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Light Quarks in the Screened Dyon-Anti-Dyon Coulomb Liquid Model II

Yizhuang Liu,∗ Edward Shuryak,† and Ismail Zahed‡

Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA

We discuss an extension of the dyon-antidyon liquid model that includes light quarks in the dense
center symmetric phase. In this work, like in our previous one, we use the simplest color SU(2) group.
We start with a single fermion flavor Nf = 1 and explicitly map the model onto a 3-dimensional
quantum effective theory with a fermion that is only UV (1) symmetric. We use it to show, in the
mean field approximation, that in the dense center symmetric regime leads to the nonzero chiral
condensate. We estimate its value and the σ, η meson masses. . We then extend our analysis to
arbitrary number of quark flavors Nf > 1 and colors Nc > 2 and show that in the dense plasma
phase the spontaneous chiral symmetry breaking disappear when Nf/Nc ≥ 2. A reorganization of
the ensemble into a gas of dyon-antidyon molecules restores chiral symmetry, but may still preserve
center symmetry in the linearized approximation.

PACS numbers: 11.15.Kc, 11.30.Rd, 12.38.Lg

I. INTRODUCTION

This work is a continuation of our earlier study [1]
of the gauge topology in the confining phase of a theory
with the simplest gauge group SU(2). We suggested that
if an “instanton-dyon-antidyon” plasma is dense enough
to generate strong screening, it is amenable to standard
mean field methods. Using this idea, we showed that
in such dense regime the ensemble is indeed confining
(center-symmetric).

An extensive introduction to the subject can be found
in [1], so here we only mention few basic points. The
treatment of the gauge topology near and below Tc is
based on the discovery of KvBLL instantons threaded by
finite holonomies [2] and their splitting into the so called
instanton-dyons (antidyons), also known as instanton-
monopoles or instanton-quarks. Diakonov and Petrov
[3] suggested that the back reaction of the dyons on the
holonomy potential at low temperature may be at the ori-
gin of the disorder-order transition of the Polyakov line.
A very simple model of a de-confinement transition has
been proposed by Shuryak and Sulejmanpasic [4] through
the use of dyon-antidyon “repulsive cores”.

The dyon-antidyon liquid model proposed by Diakonov
and Petrov [3] was based on (parts of) the one-loop deter-
minant providing the metric of the moduli spaces in BPS-
protected sectors, purely selfdual or antiselfdual. The
dyon-antidyon interaction is not BPS protected and ap-
pears at the leading – classical – level, related with the
so called streamline configurations, the solutions of the
“gradient flow” equation. These solutions have been re-
cently derived by Larsen and Shuryak [5]. Their inclusion
in our work [1] reveals a very strong coupling of the dyons
to the antidyons, which can however be effectively re-
duced by screening, provided the dyon ensemble is dense
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enough.
Before turning to the main subject of this work which

is focused on the effects of light quarks on the gauge
topology and chiral symmetry, we will briefly mention
some important studies for the development of our work.
The original discovery of the KvBLL instantons [2] with
non-trivial holonomies is the key starting point for assess-
ing the role of center symmetry on the gauge topological
structures. The second important development is the
assessment of the quantum weight around the KvBLL
instantons in terms of the coordinates of the instanton-
dyons developed by Diakonov and collaborators [3, 6].

The dissociation of instantons into fractional con-
stituents is similar to the Berezinsky-Kosterlitz-Thouless
(BKT) transition in 2-dimensional CPN models [7], as
has been advocated by Zhitnitsky and collaborators [8] ,
although substantially different in the details.

A center-symmetric (confining) phase can be compati-
ble with an exponentially dilute regime that is controlled
semi-classically, as shown by Unsal and Yaffe [9] using
a double-trace deformation of Yang-Mills action at large
N on S1 × R3. A similar trace deformation was used
originally in the context of two-dimensional (confining)
QED with unequal charges on S1 × R [10] to analyze
center symmetry and its spontaneous breaking. This con-
struction was extended to QCD with adjoint fermions by
Unsal [11], and by Unsal and others [12] to a class of
deformed supersymmetric theories with soft supersym-
metry breaking. While the setting includes a compact-
ification on a small circle, with weak coupling and an
exponentially small density of dyons, the minimum at
the confining holonomy value is induced by the repulsive
interaction in the dyon-antidyon pairs (called bions by
the authors). A key role of supersymmetry is the can-
cellation of the perturbative Gross-Pisarski-Yaffe-Weiss
(GPYW) holonomy potential [13]. While this allows to
study deconfinement transition in the very dilute regime,
the major subject to be studied in this work – sponta-
neous chiral symmetry breaking – would still be absent,
as its development would require an ensemble which is
sufficiently dense.
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Let us now turn to the effects of light fermions. Key
to these effects are topological index theorems, which re-
late the topological charge of the solitons to the exis-
tence and the number of its fermionic zero modes. When
the ensemble of topological solitons is dense enough, the
fermionic zero modes can collectivize and produce the
so called Zero Mode Zone (ZMZ) which breaks sponta-
neously chiral symmetry. For ensemble of instantons this
phenomenon has been studied in great detail in 1980’s
and 1990’s, for a review see [14]. Thanks to topology, the
fermionic zero modes are remarkably stable agains any
smooth deformations of these objects, resisting tremen-
dous amount of perturbative noise. As has been derived
in the “instanton liquid model” context and many times
observed in lattice numerical simulations, the ZMZ states
with Dirac eigenvalues in the range |λ| ≤ 20 MeV , are
crucial for the generation of the hadronic masses and
properties, while being only a tiny subset of all fermionic
states (typically of the order of 10−4 in current lattice
simulations).

The instanton-dyons carry fractional 1/Nc topological
charge, while the number of zero modes must be inte-
gers. Therefore only some instanton-dyons may have
zero modes. For physical fermions, anti-periodic on the
Matsubara circle, those are L dyons (also known as KK
ones). For any Nc there is only one such dyon. Shuryak
and Sulejmanpasic [15] have studied the zero modes, and
the simplest effect of the fermions - binding L̄L dyon
pairs into “molecules”, similar to instanton-antiinstanton
molecules [23]. In the deformed supersymmetric setting
such molecules (called “bions” by the authors) are mostly
formed due to periodic adjoint gluinos, although the ef-
fects of fundamental quarks was also addressed in [17].

Further investigations by Shuryak et al [15, 16] have
shown that light fermions cause chiral symmetry break-
ing in ensembles composed of interacting dyons and an-
tidyons, provided those are dense enough. (In the de-
formed supersymmetric setting the density is exponen-
tially small by construction, so no chiral symmetry break-
ing is possible.)

In this work we follow up on our study in [1], by
introducing light quarks in the dense center symmetric
phase of the dyon-antidyon Coulomb plasma. The word
“dense” is key here, as it justifies the use of a mean-
field analysis in characterizing the spontaneous breaking
of chiral symmetry and the formation of a chiral conden-
sate. As our interest is now in the light quark dynamics,
we will only enforce the strong Coulomb corrections at
the constraint level. One of the chief achievement of this
work is to demonstrate how the induced chiral effective
Lagrangian knows about confinement.

In section 2 we detail the color SU(2) version of the
model for one quark flavor Nf = 1. By using a series of
fermionization and bosonization techniques we show how
the 3-dimensional effective action for the liquid can be
constructed to accommodate for the light quarks. In sec-
tion 3, we show that the ground state solution supports
both center symmetry and chiral condensation. In sec-

tion 4 we detail the flavor spectrum in terms of the sigma
meson, the eta′ meson which is shown to be anomalous.
In section 5, we explore the effects of molecular pairing of
dyons and antidyons induced by the light quarks near the
transition temperature and their effect on the formation
of the chiral condensate and center symmetry. In section
6 we briefly extend the model to include many colors
and flavors and show that in the dyon-antidyon liquid
with light quarks, the restoration of chiral symmetry oc-
curs simultaneously with the loss of center symmetry for
x = Nf/Nc ≥ 2. An estimate of the transition tempera-
ture from the center symmetric to non-symmetric phase
is made. Our conclusions are in section 7.

II. EFFECTIVE ACTION WITH FERMIONS

A. General setting

Since this is the second paper of the series, our nota-
tions are consistent with the first one [1] which should be
consulted for details. Let us just remind the key points.
In the semi-classical approximation, the Yang-Mills par-
tition function is assumed to be dominated by an in-
teracting ensemble of instanton-dyons (antidyons). For
inter-particle distances large compared to their sizes – or
a very dilute ensemble – both the classical interactions
and the one-loop effects are Coulomb-like. At distances
of the order of the particle sizes the one-loop effects are
encoded in the geometry of the moduli space of the en-
semble. For multi-dyons a plausible moduli space was
argued starting from the KvBLL caloron [2] that has a
number of pertinent symmetries, among which permuta-
tion symmetry, overall charge neutrality, and clustering
to KvBLL. Since the underlying calorons are self-dual,
the induced metric on the moduli space was shown to be
hyper-Kahler.

