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We study quantization of a minimally gauged massless Rarita-Schwinger field, by both

Dirac bracket and functional integral methods. The Dirac bracket approach in covariant

radiation gauge leads to an anticommutator that has a non-singular limit as gauge fields

approach zero, is manifestly positive semidefinite, and is Lorentz invariant. The constraints

also have the form needed to apply the Faddeev-Popov method for deriving a functional

integral, using the same constrained Hamiltonian and inverse constraint matrix that appear

in the Dirac bracket approach.

I. INTRODUCTION

In this paper we continue the study of gauging a massless Rarita-Schwinger field begun in

the preceding paper [1], referred to henceforth as (I) , which dealt principally with the classical

case (with a small excursion into first quantization). Here we turn to a detailed examination of

quantization of a gauged massless Rarita-Schwinger field. Our main aim is to show that a consistent

quantization is possible in gauge covariant radiation gauge, avoiding the problem of non-positivity

of the canonical anticommutator first noted by Johnson and Sudarshan [3] and later rederived by

Velo and Zwanziger [4]. Other objections to gauging a massless Rarita-Schwinger field – the issue

of superluminal signaling, and various “on-shell no-go”theorems – have already been taken up in

(I). In referring to a formula numbered “Eq. (#)” in the preceding paper we shall use the notation

“Eq. (I-#)” , while non-hyphenated equation numbers refer to equations from this paper.

In Sec. 2 we give the Hamiltonian form of the equations of motion and constraints, and introduce

the Dirac bracket. This can be done without imposing a gauge fixing condition; in particular,

we do not use the condition Ψ0 = 0 that was imposed in an initial arXiv posting [2] of this

paper. When a gauge fixing condition is omitted, the equation of motion for ~Ψ computed from the

Dirac bracket agrees with the equation of motion of Eq. (I-29), in the form obtained when Ψ0 is

eliminated by using the secondary constraint ω = 0; this demonstrates that the Dirac formalism is

working correctly in the Rarita-Schwinger equation context. However, in the absence of a gauge
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fixing constraint, the Dirac bracket anticommutator of ~Ψ with ~Ψ† agrees with the anticommutator

calculated in [3] and [4], which is singular in the limit of vanishing gauge fields and is not positive

semidefinite.

In Sec. 3 we study the Dirac bracket in its classical and quantum forms with imposition of

a covariant radiation gauge constraint. We show that now the quantum Dirac bracket has the

requisite positivity properties to be an anticommutator; related details are given in Appendix A.

In Sec. 4 we give an alternative approach to proving positivity of the anticommutator in covariant

radiation gauge, based on writing a Lagrangian for the equation of motion for ~Ψ in which Ψ0 has

already been eliminated by use of the secondary constraint. In Sec. 5 we discuss Lorentz covariance

of covariant radiation gauge and show Lorentz invariance of the Dirac bracket. In Sec. 6 we turn to

path integral quantization in covariant radiation gauge, leading to a formalism closely resembling

the Dirac bracket approach. A brief concluding discussion is given in Sec. 7.

Our conclusion from this paper and the preceding one is that one can consistently gauge a

massless Rarita-Schwinger field, at both the classical and quantum levels. This opens the possibility

of using gauged Rarita-Schwinger fields as part of the anomaly cancelation mechanism in grand

unified models, with anomalies of the spin 1

2
fields canceling against the spin 3

2
anomaly.

II. HAMILTONIAN FORM OF THE EQUATIONS AND THE DIRAC BRACKET

The standard route to canonical quantization is to transform the Lagrangian equations to

Hamiltonian form, and to take the constraints into account by replacing the classical brackets by

Dirac brackets. In carrying this out, we will simplify the formulas by making the gauge choice

A0 = 0 for the non-Abelian gauge fields. This gauge choice is always attainable, and leaves a

residual non-Abelian gauge invariance with time-independent gauge parameter. The Hamiltonian

will then be covariant with respect to this restricted gauge transformation. For the moment, in

discussing the canonical Hamiltonian and bracket formalism, we will allow ~A to be time dependent,

so that ~E 6= 0. But when we turn to the Dirac bracket construction corresponding to a constrained

Hamiltonian, which is simplest in the case of time-independent constraints, we will assume a time-

independent ~A, corresponding in A0 = 0 gauge to ~E = 0. (If we carry along the A0 term in

the formulas then time-independent fields would not require ~E = 0. So this specialization can be

avoided at the price of somewhat lengthier equations.)

From the action S(Ψµ) =
∫

dtL(Ψµ) of Eq. (I-23) and the canonical momentum ~P = 1

2
~Ψ† × ~σ,
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we find the canonical Hamiltonian to be

H =

∫

d3x∂0~Ψ · ~P − L

= −
1

2

∫

d3x[−Ψ†
0
~σ · ~D × ~Ψ+ ~Ψ† · ~σ × ~DΨ0 + ~Ψ† · ~D × ~Ψ]

= −
1

2

∫

d3x[−Ψ†
0
~σ · ~D × ~Ψ+ (i ~P − ~P × ~σ) · (~σ × ~DΨ0 + ~D × ~Ψ)] ,

(1)

where in the final line we have used the inversion formula ~Ψ† = i ~P − ~P × ~σ.

We can now compute the classical brackets of various quantities with H. From

d~Ψ

dt
=[~Ψ,H]C =

1

2
[i(~σ × ~DΨ0 + ~D × ~Ψ)− ~σ × (~σ × ~DΨ0 + ~D × ~Ψ)]

=~DΨ0 +
1

2
[−~σ × ( ~D × ~Ψ) + i ~D × ~Ψ] ,

(2)

we obtain the ~Ψ equation of motion in the form given in Eq. (I-29). Similarly, from the bracket of

~P with H we find the equation of motion for ~Ψ†. Turning to brackets of the constraints with H,

starting with P
Ψ

†
0

, we find

dP
Ψ

†
0

dt
= [P

Ψ
†
0

,H]C = −
1

2
χ , (3)

and so P
Ψ

†
0

= 0 for all times implies that χ = 0. For the total time derivative of χ, we have

dχ

dt
=
∂χ

∂t
+ [χ,H]C = ~σ × g

∂ ~A

∂t
· ~Ψ+ [χ,H]C = −igω , (4)

and so χ = 0 for all times implies that ω defined in Eq. (I-28) vanishes. Since ω contains a term

proportional to Ψ0, to continue this process by calculating the time derivative of ω, we must obtain

dΨ0/dt from a bracket of Ψ0 with H (and similarly for dΨ†
0
/dt). This requires adding to H a term

