on the transverse
momentum q⊥, the TMD resummation is the appropriate framework for carrying out our
theory calculations.

The TMD resummation was originally derived for Drell-Yan type of hard processes, where
the final state only contains color neutral particle with large invariant mass. In order to apply
this resummation formalism to the current case of dijet production in hadronic collisions,
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some modifications are needed. In particular, the two final state jets carry color so that
additional soft gluon radiation will introduce large logarithms associated with the final state
jets. Although, these additional interactions will not modify the leading double logarithmic
contribution, they will enter at the next-to-leading logarithmic level. This is evident from
the explicit calculations discussed in the previous sections.

To carry out the TMD factorization, we extend the original CSS formalism, and take
into account the final state radiation by assuming a soft factor in the factorization formal-
ism. The exact same idea has been applied to resum large logarithms associated with the
threshold logarithms for dijet productions. The similarity between the TMD and thresh-
old resummation is not surprising, because they both deal with soft and collinear gluon
radiations.

In this section, we will argue the TMD factorization for dijet production based on the
explicit one-loop calculations presented in the previous sections. The factorization is verified
in the transverse momentum space and b⊥-space at the one-loop order. At this order, we have
to take into account the matrix form of the hard and soft factors. The explicit comparisons
support the factorization.

With the explicit form of the TMD factorization formulas, we derive the resummation
result by solving the relevant renormalization group equations. In particular, the TMDs
follow the examples of color neutral particle productions, which have been studied exten-
sively in the literature. The additional soft factor obeys the renormalization group equation
controlled by the anomalous dimension. We calculate the soft factor at one-loop order, from
which we derive the anomalous dimension. Solving this renormalization group equation, we
resume the sub-leading logarithms in dijet production processes.

Generically, the low transverse momentum q⊥ originates from collinear gluon radiation
associated with the incoming partons and the soft gluon radiation effects. In particular,
the collinear gluon radiation from the incoming partons contribute to the total transverse
momentum of the final state particles. This is the dominant contribution in dijet production
in hadronic collisions. The collinear gluon radiation associated with the two final state jets
will not contribute to the total transverse momentum of the dijet. This is because they
are factorized into the jet contribution which do not contribute to a finite q⊥ as we have
shown in Sec. III. On the other hand, soft gluon radiation among the incoming partons and
final state jets will contribute to the low imbalance transverse momentum of the dijet. To
account for this part of contribution, we introduce the soft factor in the TMD factorization.
Since the final states carry color, the soft gluon radiation is more complicated than that for
the color neutral particle production in hadronic collisions.

We follow the method developed for threshold resummation in dijet productions in
hadronic collisions in Ref. [11], where the soft factor is formulated in the orthogonal color
space and both the incoming and outgoing partons are represented by Eikonal gauge links.
Because of light-cone singularity in the parton distributions, we choose off-light-front gauge
links for the incoming partons. Meanwhile, the Wilson lines associated with the final state
jets are constructed in such a way that only out-of-cone gluon radiation contribute to a
nonzero q⊥. Consequently, the soft factor in our calculations will depend on the jet cone
size 1.

1 It is possible to factorize the soft factor in our paper into a soft factor and a jet function for the final state

jet. By doing that, the soft factor may not depend on the jet cone size. We leave this for a future study.
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Following the above argument, we can write down the factorization formula as,

d4σ

dy1dy2dP 2
Td

2q⊥
=

∑

ab

σ0

∫

d2k1⊥d
2k2⊥d

2λ⊥ xafa(xa, k1⊥) xbfb(xb, k2⊥)

×Tr
[

Hab→cd(Q
2)Sab→cd(λ⊥)

]

δ(2)(~k1⊥ + ~k2⊥ + λ⊥ − ~q⊥) , (102)

where fa(x1, k1⊥) and fb(x2, k2⊥) are TMDs and will be introduced in the following. Here,
the hard factor and soft factor are expressed in the matrix forms in the color spaces for the
incoming and outgoing partons. We can also express W (b⊥) in the b⊥-space as

Wab→cd = x1 fa(x1, b⊥, ζ
2
1 , µ

2, ρ2)x2 fb(x2, b⊥, ζ
2
2 , µ

2, ρ2)

× Tr
[

Hab→cd(Q
2, µ2, ρ2, y1 − y2, R1, R2)Sab→cd(b⊥, µ

2, ρ2, y1 − y2, R1, R2)
]

,(103)

where we have shown all the explicit dependence of the TMDs and hard and soft factors.
In the following, we will first introduce the TMDs, and then formulate the soft factors

for all partonic channels. With these factors calculated in perturbation theory, we will show
the above factorization is valid at one-loop order, by comparing to the derivations in the
last few sections.

A. Transverse Momentum Dependent Parton Distributions

In the factorization formula, xfi(x, b⊥, ζ
2, µ2) is the Fourier transformation of the TMD

parton distribution xfi(x, k⊥, ζ
2, µ2). We follow the Ji-Ma-Yuan scheme [22] to define the

TMDs. For the quark distribution, we have 2

fq(x, k⊥, ζ
2, µ2) =

∫

dξ−d2ξ⊥
P+(2π)3

e−ixP+ξ−+i~k⊥·~ξ⊥

×
〈

P |Ψ(ξ−, ξ⊥)L†
v(ξ

−, ξ⊥)γ
+Lv(0, 0⊥)Ψ(0)|P

〉

〈0|L†
v̄cb′(b⊥;∞)L†

vb′a(∞; b⊥)Lvab(0;∞)Lv̄bc(∞; 0)|0〉
. (104)

For gluon one, it can be written as:

xfg(x, k⊥, ζ
2, µ2) =

∫

dξ−d2ξ⊥
P+(2π)3

e−ixP+ξ−+i~k⊥·~ξ⊥

×

〈

P |F+
aµ(ξ

−, ξ⊥)L†
vab(ξ

−, ξ⊥)γ
+Lvbc(0, 0⊥)F

µ+
c (0)|P

〉

〈0|L†
v̄cb′(b⊥;∞)L†

vb′a(∞; b⊥)Lvab(0;∞)Lv̄bc(∞; 0)|0〉
. (105)

In the above equations, the relevant gauge links have to apply, in the fundamental and
adjoint representations for the quark and gluon distributions, respectively. The gauge link
Lv is chosen along the direction v,

Lv(ξ
−, ξ⊥) = Pexp

(

−ig

∫ 0

−∞
dλv · A(λv + ξ)

)

, (106)

2 Here, we follow the original definition in Ji-Ma-Yuan [22], where the soft factor is subtracted from the naive

gauge invariant TMDs. If other subtraction method would be used, the associated soft factor definition

would have been changed as well.
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for both cases, in the appropriate representations of SU(3), adjoint for the gluon distribution
and fundamental for the quark distribution, respectively. Similarly, we define the TMDs
from hadron P̄ , which depend on the gauge link along the direction v̄. The vectors v and
v̄ are off-light-front: v = (v+, v−, 0⊥) with v− ≫ v+ and v̄ = (v̄+, v̄−, 0⊥) with v̄− ≪ v̄+.
Since non-light-like vectors exist, the TMD parton distribution depends on a new large
scale ζ2 = (2v · P )/v2 and a free parameter ρ2 = v−v̄+

v̄−v+
. Based on these definitions, we can

calculate them under perturbative QCD order by order, and can be expressed in terms of
the integrated parton distributions. At one-loop order, the gluon distribution can be written
as [22]:

fg(x, b, ζ, µ, ρ) =
αsCA

2π

∫

dx′

x′

{

ln
b20
µ̄2b2

[Pgg(ξ)fg(x
′, µ̄) + Pgq(ξ)fq(x

′, µ̄)] + δ(ξ − 1)fg(x, µ̄)

