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Abstract

In this paper three dimensional higher spin theories in the Chern-Simons formulation

with gauge algebra sl(N,R) are investigated which have Lifshitz symmetry with scaling

exponent z. We show that an explicit map exists for all z and N relating the Lifshitz

Chern-Simons theory to the (n,m) element of the KdV hierarchy. Furthermore we show

that the map and hence the conserved charges are independent of z. We derive these

result from the Drinfeld-Sokolov formalism of integrable systems.
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1 Introduction

Higher spin theories in d space time dimensions were constructed over the last 20 years by

Vasiliev and collaborators. For some reviews see e.g. [1, 2, 3, 4]. These theories provide new

ways to explore the AdS/CFT correspondence [5, 6]. The present paper only deals with higher

spin theory in three dimensions in the Chern-Simons (CS) formulation [7, 8, 9, 10]. Gaberdiel

and Gopakumar [11, 12] proposed a duality linking dimensional higher spin theories in three

dimensional anti de-Sitter space to two dimensional WN minimal model CFTs.

In the last couple of years solutions of three dimensional higher spin gravity which are not

asymptotically AdS have been investigated in the literature [13, 14, 15, 16, 18]. In particular

asymptotically Lobachevsky, Schrödinger, warped AdS and Lifshitz spacetimes have been

found. Field theories which exhibit with Lifshitz scaling, i.e. anisotropic scaling symmetries

of space and time dimensions, are important condensed matter theories near quantum critical

points (see e.g. [19]).

The goal of the present paper is the generalize the results [20] where a map of the Lifshitz

Chern-Simons theories with gauge group sl(N,R) and scaling exponent z to the integrable

KdV hierarchy was discovered for particular values of N, z, namely N = 3, z = 2 as well as

N = 4, z = 3.

The structure and the main results of the paper are as follows: In section 2 we review

some of the background material and results from [20] for the convenience of the reader.

In section 3, a detailed analysis of the case of scaling exponent z = 2 for generic N is

presented. In addition solutions for scaling exponent z > 2 and values N up to N = 8 are

found. These results give very strong evidence for the conjecture of [20], that there always

exists a map which relates the sl(N,R) z Lifshitz theory to the m = z, n = N member of the

KdV hierarchy.

Furthermore the case by case study reveals also an unexpected universality: First, the

form of the map from the Chern-Simons variables to the KdV variables is independent of z

and second, the form of the conserved charges which is determined for z = 2 are conserved

for all z (and N).

In section 4, we use the formalism of matrix valued pseudo differential operators con-

structed by Drinfeld and Sokolov in their seminal paper [21] to proof the relation of the CS

Lifshitz and KdV and the universality of the map and the conserved charges for all values of

z and N .
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We discuss some directions for future research in section 5.

In Appendix A we present our conventions for the gauge algebras. In Appendix B details

of some of the proof of statements in the paper of Drinfeld and Sokolov [21] are reviewed to

make our paper self-contained. Some of the results used in section 3 are presented in Appendix

C where we report the z-independent map between the CS and KdV variables, as well as the

explicit KdV and CS equations of motions for various pairs N, z.

2 Review of higher spin Lifshitz theories

In this section we will review the Chern-Simons (CS) formulation of higher spin gravity in

three dimensions based on the sl(N,R) or hs(λ) gauge algebra. More details can be found, for

example, in [12, 17]. In addition, we review some the results obtained in previous papers of

some of the authors on the formulation of theories with Lifshitz scaling in higher spin gravity

theories [18] and the relation of these theories to the KdV hierarchy [20].

2.1 Chern-Simons formulation of higher spin gravity

The action for the Chern-Simons formulation of higher spin gravity is given by two copies of

Chern-Simons at level k and −k respectively

S = SCS[A]− SCS[Ā] (2.1)

where the Chern-Simons action is given by the following expression

SCS[A] =
k

4π

∫
tr
(
A ∧ dA+

2

3
A ∧ A ∧ A

)
. (2.2)

The equations of motion following from the Chern-Simons action are the flatness conditions

on the connections A, Ā

F = dA+ A ∧ A = 0, F̄ = dĀ+ Ā ∧ Ā = 0. (2.3)

The gauge connections can be related to generalizations of the vielbein and the spin connection,

which take values in the gauge algebra

eµ =
l

2
(Aµ − Āµ), ωµ =

1

2
(Aµ + Āµ). (2.4)
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The metric and the higher spin fields can be obtained from the vielbein. For example for the

sl(3,R) case one gets [10]

gµν =
1

2
tr(eµeν), φµνρ =

1

6
tr(e(µeνeρ)). (2.5)

Generalizations of these expressions for sl(N,R) were obtained in [22, 23]. In the following we

will only need the expression for the metric which is given by (2.5). An important ingredient

to construct spacetimes with a given asymptotic behavior and their symmetry, is the radial

gauge. We denote a radial coordinate ρ, where the holographic boundary will be located at

ρ → ∞. The coordinates t and x have the topology of R × S1 or R × R. The dependence

of the connections A, Ā on the radial coordinate ρ is given by a gauge transformation on ρ

independent connections a, ā

Aµ = b−1aµ b+ b−1∂µb, Āµ = b āµb
−1 + b ∂µ(b−1). (2.6)

Where b = exp(ρL0) and L0 is given by a Cartan generator of a sl(2,R) sub-algebra of

sl(N,R). For hs(λ) one chooses the generator V 2
0 instead. The nonzero components at, ax

(and āt, āx) obey the ρ independent flatness condition

∂tax − ∂xat + [at, ax] = 0, ∂tāx − ∂xāt + [āt, āx] = 0. (2.7)

It is easy to see that connections satisfying (2.7) also satisfy (2.3).