∆H = −

∫

d3x

[

PΨ0

dΨ0

dt
+ P

Ψ
†
0

dΨ†
0

dt

]

. (5)

Requiring ∆H to be self-adjoint then imposes the requirement

P †
Ψ0

= −P
Ψ

†
0

, (6)

which was noted following Eq. (I-56). As noted in (I), the chain of successive brackets with H

starting from P
Ψ

†
0

and continuing to χ, ω, ... leads only to constraints involving ~Ψ and Ψ0 but never
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their adjoints. The doubling of the set of constraints, which turns the first class constraints into

second class ones, comes from requiring that the adjoint of each fermionic constraint also be a

constraint, not from taking successive brackets with H.

We are now ready to implement the Dirac bracket procedure. The basic idea is to change the

canonical bracket [F,G]C to a modified bracket [F,G]D , which projects F and G onto the subspace

obeying the constraints, so that the constraints are built into the brackets, or after quantization,

into the canonical anticommutators. The constraints can then be“strongly” implemented in the

Hamiltonian by setting terms proportional to the constraints to zero. After integration by parts

the second line of Eq. (1) takes the form

H = −
1

2

∫

d3x[−Ψ†
0
χ− χ†Ψ0 + ~Ψ† · ~D × ~Ψ] , (7)

so setting the constraints χ†, χ respectively to zero in Eq. (7), we see that the constrained Hamil-

tonian is just

H =−
1

2

∫

d3x~Ψ† · ~D × ~Ψ

=−
1

2

∫

d3x(i ~P − ~P × ~σ) · ~D × ~Ψ

(8)

which coincides with the energy integral computed in Eq. (I-35) from the stress-energy tensor.

We proceed now to calculate the Dirac bracket for the case when F = F (~Ψ) and G = G(~Ψ, ~Ψ†);

the case when F = F (~Ψ†) can then be obtained by taking the adjoint, and the case when F =

F (~Ψ, ~Ψ†) can be obtained by combining the extra bracket terms from both calculations. When

F has no dependence on ~Ψ†, it has vanishing brackets with the constraints φa of Eq. (I-55) and

nonvanishing brackets with the constraints χa of Eq. (I-56). The Dirac bracket then has the form
(

see Eqs. (I-A20) and (I-A21) for why M−1 appears
)

[F,G]D = [F,G]C −
∑

a

∑

b

[F, χa]CM
−1

ab [φb, G] , (9)

where Mab(~x, ~y) = [φa(~x), χb(~y)]C is the matrix defined in Eqs. (I-58) and (I-59). We recall that

this matrix has the form

M =

















0 −1 0 0

1 U S T

0 V A B

0 W C D

















, (10)
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where in the SU(n) gauge field case, each entry inM is a 2n×2n matrix. Using the block inversion

method given in Eqs. (I-A18) and (I-A19), we find that M−1 is given by

M−1 =

















Σ 1 −(SF + T H) −(SG + T I)

− 1 0 0 0

FV + GW 0 F G

HV + IW 0 H I

















, (11)

where

Σ = U − S(FV + GW)− T (HV + IW) , (12)

and where F , G, H, I are the elements of the block inversion of the matrix N of Eq. (I-60),





F G

H I









A B

C D



 =





1 0

0 1



 . (13)

Substituting these into Eq. (9) we find for the Dirac bracket a lengthy expression, which sim-

plifies considerably after noting that [F (~Ψ), χ1]C = [F (~Ψ),−PΨ0
]C = 0 and [φ1, G(~Ψ, ~Ψ

†)]C =

[P
Ψ

†
0

, G(~Ψ, ~Ψ†)]C = 0, leaving the relatively simple formula

[F (~Ψ), G(~Ψ, ~Ψ†)]D =[F (~Ψ), G(~Ψ, ~Ψ†)]C

−[F (~Ψ), χ3]C

(

F [φ3, G(~Ψ, ~Ψ
†)]C + G [φ4, G(~Ψ, ~Ψ

†)]C

)

−[F (~Ψ), χ4]C

(

H [φ3, G(~Ψ, ~Ψ
†)]C + I [φ4, G(~Ψ, ~Ψ

†)]C

)

.

(14)

We note that only the matrix N enters, in this case through its inverse, rather than the full matrix

of constraint bracketsM . The final step is to evaluate the inverse block matrix elements F , G, H, I

from the expressions for A, B, C, D, again by using the block inversion formulas of Eqs. (I-A18)

and (I-A19). Let us define the Green’s function D−1(~x− ~y) by

(

i(~L~x)
2 + ~σ · ~L~x × ~L~x

)

D−1(~x− ~y) = δ3(~x− ~y) , (15)

and a second Green’s function Z(~x− ~y) by

Z(~x− ~y) =A− BD−1C

=− 2ig~σ · ~Bδ3(~x− ~y)− 4~D~x · ~L~xD
−1(~x− ~y)~L~y ·

←−
D~y .

(16)



6

where in covariant radiation gauge ~L = ~D. Then the needed inverse block matrices are

F =Z−1 ,

G =−Z−1BD−1 ,

H =−D−1CZ−1 ,

I =D−1 +D−1CZ−1BD−1 .

(17)

We wish now to apply the Dirac bracket formula to the cases (i) F (~Ψ) = ~Ψ and G(~Ψ, ~Ψ†) = ~Ψ†,

and (ii) F (~Ψ) = ~Ψ and G(~Ψ, ~Ψ†) = H, with H the constrained Hamiltonian of Eq. (8). The

following canonical brackets are needed for this:

[~Ψ(~x), χ3(~y)]C =2~D~xδ
3(~x− ~y) ,

[~Ψ(~x), χ4(~y)]C =(i~L~x − ~σ × ~L~x)δ
3(~x− ~y) ,

[φ3(~x), ~Ψ
†(~y)]C =2~D~xδ

3(~x− ~y) = −2δ3(~x− ~y)
←−
D~y ,

[φ4(~x), ~Ψ
†(~y)]C =− (i~L~x − ~L~x × ~σ)δ

3(~x− ~y) = δ3(~x− ~y)(i
←−
L ~y −

←−
L ~y × ~σ) ,

[φ3(~x),H]C =ig ~B(~x) · ~Ψ(~x) ,

[φ4(~x),H]C =
1

2
(i~L~x − ~L~x × ~σ)× ~D~x · ~Ψ(~x) .