×
[

(

ln ρ2 + 2β0 − 1
)

ln
b2µ2

b20
e2γE − 1

2
ln2 b

2ζ2

b20
+
3

2
ln

ζ2

µ2
− π2

2
− 7

2

]}

,(107)

where ξ = x/x′. For the quark distribution,

fq(x, b, ζ, µ, ρ) =
αsCF

2π

∫

dx′

x′

{

ln
b20
µ̄2b2

[Pqg(ξ)fg(x
′, µ̄) + Pqq(ξ)fq(x

′, µ̄)] + δ(ξ − 1)fq(x, µ̄)

×
[(

ln ρ2 − 1

2

)

ln
b2µ2

b20
− 1

2
ln2 b

2ζ2

b0
−π2

4
− 1

]}

. (108)

In the above equations, Pij are splitting kernels. At one-loop order, we have

Pgg(x) = 6

(

1− x

x
+

x

(1− x)+
+ x(1− x) + β0δ(1− x)

)

, (109)

Pgq(x) =
4

3

(

1 + (1− x)2

x

)

, (110)

Pqq(x) =
4

3

(

1 + x2

(1− x)+
+

3

2
δ(1− x)

)

, (111)

Pqg(x) =
1

2

(

x2 + (1− x)2
)

. (112)

Similarly, we can obtain the k⊥-dependent expressions for the TMDs from these references.

B. Color Space Decompositions for the Soft and Hard Factors

It has been shown in Refs. [11], for soft gluon radiation in dijet production, it is more
convenient to construct the factorization in the color space matrix, where the soft and
hard factors can be calculated in the orthogonal color bases. In particular, the associated
anomalous dimension for the soft factors can be formulated and the relevant resummation
can be performed accordingly.

In this paper, we consider dijet production through the partonic 2 → 2 subprocesses.
Therefore, for each partonic channel, we will construct the color-space bases depending on
the color indexes of two incoming partons and two outgoing partons. The soft gluon radiation
does not modify the fundamental scattering structure for each partonic channel, so that the
color-space bases are constructed for all order perturbative calculations. In addition, the
color-space bases are not unique. In our calculations, we follow those used in Ref. [11].

25



For the quark-anti-quark scattering subprocesses, we have fundamental representation
from both incoming and outgoing partons, for example,

qka + q̄kb → qkc + q̄kd , qka + q̄kb → qjc + q̄jd, qja + q̄kb → qjc + q̄kd , (113)

where j and k indicate the flavors of the quarks, and a, b, c and d are the color indices. For
this channel, we have two independent color configurations,

Cab
1cd = δacδbd , Cab

2cd = T a′

acT
a′

bd , (114)

corresponding to the color-singlet and the color-octet couplings, respectively. Similarly, we
have the same decomposition for identical quark-quark scattering subprocess,

qka + qkb → qkc + qkd , qja + qkb → qjc + qkd . (115)

For gg → qq̄ channel,

ga + gb → q̄kc + qkd , (116)

we have three independent color bases,

Cab
1cd = T a′

acT
a′

cd , Cab
2cd = dabc

′

T c′

cd , Cab
3cd = ifabc′T c′

cd . (117)

Similarly for qq̄ → gg channel:

q̄kc + qkd → ga + gb, , (118)

we have

Ccd
1ab = T a′

acT
a′

cd , Ccd
2ab = dabc

′

T c′

cd , Ccd
3ab = ifabc′T c′

cd . (119)

The above will also apply to qg → qg channel,

qkc + ga → qkd + gb , (120)

where we have

Cac
1bd = T a′

acT
a′

cd , Cac
2bd = dabc

′

T c′

cd , Cac
3bd = ifabc′T c′

cd . (121)

For gg → gg channel,

ga + gb → gc + gd , (122)

however, it is much more complicated,

Cab
1cd =

i

4
(fabc′dcdc

′ − dabc
′

f cdc′) , Cab
2cd =

i

4
(fabc′dcdc

′

+ dabc
′

f cdc′) ,

Cab
3cd =

i

4
(facc′dbdc

′

+ dacc
′

f bdc′) , Cab
4cd =

1

8
δacδbd ,

Cab
5cd =

3

5
dacc

′

dbdc
′

, Cab
6cd =

1

3
facc′f bdc′ ,

Cab
7cd =

1

2
(δabδcd − δadδbc)− 1

3
facc′f bdc′ ,

Cab
8cd =

1

2
(δabδcd + δadδbc)− 1

8
δacδbd − 3

5
dacc

′

dbdc
′

, (123)
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where we have eight independent color bases.
With the above color bases, we can decompose the soft factors in the matrix form. The

associated soft gluon radiation is represented by eight gauge links. This is because all the
initial and final state can radiate or absorb soft gluons. Therefore, we can decompose the
soft factor, according to the following formula,

SIJ(b⊥) =

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

Cbb′

Iii′C
aa′

Jll′〈0|L†
vcb′(b⊥)Lv̄bc′(b⊥)L†

v̄c′a′(0)Lvac(0)

×L†
nji(b⊥)Ln̄i′k(b⊥)L†

n̄kl(0)Lnl′j(0)|0〉 , (124)

where IJ represent the color indices in the color-space bases constructed above. Therefore,
SIJ is the matrix element in the associated color-space bases for a particular partonic chan-
nel. As mentioned above, we have four gauge links associated with two incoming partons,
for which we follow the TMDs to adopt off-light-cone vectors v and v̄ to construct the gauge
links. The off-light-cone vectors are applied to regulate the light-cone singularities. For the
two outgoing partons, we apply the off-shellness to cast the out-of-cone radiation contribu-
tion to the soft factor. This regulation depends on the jet size. That is why we introduce
the off-shellness n2 = R2

1P
2
T/Q

2 and n̄2 = R2
2P

2
T/Q

2 for the two final state jets with jet size
R1 and R2, respectively. C

bb′

Iii′ and Caa′

Jll′ represent the corresponding color configurations, as
introduced above.

It is straightforward to calculate the soft factor at the leading order with SIJ = Caa′

Iii′C
a′a
Ji′i.

For the channels in Eqs. (115,113), we find

S(0) =

[

C2
A 0
0 CACF

2

]

. (125)

For the channels in Eqs. (116,118,120), we have

S(0) =













2C2
ACF 0 0

0 (C2
A − 4)CF 0

0 0 C2
ACF













. (126)

For the channels in Eq. (122), we obtain

S(0) =























5 0 0 0 0 0 0 0
0 5 0 0 0 0 0 0
0 0 5 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 8 0 0 0
0 0 0 0 0 8 0 0
0 0 0 0 0 0 20 0
0 0 0 0 0 0 0 27























. (127)

The hard factor H should be expanded by the same color bases. At the tree level, our
results are consistent with those in Ref. [11]. For completeness, we list these results in the
following. For the partonic channel of qk + q̄k → qk + q̄k,

H(0) =

[

H11 H12

H21 H22

]

, (128)
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where

H11 =
2C2

F

C4
A

t2 + u2

s2
,

H12 = H21 = −2CF

C4
A

t2 + u2

s2
+

2CF

C3
A

u2

st
,

H22 =
2

C4
A

t2 + u2

s2
+

4

C2
A

s2 + u2

t2
− 4

C3
A

u2

st
. (129)

Similarly, the partonic channel qk + q̄k → qj + q̄j is expressed in the 2× 2 matrix with

H11 =
2C2

F

C4
A

t2 + u2

s2

H12 = H21 = −2CF

C4
A

t2 + u2

s2

H22 =
2

C4
A

t2 + u2

s2
. (130)