Specifically and for a fixed holonomy A4(∞)/2ω0 =
ντ3/2 with ω0 = πT and τ3/2 being the only diago-
nal color algebra generator, the SU(2) KvBLL instanton
(anti-instanton) is composed of a pair of dyons labeled by
L, M (antidyons by L,M) in the notations of [3]. Gener-
ically there are Nc − 1 M-dyons and only one twisted
L-dyon type. For the SU(2) gauge group used for most
of our discussion, M carries (electric-magnetic) charges
(+,+) and L carries (−,−), with fractional topological
charges vm = ν and vl = 1−ν, respectively. Their corre-
sponding actions are SL = 2πvm/αs and SM = 2πvl/αs.
The M-dyons are also referred to as BPST dyons, while
the L-dyons as Kaluza-Klein dyons.

With the above in mind the SU(2) grand-partition
function is written as
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Z1[T ] ≡
∑

[K]

KL∏

iL=1

KM∏

iM=1

KL̄∏

iL̄=1

KM̄∏

iM̄=1

×
∫

fLd
3xLiL
KL!

fMd
3xMiM

KM !

fLd
3yL̄iL̄
KL̄!

fMd
3yM̄iM̄

KM̄ !

×det(G[x]) det(G[y])
∣∣∣det T̃(x, y)

∣∣∣ e−VDD(x−y)

(1)

Here xmi and ynj are the 3-dimensional coordinate of the
i-dyon of m-kind and j-antidyon of n-kind. Here G[x] a
(KL+KM )2 matrix and G[y] a (KL̄+KM̄ )2 matrix whose
explicit form are given in [3, 6]. VDD̄ is the streamline
interaction between D = L,M dyons and D̄ = L̄, M̄ an-
tidyons as numerically discussed in [5]. For the SU(2)
case its Coulomb asymptotic is [1]

VDD(x− y)→ − CD
αs T

×
(

1

|xM − yM |
+

1

|xL − yL|
− 1

|xM − yL|
− 1

|xL − yM |

)

(2)

The strength of the classical Coulomb interaction in (2)
is CD/αs = 2.46/αs. At intermediate distances VDD̄ is
characterized by a core aDD̄ ≈ 1/T . The key new ele-
ment in the partition function (1) in comparison to our
previous work [1], is the introduction of the fermionic de-

terminant det T̃(x, y) that we will discuss further below.
The fugacities fi are related to the overall dyon den-

sity. They contain the temperature-dependent running
coupling constant αs(T ). Like [1] and earlier works, it
was extracted from the temperature dependence of the fir
to the measurements of the caloron plus anti-caloron den-
sities at finite temperateure in unquenched lattice simu-
lations. We define “bare dyon density” as

nD
T 3

= C
e−

π
αs(T )

αs(T )2
(3)

with C a constant whose value depends on the regulariza-
tion scheme of the divergent determinant, and ultimately
on the specific definition of ΛQCD. For definiteness, we
will use

π

αs(T )
=

10

3
ln

(
T

0.36Tc

)
(4)

where 10/3 = 11Nc/6 − Nf/3 for Nc = 2 and Nf =
1. The constant inside the logarithm has been fitted to
lattice measurements of the instanton density for Nc = 2
and Nf = 0. (In principle, it should be modified along
with Tc, as the theory changes, e.g. Nf = 0 to Nf = 1.
Since we do not have such lattice data, we will modify
only what we can, the beta function coefficient in front.)

We conclude this section by addressing some limita-
tions of the approximations we use. While the model
described by (1) can be sued at any density, stability of
the mean field approximation requires that the dyonic
plasma should be dense enough to produce sufficiently
large screening masses, see details in [1]. In practice, this
limits its application to the confined phase with T < Tc.
The model starts to get inapplicable at high density when
the dyons are close to the maximal packing density. An-
other limitation is that at small enough T the action per
dyon 8π2/g2(T )Nc becomes small lthereby invalidating
the use of the semiclassical approximation. Our estimates
in [1] show that the model can still be used with reason-
able accuracy in the range 0.5Tc < T < Tc. Subsequent
use of the mean field analysis for the fermionic effects are
aimed at the same temperature interval.

B. Quark effects

Let us start with a generic introduction. For quarks in
the fundamental color representation, the squared Dirac
equation in an external chromo-magnetic B and chromo-
electric E field, takes the generic form [18] in the chiral
spinor basis

(
−∇2 + 4S · (B∓E)

)
ϕ± = 0 (5)

with i∇ = i∂ + A and Sa the SU(2) spin generators.
The signs in (5) are locked with chirality of the quarks.
In the absence of spin, there are no zero modes as −∇2

is semi-positive operator. With spin, zero modes may
occur when the spin contribution is negative in (5) and
it balances the first one. For a self-dual object B = E
and only the negative chirality quark can produce a zero
mode state through the “magnetic moment term”.

(
−∇2 + 4σ ·B

)
ϕ−D = 0 (6)

In the dyon the last term is σ ·B ≈ σ ·r̂/ρ2 at the core size
ρ ≈ 1/νω0. The first term in (6) is the kinetic energy,
bounded by the uncertainty principle and of order 1/ρ2.
These two terms can indeed balance each other.

The explicit fermionic zero modes of the KvBLL in-
stanton were discussed in [19]. It was noted that for
large holonomies, when dyons spatially separate, the zero
mode is localized on one of the constituent dyon. The
zero modes of the individual SU(2) dyons were made ex-
plicit in [15]. We discuss their specific expressions in
Appendix A.

The fermions can in general be integrated out, pro-
ducing the fermionic determinant in the partition func-
tion. Its part, known in the literature as the “Zero Mode
Zone” (ZMZ) is a part of such determinants restricted to
the subspace of fermionic states associated with such zero
modes. The details of its usage can be found in refs [14].

This determinant can be viewed as a sum of closed
fermionic loops with “hopping amplitudes” between
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dyons and antidyons. Those form the “hopping matrix”
T̃

T̃(x, y) ≡
(

0 Tij

−Tji 0

)
(7)

with dimensionality (KL + KL̄)2. Each of the entries in
Tij is a “hopping amplitude” for a fermion between the
i-th L-dyon and the j-th L̄-antidyon, defined via the zero
mode ϕD of the dyon and the zero mode ϕD̄ (of opposite
chirality) of the antidyon.

Note that the diagonal elements of the hopping ma-
trix are zero, by chirality, and the non-diagonal ones de-
creases with distance and are vanishing in an asymptot-
ically dilute gas. So such ensemble has vanishing deter-
minant and cannot exist. Depending on the dyon density
and locations, the determinant can either be dominated
by small (binary) loops, or very long loops connecting
macroscopically large number of dyons. The first phase
is called “molecular” and is dominated by dyon-antidyon
clusters, reminiscent of the molecules in the instanton
ensemble [23]. The second phase containing very long
loops is called “collective and leads to a nonzero quark
condensate.

The hopping amplitude is the matrix element of the
Dirac operator, in the background field of the dyon and
antidyon. Assuming that Aµ ≈ Adyonµ + Aantidyonµ and
using the Dirac equation for each zero mode, one can get
rid of all gauge fields and re-write it as a matrix element
with a simple derivative only

Tij ≡ T(xi − yj) =

∫
d4z ϕ†

D̄
(z − xi)i(γ · ∂)ϕD(z − yj)(8)

C. Bosonic fields

Following [1, 3] the moduli determinants in (1) can

be fermionized using 4 pairs of ghost fields χ†L,M , χL,M
for the dyons and 4 pairs of ghost fields χ†

L̄,M̄
, χL̄,M̄

for the antidyons. The ensuing Coulomb factors from
the determinants are then bosonized using 4 boson fields
vL,M , wL,M for the dyons and similarly for the antidyons.
The result is a doubling of the 3-dimensional free actions
obtained in [3]

S1F [χ, v, w] = − T

4π

∫
d3x

(
|∇χL|2 + |∇χM |2 +∇vL · ∇wL +∇vM · ∇wM

)
+

(
|∇χL̄|2 + |∇χM̄ |2 +∇vL̄ · ∇wL̄ +∇vM̄ · ∇wM̄

)
(9)

For the interaction part VDD̄, we note that the pair
Coulomb interaction in (1) between the dyons and an-
tidyons can also be bosonized using standard tricks [21,
22] in terms of σ and b fields. We note that σ and b
are the un-Higgsed long range U(1) parts of the original

magnetic field Fij and electric potential A4 (modulo the
holonomy) respectively. As a result each dyon species
acquire additional fugacity factors such that

M : e−b−iσ L : eb+iσ M̄ : e−b+iσ L̄ : eb−iσ (10)

Note that these assignments are consistent with those
suggested in [4, 12] using different arguments. As a result
there is an additional contribution to the free part (9)

S2F [σ, b] =
T

8

∫
d3x (∇b · ∇b+∇σ · ∇σ) (11)

and the interaction part is now

SI [v, w, b, σ, χ] = −
∫
d3x

e−b+iσfM
(
4πvm + |χM − χL|2 + vM − vL

)
ewM−wL +

e+b−iσfL
(
4πvl + |χL − χM |2 + vL − vM

)
ewL−wM +

e−b−iσfM̄
(
4πvm̄ + |χM̄ − χL̄|2 + vM̄ − vL̄

)
ewM̄−wL̄ +

e+b+iσfL̄
(
4πvl̄ + |χL̄ − χM̄ |2 + vL̄ − vM̄

)
ewL̄−wM̄ (12)

without the fermions. We now show the minimal modi-
fications to (12) when the fermionic determinantal inter-
action is present.