(18)

Additionally, for case (i) we need the canonical bracket

[Ψi(~x),Ψ
†
j(~y)]C =[Ψi(~x), iPj(~y)− ǫjklPk(~y)σl]C

=− i(δij + iǫjilσl)δ
3(~x− ~y) = −iσjσiδ

3(~x− ~y) = −2i
(

δij −
1

2
σiσj

)

δ3(~x− ~y) ,

(19)

and for case (ii) we need the canonical bracket

[Ψi(~x),H]C =
1

2

(

i ~D~x × ~Ψ(~x)− ~σ ×
(

~D~x × ~Ψ(~x)
)

)

i
. (20)

Up to this point, we have not specialized ~L so as to make it easy to ascertain what the formulas

become when gauge fixing is omitted (as in [3] and [4]). When ~L = 0, the matrix N degenerates

to its upper left element A. This is reflected in the fact that Z of Eq. (16) simplifies to

Z(~x− ~y) = A = −2ig~σ · ~Bδ3(~x− ~y) , (21)
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which is a local function of ~x and so is algebraically invertible. The Dirac bracket of ~Ψ(~x) with the

constrained Hamiltonian now simplifies to

d~Ψ(~x)

dt
=[~Ψ(~x),H]D =

1

2
[i ~D~x × ~Ψ(~x)− ~σ ×

(

~D~x × ~Ψ(~x)
)

]−

∫

d3y
{

2~D~x

[

Z−1(~x− ~y)ig ~B(~y) · ~Ψ(~y)
]}

=
1

2
[i ~D~x × ~Ψ(~x)− ~σ ×

(

~D~x × ~Ψ(~x)
)

] + ~D~x

1

~σ · ~B(~x)
~B(~x) · ~Ψ(~x) .

(22)

The second line of this equation is just the ~Ψ equation of motion in the form of Eq. (I-29)

(when A0 = 0), with Ψ0 eliminated by using the secondary constraint, which when ~E = 0 reads

~σ · ~BΨ0 = ~B · ~Ψ. This shows that the Dirac bracket formalism correctly incorporates the Ψ0 term

of Eq. (I-29). The reason a local result is obtained from this calculation is that in the absence of

gauge fixing, the Dirac bracket only projects into the subspace that preserves the primary constraint

χ = 0, and since the equation of motion of Eq. (I-29) preserves this constraint, it already resides

in the subspace projected into by the ~L = 0 Dirac bracket.

When ~L = 0, for the Dirac bracket of ~Ψi(~x) with ~Ψ†
j(~y) we find

[Ψi(~x),Ψ
†
j(~y)]D =[Ψi(~x),Ψ

†
j(~y)]C −

∫

d3wd3z[Ψi(~x), χ3(~w)]CZ
−1(~w − ~z)[φ3(~z),Ψ

†
j(~y)]C

=− 2i
[(

δij −
1

2
σiσj

)

δ3(~x− ~y)−D~x i

δ3(~x− ~y)

g~σ · ~B(~x)

←−
D~y j

]

=− 2i〈~x|
[(

δij −
1

2
σiσj

)

1 + Πi
1

g~σ · ~B
Πj

]

|~y〉 ,

(23)

where in the final line we have written iD~x i = Πi to relate to the abstract operator notation

of Velo and Zwanziger [4]. Multiplying the final line by i to convert the Dirac bracket to an

anticommutator, and by a factor 1/2 reflecting our different field normalization, Eq. (23) becomes

the expression for the anticommutator given in the zero mass limit of Eq. (4.12) of [4]. Using

identities in Appendix A of (I), one can verify (as in Appendix C of [4]) that

(~σ × ~D~x)i

[(

δij −
1

2
σiσj

)

δ3(~x− ~y)−D~x i
δ3(~x− ~y)

g~σ · ~B(~x)

←−
D~y j

]

= 0 , (24)

that is, the constraint χ is explicitly projected to zero. However, as noted in the Introduction to

(I), the anticommutator of Eq. (23) becomes singular as ~B → 0, rather than limiting to the free

Rarita-Scwhinger anticommutator. This problem is a direct consequence of omitting a gauge-fixing

constraint, by taking ~L = 0 in calculating the matrix N .
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Now setting ~L = ~D for covariant radiation gauge, we find for the Dirac bracket of Ψi(~x) with

the constrained Hamiltonian,

d~Ψ(~x)

dt
=[~Ψ(~x),H]D =

1

2
[i ~D~x × ~Ψ(~x)− ~σ ×

(

~D~x × ~Ψ(~x)
)

]

−

∫

d3y
{

2~D~x

[

F(~x− ~y)ig ~B(~y) · ~Ψ(~y)

+G(~x− ~y)
1

2

(

i ~D~y − ~D~y × ~σ
)

× ~D~y · ~Ψ(~y)
]

+(i ~D~x − ~σ × ~L~x)
[

H(~x− ~y)ig ~B(~y) · ~Ψ(~y)

+I(~x− ~y)
1

2

(

i ~D~y − ~D~y × ~σ
)

× ~D~y · ~Ψ(~y)
]}

. (25)

The first line of this equation gives the second term of the unconstrained equation of motion in

the form of Eq. (I-29), while the remaining terms replace the first term of Eq. (I-29) to guarantee

that

dφ3
dt

=
dχ

dt
=
d(~σ × ~D · ~Ψ)

dt
= σ × ~D ·

d~Ψ

dt
= 0 ,

dφ4
dt

=d
~D · ~Ψ

dt
= ~D ·

d~Ψ

dt
= 0 ,

(26)

where we have used the fact that we are assuming that ~D is time independent. That is, the Dirac

bracket simultaneously projects the equation of motion into the subspace where both χ = 0 and

~D · ~Ψ = 0. The restriction to ~D time independent can be avoided by treating the gauge fields

as dynamical variables, taking into account their own constraint structure, and noting that the

radiation gauge fixing constraint ~∇· ~P ~A
= 0, with ~P ~A

the canonical momentum conjugate to ~A, has

nonvanishing fermionic brackets with all Rarita-Schwinger constraints involving ~D = ~∇+g ~A. This

requires an extension of the Dirac bracket construction to take the new, Grassmann-odd, brackets

into account, and the extended Dirac bracket structure will then obey Eq. (26) without requiring

the assumption of a time independent ~A and ~D.