And for the channel qk + q̄j → qk + q̄j,

H11 = H12 = H21 = 0 ,

H22 =
2

C2
A

s2 + u2

t2
. (131)

For the channel qk + qk → qk + qk,

H11 =
2C2

F

C4
A

t2 + s2

u2
,

H12 = H21 = −2CF

C4
A

t2 + s2

u2
+

2CF

C3
A

s2

ut
,

H22 =
2

C2
A

s2 + u2

t2
+

2

C4
A

s2 + t2

u2
− 2

CA

s2

ut
. (132)

For the channel qk + qj → qk + qj ,

H11 = H12 = H21 = 0 ,

H22 =
2

C2
A

s2 + u2

t2
. (133)

For the channel g + g → q + q̄ and q + q̄ → g + g, the hard factor is calculated as 3 × 3
matrix,

H(0) =





H11 H12 H13

H21 H22 H23

H31 H32 H33



 , (134)
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where

H11 =
1

2C4
A

u2 + t2

ut
,

H12 = H21 =
1

2C3
A

u2 + t2

ut
,

H22 =
1

2C2
A

u2 + t2

ut
,

H13 = H31 =
1

2C3
A

t2 − u2

ut
+

1

C3
A

t− u

s
,

H23 = H32 =
1

2C2
A

t2 − u2

ut
+

1

C2
A

t− u

s
,

H33 =
1

2C2
A

s2

ut
+

4

C2
A

tu

s2
− 3

C2
A

. (135)

For the channel q + g → q + g, we find a similar 3× 3 matrix with

H11 =
1

4C4
ACF

t2 − 2su

su
,

H12 = H21 =
1

4C3
ACF

t2 − 2su

su
,

H22 =
1

4C2
ACF

t2 − 2su

su
,

H13 = H31 = − 1

2C3
ACF

s2t + 4s2u+ 2stu− tu2

stu
,

H23 = H32 = − 1

2C2
ACF

s2t + 4s2u+ 2stu− tu2

stu
,

H33 =
1

4C2
ACF

(2su− t2)(t2 − 4su)

st2u
. (136)

For the channel g + g → g + g, however, we have 8× 8 matrix,

H(0) =























0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 H44 H45 H46 0 H48

0 0 0 H54 H55 H56 0 H58

0 0 0 H64 H65 H66 0 H68

0 0 0 0 0 0 0 0
0 0 0 H84 H85 H86 0 H88























, (137)
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where

H44 = − 9

16

(s2 − tu)(st− u2)

s2u2
,

H45 = H54 = − 9

32

(s2 − tu)(st− u2)

s2u2
,

H55 = − 9

64

(s2 − tu)(st− u2)

s2u2
,

H46 = H64 = − 9

32

(s− u) (s2 + su+ u2) (su− t2)

s2tu2
,

H56 = H65 = − 9

64

(s− u) (s2 + su+ u2) (su− t2)

s2tu2
,

H66 =
9 (s2t− 2su2 + t2u) (2s2u− st2 − tu2)

64s2t2u2
,

H48 = H84 =
3

16

(s2 − tu)(st− u2)

s2u2
,

H58 = H85 =
3

32

(s2 − tu)(st− u2)

s2u2
,

H68 = H86 = − 3

32

(s− u) (s2 + su+ u2) (su− t2)

s2tu2
,

H88 = − 1

16

(s2 − tu)(st− u2)

s2u2
. (138)

The above hard factors are normalized to reproduce the leading order differential cross
sections in Sec. II,

h
(0)
12→34 = S

12→34(0)
IJ H

12→34(0)
JI , (139)

where sum over IJ is understood. Because the leading order soft factor is diagonalized, it
is simple to verify the above equation.

C. Soft Factor and the Anomalous Dimension at One-loop order

At one-loop order, we will expand the soft factor definition with the perturbative cor-
rections. The gluon radiations between all gauge links will contribute. For convenience
we separate out the common kinematic integrals from the color factors for each soft factor
calculation,

S(1) =
∑

ij

WijIij , (140)

where ij label the associated gauge links: 12 for the incoming two partons and 34 for the
outgoing partons. In the above equation, Iij represent the kinematic integrals for the soft
gluon radiation between i and j gauge links, whereas the factor Wij represent the associated
color factor in the matrix form for particular partonic channel.

We show in Fig. (7) a few representative real gluon emission diagrams, labelled by the
relevant kinematic integral Iij, which contribute to the soft function at the next-to-leading
order (NLO) in αs.
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njnj

n̄jn̄j

v

v̄v̄

v

I34 I13 I14

I23 I11I24

I12I22

FIG. 7. Representative diagrams contributing to the soft function at the NLO.

For the I34 diagram, with gluon connecting 3 and 4 gauge links, we find the following
results:

I34(kt) =
αs

2π2

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

∫

dk+dk− 2nj · n̄j

(k · nj)(k · n̄j)
δ(k2)θ(k0) (141)

=
αs

2π2

1

k2
t

[

ln

(

Q4

R2
1R

2
2P

4
T

)

+ ǫ

(

1

2
ln2 1

R2
1

+
1

2
ln2 1

R2
2

+
π2

3
− 4 ln

s

−t
ln

s

−u

)]

,

in the transverse momentum space, where k represents the radiated gluon momentum. We
have kept the ǫ-term in the above equation, because they will contribute to a finite term
when Fourier transforming to b⊥-space. In the calculations, nj and n̄j carry the momentum
directions of two outgoing jets. Again, the offshellness of the two outgoing gauge links are
introduced to cast the contribution that is only associated with out-of-cone radiation. Gluon
radiation within the jet cone will not induce a nonzero transverse momentum of the dijet
and its contribution needs to be subtracted out.

Similarly, for gluon connection between all other gauge links needed in the final calcula-
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tions, we find

I13(kt) = 2
αs

2π2

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

∫

dk+dk− v̄ · nj

(k · nj)(k · v̄)δ(k
2)θ(k0)

=
αs

2π2

1

k2
t

[

ln

(

t2ρ2

ζ21 P 2
TR

2
1

)

+ ǫ

(

1

2
ln2 1

R2
1

+
π2

6

)]

, (142)

I14(kt) = 2
αs

2π2

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

∫

dk+dk− v̄ · n̄j

(k · n̄j)(k · v̄)δ(k
2)θ(k0)

=
αs

2π2

1

k2
t

[

ln

(

u2ρ2

ζ21 P 2
TR

2
2

)

+ ǫ

(

1

2
ln2 1

R2
2

+
π2

6

)]

, (143)

I24(kt) = 2
αs

2π2

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

∫

dk+dk− v · n̄j

(k · n̄j)(k · v)δ(k
2)θ(k0)

=
αs

2π2

1

k2
t

[

ln

(

t2ρ2

ζ22 P 2
TR

2
2

)

+ ǫ

(

1

2
ln2 1

R2
2

+
π2

6

)]

, (144)

I23(kt) = 2
αs

2π2

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

dk+dk− v · nj

(k · nj)(k · v)δ(k
2)θ(k0)

=
αs

2π2

1

k2
t

[

ln

(

u2ρ2

ζ22 P 2
TR

2
1

)

+ ǫ

(

1

2
ln2 1

R2
1

+
π2

6

)]

, (145)

I11(kt) = I22(kt) = − αs

2π2

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

∫

dk+dk− v̄ · v̄
(k · v̄)2 δ(k

2)θ(k0)

= − αs

2π2

1

k2
t

, (146)

I12(kt) = 2
αs

2π2

∫ π

0

(sinφ)−2ǫdφ
√
πΓ( 1

2
−ǫ)

Γ(1−ǫ)

∫

dk+dk− v̄ · v
(k · v̄)(k · v)δ(k

2)θ(k0)

=
αs

2π2

1

k2
t

ln ρ2 . (147)

Here, we did not list either I33 or I44, because they will not contribute to the soft factor.