D. Fermionic fields

The determinant for the hopping fermionic zero mode
can be fermionized using standard methods. For that,
each entry T(x− y) in (1) can be viewed as a cross two-
body dyon-antidyon hopping matrix with a two-body in-
verse TG = 1. To fermionize the determinant we de-
fine the additional Grassmanians χ = (χi1, χ

j
2)T with

i, j = 1, ..,KL,L̄ and

∣∣∣det T̃
∣∣∣ =

∫
D[χ] eχ

†T̃χ (13)

We can re-arrange the exponent in (13) by defining a
Grassmanian source J(x) = (J1(x), J2(x))T with

J1(x) =

KL∑

i=1

χi1δ
3(x− xLi)

J2(x) =

KL̄∑

j=1

χj2δ
3(x− yL̄j) (14)

and by introducing 2 additional fermionic fields ψ(x) =
(ψ1(x), ψ2(x))T . Thus

eχ
†T̃χ =

∫
D[ψ] exp (−

∫
ψ†G̃ψ +

∫
J†ψ +

∫
ψ†J)∫

dD[ψ] exp (−
∫
ψ†G̃ψ)

(15)
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with G̃ a 2× 2 chiral block matrix

G̃ =

(
0 G(x, y)

−G(x, y) 0

)
(16)

with entries TG = 1. The Grassmanian source contribu-
tions in (15) generates a string of independent exponents
for the L-dyons and L̄-antidyons

KL∏

i=1

eχ
i
1†ψ1(xLi)+ψ

†
1(xLi)χ

i
1

×
KL̄∏

j=1

eχ
j
2†ψ2(yL̄j)+ψ

†
2(yL̄j)χ

j
2 (17)

The Grassmanian integration over the χi in each factor
in (17) is now readily done to yield

∏

i

[−ψ†1ψ1(xLi)]
∏

j

[−ψ†2ψ2(yL̄j)] (18)

for the L-dyons and L̄-antidyons. The net effect of the
additional fermionic determinant in (1) is to shift the
L-dyon and L̄-antidyon fugacities in (12) through

fL → −fLψ†1ψ1 ≡ −fLψ†γ+ψ

fL̄ → −fL̄ψ†2ψ2 ≡ −fL̄ψ†γ−ψ (19)

where we have now identified the chiralities through γ± =
(1± γ5)/2. The fugacities fM,M̄ are left unchanged since
they do not develop zero modes.

E. Resolving the constraints

In terms of (9-12) and the substitution (19), the dyon-
antidyon partition function (1) for Nf = 1 can be exactly
re-written as an interacting effective field theory in 3-
dimensions,

Z1[T ] ≡
∫
D[ψ]D[χ]D[v]D[w]D[σ]D[b]

×e−S1F−S2F−SI−Sψ (20)

with the additional Nf = 1 chiral fermionic contribution

Sψ = ψ†G̃ψ. In the presence of the fermionic fields ψ
and the screening fields σ, b the 3-dimensional effective
field theory (20) is not integrable. Simple approximation
schemes will be developed to address this effective action.

Note that the effective action in (20) is linear in the
vM,L,M̄,L̄. These are auxiliary fields that integrate into
delta-function constraints. However and for convenience,
it is best to shift away the b, σ fields from (12) through

wM − b+ iσ → wM

wM̄ − b− iσ → wM̄ (21)

which carries unit Jacobian and no anomalies, and re-
cover them in the pertinent arguments of the delta func-
tion constraints as

− T

4π
∇2wM + fMe

wM−wL

−fLψ†γ+ψ ewL−wM =
T

4π
∇2(b− iσ)

− T

4π
∇2wL − fMewM−wL

+fLψ
†γ+ψ ewL−wM = 0 (22)

and similarly for the antidyons. To proceed further the
formal classical solutions to the constraint equations or
wM,L[σ, b] should be inserted back into the 3-dimensional
effective action. As in [3] we observe that the classical
solutions to (22) can be used to integrate the w′s in (20)
to one loop. The resulting bosonic determinant cancels
against the fermionic determinant after also integrating
over the χ′s in (20). The result is

Z1[T ] =

∫
D[ψ]D[σ]D[b] e−S (23)

with the 3-dimensional effective action

S = SF [σ, b] +

∫
d3xψ†G̃ψ (24)

−4πfMvm

∫
d3x (ewM−wL + ewM̄−wL̄)

+4πfLvl

∫
d3xψ†γ+ψ e

wL−wM

+4πfL̄vl

∫
d3xψ†γ−ψ e

wL̄−wM̄

Here SF is S2F in (11) plus additional contributions re-
sulting from the wM,L(σ, b) solutions to the constraint
equations (22) after their insertion back. This procedure
for the linearized approximation of the constraint was
discussed in [1] for the case without fermions.

III. SU(2) QCD WITH ONE QUARK FLAVOR

To analyze the ground state and the fermionic fluctu-
ations we bosonize the fermions in (23) by introducing
two delta-functions and re-exponentiating them

Z1[T ] =

∫
D[ψ]D[σ]D[b]D[Σ]D[Σ5]D[λ]D[λ5]

× e−S+
∫
d3x iλ(ψ†ψ+Σ)+

∫
d3x iλ5(ψ†iγ5ψ+Σ5)

(25)
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The ground state is parity even so that fL,M = fL̄,M̄ and
Σ5 = 0. By translational invariance, the SU(2) ground
state corresponds to constant σ, b,Σ. The classical solu-
tions to the constraint equations (22) are also constant

(ewM−wL)0 =
√
fLΣ/2fM (26)

and similarly for the antidyons.

A. Effective potential

The effective potential V for constant fields follows
from (25) by enforcing the delta-function constraint (25)
and parity

−V/V3 = +iλΣ

+4πfMvm (ewM−wL + ewM̄−wL̄)

+2πfLvl Σ (ewL−wM + ewL̄−wM̄ ) (27)

with V3 the 3-volume. For fixed holonomies vm,l, the
constant w′s are real by (22) as all right hand sides van-
ish, and the extrema of (27) occur for

ewM−wL = ±
√

ΣfLvl/2fMvm

ewM̄−wL̄ = ±
√

ΣfLvl̄/2fMvm̄ (28)

(28) are consistent with (26) only if vl = vm = 1/2 and
vl̄ = vm̄ = −1/2. That is for confining holonomies or a
center symmetric ground state. Thus

−V/V3 = iλΣ + 8π
√
fLfMΣ/2 (29)

We note that for Σ = 0 there are no solutions to the
extrema equations. The holonomies are no longer con-
strained to the center symmetric state. Since Σ = 0
means a zero chiral condensate (see below), we conclude
that in this model of the dyon-antidyon liquid with light
quarks, chiral symmetry restoration and the loss of center
symmetry occur simultaneously.

For the vacuum solution, the auxiliary field λ is also a
constant. The fermionic fields in (25) can be integrated
out. The result is a new contribution to the potential
(29)

−V/V3 → +iλΣ + 8π
√
fLfMΣ/2

+

∫
d3p

(2π)3
ln
(
1− λ2T2(p)

)
(30)

The saddle point of (30) in Σ is solution to

iλ+
α√
Σ

= 0→ λ =
α√
Σ

(31)

after the substitution λ → iλ with α = 4π
√
fLfM/2.

Inserting (31) into the effective potential (30) yields

−V/V3 =
α2

λ
+

∫
d3p

(2π)3
ln
(
1 + λ2T2(p)

)
(32)

The saddle point for λ is

α2

2λ
=

∫
d3p

(2π)3

λ2T2(p)

1 + λ2T2(p)
≡ V0 (33)

It is readily checked that (33) enforces the true min-
imum condition d(V/V3) = 0. From (103) we note
that λT(p) ≈ λω4

0/p
6 falls rapidly with momentum for

p > pmax with p3
max ≡ ω2

0

√
λ. A simple solution to (33)

follows from the condition λT(0)� 1, i.e.

V0 ≈ p3
max ≡ ω2

0

√
λ (34)

The precise value of V0 is not important as it will be
traded for the dyon density below. Note that for the
opposite case of λT(0)� 1 we have V0 ≈ λ2/ω0. This is
the dilute dyonic density limit which is not our case. The
dyon ensemble in the center symmetric phase is dense [1].
In terms of (34) all equations can be solved analytically.
However, we have checked that their accuracy is limited.
All the analysis to follow will be carried exactly without
these estimates.