With ~L = ~D, we find for the Dirac bracket of Ψi(~x) with Ψ†
j(~y),

[Ψi(~x),Ψ
†
j(~y)]D =− 2i

(

δij −
1

2
σiσj

)

δ3(~x− ~y)

+4~D~x iF(~x− ~y)
←−
D~y j − 2D~x iG(~x− ~y)(i

←−
D~y −

←−
D~y × ~σ)j

+2(i ~D~x − ~σ × ~D~x)iH(~x− ~y)
←−
D~y j − (i ~D~x − ~σ × ~D~x)iI(~x− ~y)(i

←−
D~y −

←−
D~y × ~σ)j ,

(27)

which gives the generalization of Eq. (23) to the case when a covariant gauge fixing constraint is

imposed. This equation will be further analyzed in the next section.
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III. QUANTIZATION OF THE ANTICOMMUTATOR DERIVED FROM THE DIRAC

BRACKET AND POSITIVITY IN COVARIANT RADIATION GAUGE

Given the Dirac bracket, the next step is to quantize, by multiplying all Dirac brackets by i and

then reinterpreting them as anticommutators or commutators of operators. In the case considered

here, this can be done in a constructive way, as follows. First let us replace the set of 2n component

column vector constraints φa and 2n component row vector constraints χa by the set of 4n scalars

given by their individual matrix elements. Moreover, since the χa are the adjoints of the φa, we can

take linear combinations to make all of these scalars self-adjoint. Labeling the set of self-adjoint

scalar constraints by Φa, the Dirac bracket construction for the bracket of F with G reads

[F,G]D =[F,G]C −
∑

a

∑

b

[F,Φa]CT
−1

ab [Φb, G]C ,

Tab =[Φa,Φb]C ,

(28)

with the matrix T real.

We now observe that since the Φa are all linear in the scalar components of ~Ψ and ~Ψ†, if we

make the replacement i[ , ]C → { , }C , with { , } the anticommutatior, and replace all Grassmann

variables ~Ψ and ~Ψ† with operator variables having the standard canonical anticommutators, then

since there is no other operator structure the same real matrix Tab will be obtained. Moreover, if

F and G are both linear in the scalar components of ~Ψ and ~Ψ†, the Grassmann bracket i[F,G]C

formed from scalar components of F and G will agree with the canonical anticommutator i{F,G}C

formed from the corresponding operator scalar components, and will be a c-number. Thus, for

linear F and G we can define a “Dirac anticommutator” {F,G}D by

{F,G}D ={F,G}C −
∑

a

∑

b

{F,Φa}CT
−1

ab {Φb, G}C ,

Tab ={Φa,Φb}C .

(29)

When one or both of F and G is bilinear, the Grassmann bracket i[F,G]C formed from the scalar

components of F and G will agree with the canonical commutator formed from the corresponding

operator scalar components, and we can define a “Dirac commutator” by a formula analogous

to Eq. (29) in which each anticommutator with at least one bilinear argument is replaced by a

commutator. In this way we get a mapping of classical brackets into quantum anticommutators and
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commutators, that inherits the algebraic properties of the Dirac bracket, including the chain rule,

with the Jacobi identities for odd and even Grassmann variables mapping to the corresponding

anticommutator and commutator Jacobi identities.

To complete this correspondence, we must show that the Dirac anticommutator of Ψαu
i and

Ψ†β v
j (with α = 1, 2, β = 1, 2 the spin indices, u = 1, ..., n, v = 1, ..., n the internal symmetry

indices, and i = 1, 2, 3, j = 1, 2, 3 the spatial vector indices) has the expected positivity properties

of an operator anticommutator, by showing that for an arbitrary set of complex functions Aαu
i (~x),

we have

∫

d3xd3yAαu
i (~x)A∗β v

j (~y){Ψαu
i (~x),Ψ† β v

j (~y)}D ≥ 0 . (30)

We demonstrate this in several steps, in covariant radiation gauge. First we examine the conditions

for positivity of the canonical anticommutator and Poisson bracket,

∫

d3xd3yAαu
i (~x)A∗β v

j (~y){Ψαu
i (~x),Ψ† β v

j (~y)}C =

∫

d3xd3yAαu
i (~x)A∗β v

j (~y)i[Ψαu
i (~x),Ψ† β v

j (~y)]C .

(31)

From Ψ†β v
j = iP β v

j − ǫjklP
δ v
k σδβl , we find that

[Ψαu
i (~x),Ψ†β v

j (~y)]C =− i
(

δijδ
αβ + iǫjikσ

αβ
k

)

δuvδ3(~x− ~y)

=− i(σjσi)
αβδuvδ3(~x− ~y) = −2i(δij −

1

2
σiσj)

αβδuvδ3(~x− ~y) .