For the contribution from virtual diagrams, all the integrals are proportional to

1

ǫIR
− 1

ǫUV
. (148)

After introducing the UV counter-terms which are proportional to

− 1

ǫUV
+ γE + ln

1

4π
, (149)

only IR divergence will be left and cancel the singularity in real diagrams, after we have
performed Fourier transformation from the transverse momentum space to b⊥ space.
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The final expressions in the b⊥-space can be written as

Ir34(b⊥) = −αs

2π

[

ln

(

Q4

R2
1R

2
2P

4
T

)

ln

(

µ2 b2

b20

)

+

(

1

2
ln2 1

R2
1

+
1

2
ln2 1

R2
1

+
π2

3
− 4 ln

s

−t
ln

s

−u

)]

, (150)

Ir13(b) = −αs

2π

[

ln

(

t2ρ2

ζ21 P 2
TR

2
1

)

ln

(

µ2 b2

b20

)

+

(

1

2
ln2 1

R2
1

+
π2

6

)]

, (151)

Ir14(b) = −αs

2π

[

ln

(

u2ρ2

ζ21 P 2
TR

2
2

)

ln

(

µ2 b2

b20

)

+

(

1

2
ln2 1

R2
2

+
π2

6

)]

, (152)

Ir24(b) = −αs

2π

[

ln

(

t2ρ2

ζ22 P 2
TR

2
2

)

ln

(

µ2 b2

b20

)

+

(

1

2
ln2 1

R2
2

+
π2

6

)]

, (153)

Ir23(b) = −αs

2π

[

ln

(

u2ρ2

ζ22 P 2
TR

2
1

)

ln

(

µ2 b2

b20

)

+

(

1

2
ln2 1

R2
1

+
π2

6

)]

, (154)

Ir11(b) = I22(b) =
αs

2π
ln

(

µ2 b2

b20

)

, (155)

Ir12(b) = −αs

2π
ln ρ2 ln

(

µ2 b2

b20

)

. (156)

The color factors can be calculated diagram by diagram as well, and for the the channel of
q + q̄ → q + q̄, they are:

W11 = W22 = CF S(0) (157)

W34 = W12 =





0 CACF

2

CACF

2
1
4
(C2

A − 2)CF



 (158)

W13 = W24 =





C2
ACF 0

0 −CF

4



 (159)

W23 = W14 =





0 −CACF

2

−CACF

2
CF

2



 . (160)

For the channel of q + q → q + q,

W11 = W22 = CF S(0) (161)

W34 = W12 =





0 −CACF

2

−CACF

2
CF

2



 (162)

W13 = W24 =





C2
ACF 0

0 −CF

4



 (163)

W23 = W14 =





0 CACF

2

CACF

2
1
4
(C2

A − 2)CF



 . (164)
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For the channel g + g → q̄ + q, we have

W11 = W22 = CA S(0) (165)

W12 =













2C3
ACF 0 0

0
CA(C2

A
−4)CF

2
0

0 0
C3

A
CF

2













(166)

W34 =













2C2
AC

2
F 0 0

0
(C2

A
−4)CF (2CF−CA)

2
0

0 0 −CACF

2













(167)

W13 = W24 =













0 0 −C2
ACF

0
CA(C2

A−4)CF

4
−CA(C2

A−4)CF

4

−C2
ACF −CA(C2

A−4)CF

4

C3
ACF

4













(168)

W23 = W14 =













0 0 C2
ACF

0
CA(C2

A
−4)CF

4

CA(C2
A
−4)CF

4

C2
ACF

CA(C2
A
−4)CF

4

C3
A
CF

4













. (169)

For the channel q + q̄ → g + g,

W11 = W22 = CF S(0) (170)

W34 =













2C3
ACF 0 0

0
CA(C2

A−4)CF

2
0

0 0
C3

A
CF

2













(171)
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W12 =













2C2
AC

2
F 0 0

0
(C2

A
−4)CF (2CF−CA)

2
0

0 0 −CACF

2













(172)

W13 = W24 =













0 0 −C2
ACF

0
CA(C2

A
−4)CF

4
−CA(C2

A
−4)CF

4

−C2
ACF −CA(C2

A
−4)CF

4

C3
A
CF

4













(173)

W23 = W14 =













0 0 C2
ACF

0
CA(C2

A−4)CF

4

CA(C2
A−4)CF

4

C2
ACF

CA(C2
A−4)CF

4

C3
ACF

4













. (174)

For the channel q + g → q + g, the color matrixes are,

W11 = CF S(0) (175)

W22 = CA S(0) (176)

W34 = W12 =













0 0 −C2
ACF

0
CA(C2

A
−4)CF

4
−CA(C2

A
−4)CF

4

−C2
ACF −CA(C2

A
−4)CF

4

C3
A
CF

4













(177)

W13 =













2C2
AC

2
F 0 0

0
(C2

A
−4)CF (2CF−CA)

2
0

0 0 −CACF

2













(178)

W24 =













2C3
ACF 0 0

0
CA(C2

A
−4)CF

2
0

0 0
C3

A
CF

2













(179)

W23 = W14 =













0 0 C2
ACF

0
CA(C2

A−4)CF

4

CA(C2
A−4)CF

4

C2
ACF

CA(C2
A
−4)CF

4

C3
A
CF

4













. (180)
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For the channel g + g → g + g, they are

W34 = W12 =























15
2

0 0 0 0 0 0 0
0 15

2
0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 3 0 0
0 0 0 0 6 6 12 0
0 0 0 3 6 6 0 9
0 0 0 0 12 0 30 18
0 0 0 0 0 9 18 54























(181)

W13 = W24 =























15
2

0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 15

2
0 0 0 0 0

0 0 0 3 0 0 0 0
0 0 0 0 12 0 0 0
0 0 0 0 0 12 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −27























(182)

W23 = W14 =























0 0 0 0 0 0 0 0
0 15

2
0 0 0 0 0 0

0 0 15
2

0 0 0 0 0
0 0 0 0 0 −3 0 0
0 0 0 0 6 −6 −12 0
0 0 0 −3 −6 6 0 −9
0 0 0 0 −12 0 30 −18
0 0 0 0 0 −9 −18 54























. (183)

With the above results of Inm and Wnm, we will be able to calculate the final results for the
soft factor,

S(1)(kt) =
∑

nm

InmWnm , (184)

for all partonic channels, where nm run from 1 to 4. It is important to note that after
summing the contribution in every diagram, the jet cone size R1,2 and ρ dependence will be
canceled by each other in all the non-diagonal elements in S(1) and their color factors are
probational to S(0). For example, for the contribution from q + q̄ → q + q̄ channel, we find
the soft factor can be written as

S(1)(kt) =
αs

2π2

1

k2
t

{

S(0)

[

CF (ln ρ
2 − 2) + CF ln

(

s

R2
1P

2
T

)

+ CF ln

(

s

R2
2P

2
T

)

+ ǫ

(

CF

2
ln2

(

1

R2
1

)

+
CF

2
ln2

(

1

R2
2

)

+ CF
π2

3

)]

− 4ǫW34 U T

+ 2 Ξq+q̄→q+q̄} , (185)

in the transverse momentum space, where, for convenience, we have defined

T = ln

(−t

s

)

U = ln

(−u

s

)

. (186)
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In the above equation, we have also introduced a short notation Ξqq̄→qq̄ for an additional
term, which will be defined later, together with those for all other channels.