B. Gap equation

The free energy depends on two parameters, the mean
values of λ and Σ fields, which should be chosen at the
minimum of it. The equations following from vanishing
first derivatives are known in literature as the “gap equa-
tions”. It is useful, to recast it in terms of the integral
V0 defined above. In particular, we have

Σ =
4V 2

0

α2
=

2V0

λ
(35)

while the effective potential (32) is

−V/V3 = 2V0 +

∫
d3p

(2π)3
ln

(
1 +

M2(p)

p2

)
(36)

We have introduced the momentum-dependent con-
stituent quark mass M(p) as

M(p) = λ pT(p) =
α2

2V0
pT(p) (37)

which is seen to vanish linearly at p/ω0 � 1 and as 1/p2

for p/ω0 � 1. In Fig. 1 we show the behavior of dimen-
sionless mass ratio TM(p)/λ as a function of p/T . (37)
through (33) obeys the gap equation for the λ parameter

∫
d3p

(2π)3

M2(p)

p2 +M2(p)
=
nD
4

(38)
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related the integral we called V0 to the dyonic density
nD. So given nD, the solution to the gap equation (39)
fixes λ and thus the quark constituent mass M(p) and
therefore, through the delta-function constraint in (25),
the value of Σ.

In our approach the nD is not an external input, but
should itself be calculated from the derivatives of the free
energy, e.g. the M-dyon density is

nM =
1

2

∂(−V/V3)

∂lnfM
=

∫
d3p

(2π)3

M2(p)

p2 +M2(p)
= V0 (39)

Since nD = nM + nL + nM̄ + nL̄ = 4nM as all partial
dyonic densities are equal in the confined phase, we have
V0 = nD/4.

FIG. 1: The momentum dependent quark constituent mass
TM(p)/λ versus p/T .

C. Chiral condensate

The non-vanishing of Σ signals the non-vanishing of
the chiral condensate 〈q̄q〉 and therefore the spontaneous
breaking of chiral symmetry . Standard demonstration
of that is done via introduction of a nonzero but small
light quark mass m, which changes (18) to

∏

i

[−ψ†1ψ1(xLi) +m]
∏

j

[−ψ†2ψ2(yL̄j) +m] (40)

A rerun of the bosonization scheme with (40) shows that
only one contribution in (29) is now shifted

8π
√
fLfMΣ/2→ 8π

√
fLfM (Σ/2 +m) (41)

changing the saddle point solutions (31) to

λ =
α√

Σ + 2m
(42)

and (33) to

α2

2λ
−mλ =

∫
d3p

(2π)3

λ2T2(p)

1 + λ2T2(p)
(43)

The effective potential is now

−V/V3 =
α2

λ
+ 2mλ+

∫
d3p

(2π)3
ln
(
1 + λ2T2(p)

)
(44)

Inserting (44) in the general definition of the chiral con-
densate in the saddle point approximation

〈q̄q〉
T

=
∂(V/V3)

∂m
(45)

and using the gap equation we obtain

〈q̄q〉
T

= −2λ (46)

We have used that α is independent of m and that the
contribution multiplying ∂λ/∂m is zero thanks to the gap
equation. In the chiral limit, λ is fixed by the solution of
the gap-equation (38) for the constituent quark mass and
the dyon density nD. It is therefore an implicit function
of nD, i.e. λ ≡ λ[nD].

The use of (3) into (38) leads to only numerical results
for λ and thus M(p). In Fig. 2 we show the behavior
of the absolute value of the quark condensate | 〈q̄q〉 |/T 3

versus the dyon density nD/T
3. Note that | 〈q̄q〉 |/T 3

decreases with decreasing dyon density. In this range, a
best fit gives

| 〈q̄q〉 |
T 3

≈ 1.25
(nD
T 3

)1.63

(47)

For analytical estimates, we note that we can always se-
lect a temperature in the range 0.5 < T0 < Tc for which
the chiral condensate is |q̄q|/T 3

0 = 1 at that tempera-
ture. From (46) we have λ0 = T 2

0 /2 in the chiral limit.
Inserting this value for M(p) in (38) shows that the cor-
responding dyon density at T = T0 is n0/T

3
0 = 0.80.

D. Screened Polyakov lines

As we noted earlier in (28), the spontaneous break-
ing of chiral symmetry with a finite value of Σ/2, still
preserves center symmetry with vl = vm = 1/2. How-
ever, strict confinement is lost because of screening.
Heavy fundamental color charges are now screened by
the light constituent quarks through the formation of
tightly bound heavy-light and colorless mesons. The
bound mesons are blind to the Z2 center and thus to
the holonomies, with now

〈L(x)〉 ≈ e−β(Σ/2+m+O(αs)) (48)
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FIG. 2: The absolute value of the (dimensionless) quark con-
densate | 〈q̄q〉 |/T 3 versus the (dimensionless) dyon density
nD/T

3.

The O(αs) contribution in (48) is UV sensitive and re-
quires a specific subtraction. Using (46) together with
(35) and (38) where Nc = 2, we can recast (48) in the
chiral limit into the generic relation

nD ≈ Nc 〈q̄q〉 ln (〈L(x)〉) (1 +O(αs)) (49)

for the dyonic density in the range 0.5 < T < Tc. (49)
provides for an independent estimate of the dyon den-
sity in unquenched QCD. Finally, we note that for large
separation, the correlation of two Polyakov lines clusters

〈
L†(x)L(0)

〉
≈ |〈L(0)〉|2 ≈ e−β(Σ+2m+O(αs)) (50)

with a vanishing of the electric string tension due to light
quark screening.

IV. MESONIC SPECTRUM

The stability of the vacuum solution with Nf = 1 can
be tested by fluctuating in the fermionic channel which
consists of both a scalar σ meson and a pseudo-scalar η′

meson. Both are massive. The former through the spon-
taneous breaking of chiral symmetry with finite Σ, while
the latter through the UA(1) anomaly with a finite topo-
logical susceptibility. The mesonic spectrum for general
Nf is detailed in Appendix C.

A. Sigma meson

A simple way to probe the scalar spectrum is to note
that in the spontaneously broken state, the fermion ki-
netic contribution in (22) is now

(
0 G(x, y)

−G(x, y) 0

)
→
(

iλ1xy G(x, y)
−G(x, y) iλ1xy

)
(51)

with 1xy = δ3(x − y). The scalar meson in the long
wavelength limit can be identified with the fluctuations
in the chiral condensate through iλ in (51) or

iλ→ iλ0 + iδλ ≡ iλ0

(
1 +

σs
fs

)
(52)

with λ0 = −〈q̄q〉 /2T in the chiral limit. Fluctuations
in λ induce also fluctuations in Σ. Thus, consistency
requires

Σ→ Σ0 + δΣ (53)

Inserting (52) into (51) and (53) into the delta-constraint
(25) allow for a derivation of the effective action for the
fluctuating parts δΣ, δλ. The linear contributions are
zero by the saddle point equations. So the net contri-
butions are quadratic and higher. In leading quadratic
order δΣ, δλ mix,

S2[δλ, δΣ] = −1

2

∫
d3p

(2π)3
(−2i)δΣ(p)δλ(−p) (54)

−1

2

∫
d3p

(2π)3

nD
4Σ2

0

δΣ(p)δΣ(−p)

−1

2

∫
d3p

(2π)3
δλ(p)G−1

s (p) δλ(−p)

with

G−1
s (p) =

∫
d3q

(2π)3

2(−λ2
0 + G(q2)G(p+ q)2)

(G2(q2) + λ2
0)(G2(q + p)2) + λ2

0)

(55)

To undo the mixing in (55) we solve for δΣ to leading
order

−2iδλ− nD
2Σ2

0

δΣ = 0 (56)

and insert it back into (55) to give finally the quadratic
action for the scalar meson

S2[σs] = +
1

2f2
s

∫
d3p

(2π)3
σs(p)∆+(p)σs(−p)

(57)

with

∆+(p) = λ2
0G
−1
s (p) + nD (58)

The kernel in (58) can be further reduced using the gap
equation for nD. Thus
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∆+(p) =
nD
2

+

∫
d3q

(2π)3

(M+q− +M−q+)2

(M2
+ + q2

+)(M2
− + q2

−)

(59)

Here, M± = M(q±) and p± = q ± p/2, where M(q) is
the running constituent mass in (37). For Nf = 1 we
have mixing between the scalar as a q̄q quark state and
the scalar glueball. The nD/2 contribution in (59) is just
the mixing contribution, while the second contribution
is clearly the q̄q quark bubble contribution. A similar
mixing in the scalar sector was observed in the instanton
liquid model of the QCD vacuum [22].