(32)

Multiplying by i/2, and writing Aαu
i = Rαu

i + iIαu
i , i = 1, 2, 3, α = 1, 2, u = 1, ..., n, with R and I

real, the right hand side of Eq. (31) evaluates to
(

we suppress the internal symmetry index u from

here on, so (Rα
i )

2 means
∑n

u=1
(Rαu

i )2 , etc.
)

3
∑

i=1

2
∑

α=1

(

(Rα
i )

2+(Iαi )
2
)

−
1

2

(

(R1

2−I
1

1+I
2

3 )
2+(R1

1+I
1

2−R
2

3)
2+(R2

2+I
2

1+I
1

3 )
2+(R2

1−I
2

2+R
1

3)
2
)

. (33)

If all three components Aα
i , i = 1, ..., 3 are present, the expression in Eq. (33) is not positive

semidefinite. But when only two of the three components are present, as a result of application of

a constraint, then each of the four squared terms on the right hand side of Eq. (33) contains only

two terms, and so the expression in Eq. (33) is positive semidefinite by virtue of the inequality

X2 + Y 2 −
1

2
(X ± Y )2 =

1

2
(X ∓ Y )2 ≥ 0 . (34)

Another way of seeing this, noted by both Velo and Zwanziger [4] and Allcock and Hall [5], is

that because
∑

3

i=1
σiσi = 3, the expression Wij = δij −

1

2
σiσj is not a projector. But when one
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component of ~σ, say σ3, is replaced by 0, so that one has
∑

3

i=1
σiσi =

∑

2

i=1
σiσi = 2, then

∑

l

WilWlj = δij − 2
1

2
σiσj +

1

4
σi

2
∑

l=1

σlσlσj = δij −
1

2
σiσj =Wij , (35)

and Wij is a projector and hence is positive semidefinite. So we anticipate that proving positivity

will require projection of Eq. (32) into a subspace obeying at least one constraint on ~Ψ.

The next step is to use the property that the Dirac bracket of linear quantities F and G reduces

to the canonical bracket of their projections into the subspace obeying the constraints, when (as

is the case here) all constraints are second class, that is they all appear in the Dirac bracket [6].

Referring to Eq. (28), let us define

F̃ =F −
∑

a

∑

b

[F,Φa]CT
−1

ab Φb ,

G̃ =G−
∑

a

∑

b

[G,Φa]CT
−1

ab Φb ,

(36)

so that

[F̃ ,Φc]C =[F,Φc]C −
∑

a

∑

b

[F,Φa]CT
−1

ab [Φb,Φc]C

=[F,Φc]C −
∑

a

∑

b

[F,Φa]CT
−1

ab Tbc

=[F,Φc]C −
∑

a

[F,Φa]Cδac = 0 ,

(37)

and similarly for G̃. As a result of this relation, which holds when the canonical brackets are

simply numbers (as in the case here where Φc and F, G are linear), together with symmetry of the

canonical bracket [G̃,Φc]C = [Φc, G̃]C , we see that

[F,G]D = [F̃ , G̃]C . (38)

These properties of Eqs. (36)–(38) carry over when we replace Grassmann numbers with opera-

tors, and classical brackets with anticommutators, since in the linear case all anticommutators of

linear quantities are c-numbers that commute with the operators, and since the anticommutator

is symmetric. Thus we have

{Ψα
i (~x),Ψ

† β
j (~y}D = {Ψ̃α

i (~x), Ψ̃
† β
j (~y)}C . (39)
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To further study the properties of Ψ̃i(~x) and Ψ̃†
j(~y) (with spinor indices suppressed), let us now

return to our original labeling of the constraints by φa and χa as in Eq. (14), so that we have in

the Dirac bracket formalism

Ψ̃i(~x) = Ψi(~x)−
∑

a

∑

b

[Ψi(~x), χa]CM
−1

ab φb , (40)

and a similar equation (with the roles of φa and χa interchanged) for Ψ̃†
j(~y), with a, b summed from

3 to 4. We now note two important properties of this equation. The first is that it is invariant

under replacement of the constraints χa by any linear combination χ′
a = χbKba, with the matrix K

nonsingular, since the factors K and K−1 cancel between χ′
a andM ′ −1

ab . (More generally, the Dirac

bracket is invariant under replacement of the constraints by any nonsingular linear combination

of the constraints, reflecting the fact that the Dirac bracket is a projector onto the subspace

obeying the constraints, and this subspace is invariant under replacement of the constraints by

any nonsingular linear combination of the constraints.) The second is that if we act on Ψ̃i(~x) with

either D~x i or (~σ × D~x)i, we get zero. For example, recalling that in covariant radiation gauge

D~x iΨi(~x) = φ4(~x), we have (with spatial variable labels ~x suppressed)

DiΨ̃i = φ4 −
∑

a

∑

b

[φ4, χa]CM
−1

ab φb = φ4 −
∑

a

∑

b

M4aM
−1

ab φb = φ4 −
∑

b

δ4bφb = 0 , (41)

and similarly for (~σ ×D~x)i, with φ4 replaced by φ3.

Let us now write Ψ̃i(~x) as a projector Rij(~x, ~y) acting on Ψj(~y), giving after an integration by

parts on ~y,

Ψ̃i(~x) =

∫

d3yRij(~x, ~y)Ψj(~y) ,

Rij(~x, ~y) =δijδ
3(~x− ~y) +

∑

a

∑

b

∫

d3z[Ψi(~x), χa(~z)]CM
−1

ab (~z, ~y)←−η b j(~y) ,

(42)

with

←−η 3 j(~y) = (~σ ×
←−
D~y)j , ←−η 4 j(~y) =

←−
D~y j . (43)

By virtue of Eq. (41) and its analog for ~σ × ~D, we have

D~x iRij(~x, ~y) =0 ,

(~σ × ~D~x)iRij(~x, ~y) =0 .

(44)
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Since

~σ · ~D~xσiRij(~x, ~y) = D~x iRij(~x, ~y) + i(~σ × ~D~x)iRij(~x, ~y) , (45)

then assuming that ~σ · ~D is invertible Eqs. (44) also imply that

σiRij(~x, ~y) = 0 . (46)

Next let us focus on the bracket [Ψi(~x), χa(~z)]C appearing as the first factor inside the sum. Setting

~L = ~D in Eq. (18) we have

[~Ψ(~x), χ3(~z)]C =2~D~xδ
3(~x− ~z) ,

[~Ψ(~x), χ4(~z)]C =(i ~D~x − ~σ × ~D~x)δ
3(~x− ~z) .

(47)

Using the invariance of Ψ̃i, or equivalently of Rij , under replacement of χ3, χ4 by any nondegenerate

linear combination of χ3, χ4, let us choose the new combinations so that

[~Ψ(~x), χ3(~z)]C =(~σ × ~D~x)δ
3(~x− ~z) = ~η3(~x)δ

3(~x− ~z) ,

[~Ψ(~x), χ4(~z)]C = ~D~xδ
3(~x− ~y) = ~η4(~x)δ

3(~x− ~z) .