For q + q → q + q, we have

S(1)(kt) =
αs

2π2

1

k2
t

{

S(0)

[

CF (ln ρ
2 − 2) + CF ln

(

s

R2
1P

2
T

)

+ CF ln

(

s

R2
2P

2
T

)

+ ǫ

(

CF

2
ln2

(

1

R2
1

)

+
CF

2
ln2

(

1

R2
2

)

+ CF
π2

3

)]

− 4ǫW34 U T

+ 2 Ξq+q→q+q} . (187)

For g + g → q̄ + q, we have

S(1)(kt) =
αs

2π2

1

k2
t

{

S(0)

[

CA(ln ρ
2 − 2) + CF ln

(

s

R2
1P

2
T

)

+ CF ln

(

s

R2
2P

2
T

)

+ ǫ

(

CF

2
ln2

(

1

R2
1

)

+
CF

2
ln2

(

1

R2
2

)

+ CF
π2

3

)]

− 4ǫW34 U T

+ 2 Ξg+g⇀↽q̄+q} . (188)

For q + q̄ → g + g, we have

S(1)(kt) =
αs

2π2

1

k2
t

{

S(0)

[

CF (ln ρ
2 − 2) + CA ln

(

s

R2
1P

2
T

)

+ CA ln

(

s

R2
2P

2
T

)

+ ǫ

(

CA

2
ln2

(

1

R2
1

)

+
CA

2
ln2

(

1

R2
2

)

+ CA
π2

3

)]

− 4ǫW34 U T

+ 2 Ξg+g⇀↽q̄+q} . (189)

For q + g → q + g, we have

S(1)(kt) =
αs

2π2

1

k2
t

{

S(0)

[

CF + CA

2
(ln ρ2 − 2) + CF ln

(

s

R2
1P

2
T

)

+ CA ln

(

s

R2
2P

2
T

)

+ ǫ

(

CA

2
ln2

(

1

R2
1

)

+
CF

2
ln2

(

1

R2
2

)

+
CF + CA

2

π2

3

)]

− 4ǫW34 U T

+ 2 Ξq+g→q+g} .

(190)

And finally, for g + g → g + g, we obtain

S(1)(kt) =
αs

2π2

1

k2
t

{

S0

[

CA(ln ρ
2 − 2) + CA ln

(

s

R2
1P

2
T

)

+ CA ln

(

s

R2
2P

2
T

)

+ ǫ

(

CA

2
ln2

(

1

R2
1

)

+
CA

2
ln2

(

1

R2
2

)

+ CA
π2

3

)]

− 4ǫW34 U T

+ 2 Ξg+g→g+g} .

(191)

In the above equations, the Ξ matrixes for all different channels are defined as

Ξq+q̄→q+q̄ =





2CFC
2
A T −CFCA U

−CFCA U CF U − CF

2
T



 , (192)
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Ξq+q→q+q =





2CFC
2
A T CFCA U

CFCA U 1
2
(C2

A − 2)CF U − CF

2
T



 , (193)

Ξg+g⇀↽q̄+q =













0 0 2C2
ACF (U − T )

0
CA(C2

A−4)CF

2
(U + T )

CA(C2
A−4)CF

2
(U − T )

2C2
ACF (U − T )

CA(C2
A−4)CF

2
(U − T )

C3
ACF

2
(U + T )













, (194)

Ξq+g→q+g =













2C2
ACF (CA + CF ) T 0 2C2

ACF U

0 (C2
A − 4)CF (

CA

2
U + CF T )

CA(C2
A
−4)CF

2
U

2C2
ACF U

CA(C2
A
−4)CF

2
U (C2

A − 1)(CA

2
U + CF T )













,

(195)

Ξg+g→g+g =



















































15T 0 0 0 0 0 0 0

0 15U 0 0 0 0 0 0

0 0 15(U + T ) 0 0 0 0 0

0 0 0 6T 0 −6U 0 0

0 0 0 0 12(2T + U) −12U −24U 0

0 0 0 −6U −12U 12(2T + U) 0 −18U

0 0 0 0 −24U 0 60U −36U

0 0 0 0 0 −18U −36U 54(2U − T )



















































.
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Similarly, we obtain the soft factors in the b⊥-space,

S(1)(b) =
∑

nm

Irnm(b)Wnm , (197)

where Inm(b) have been calculated in Eqs. (150-156). For channel q + q̄ → q + q̄, we find

S(1) = −S(0) αs

2π

{[

CF (ln ρ
2 − 2) + CF ln

(

s

R2
1P

2
T

)

+ CF ln

(

s

R2
2P

2
T

)]

ln

(

µ2 b2

b20

)

−
[

CF

2
ln2

(

1

R2
1

)

+
CF

2
ln2

(

1

R2
2

)

+ CF
π2

3

]}

+
2αs

π
W34 U T

− αs

π
Ξq+q̄→q+q̄ ln

(

µ2 b2

b20

)

. (198)
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For q + q → q + q, we find

S(1) = −S(0) αs

2π

{[

CF (ln ρ
2 − 2) + CF ln

(

s

R2
1P

2
T

)

+ CF ln

(

s

R2
2P

2
T

)]

ln

(

µ2 b2

b20

)

−
[

CF

2
ln2

(

1

R2
1

)

+
CF

2
ln2

(

1

R2
2

)

+ CF
π2

3

]}

+
2αs

π
W34 U T

− αs

π
Ξq+q→q+q ln

(

µ2 b2

b20

)

. (199)

For g + g → q̄ + q, we find

S(1) = −S(0) αs

2π

{[

CA(ln ρ
2 − 2) + CF ln

(

s

R2
1P

2
T

)

+ CF ln

(

s

R2
2P

2
T

)]

ln

(

µ2 b2

b20

)

−
[

CF

2
ln2

(

1

R2
1

)

+
CF

2
ln2

(

1

R2
2

)

+ CF
π2

3

]}

+
2αs

π
W34 U T

− αs

π
Ξg+g⇀↽q̄+q ln

(

µ2 b2

b20

)

.

(200)

For q + q̄ → g + g, we find

S(1) = −S(0) αs

2π

{[

CF (ln ρ
2 − 2) + CA ln

(

s

R2
1P

2
T

)

+ CA ln

(

s

R2
2P

2
T

)]

ln

(

µ2 b2
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−
[

CA
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ln2

(

1

R2
1

)

+
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(

1

R2
2

)

+ CA
π2

3

]}

+
2αs

π
W34 U T

− αs

π
Ξg+g⇀↽q̄+q ln
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µ2 b2

b20

)

.

(201)

For q + g → q + g, we find

S(1) = −S(0) αs

2π

{[

CF + CA

2
(ln ρ2 − 2) + CF ln
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2
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)

+ CA ln
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2
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+
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]}

+
2αs

π
W34 U T

− αs

π
Ξq+g→q+g ln
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µ2 b2

b20
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(202)

For g + g → g + g, we find

S(1) = −S(0) αs

2π

{[

CA(ln ρ
2 − 2) + CA ln
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2
T

)

+ CA ln

(

s

R2
2P

2
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+
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π
W34 U T
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π
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µ2 b2
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(203)
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We would like to emphasize again that the nontrivial results of the soft factor calculations
in the above. In particular, the ρ and R1,2-dependence only appear in terms proportional
to S(0). This is consistent with the factorization we have argued in the beginning of this
section. We will show explicitly how the factorization works in the following sub-section.

D. Factorization at One-loop Order

In this subsection, we will apply the one-loop results for the soft factor and TMDs calcu-
lated in the last subsection to verify the factorization formalism we have proposed. We will
show the factorization in both transverse momentum space and Fourier conjugate b⊥-space.
At his order, the TMDs can be calculated, and have been listed in Sec. VIB. The soft factors
have also been calculated above in Sec. VIE.