A comparison of the small momentum expansion of
(57) after subtraction of the nD/2 glue-mix, yields the
canonical scalar action in x-space

S2[σs] ≡ +
1

2T

∫
d3x

(
|∇σs|2 +m2

sσs
2
)

(60)

with

m2
sf

2
s = T

∫
d3q

(2π)3

4q2M2(q)

(q2 +M2(q))2
(61)

In Fig. 3 we show the behavior of m2
sf

2
s /T

4 from (61) as
a function of the scaled dyon density nD/T

3. Increasing
density amounts to lower temperature, with a transition
density expected around 1.

FIG. 3: m2
sf

2
s /T

4 versus the dyon density nD/T
3.

B. eta′ meson

To generate the effective quadratic action for the η′

meson, we need to fluctuate asymmetrically around the
chiral condensate in (51)

iλ→ iλ± ≡ iλ0

(
1± iη√

2fη

)
(62)

A re-run of the preceding arguments for the scalar meson
yields

S2[η] = − 1

2f2
η

∫
η(p)∆−(p)η(−p) (63)

with

∆−(p) =
α2

λ2
0

−
∫

d3q

(2π)3

M+M−(M+M− + q+q−)

(q2
+ +M2

+)(q2
− +M2

−)
(64)

for arbitrary current mass m. Using the gap equation for
nD for non-zero m, we may further reduce (64) into

∆−(p) = 2mλ+
nD
4

+
1

2

∫
d3q

(2π)3

(q+M− − q−M+)2

(q2
+ +M2

+)(q2
− +M2

−)

(65)

Since T∆−(0) ≡ f2
ηm

2
η, it follows that

f2
ηm

2
η = −m < q̄q >+ χT (66)

with χT = TnD/4. The first contribution in (70) is the
Gell-Mann-Oakes-Renner contribution to the η′ mass as a
would-be Goldstone boson, while the second contribution
is a Witten-Veneziano contribution-like. It suggests an
unquenched topological susceptibility of χT = TnD/4 as
opposed to the quenched topological susceptibility [1]. In
the chiral limit with m = 0,

f2
ηm

2
η ≈ χT ≡

TnD
4

(67)

Since the topological susceptibility for dyons χT ≈
O(N0

c ) and f2
η ≈ O(Nc), the η′ mass is seen to vanish

at large Nc. In Fig. 4 we display the ratio of the squared
scalar to pseudo scalar mass as a function of the scaled
dyon density nD/T

3 assuming fs ≈ fη by chiral symme-
try. The ratio decreases with increasing dyon density or
lower temperature. This ratio may be compared to the
value in the QCD vacuum, i.e. T = 0, Nc = 3, Nf = 2+1,
which is about 1/2. Going in the opposite direction, to
smaller densities, note that the expected phase transition
density is around 1.

A simple but approximate understanding of (66) fol-
lows by noting that (25) is U(1)V symmetric but upsets
U(1)A symmetry through the fermionic contributions.
Under U(1)A with ψ → eiγ5θ/2ψ the fermionic contri-
butions in (27) change

+2πfLe
iθvl ψ

†γ+ψ e
wL−wM + 2πfL̄e

−iθvlψ
†γ−ψ e

wL̄−wM̄

(68)

This amounts to shifting fL,L̄ → fL,L̄e
±iθ in the par-

ity symmetric effective potential (30). An estimate of
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FIG. 4: The mass ratio squared, for scalar to pseudo-
scalar mesons m2

s/m
2
η, versus the (dimensionless) dyon den-

sity nD/T
3, assuming fs ≈ fη (see text).

mass of the η′ follows by identifying θ/2 → η/fη/
√

2
with a constant η′ field. So the η′ mass is related to the
topological susceptibility χT . Specifically, the pertinent
contribution from the effective potential (30) is now

−V/V3 → 4π (fLfM (Σ/2 +m))
1/2

cos
(√

2 η/fη

)
(69)

where we have retained the small quark mass m. Ex-
panding (69) yields the quadratic contribution

−T
2

(
m 2α√

Σf2
η

+
2α
√

Σ

f2
η

)
η2 (70)

Recall that α = 4π
√
fMfL/2. From (46) we have

2α/Σ = −〈q̄q〉 and from (35) we have α
√

Σ = 2V0 =
nD/2. The squared η′ mass follows as in (66) but with
an incorrect 4χT contribution.

V. DYON PAIRING THROUGH FERMION
EXCHANGES

Above the temperature of the chiral phase transition,
T > Tχ, there is no quark condensate, and dyons and
antidyons pair into neutral “dyon-antidyon molecules”
bound through fermion exchanges [15], a situation some-
what reminiscent of the BKT transition [7, 8].

This can be seen by noting that the chiral matrix T̃
in (7) is banded with a band range set by the inverse
temperature

Tij ≈ tf e
− 1

2ω0 |xi−yj | → tf δij (71)

With increasing temperature, the range of T̃ is reduced to
the nearest neighbor. As a result, the hopping is stalled
with

∣∣∣det T̃
∣∣∣→ |tf |KL+KL̄ δKLKL̄

The light quark spectrum is now gapped at λ± = ±|tf |
with a vanishing chiral condensate 〈q̄q〉 = 0. An estimate
of the hopping parameter follows from

tf ≡
∫

d3p

(2π)3
T(p) ≈ 0.8ω0 (72)

using (8-101) and Parseval equality.
A simple but crude estimate of the transition density

at which the pairing into molecules overtake the chirally
broken phase is when the molecular gap becomes larger
than Σ, thus restoring chiral symmetry. Σ characterizes
the size of the delocalized zero mode zone. Using (72) this
occurs for |tf | ≈ 2.51T ≈ Σ. Since Σ/T = nD/| 〈q̄q〉 |,
this means a transition when | 〈q̄q〉 |/nD ≈ 1/2.5. From
the numerical fit (47) this estimate yields to a chiral
restoration for a dilute dyon ensemble with

nD
T 3

<
nχ
T 3
≈ 0.16 (73)

Near the transition temperature, a substantial amount of
dyons can already be paired, resulting in a weakening of
the chiral condensate.

In terms of (71) the partition function (1) is highly
correlated. The result after summing over pairs is

Zmol[T ] =

∫
D[b]D[σ]D[χ]D[w] e−S0−SM

× |tf |
√
FLFL̄ I2(|tf |

√
FLFL̄) (74)

with S0 defined in (9-11) and SM defined in (12) for only
M and M̄ . The argument of the modified Bessel function
I2 is composed of

FL =

∫
d3x e+b−iσ+wL−wM

×fL
(
4πvl + |χL − χM |2 + vL − vM

)

FL̄ =

∫
d3x e+b+iσ+wL̄−wM̄

×fL̄
(
4πvl̄ + |χL̄ − χM̄ |2 + vL̄ − vM̄

)

(75)

The molecular partition function in (74) is highly non-
linear in the auxiliary fields. For large |tf |, we may use

the asymptotic form of I2(z) ≈ ez/
√

2πz in (75) and
linearize the argument of the modified Bessel function

√
FLFL̄ ≈

FL + FL̄√
2

(
1− F 2

L + F 2
L̄

2 (FL + FL̄)2

)
(76)

As a first step to be justified below, we may drop the
non-linear contributions in (76) and the pre-exponent in
(74) to have
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Zmol[T ] ≈
∫
D[b]D[σ]D[χ]D[w] e−S0−SM+(F̃L+F̃L̄)/

√
2

(77)

after rescaling fL,L̄ → fL,L̄ |tf |/
√

2 in F̃ . (77) is
now analogous to the SU(2) Yang-Mills partition func-
tion [1, 3] with the new re-scaled fugacities. A rerun of
the arguments in this case shows that the ground state
is still center symmetric. However, the ground state is
chirally symmetric. It is worth noting that this state
is parity even, so the neglected non-linear corrections in
(76) amounts to (1−1/4) which is about a 25% reduction
in the pertinent pressure contribution which is then

Pmol =
lnZmol

V3/T
≈ 8πT

(
fMfL |tf |√

2

)1/2

(78)

VI. HIGHER NUMBER OF COLORS AND
FLAVORS

The extension of the current analysis to many Nc col-
ors and Nf massless flavors is straightforward in princi-
ple. For finite Nc the KvBLL instanton splits into Nc
constituent dyon with 1/Nc topological charge and fu-
gacity fl with 1 ≤ l ≤ Nc. The L-dyon zero mode which
is anti-periodic is now carried by the l = Nc constituent
dyon. The net effect is a change in the fermionic contri-
bution in (25) through G→ G⊗1f , and a change in the
parity even effective potential (27) as

−V/V3 → +iλNfΣ + 4πfivi (ewi+1−wi + ewī+1−wī)

+4πfNcvNc
1

Nf !
detNf (ψ†l γ+ψg) e

wNc−wNc+1

+4πfN̄cvN̄c
1

Nf !
detNf (ψ†l γ−ψg) e

wN̄c−wN̄c+1

(79)

where the implicit i-summation is over i = 1, ..., Nc − 1.
The potential V has manifest SU(Nf )V × SU(Nf )A ×
U(1)V flavor symmetry. As a result, the parity even
effective potential (30) after pertinent bosonization and
Fierzing yields

−V/V3 → +iλNfΣ + 2α(Nc) Σx (80)

+Nf

∫
d3p

(2π)3
ln
(
1− λ2T2(p)

)

with x = Nf/Nc and α(Nc) = 4πf(Nc)/2
x. The mean

fugacity is

f(Nc) = (f1....fNc)
1/Nc (81)

We note that its scaling with Nc follows from the scaling
of each fugacity by semi-classics, i.e. fi ≈ 1/α2

s. Thus

f(Nc) ≈ N2Nc/Nc
c ≈ N2

c (82)

so that α(Nc) ≈ N2
c .