(48)

Substituting this into Eq. (42), we get the symmetric expression

Rij(~x, ~y) = δijδ
3(~x− ~y) +

∑

a

∑

b

∫

d3z~ηa i(~x)M
−1

ab (~x, ~y)←−η b j(~y) . (49)

By virtue of this symmetry, the projector Rij is annihilated by the constraints
←−
D~y j and (~σ×

←−
D~y)j

acting from the right, which in turn implies that in addition to Eq. (46) we also have

Rij(~x, ~y)σj = 0 . (50)

An explicit construction of Rij(~x, ~y) and verification of Eqs. (46) and (50) is given in Appendix C.

Returning now to Eqs. (30) and (39), writing Ψ̃α
i and Ψ̃†β

j in terms of projectors acting on Ψα
i

and Ψ†β
j , we have (using σǫδm = σ∗δǫm , and continuing to suppress internal symmetry indices u, v,
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which are contracted in the same pattern as the spatial vector and spin indices)

∫

d3x

∫

d3yAα
i (~x)A

∗β
j (~y){Ψα

i (~x),Ψ
† β
j (~y)}D

=

∫

d3x

∫

d3yAα
i (~x)A

∗β
j (~y){Ψ̃α

i (~x), Ψ̃
† β
j (~y)}C

=

∫

d3x

∫

d3yAα
i (~x)A

∗β
j (~y)

∫

d3z

∫

d3wRαγ
il (~x, ~z){Ψγ

l (~z),Ψ
† δ
m (~w)}CR

∗βδ
jm (~y, ~w)

=

∫

d3x

∫

d3yAα
i (~x)A

∗β
j (~y)

∫

d3z

∫

d3wRαγ
il (~x, ~z)2

(

δlmδ
γδ −

1

2
σγǫl σ

∗δǫ
m

)

δ3(~z − ~w)R∗βδ
jm (~y, ~w)

=2

∫

d3z
[

∫

d3xAα
i (~x)R

αγ
il (~x, ~z)

][

∫

d3yAβ
j (~y)R

βγ
jl (~y, ~z)

]∗

,

(51)

which is positive semidefinite.

We conclude that the anticommutator of ~Ψ with ~Ψ† is manifestly positive semidefinite in co-

variant radiation gauge. The duality of the φ3,4 and χ3,4 constraints in this gauge is essential

to reaching this conclusion; if gauge fixing were omitted, or if another gauge were chosen, this

symmetry would not be present and we could not deduce positivity in a similar fashion.

IV. ALTERNATIVE LAGRANGIAN AND HAMILTONIAN FOR THE ~Ψ EQUATION

IN COVARIANT RADIATION GAUGE

Up to this point we have worked with the original action of Eq. (I-23) and the canonical

momentum derived from it. We give here another approach, based on setting up an action for the

~Ψ equation of motion from which Ψ0 has been eliminated by the secondary constraint,

D0
~Ψ = ~D~R · ~Ψ+ i ~D × ~Ψ ,

~R =(~σ · ~B)−1( ~B + ~σ × ~E) , (52)

which holds when the primary constraint χ = 0 is obeyed. Consider the self-adjoint action

Ŝ =

∫

d3xL̂ =
i

2

∫

d4x~Ψ† ·
(

D0
~Ψ− i ~D × ~Ψ− ~D~R · ~Ψ− ~R† ~D · ~Ψ

)

. (53)

Varying with respect to ~Ψ†, and imposing two constraints: (i) the primary constraint χ = ~σ· ~D×~Ψ =

0, and (ii) the gauge fixing constraint ~D · ~Ψ = 0, we get the equation of motion of Eq. (52). For

the canonical momentum conjugate to ~Ψ, we find

~P =
∂LŜ

∂(∂0~Ψ)
= −

i

2
~Ψ† , (54)
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which implies that

~Ψ† = 2i ~P . (55)

For the Hamiltonian corresponding to the new action, we find (again for simplicity taking A0 = 0,

and integrating the middle term by parts)

Ĥ =

∫

d3x∂0~Ψ · ~P − L̂

=
1

2

∫

d3x~Ψ† ·
(

− ~D × ~Ψ− i
←−
D ~R · ~Ψ+ i ~R† ~D · ~Ψ

)

=−
1

2

∫

d3x~Ψ† · ~D × ~Ψ ,

(56)

where in going from the second to the final line we have used the constraint ~D · ~Ψ = 0 and its

adjoint ~Ψ† ·
←−
D = 0. The Hamiltonian Ĥ is again the energy integral calculated from the left chiral

part of the stress-energy tensor, and expressed in terms of the canonical momentum is

Ĥ = −i

∫

d3x~P · ~D × ~Ψ . (57)

From here on the argument parallels that of Secs. 2 and 3, but is simpler. For the canonical

bracket of Ψi(~x) with Ψj(~y) we have

[Ψi(~x),Ψ
†
j(~y)]C = [Ψi(~x), 2iPj(~y)]C = −2iδijδ

3(~x− ~y) , (58)

and so multiplying by i to convert to a canonical anticommutator we get

{Ψi(~x),Ψ
†
j(~y)}C = 2δijδ

3(~x− ~y) , (59)

which is positive semidefinite. The complete set of constraints is

φ3 =χ = ~σ · ~D × ~Ψ ,

φ4 = ~D · ~Ψ ,

χ3 =χ
† = −~Ψ† ×

←−
D · ~σ = 2i ~P · ~σ ×

←−
D,

χ4 =~Ψ
† ·
←−
D = 2i ~P ·

←−
D .