1. Transverse Momentum Space Factorization

We find from Eq. (102) that the dijet differential cross section at a nonzero transverse
momentum q⊥ receives contributions from the two incoming parton distributions and the
soft factor. The hard factor, for a given 2 → 2 process, does not depend on q⊥, as expected.
Therefore, we can write down the expansion of the finite q⊥ contribution from the TMD
factorization formula at one-loop order:

d4σ

dy1dy2dP 2
Td

2q⊥
=

∑

ab

σ0

{(

x1f
(1)
1 (x1, q⊥) x2fb(x2) + x1f1(x1) x2f

(1)
b (x2, q⊥)

)

Tr
[

H
(0)
ab→cdS

(0)
ab→cd

]

+x1f1(x1) x2fb(x2)Tr
[

H
(0)
ab→cdS

(1)
ab→cd(q⊥)

]}

, (204)

where we have expanded the TMDs and the soft factor at one-loop order. We have calculated
all these factors in previous subsections. Substituting these results into the above equation,
we can derive the finite q⊥ expression for dijet production via each channel, and reproduce
the results shown in Sec. IV. Especially, the ρ-dependence from both the TMDs and the soft
factors is cancelled out by each other, which is a nontrivial illustration of the factorization
formula.

2. Factorization in b⊥-space

Similarly, the factorization can be demonstrated in the b⊥-space, for which we carry out
the calculations for W (b⊥) in Eq. (103),

Wab→cd(b⊥) = x1 f
(1)
a (x1, b⊥, ζ

2
1 , µ

2, ρ2)x2 fb(x2)Tr
[

H
(0)
ab→cdS

(0)
ab→cd

]

+x1 fa(x1)x2 f
(1)
b (x2, b⊥, ζ

2
2 , µ

2, ρ2)Tr
[

H
(0)
ab→cdS

(0)
ab→cd

]

+x1 fa(x1)x2 fb(x2)Tr
[

H
(0)
ab→cd(Q

2)S
(1)
ab→cd(b⊥)

]

. (205)

With the expressions calculated in previous sub-sections, we will be able to reproduce the
logarithmic terms in Sec. IV. In principle, we should be able to extract the hard factors at
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one-loop order as well. However, to do that, we need the expressions of the virtual diagrams
contributions in the color-space constructed in Sec. VIC. We hope these calculations can be
performed in the future, from which we shall obtain the hard factors at the one-loop order.
However, to show the factorization, we do not need the hard factors.

E. Resummation

According to the definition of theW function, cf. Eq. (103), when we choose factorization
scale µ = Q2, there will exist two classes of scales in TMDs and soft factor, one is b20/b

2
⊥,

which comes from the Fourier transformation of transverse momentum q⊥, hence it is a small
scale, the other class contains scales of Q2 and ζ2, where ζ21ζ

2
2 = Q4ρ2, they are large scales.

Our one-loop results for the TMDs and soft factor show that there are large double and single
logarithms of lnQ2b2 in them. (Here, we use b⊥ and b exchangeably.) These large logarithms
appear at every order of perturbative expansion as the form of αn

s ln
2n(Q2b2) or αn

s ln
n(Q2b2),

when lnQ2b2 > 1/αs, the convergence of the conventional perturbative expansion is impaired
and no longer gives a correct prediction. In order to make a reliable calculation for the W
function, these large logs have to be resummed. Based on the factorization theorem, we
could find all the relevant scales present in each factorized factor, which can be evolved
individually and satisfies a renormalisation group equation(RGE). For example, for the
TMD f(x, b, ζ, µ, ρ), the relevant Collins-Soper evolution equation reads as:

∂

∂ ln ζ
f(x, b, ζ, µ, ρ) = (K(b, µ) + G(ζ, µ)) f(x, b, ζ, µ, ρ) . (206)

According to the one-loop result, we can get

K(b, µ) +G(ζ, µ) = −αsCI

π
ln

ζ2b2

4
e2γE− 3

2 , (207)

where CI = CA for gluon distribution and CI = CF for quark distribution. K(b, µ) satisfies:

K(b, µ) =
∂ lnS(b, µ, ρ)

∂ ln ρ
= −αsCI

π
ln

µ2b2

4
e2γE . (208)

The renormalization group equation for K(b, µ) is governed by the associated anomalous
dimension γK ,

γK = −∂K(b, µ)

∂ lnµ
=

∂G(ζ, µ)

∂ lnµ
=

2αsCI

π
. (209)

Then we can solve the above renormalization group equation,

K(b, µ) +G(ζ, µ) = K(b, Q0)−
∫ µ

Q0

dµ′

µ′ γK(µ
′)− αsCI

π
ln

ζ2

µ2
e−

3

2 , (210)

where in the end we will choose Q0 = b0/b to resum the large logarithms. In addition, we
can evolve the factorization scale in the TMD distribution as well,

∂

∂ lnµ
f(x, b, ζ, µ, ρ) = γF f(x, b, ζ, µ, ρ) , (211)
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with the anomalous dimension

γF = 2
αsCI

π

(

ln ρ+BI −
1

2
− 3

4

)

. (212)

Here, for gluon distribution we have BI = β0, and for quark distribution we have BI = 3
4
.

By solving the above evolution equations, we resum the large logarithms associated with
the TMDs,

f(x, b, ζ2 = ρQ2, µ = Q, ρ)

= f(x, b,
b20
ρb2

,
b0
b
, ρ)exp

[
∫ Q

b0/b

dµ

µ
(K(b, µ) +G(ζ, µ) + γF )

]

= f(x, b,
b20
ρb2

,
b0
b
, ρ)exp

[
∫ Q

b0/b

dµ

µ

(

− ln
Q

µ
γK(µ) +

2αsCI

π
BI −

αsCI

π

(

1− ln ρ2

2

))]

,(213)

where we have chosen ζ2 = ρQ2. All the large logarithms have been resummed into the
Sudakov form factors. In addition, applying the one-loop results in Eqs. (108,108), we find

that the large logarithms (ln
b2
0

b2
⊥
µ̄2 ) associated with the integrated parton distributions can

be resummed by choosing the relevant scale as µ̄ = b0/b. By doing that, the first factor in
the above equation can be replaced with

f(x, b,
b20
ρb2

,
b0
b
, ρ) → f(x, µ̄ = b0/b) (1 + αs · · · ) , (214)

where the right hand side is the integrated parton distributions at the scale of µ̄ = b0/b,
and we have also neglect all the constant terms, such as ρ-dependent terms. These terms
are beyond the accuracy of NLL that we are considering in this paper.