A. Gap equation and chiral condensate

For general x = Nf/Nc, the saddle point equation in
Σ of (80) gives

Σ =

(
λ̃

2xα(Nc)

) 1
x−1

(83)

after the shift −iλ→ λ and λ̃ = Nfλ. With this in mind
and inserting (83) into (80) yields

−V/V3 = −2α(Nc) (x− 1)

(
λ̃

2xα(Nc)

) x
x−1

(84)

+xNc

∫
d3p

(2π)3
ln

(
1 +

λ̃2

N2
f

T2(p)

)

The case x = 1 is special. The effective potential in (80)
is linear in Σ with no a priori saddle point along Σ. We
have checked that taking the saddle point in λ̃ first, and
then the saddle-point in Σ after the substitution results in
the same gap equation to follow. Also, it can be checked
explicitly that the same results follow by taking the limit
x→ 1.

The effective potential (84) has different shapes de-
pending on the ratio of the number of flavors to the
number of colors x. Let us explain that in details for
four cases:

(i) If x < 1 the first term in (84) has a positive coef-
ficient and a negative power, so it is decreasing at small
λ̃. At large value of λ̃ the second term is growing as lnλ̃.
Thus a minimum in between must exist. This minimum
is the physical solution we are after.

(ii) If 1 < x < 2 the coefficient of the first term is
negative but its power is now positive. So again there is
a decrease at small λ̃ and thus a minimum.

(iii) If x > 2 the leading behavior at small λ̃ is now

dominated by the second term which goes as λ̃2 with
positive coefficient. One may check that the potential is
monotonously increasing for any λ̃ with no extremum.
There is no gap equation, which means chiral symmetry
cannot be broken in the mean-field approximation.

(iv) If x = 2 there are two different contributions of

opposite sign to order λ̃2 at small λ̃. An extremum forms
only if the following condition is met
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∫
d3p

(2π)3
T2(p) <

Nc
4α(Nc)

= O
(

1

Nc

)
(85)

Using the exact form (103) and the solution to the gap
equation at T = T0, we have

∫
d3p

(2π)3
T2(p) =

10.37

T0
(86)

which shows that (85) is in general upset, and this case
does not possess a minimum.

With this in mind and for x < 2, the extremum of (84)

in λ̃ yields the gap-like equation

(
λ̃

2xα(Nc)

) x
x−1

=
NcVNf−1

α(Nc)
(87)

with the new identification

VNf−1 ≡
∫

d3p

(2π)3

λ̃2

N2
f
T2(p)

1 + λ̃2

N2
f
T2(p)

(88)

The dyonic density is now identified with

nD = 2Nc
1

2

∂(−V/V3)

∂lnfM
= 2NcVNf−1 (89)

In terms of (88-89) the running constituent mass M(p) =

(λ̃/Nf ) pT(p) obeys the gap equation

∫
d3p

(2π)3

M2(p)

p2 +M2(p)
=

nD
2Nc

(90)

From (87) it follows that VNf−1 ≈ Nc and therefore

nD ≈ N2
c . The dyonic description we have reached is

consistent with large Nc counting. Since nD ≈ N2
c � 1

crystallization in the form of dyonic salt is expected at
large Nc [26].

For x < 2 the center symmetric vacuum also breaks
spontaneously chiral symmetry, with a vacuum conden-
sate given by

〈q̄q〉
T

= −2λ̃0 (91)

λ̃0 is the value of λ̃ in the chiral limit. Since λ̃0 ≈ NfNc
the chiral condensate in (91) is of order NfNc as ex-
pected.

To summarize: Chiral restoration as well as the loss
of center symmetry occur simultaneously for xχ ≥ 2 as
per our result in (29). This value of x = Nf/Nc is close

to the the critical value of xχ = 5/3 originally suggested
in the instanton liquid model [14] (first reference). First
simulations of the dyon ensemble with Nc = 2 [16] also
indicate that the border line seems to be Nf = 4, in
agreement with xχ ≈ 2.

Current lattice data are summarized e.g. in Fig.5 of
[28] for Nc = 3. Indeed, they seem to indicate a change
in the value of the chiral transition temperature (in units
of the vacuum string tension) Tχ/

√
σ at x = 2 or Nf =

6, but instead of vanishing, this ratio remains flat up
to Nf = 8. For such a large Nf the number of quark
lines 2Nf connected to an L dyon is large. Maybe the
correlations between them are too strong for the mean
field approximation to remain valid.

The chiral transition we have discussed in this section
should not be confused with another phase transition in
theories with a large number of flavors, namely the con-
formal (fixed infrared coupling) phase. The reported lat-
tice [27] and holographic (Veneziano limit) [29] results
put this conformal transition at a much larger number of
flavors xconformal ≈ 4, or Nf = 12 for Nc = 3.

B. Thermodynamic of dyonic phase with x ≤ 1

In the presence of light quarks, the total thermody-
namical pressure of the dyon-antidyon liquid consists of
the classical and non-perturbative contributions in (80)
at the extremum, plus its perturbative correction for
finite and symmetric holonomies v = 1/Nc [13], plus
the purely perturbative black-body contribution (ignor-
ing the higher order O(αs) quantum corrections). Identi-
fying the classical pressure with −V/βV3 with β = 1/T ,
we have

Ptot − Pper

NcT 4
= +(1− x) ñD (92)

+
x

T 3

∫
d3p

(2π)3
ln

(
1 +

M2(p)

p2

)

with ñD = nD/(NcT
3). The assessment of the logarith-

mic integral follows by numerical integration using the
explicit form of M(p) and the solution to the gap equa-
tion. The result is linear in the reduced dyon density for
small and asymptotic densities

1

T 3

∫
d3p

(2π)3
ln

(
1 +

M2(p)

p2

)
≈ κ(ñD) ñD (93)

with κ(ñD � 1) ≈ 1 and κ(ñD � 1) ≈ 2. A simple
interpolation to the overall numerical results is

κ(ñD) ≈ 1 + 2 ñD10

1 + ñD
10

(94)

Since ñD ≈ O(Nc), large density corresponds to large Nc
with κ ≈ 2, modulo crystalization. In Fig. 5 we display
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(93) as a function of the reduced dyon density ñD at
intermediate densities. The linearity of the logarithm in
ñD both at small and asymptotic dyon densities follow
from the scaling of V0 = nD/2Nc with λ as discussed in
(34).

In terms of (93) the classical pressure contribution in
(92) simplifies to

Ptot − Pper

NcT 4
≈ (1− x(1− κ)) ñD (95)

with 1 ≤ κ ≤ 2. In the quenched limit or x = 0 it reduces
to the dyonic result obtained for the pure Yang-Mills
analysis in [1] ignoring the Debye-Huckel corrections.
The fermion induced interactions in the center symmetric
phase increase the pressure away from the free limit for
0 < x ≤ 1. Remarkably, for small densities(1−κ) ≈ 0 and
(95) with fermions is close to a free ensemble of dyons.
For large densities or large Nc, (1−κ) ≈ −1 and (95) with
fermions is more repulsive than the free dyon ensemble.

FIG. 5: The fermionic loop ln[F ]/T 3 versus the reduced dyon
density ñD/T

3. See text.

The perturbative contribution is given by

Pper

T 4
≈ −π

2

45

(
N2
c −

1

N2
c

)
+
π2

45

(
N2
c − 1

)

−7π2x

180

(
N2
c −

1

N2
c

)
+

7π2x

180
N2
c (96)

The first contribution is the free gluon contribution in
the symmetric phase with v = 1/Nc. The second contri-
bution is the free black-body gluon contribution, which
is cancelled by the second contribution in leading order
in 1/Nc in the symmetric phase [3]. The third contri-
bution is the free quark contribution in the symmetric
phase with v = 1/Nc. The fourth and last contribution
is the black-body quark contribution, which we note is
cancelled by the third contribution in leading order in
1/Nc. This generalizes the observation in [3] to QCD.

An estimate of the transition temperature Tc from the
symmetric phase with v = 1/Nc to the asymmetric phase
with v = 0 follows when all the non-black-body contri-
butions in the total pressure Ptot cancel out. This occurs
when the rescaled dyon density nD = nD/(N

2
c T

3) solves

nDc ≈
π2

45

(
1− 1

N4
c

)
1 + 7x

4

1 + x(κ(nDc)− 1)

(97)

with again 1 ≤ κ(nDc) ≤ 1.