(60)

The constraints φ3, φ4 are identical to φ1, φ2 of Eq. (A1), while the constraints χ3, χ4 are χ1, χ2

of Eq. (A1) up to an invertible linear transformation (just interchange of the χ constraints and

division by 2i). Thus the projector Rij(~x, ~y) is the same as that calculated in Appendix A, and the

Dirac anticommutator given by Eq. (39) is is positive semidefinite by Eq. (51), this time without

using the fact that Rij is projected to zero by σi and σj.
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V. LORENTZ COVARIANCE OF COVARIANT RADIATION GAUGE AND LORENTZ

INVARIANCE OF THE DIRAC BRACKET

We study next the behavior of covariant radiation gauge and the Dirac bracket under Lorentz

boosts. The Rarita-Schwinger field ψα
µ and its left-handed chiral projection Ψα

µ both have a four-

vector index µ and a spinor index α. Under an infinitesimal Lorentz transformation, the trans-

formations acting on these two types of indices are additive, and so can be considered separately.

The spinor indices are transformed as in the usual spin 1

2
Dirac equation by a matrix constructed

from the Dirac gamma matrices, which commutes with Dµ. Hence the spinor index transformation

leaves the covariant radiation gauge condition ~D · ~Ψ invariant.

This leaves the transformation on the vector index to be considered, and this is a direct analog of

the Lorentz transformation of radiation gauge in quantum electrodynamics [7]. Since the radiation

gauge condition is invariant under spatial rotations, we only have to consider a Lorentz boost,

~x→~x ′ = ~x+ ~vt ,

x0 =t→ t′ = t+ ~v · ~x .

(61)

Under this boost, the field ~Ψ transforms as

~Ψ→ ~Ψ′ = ~Ψ+ ~vΨ0 . (62)

For an observer in the boosted frame, covariant radiation gauge would be ~D~x′ · ~Ψ′ = 0, with

~D~x′ = ~∇~x′ + g ~A′, where ~A′ = ~A + O(~v). Applying this to ~Ψ′(~x′, t′) and using the covariant

radiation gauge condition in the initial frame, we get

~D~x′ · ~Ψ′ = vjΣj(~x, t) , (63)

with Σj(~x, t) a local polynomial in ~Ψ, Ψ0 and the gauge fields, where we have dropped primes on

the right hand side since there is an explicit factor of ~v. So in the boosted frame ~Ψ′ does not obey

the covariant radiation gauge condition, but this can be restored by making a gauge transformation

~Ψ′ → ~Ψ′ − ~D( ~D2)−1vjΣj(~x, t) . (64)

Hence the covariant radiation gauge condition is Lorentz boost covariant, although not Lorentz

boost invariant.
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Referring now to Eq. (A10), we note that the covariant radiation gauge Dirac bracket and

the anticommutation relations are invariant under infinitesimal Rarita-Schwinger gauge transfor-

mations, such as that of Eq. (64), up to a remainder that is quadratic in the gauge parameter.

Hence the covariant radiation gauge Dirac bracket and the anticommutation relations following

from it are Lorentz invariant, since a finite Lorentz transformation can be built up from a series of

infinitesimal ones.

VI. PATH INTEGRAL QUANTIZATION

An alternative method of quantization to the Dirac bracket approach is setting up a Feynman

path integral. Again, we will specialize to the case where the external gauge potentials, and hence

~D, are time independent, since the simplest discussions of path integrals for constrained systems

assume time-independent constraints. As noted above, this assumption can be dropped when the

gauge field is quantized along with the Rarita-Schwinger field, leading to a more complex system

of constraints and constraint brackets.

When the constraints are time independent, the classical brackets of Eqs. (I-57) and (I-58) have

the form needed to apply the Faddeev-Popov [8] method for path integral quantization. (This has

been applied in the free Rarita-Schwinger case by Das and Freedman [9] and by Senjanović [10].)

The general formula of [8] for the in to out S matrix element (up to a constant proportionality

factor) reads

〈out|S|in〉 ∝

∫

exp
(

iS(q, p)
)

∏

t

dµ
(

q(t), p(t)
)

,

dµ(q, p) =
∏

a

δ(χa)δ(φa)(det[φa, χb])
ξ
∏

i

dpidqi ,

(65)

where ξ = 1 when all canonical variables are bosonic, and ξ = −1 in our case in which all canonical

variables are fermionic, or Grassmann odd. In applying this formula, we note that since the action

S of Eq. (I-23) and the bracket matrix M of Eqs. (I-59)-(I-62) are independent of PΨ0
and P

Ψ
†
0

,

we can immediately integrate out the delta functions in these two constraints. Also, since the

canonical momentum ~P is related to ~Ψ† by the constant numerical transformation of Eq. (I-54),

we can take ~Ψ† as the integration variable instead of ~P , up to an overall proportionality constant.
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So we have the formula, after an integration by parts in the second term,

〈out|S|in〉 ∝

∫

exp
(

i
1

2

∫

d4x[−Ψ†
0
~σ · ~D × ~Ψ− ~Ψ† · ~σ ×

←−
DΨ0 + ~Ψ† · ~D × ~Ψ− ~Ψ† · ~σ ×D0

~Ψ]
)

×
∏

t,~x

dµ
(

Ψ0,Ψ
†
0
, ~Ψ, ~Ψ†

)

=

∫

exp
(

i
1

2

∫

d4x[−Ψ†
0
χ− χ†Ψ0 + ~Ψ† · ~D × ~Ψ− ~Ψ† · ~σ ×D0

~Ψ]
)

×
∏

t,~x

dµ
(

Ψ0,Ψ
†
0
, ~Ψ, ~Ψ†

)

.

(66)

Here

dµ
(

Ψ0,Ψ
†
0
, ~Ψ, ~Ψ†

)

=

(

4
∏

c=2

δ(χc)δ(φc)

)

(det[φa, χb])
−1dΨ0dΨ

†
0
d~Ψd~Ψ† , (67)

with dΨ0 and dΨ†
0
each a product over the spinor components, and d~Ψ and d~Ψ† each a product

over the spinor-vector components.

As our next step, we can carry out the integrations over Ψ0 and Ψ†
0
, using the delta functions

δ(φ2) and δ(χ2) . This leaves the formula

〈out|S|in〉 ∝

∫

exp
(

i
1

2

∫

d4x[−~Ψ† · ( ~B + ~σ × ~E)(~σ · ~B)−1χ

−χ†(~σ · ~B)−1( ~B + ~σ × ~E) · ~Ψ+ ~Ψ† · ~D × ~Ψ− ~Ψ† · ~σ ×D0
~Ψ]
)

×
∏

t,~x

dµ
(

~Ψ, ~Ψ†
)

,

(68)

with

dµ
(

~Ψ, ~Ψ†
)

=

(

4
∏

c=3

δ(χc)δ(φc)

)

(det[φa, χb])
−1d~Ψd~Ψ† , (69)

so that only the remaining constraints φ3,4, χ3,4 are used in constructing the determinant

det[φa, χb].