For the soft factor, it satisfies the evolution equation of

∂

∂ lnµ
SIJ(b, µ, ρ) = −

∑

L

SIL ΓS
LJ −

∑

L

ΓS†
IL SLJ , (215)

where

ΓS =
αs

2π

[

A (ln ρ2 − 2) +DI1 ln

(

s

R2
1P

2
T

)

+DI2 ln

(

s

R2
2P

2
T

)]

ΓE + γs . (216)

Here ΓE is an identity matrix, for di-gluon initial states A = CA, for di-quark initial states
A = CF and for quark-gluon initial states A = (CF + CA)/2. For quark jet DI = CF , while
for gluon jet DI = CA. According to the one-loop correction of S(1), the γs factor for each
channel can be directly read out. For example, for the production channel q + q̄ → q + q̄,
we find

γs =
αs

π





2CF T −CF

CA
U

−2U − 1
CA

(T − 2U)



 . (217)

For the channel q + q → q + q,

γs =
αs

π





2CF T CF

CA
U

2U (CA − 2/CA)U − 1
CA

T



 . (218)
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For the channels g + g → q̄ + q and q + q̄ → g + g,

γs =
αs

π













0 0 U − T

0 CA

2
(T + U) CA

2
(U − T )

2(U − T )
(C2

A−4)

2CA
(U − T ) CA

2
(T + U)













. (219)

For the channel q + g → q + g,

γs =
αs

π













(CA + CF )T 0 U

0 CF T + CA

2
U CA

2
U

2U
(C2

A−4)
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(U) CF T + CA

2
U













. (220)

For the channel g + g → g + g,

γs =
αs

π
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. (221)

By solving the evolution equation, we obtain

S(b, µ = Q) = exp

{

−
∫ Q

b0/b

dµ

µ

αs

π

[

A (ln ρ2 − 2) +DI1 ln

(

s

R2
1P

2
T

)

+DI2 ln

(

s

R2
2P

2
T

)]}

× exp

[

−
∫ Q

b0/b

dµ

µ
γs†(αs(µ))

]

S(b, µ = b0/b)exp

[

−
∫ Q

1/b

dµ

µ
γs(αs(µ))

]

, (222)

where the first factor comes from the contribution of the ΓE term in Eq. (216). We note
that since there is only one scale present in S(b, µ = b0/b), it does not contain any large
logarithm.

Substituting the above solutions, Eqs. (213) and (222), into the factorization formula,
Eq. (103), we obtain the final resummation results for W . In particular, since we have
set the factorization scale µ = Q, there will be no large logarithms in the hard factor H.
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Therefore, all the large logarithms have been resummed into the Sudakov form factors, and
we have

W (x1, x2, b) = x1 fa(x1, b0/b⊥)x2 fb(x2, b0/b⊥)e
−SSud(Q

2,b⊥)

× Tr

[

H(Q)exp[−
∫ Q

b0/b⊥

dµ

µ
γs†]S(b0/b)exp[−

∫ Q

b0/b⊥

dµ

µ
γs]

]

, (223)

with

SSud(Q
2, b⊥) =

∫ Q2

b2
0
/b2

⊥

dµ2

µ2

[

ln

(

Q2

µ2

)

A+B +D1 ln
Q2

P 2
TR

2
1

+D2 ln
Q2

P 2
TR

2
2

]

, (224)

which are exact the results we showed in the Introduction section.

F. Contributions from the Non-global Logarithms

In Refs. [7, 9], the so-called non-global logarithms were discussed for the dijet correlation
in hadronic collisions. They further take an example of dijet production in DIS processes,
and estimate their contributions [9]. This non-global logarithm comes from the kinematics
of two gluon radiations, where one is within the jet and another soft gluon outside the jet.
Since it happens at O(α2

s) order, the one-loop calculations in this paper do not encounter
this non-global logarithm 3. Numerically, the non-global logarithms are negligible. This is
because it starts at O(α2

s), and in the kinematics of low imbalance transverse momentum,
the resummation is overwhelmingly dominated by leading double logarithms contributions.
In the following calculations, we will not consider their contributions when we compare to
the experimental data.

VII. PHENOMENOLOGY OF DIJET CORRELATIONS AT TEVATRON AND

LHC

In this section, we will apply our resummation formula to the dijet production from
collider experiments, including Tevatron and the LHC. In these experiments, the leading jet
energy is large, and we expect that the resummation is dominated by the perturbative form
factors. That means that our predictions are not sensitive to the non-perturbative form
factors.

A. Non-perturbative Form Factors in the Resummation

To apply the resummation formula for phenomenological studies, we follow the b∗-
prescription to introduce the non-perturbative form factors [6], i.e.,

b⊥ → b∗ = b/
√

1 + b2/b2max , (225)

3 It seems possible that this contribution might belong to the soft factor in our factorization formula of

Eqs. (102,103) at two-loop order. At this order, the soft factor contribution will have similar kinematics

as described in [9] for the non-global logarithm, where one gluon is within the jet (the Wilson line in the

soft factor definition) and one gluon is soft and outside the jet. Needless to say that this has to be verified

by an explicit calculations with two gluon radiations. We plan to come back to this issue in the future.
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in the b-space cross section contribution W (b⊥) with bmax a parameter which will be set as
bmax = 0.5GeV−1. By doing that, it is guaranteed that b∗ is always in the perturbative
region. Therefore, W (b⊥) is replaced by

W (x1, x2, b) → W (x1, x2, b∗)e
−SNP(Q,b) . (226)

The non-perturbative form factors follow the parameterizations in Ref. [24]. Since we have
quark and gluon from the initial state, we decompose the non-perturbative form factor into
the quark and gluon contributions,

Sab→cd
NP (Q, b) = S

(a)
NP (Q, b) + S

(b)
NP (Q, b) , (227)

for a partonic channel ab → cd. In the right hand side of the above equation, SNP depends
on the flavor of the incoming partons,

S
(q)
NP =

g
(q)
1

2
b2 +

g
(q)
2

2
ln

(

Q

2Q0

)

b2 + g
(q)
3 ln(10x1)b

2 ,

S
(g)
NP =

g
(g)
1

2
b2 +

g
(g)
2

2
ln

(

Q

2Q0

)

b2 + g
(g)
3 ln(10x1)b

2 , (228)

with the following parameters:

g
(q)
1 = 0.21, g

(q)
2 = 0.68, g

(q)
3 = −0.29,

g
(g)
1 = 0.03, g

(g)
2 = 0.87, g

(g)
3 = −0.17 . (229)

These parameters are fitted to the hard scattering processes in the relevant qq̄ and gg
processes in Ref. [24]. In our calculations, we assume that these non-perturbative form
factors apply to the dijet production processes as well. This is an approximation. However,
we would like to emphasize that because the jet energy is so large that our final results are
not sensitive to the non-perturbative form factors at all. We have also checked several recent
proposals for the non-perturbative form factors [25, 26], and found that all of them predict
almost the same distribution for dijet production in the following phenomenological studies.

B. Dijet Correlations at the Tevatron

With all the ingredients presented above, we now compare our resummation results to
the experimental data from the Tevatron. In experiments, the normalized differential cross
sections are measured,

1

σdijet

dσdijet

dφdijet

, (230)

where φdijet is the azimuthal angle between the leading two jets. The leading jets are in
the separate transverse momentum bins, with the second leading jet transverse momentum
PT > 40 GeV. The events are selected in the mid-rapidity, |yjet| < 0.5.

In Fig. 8, we plot the comparisons between our resummation result and the experimental
data from D0 collaboration at Tevatron. For completeness, we also show the prediction of
a fixed order calculation at the NLO [4], which includes both one-loop 2 → 3 and tree level
2 → 4 contributions. To compare with the normalized differential cross section, we have
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FIG. 8. The comparisons between the theory calculations and the experimental data from the D0

collaboration at the Tevatron.

normalized the result of our resummation calculation in φdijet distribution by the LO dijet
cross section, with both jets in the specified pT and y bins of the data point. Namely, the
normalization factor σdijet is taken to be the NLO dijet cross section in the NLO prediction,
and the LO dijet cross section in the resummation prediction. This is because in our resum-
mation calculation, cf. Eq. (223), the hard factorH is only kept at the LO in this calculation.
In the full NLO calculation, as shown in Fig. 8, we have set both the factorization scale and
the renormalization scale at µF = µR = PT/2, which yields the best agreement with the
experimental data [1]. The theoretical uncertainties induced by the scale variations in these
NLO collinear calculations have also been studied in Ref. [1], where it was found that the
uncertainties become larger in the back-to-back correlation region around φ = π. This is a
clear indication that a resummation calculation is needed to improve the theory prediction
in this kinematical region. In our resummation calculation, we have chosen the so-called
canonical choice for the parameters in the Sudakov form factors, as shown in Eq. (223). In
principle, we could also study the theoretical uncertainties induced by varying these param-
eters. To do that, we have to re-write the resummation formula, which is, however, beyond
the scope of the current paper. We hope to come back to this question in the future. We
note that Fig. 8 shows the normalized φdijet distribution (cf. Eq. (230)), and the additional
scale dependence from the overall factor σ0 (cf. Eq. (13)) has been cancelled out in the
theory calculations.
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FIG. 9. The comparisons between the resummation results and the experimental data from the

CMS collaboration at the LHC. The kinematics of each bins are specified according to the experi-

ment [2].