C. Thermodynamic of molecular phase

For completeness we note that near the chiral transi-
tion most of the LL̄ dyons start to pair into molecules,
for which case the total pressure is more appropriately
described by

Ptot,mol − Pper

T 4
≈ 2Λ̃4

α2
s

( |t̃f |Nf√
2

) 1
2

(98)

with |t̃f | = |tf |/Λ. Here, the scale parameter Λ̃ = Λ/T is
identified with the vacuum dyon density nD → 2Λ4/α2

sT

as in [3]. We note that for Nf → 0, (98) is off by 2−
1
4 in

the ground state pressure from the Yang-Mills limit in [3].
This can be traced back to our linearized approximation
in (76). The critical temperature is now

Tc ≈
2Λ√
α̃s

( |t̃f |Nf√
2

) 1
8 1

h
1
4 (x)

(99)

with α̃s = Ncαs.

h(x) =
π2

45

(
1 +

7x

4

)(
1− 1

N4
c

)
(100)

(99) characterizes the transition from a center symmetric
but chirally symmetric phase to a center asymmetric and
chirally symmetric phase. Which likely transition is to
occur first can be estimated by comparing the total liquid
pressure in (92) to the total molecular pressure in (98).
This is best addressed using mixtures.

VII. CONCLUSIONS

We have extended the mean field treatment of the
SU(2) dyon-antidyon liquid in [1], to account for light
quarks. Anti-periodic fundamental quarks develop zero
modes for the L, L̄-dyons only. In the dense phase under
consideration with T < Tc, these zero modes are collec-
tivized into a Zero Mode Zone of quasi-zero modes which
dominates the low-eigenvalue part of the Dirac spectrum.
This phenomenon is analogous to the one used in the in-
stanton liquid model [14], although the zero modes them-
selves and most of the results are different. The impor-
tant interplay between center symmetry and the sponta-
neous breaking of chiral symmetry which is absent in [14]
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is now clarified. In particular, we have explicitly shown
how the chiral effective Lagrangian for light quarks knows
about confinement.

In the infrared, the fermionic determinant is entirely
saturated by these quasi-zero modes [15], modifying the
dyon-antidyon measure initially suggested in [3, 6] to in-
clude light quarks. For the Nf = 1 case of one mass-
less quark, we have shown that the fermionic determi-
nant modifies the L,L̄-dyonic fugacities through chiral
fermionic bilinears that upset the UA(1) symmetry. By
a series of bosonic and fermionic techniques we have ex-
plicitly mapped the interacting dyon-antidyon Coulomb
liquid with light quarks on a 3-dimensional effective the-
ory with fermions. The translationally and parity invari-
ant ground state was shown to follow from pertinent gap
equations. The ground state breaks spontaneously chi-
ral symmetry by developing a fermion condensate. For
Nf = 1 it does not produce a Goldstone mode because of
the UA(1) anomaly. We have derived explicit expressions
and estimates for masses of the σ and η mesons.

We have shown how the model generalizes to arbitrary
number of flavors and colors. In the whole temperature
interval in which our approach is applicable, the ensemble
is center symmetric (confining) and breaks spontaneously
chiral symmetry provided x = Nf/Nc < xχ ≈ 2. The
loss of center symmetry and chiral symmetry restoration
in this model seem to occur simultaneously for x ≥ 2.
We have noted that in the case of a very large Nf the
fermion-induced interactions maybe too strong to trust
the mean field approximation we used. This point needs
to be pursued numerically on the lattice.

This conclusion can be compared to the critical value
of xχ ≈ 5/3 of the numerical simulation of the instanton
liquid model [14]( first reference). The first simulation of
the dyon ensemble with fermions, for Nc = 2 [16], found
the border line case is Nf = 4, also in agreement with
xχ ≈ 2. So whether the transition is an artifact of the
mean field approximation or not remains to be studied.

The chiral transition should not be confused with the
transition to conformal – fixed infrared coupling– phase,
for which current lattice and holographic results put this
transition at a much larger number of flavors xconformal ≈
4, or Nf = 12 for Nc = 3.

Near and above the chiral transition the fermionic
correlations are strong enough to pair L-dyons with L̄-
antidyons into molecules. The dilute regime involved has
been explored numerically in [15]. In this paper we only
produced some estimates of the transition parameters.

In our approach the confining and chirally broken
phase have been treated via the mean field approximation
only, so the resulting gap equation has either a finite or
zero Σ, with a finite jump. In the future one can prob-
ably include the LL̄ correlations in the ensemble. The
result would be a depletion of the chiral condensate with
perhaps a more continuous cross-over transition as cur-
rently observed in QCD-like theories with several flavors
of massive quarks.

In the extreme case where all L-dyons and L̄-antidyons

pair to molecules, we have shown that the linearized
molecular partition function supports a phase with cen-
ter symmetry but restored chiral symmetry. It would be
interesting in the future to see if such a phase may exist,
at some Nc, Nf . At this moment, lattice data on that
issue are also not clear, see e.g. [27].

An estimate of the pressure in the center symmetric
phase shows that both the free gluon and fermion loop
nearly cancel out in leading order in Nc. We have used
it to estimate the transition density from a center sym-
metric phase to a phase with broken center symmetry. A
similar estimate of the transition density was made in [1]
in the absence of fermions.

The current model can be expanded and improved in a
number of ways. The current analysis has been done for
the sector with zero θ. As indicated earlier, the L-zero
modes were selected over the M-zero modes, creating a
topological unbalance and a lack of manifest θ-periodicity
in the induced effective action. This can be generalized
to arbitrary θ angle through an extended formalism.

Also, we have not included here some Coulomb correc-
tions discussed in [1], to keep the analysis simpler and
to illustrate the interdependence of the center symme-
try and the chiral symmetry breakings in this model.
These corrections are Debye-like and still within the
semi-classical analysis.

Some improvement of the moduli space metric may
be considered in the future. We recall that the moduli
space metric used in (1) while exact for LM dyons at
all separations, is only exact asymptotically for LL,MM
dyons. While the formers attract, the latters repel. In
the center symmetric or confining phase, we expect the
like-dyons to stay away from each other while the un-
like dyons to mingle and screen. In the dyon-antidyon
channels the treatment is so far classical only, with one-
loop effects absent. We hope to report on some of these
issues, as well as on a full analysis of the meson spectrum
for the dyon-antidyon liquid with Nf > 1 next.
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IX. APPENDIX A: FERMIONIC ZERO MODES
AND HOPPING AMPLITUDES

The fermionic zero modes for the L-dyon in the hedge-
hog gauge are defined as (ϕH)Aα = ηAβ εβα with indices A
for color and α for spinors. Their explicit form in terms
of η = η+ + η− is [15]
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ηAα =
ω

3
2
0

2
√

8π

th x̃2√
x̃ shx̃

(101)

(
(1− σ · r̂)Aα e+iω0x4 + (1 + σ · r̂)Aα e−iω0x4

)

with x̃ = ω0r. For the L̄-dyons we have ± → ∓. Since

Tr(ϕ†1ϕ2) = Tr(η†1η2), we may substitute (101) into (8).
We recall that the “ hedgehog” gauge sets the the

Higgs VEV at large distances to be in the radial direction
r̂. In this gauge the expressions for the dyon solutions
take the simplest and non-singular form. Unfortunately,
for configurations with more than one dyon, one can no
longer use this gauge since the “radial direction” can-
not be defined. Therefore it is mandatory to “comb” the
dyons into another gauge, in which the direction of the
Higgs VEV at large distances is some (arbitrary) con-
stant vector. Such gauges are known as “string” gauges,
because the combing produces singularities, the famed
Dirac strings.

The “hopping amplitudes” Tij are defined via the Dirac
operator, which is by itself gauge invariant, and indepen-
dent of the particular choice of the gauge. However the
“combing rotations” for each dyon depend on the angu-
lar coordinates associated with the location of its center,
where the Dirac string ends. They are not a global gauge
choice, and so they produce some relative phase factors,
or finite Dirac strings.

Ignoring first the singular combing factor, we readily
get the Fourier transform of the hopping matrix. The
result is

T(p) =
ω0

2

(
|A1(p)|2 + |A′0(p)|2

)
(102)

with

An(p) =

√
2π

ω
n+ 1

2
0

∫ ∞

0

dxxn+ 1
2

sin(p̃x)

p̃x

thx2√
shx

(103)

with p̃ = p/ω0. The two integrals in (103) for n = 0, 1
are carried numerically. All results in the text are derived
using (103).