Finally, using the delta functions δ(φ3) = δ(χ) and δ(χ3) = δ(χ†) to simplify the exponent, we
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end up with the elegant formula

〈out|S|in〉 ∝

∫

exp
(

i
1

2

∫

d4x~Ψ† · [ ~D × ~Ψ− ~σ ×D0
~Ψ]
)

×
∏

t,~x

dµ
(

~Ψ, ~Ψ†
)

,

(70)

which as in Dirac bracket quantization, employs as Hamiltonian the energy integral computed in

Eq. (I-35) from the stress-energy tensor. In using this formula, the customary procedure [11] would

be to put the bracket matrix that is the argument of the determinant back into the exponent by

introducing bosonic ghost fields φG.

VII. CONCLUSION AND DISCUSSION

To conclude, we see that when a covariant radiation gauge constraint is included, the problems

with canonical quantization found in [3] and [4] are avoided: The Dirac bracket is well-defined in

the limit of zero external fields, and is positive semidefinite. Thus our conclusion in (I) that the

classical theory of gauged Rarita-Schwinger fields is consistent extends to the quantized theory of

gauged Rarita-Schwinger fields as well. As noted in (I), this means that in constructing grand

unified theories, one can contemplate an anomaly cancellation mechanism in which the gauge

anomalies of Rarita-Schwinger fields cancel against those of spin-1
2
fields, as first suggested in [12]

and as used in the SU(8) family unification model of [13].

Some final remarks:

1. In quantizing, we assumed that the gauge fields ~A are time independent, so that d/dt and

~D commute. As noted, this assumption can be dropped if the gauge fields are treated as

dynamical variables, leading to an extension of the bracket structure, involving fermionic

brackets as well as bosonic ones. (For a discussion of bosonic versus fermionic constraints,

see [14].)

2. In demonstrating positivity of the anticommutator in Sec. 3 (but not in Sec. 4), we used the

condition ~σ · ~Ψ = 0. Deriving this from the covariant radiation gauge condition ~D · ~Ψ = 0

assumed the invertibility of ~σ · ~D, and attainability of covariant radiation gauge assumed

the invertibility of ( ~D)2. The conditions for invertibility of these two operators remain to be

studied. (The open space index theorems of Callias [15] and Weinberg [15] involve ~σ · ~D+ iφ,

with φ a scalar field, and so do not give information about the invertibility of ~σ · ~D.)
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Appendix A: Construction of the projector Rij(~x, ~y)

Since there are only two φa constraints and two χa constraints, we index them a = 1, 2 rather

than a = 3, 4 as in the text, and use the invariance of Rij(~x, ~y) under changing the linear combi-

nation of the χa constraints. We start from the constraint set

φ1 = ~σ × ~D · ~Ψ , χ1 = ~P ·
←−
D ,

φ2 = ~D · ~Ψ , χ2 = ~P · ~σ ×
←−
D .

(A1)

For the bracket matrix

Mab(~x, ~y) = [φa(~x), χb(~y)]C =





Â B̂

Ĉ D̂



 , (A2)

we find the matrix elements

Â =− ig~σ · ~Bδ3(~x− ~y) ,

B̂ =
(

2( ~D~x)
2 + g~σ · ~B

)

δ3(~x− ~y) = δ3(~x− ~y)
(

2(
←−
D~y)

2 + g~σ · ~B
)

,

Ĉ =( ~D~x)
2δ3(~x− ~y) = δ3(~x− ~y)(

←−
D~y)

2 ,

D̂ =ig~σ · ~Bδ3(~x− ~y) .

(A3)
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We write the inverse matrix M−1(~z, ~w) as




F̂ Ĝ

Ĥ Î



 , (A4)

which obeys




Â B̂

Ĉ D̂









F̂ Ĝ

Ĥ Î



 =





F̂ Ĝ

Ĥ Î









Â B̂

Ĉ D̂



 =





1 0

0 1



 . (A5)

In terms of the inverse matrix, the projector Rij(~x, ~w) is given by (with internal symmetry indices

suppressed)

Rij(~x, ~w) =δijδ
3(~x− ~w)1

+D~x iF̂(~x− ~w)(~σ ×
←−
D ~w)j +D~x iĜ(~x− ~w)

←−
D ~w j

+(~σ ×D~x)iĤ(~x− ~w)(~σ ×
←−
D ~w)j + (~σ ×D~x)iÎ(~x− ~w)

←−
D ~w j .

(A6)

From this expression, we find

D~x iRij(~x, ~w) = Rij(~x, ~w)
←−
D ~w j = (~σ ×D~x)iRij(~x, ~w) = Rij(~x, ~w)(~σ ×

←−
D ~w)j = 0 . (A7)

In verifying these, it is not necessary to evaluate the inverse matrix; instead, after contracting on

the vector index i or j one expresses the resulting pre- or post- factor in terms of Â, ..., D̂ and

then uses the algebraic relations following from multiplying out the matrices in Eq. (A5). Finally,

contracting

~σ · ~D~xσi =(D~x + i~σ × ~D~x)i ,

σj~σ ·
←−
D ~w =(

←−
D ~w − i~σ ×

←−
D ~w)j ,

(A8)

with Rij(~x, ~w), we conclude that

σiRij(~x, ~y) = Rij(~x, ~y)σj = 0 , (A9)

when ~σ · ~D is invertible.

As a consequence of Eqs. (42) and (A7), Ψ̃i(~x) is invariant under the transformations

~Ψ→~Ψ+ ~Dǫ ,

~Ψ→~Ψ+ ~σ × ~Dǫ .

(A10)
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The first of these implies that the canonical anticommutation relations are invariant under in-

finitesimal Rarita-Schwinger gauge transformations starting from covariant radiation gauge.
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