From these plots, we can clearly see that the resummation results agree well with the
experimental data around the back-to-back correlation region of φ ∼ π. For smaller value of
φ (away from the back-to-back configuration), the resummation calculations match to the
fixed order results at NLO [4], which has also been separately shown in Fig. 8. We note that
a full NLO calculation cannot describe experimental data for φ ∼ π [1], where the fixed order
calculation becomes divergent. Our resummation calculation, after being matched with the
NLO result clearly improves the theory prediction and can describe the experimental data
in a wider kinematic region. This demonstrates the importance of all order resummation in
perturbative calculations for these type of hard QCD processes.

C. Dijet Correlations at the LHC

Dijet production processes are among the first few measurements of pp collisions at the
LHC. Both CMS and ATLAS have reported the experimental results on the azimuthal
angular correlations of dijet productions, as done by the D0 Collaboration at the Tevatron.

In Fig. 9, we compare our resummation results with the experimental data from the
CMS collaboration at the LHC. Similar to the D0 measurements, the dijet measurements
are presented in several kinematic bins, with the leading jet transverse momentum labelled
by Pmax

T in the figure. The second jet transverse momentum is chosen to be larger than
30 GeV. Both jets are in the mid-rapidity region, |yjet| < 1.1. Anti-kt jet algorithm with
jet size R = 0.5 was used in the data analysis. We have also applied this algorithm in
our calculations. In this figure, we limit the comparisons in the back-to-back correlation
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FIG. 10. The comparisons between the theory calculations and the experimental data from the

ATLAS Collaboration at the 7 TeV LHC.

region, where we find perfect agreements between the resummation calculations and the
experimental data over all transverse momentum bins. Similar to that in Fig. 8, away from
the back-to-back region, the resummation calculations will match to the fixed order results.

In Fig. 10, we compare to the measurements form the ATLAS collaboration [3]. In this
experiment, the same anti-kt algorithm has been used, however, with jet size R = 0.6. The
two jets are selected from the mid-rapidity region (|yjet| < 0.8) with minimum transverse
momentum of 100 GeV. The data sets are chosen according to different leading jet transverse
momentum region as indicated in the figure. From this figure, we can see that the agreements
between the resummation results and the experimental data are very well around the back-
to-back correlation regions, except in the lowest Pmax

T bin. The apparent poor agreement
between the resummation prediction and the ATLAS data in the lowest Pmax

T bin (between
110 GeV and 160 GeV) is caused by the stronger kinematic cut made on the second jet PT ,
which is required to be above 100 GeV at ATLAS and 30 GeV at CMS. With a much tighter
cut on this second jet PT , the phase space for multiple soft gluon emission is limited so that
our resummation calculation (which allows all possible soft gluon radiation) becomes less
reliable in this case. We note that in the lowest Pmax

T bin, the cross section is dominated
by Pmax

T around 110 GeV which is close to the 100 GeV cut on the second jet made by the
ATLAS.

VIII. SUMMARY AND DISCUSSIONS

In summary, in this paper, we have investigated all order soft gluon resummation in dijet
production processes in hadronic collisions. The procedure and methodology follow the orig-
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inal CSS resummation for massive neutral particle production. Because the final state jets
carry color, the resummation formulas have to be modified to include the effect of soft gluon
radiation associated with the final state jets. In the derivation, we calculated the complete
one-loop contributions from soft and collinear gluon radiations in all partonic channels in
dijet productions. The soft divergences are shown to be cancelled out completely between
real and virtual graphs, which provides an important check to our one-loop calculations. In
order to derive an analytic expression with the jet cone size dependence to demonstrate the
cancellations in the final results and to derive the resummation formula, we apply the narrow
jet approximation in our calculations. We have also implement the (anti-kt) jet algorithm
to separate out the out-of-jet cone radiation from the gluon radiation inside the cone jet.
Hence, the final results of our calculation depend on the jet algorithm and the jet size, which
can then be directly compared to experimental data. As an important cross check, we have
compared our derivation of soft and collinear gluon radiation contribution to the fixed order
calculations at this order, and the numeric comparisons show that they agree very well in
the kinematics of back-to-back correlation regions. In this region, because the predictions of
fixed order calculations are divergent, we have to take into account all order resummation
effects.

We have compared our resummation results to the experimental data from the measure-
ments at the Tevatron and LHC. All these comparisons demonstrate that the resummation
results are crucial to improve the theory descriptions of the experimental data around the
azimuthal back-to-back kinematic region. The combination of the NLO perfurbative cal-
culations (including both one-loop 2 → 3 and tree level 2 → 4 contributions) and our
resummation results provide the most adequate theory descriptions to these experimental
data.

Our calculations are the first systematic derivations of the TMD resummation for dijet
production in hadronic collisions at the NLL order. The results have been cross checked
through various perspectives, and they are consistent within the theoretical framework our
calculations are built on. These cross checks are nontrivial supports for the factorization
arguments used in our derivations. A number of extensions can be performed along this
direction. For example, we shall be able to calculate the soft gluon resummation effects
in the vector boson (or Higgs boson) plus a high PT jet production at the colliders where
the total transverse momentum of the boson and the jet is much smaller than the invariant
mass of the final state particles [27]. These processes are important channels to study the
Standard Model physics at the LHC.

Finally, we would like to comment on the applications of our results to the dijet production
with large rapidity separation. This particular kinematics is very interesting to study the
QCD resummation physics. It has long been realized that the so-called BFKL resummation
[28] will be important in this kinematics, which is referred as the Mueller-Navelet dijet
production [29]. In particular, recently, the CMS collaboration at the LHC has measured
the dijet azimuthal correlation with large rapidity separation between the jets, which has
been interpreted as the BFKL resummation effects [30]. However, in this calculation, only
BFKL-type resummation has been taken into account. We would like to argue that there
should be Sudakov resummation as well. Theoretically, how to resum large logarithms from
both types of physics effects is an important question. We will not address it in this paper.
Instead, we will discuss below the physics of our resummation formula when considered in
this kinematics.

When the two jets are produced with large rapidity separation, we are in a special kine-
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matic region, where the physics is dominated by t-channel diagrams. Therefore, we can
apply the following kinematic approximations, s ∼ −u ≫ −t, which also implies that
P 2
T = tu/s ≈ −t. More importantly, all the partonic channels with t-channel gluon ex-

change will be the most important contributions. This is because they all have terms which
are proportional to s2/t2. This includes the following channels: qq′ → qq′, qg → qg, and
gg → gg. In addition, by applying the above approximation, we find out that the anomalous
dimensions for the associated soft factors derived in the last section become diagonalized.
The direct consequence is that we can simplify the final resummation formula, by absorb-
ing the soft factor anomalous dimension of Eq. (223) into the overall Sudakov perturbative
form factor of Eq. (224). This much simplified result, as compared to that presented in the
last section, may indicate a consistent resummation formula for the Mueller-Navelet dijet
production. The remaining task is to develop a consistent theoretical framework to include
both physics effects induced by the BFKL and Sudakov resummation dynamics [31].
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