Now we return to the relative combing factors and
show that, in spite of its complicated and singular form,
the amendments due to them are small. For that we
transform the L-zero modes in hedgehog (H) gauge (101)
to the string (S) gauge through a unitary transformation
ϕS = U(θ, φ)ϕH. Specifically

ϕS,L =

(
−sin θ2e

−iφ +cos θ2
−cos θ2 −sin θ2e

+iφ

)(
e−iω0x4f(r)
e+iω0x4f(r)

)
(104)

and similarly for the L̄-dyon

ϕS,L̄ =

(
−cos θ2 −sin θ2e

+iφ

−sin θ2e
−iφ +cos θ2

)(
e−iω0x4f(r)
e+iω0x4f(r)

)
(105)
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longer use this gauge since the “radial direction” can-
not be defined. Therefore it is mandatory to “comb” the
dyons into another gauge, in which the direction of the
Higgs VEV at large distances is some (arbitrary) con-
stant vector. Such gauges are known as “string” gauges,
because the combing produces singularities, the famed
Dirac strings.

The “hopping amplitudes” Tij are defined via the Dirac
operator, which is by itself gauge invariant, and indepen-
dent of the particular choice of the gauge. However the
“combing rotations” for each dyon depend on the angu-
lar coordinates associated with the location of its center,
where the Dirac string ends. They are not a global gauge
choice, and so they produce some relative phase factors,
or finite Dirac strings.

Ignoring first the singular combing factor, we readily
get the Fourier transform of the hooping matrix. The
result is

T(p) =
!0

2

�
|A1(p)|2 + |A0

0(p)|2
�

(102)

with

An(p) =

p
2⇡

!
n+ 1

2
0

Z 1

0

dx xn+ 1
2

sin(p̃x)

p̃x

thx
2p

shx
(103)

with p̃ = p/!0. The two integrals in (103) for n = 0, 1
are carried numerically. All results in the text are derived
using (103).

FIG. 6: Angular arrangements for the evaluation of the
Hopping matrix in string gauge. See text.

Now we return to the relative combing factors and
show that, in spite of its complicated and singular form,
the amendments due to them are small. For that we
transform the L-zero modes in hedgehog (H) gauge (101)
to the string (S) gauge through a unitary transformation
 S = U(✓,�) H. Specifically

FIG. 7: Hopping matrix T(p) versus p̃ in hedgehog gauge
(102) (H) and string gauge (109) (S).

 L =

✓
�sin ✓2e�i� +cos ✓2
�cos ✓2 �sin ✓2e+i�

◆✓
e�i!0x4f(r)
e+i!0x4f(r)

◆
(104)

and similarly for the L̄-dyon

 L̄ =

✓
�cos ✓2 �sin ✓2e+i�

�sin ✓2e�i� +cos ✓2

◆✓
e�i!0x4f(r)
e+i!0x4f(r)

◆
(105)

with

f(r) =
!

3
2
0

2
p

8⇡

thx
2p

x shx
(106)

The hopping matrix element (8) follows by inserting
(104-105). The integral over the 3-dimensional ob-
servation point z, involves the unitary transformations
U†(✓x�z,�x�z) and U†(✓y�z,�y�z) where the spherical
angles ✓x�z and ✓y�z relative to z are displayed in Fig. 6,
along with the spherical angle ✓ ⌘ ✓xy�z.

In general, the hopping matrix element depends non-
trivially on the relative angles relative to z. The fol-
lowing consideration, however, simplify the situation.
Since the zero modes decay exponentially, the dominant
contribution to the integral in (8) stems from those z
with the smallest |x � z| + |y � z| , and those are on
the line segment connecting x to y. On that segment
✓x�z = ⇡ � ✓, ✓y�z = ✓ and �x�z = ⇡, �y�z = 0. Most
importantly, it can be viewed as only a function of ✓
which is a constant in the integral. With this in mind,
(8) in string gauge reads

T(x � y) = 2!0

Z
d3zf(|x � z|)f(|y � z|) (107)

�2

✓
1 +

cos2✓ � cos✓

2

◆Z
d3zf |x � z|f

0|y � z| + f |y � z|
|y � z|

In a large ensemble, we have on average hcos✓i = 0 and⌦
cos2✓

↵
= 1

2 . Thus

✓x�z ✓y�z

✓x�y

y

x

FIG. 6: The grey spheres indicate two dyons centered at x
and y, where z is the observation point. The angles used
in the evaluation of the hopping matrix in string gauge are
explained. See text.

FIG. 7: Hopping matrix T(p) versus p̃ in hedgehog gauge
(102) (H) and string gauge (109) (S).

with

f(r) =
ω

3
2
0

2
√

8π

th x̃2√
x̃ shx̃

(106)

The hopping matrix element (8) follows by inserting
(104-105). The integral over the 3-dimensional ob-
servation point z, involves the unitary transformations
U†(θx−z, φx−z) and U(θy−z, φy−z) where the spherical
angles θx−z and θy−z relative to the Z-axis are displayed
in Fig. 6, along with the fixed spherical angle θ ≡ θx−y.

In general, the hopping matrix element depends non-
trivially on the relative angles relative to the Z-axis. The
following consideration, however, simplify the situation.
Since the zero modes decay exponentially, the dominant
contribution to the integral in (8) stems from those z
with the smallest |x − z| + |y − z| , and those are on
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the line segment connecting x to y. On that segment
θx−z = π − θ, θy−z = θ and φx−z = π, φy−z = 0. Most
importantly, it can be viewed as only a function of θ
which is a constant in the integral. With this in mind,
(8) in string gauge reads

T(x− y) ≈ +2ω0

∫
d3zf(|x− z|)f(|y − z|) (107)

−2

(
1 +

cos2θ − cosθ

2

)

×
∫
d3zf |x− z|f

′|y − z|+ f |y − z|
|y − z|

In a large ensemble, we have on average 〈cosθ〉 = 0 and〈
cos2θ

〉
= 1

2 . Thus

T(x− y) ≈ 2ω0

∫
d3zf(|x− z|)f(|y − z|) (108)

−5

2

∫
d3zf |x− z| |y − z|f

′|y − z|+ f |y − z|
|y − z|

or in Fourier space

T(p) ≈ ω0

2

(
|A1(p)|2 − 5

4
A1(p)A2(p)

)
(109)

with

A1(p) =

√
2π

p̃ ω
3
2
0

∫ ∞

0

dxx sin(p̃x)
thx2√
x shx

A2(p) =

√
2π

p̃ ω
3
2
0

∫ ∞

0

dxx sin(p̃x)
1

x

d

dx

xthx2√
x shx

(110)

which is to be compared to (102). The dominant con-
tributions in (102) and (109) are due to |A1|2 which is
common to both. In Fig. 7 we compare the hopping in
the hedgehog gauge (102) (H) to that in the string gauge
(109) (S) versus p̃. As expected, the differences are small.

X. APPENDIX B: ALTERNATIVE
FERMIONIZATION

An alternative but equivalent fermionization of the de-
terminant in (13) can be achieved through the use of
physical fermionic fields as in [22]. The result is

Sf = −i
∫
d4xψ†γ · ∂ψ (111)

−i
∫
d3x

(
4πfLvLe

wL−wM θ+ + 4πfL̄vle
wL̄−wM̄ θ−

)

with

θ±(z) =

∫
d3xψ†(x)S−1

0 φ±(x− z)

×
∫
d3yφ±(y − z)S−1

0 ψ(y) (112)

Here S0 = 1/(iγ · ∂). We have checked that (111) yields
the same partition function after integration as the one
we have presented. This can be verified by expanding
Trln(1 + ...) for the fermionic determinant in each case
and carrying the Grassman integration. The advantage
in the use of (111) is in the construction of correlators
using operators with the physical fermionic fields.

XI. APPENDIX C: MESON SPECTRUM FOR
ARBITRARY Nf

The mesonic spectrum for arbitrary values of Nf can
be analyzed using the same reasoning as Nf = 1. For
that we need to modify the Lagrange multipliers through
the substitution

λ(ψ†γ±ψ + Σ)→
∑

fg

λ±gf (ψ†fγ±ψg + Σ±fg) (113)

The multipliers λ± are U(Nf )×U(Nf ) valued

λ± = λ0e
±iπps/2(1 + πs)e

±iπps/2 (114)

with πs,ps = πas,psT
a and Tr(T aT b) = δab for the SU(Nf )

generators. A rerun of our preceding arguments yield the
quadratic actions for SU(Nf )×SU(Nf ) pseudo-scalar and
scalar mesonic actions

S(πps,a) =
1

2f2
π

∫
d3p

(2π)3
πps,a(p)∆−(p)πps,a(p)

S(πs,a) =
1

2f2
π

∫
d3p

(2π)3
πs,a(p)∆+(p)πs,a(p) (115)

with

∆∓(p) = 2mλ+

∫
d3q

(2π)3

(k1M2 ∓ k2M1)

(k2
1 +M2

1 )(k2
2 +M2

2 )
(116)

For the singlets scalar and pseudo-scalar σ = πs,0 and
η = πps,0 respectively, we have

Nf∆σ(p) =

(
nD
Nc

+ 2mλ

)
x

1− x + ∆+(p)

Nf∆η(p) =

(
nD
Nc

+ 2mλ

)
x

1− x + ∆−(p) (117)
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