2.2 Lifshitz scaling in field theories

Scaling symmetries are ubiquitous in two dimensional quantum field theories and generated

by the transformation

t→ λzt, x→ λx. (2.8)

The case z = 1 corresponds to isotropic scaling and leads to conformally invariant theories.

For z 6= 1 the scaling is anisotropic and called Lifshitz scaling with exponent z. While such an

anisotropic scaling breaks Lorentz symmetry it nevertheless appears in some condensed matter

systems (see e.g. [19]). The algebra of Lifshitz symmetries is generated by the generator of

dilations D together with the generator of time translations H and spatial translations P .

Together they satisfy the following algebra

[P,H] = 0
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[D,H] = zH

[D,P ] = P. (2.9)

The stress-energy tensor for field theories in 1+1 dimensions with Lifshitz scaling is not

necessarily symmetric and contains four components: the energy density E , the energy flux Ex,
the momentum density Px and the stress energy Π x

x . They satisfy the following conservation

equations [25]

∂tE + ∂xEx = 0, ∂tPx + ∂xΠ
x
x = 0. (2.10)

For theories with the Lifshitz scaling exponent z there exists a modified trace condition

zE + Π x
x = 0. (2.11)

2.3 Lifshitz spacetimes in higher spin gravity

A holographic realization of the Lifshitz scaling symmetry in three dimensions can be con-

structed using the following metric

ds2 = dρ2 − e2zρdt2 + e2ρdx2. (2.12)

A shift of the radial coordinate ρ→ ρ+ lnλ induces a Lifshitz scaling transformation on the

space time coordinates t, x with scaling exponent z (2.8). Such a metric is in general not a

solution of pure Einstein gravity with a negative cosmological constant and additional matter

has to be added to support the solution (see e.g. [19]). In higher spin gravity Lifshitz metrics

can be obtained from connections.

aLif = V z+1
z dt+ V 2

1 dx, āLif = V z+1
−z dt+ V 2

−1dx. (2.13)

Our conventions for the generators V s
m are presented in appendix A. It is straightforward to

verify that the connections (2.13) are flat suing the fact that [V z+1
± z , V

2
±1] = 0.

Since z in general is an integer these constructions produce Lifshitz theories with integer

scaling exponent. Note that the barred connection in (2.13) can be related to the unbarred

sector by a conjugation operation Ā = Ac, where the conjugation is acting on the gauge

algebra generator by (V s
m)c = (−1)s+m+1V s

−m. Though in general A and Ā maybe unrelated,

Ac solves the flatness condition in the barred sector if A solves it in the unbarred sector so we

always take Ā to be Ac as in [20]. By this choice we can get the Lifshitz metric from (2.5).
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2.4 Asymptotic Lifshitz connections

In holographic theories one considers spacetimes which are not exactly AdS, but approach

AdS asymptotically. This enlarges the space of possible solutions including for example black

holes. For Lifshitz spacetimes a similar notion exists. In the Chern-Simons formulation we

call a connection asymptotically Lifshitz if the leading term of the connection is the Lifshitz

connection which can be obtained from (2.13). In [20] we presented a general procedure to

construct time dependent asymptotically Lifshitz connections. The starting point is to choose

a ”lowest weight gauge” for the connection ax [24].

ax = V 2
1 +

∞∑
i=2

αiV
i
−i+1 (2.14)

where the αi depend on x, t. An ansatz for the time component of the connection for a

asymptotically Lifshitz connection with exponent z is given by

at = (∗ax)z|traceless + ∆at. (2.15)

The definition of removing the trace component by |traceless is presented in appendix A.2.

In [20] it was shown that the flatness conditions (2.7) together with ∆at can be solved

recursively. While the general procedure was developed for hs(λ), explicit expressions for two

cases, namely sl(3,R), z = 2 and sl(4,R), z = 3 were given in that paper. In these specific

examples it was found that there is some gauge freedom left in the ∆at. By appropriately fixing

at we obtained the equation of motion for αi’s which can be mapped to KdV hierarchy. Another

useful property of the CS construction is the fact that one can assign scaling dimensions to

the fields ai. The scaling behavior is determined by demanding that under Lifshitz scaling of

the coordinates x→ λx, t→ λzt, the connection A is invariant. A field of scaling dimension l

will be rescaled by a factor λ−l. It was shown in [20], that one can assign the following scaling

dimensions to the basic fields and operators

[αn] = n, [∂x] = 1, [∂t] = z. (2.16)

2.5 Integrability and map to KdV hierarchy

Here we briefly describe the formulation of the KdV hierarchy using pseudo differential opera-

tors. Elements of KdV hierarchy are labeled by two integers n and m. A differential operator
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L can be defined

L = ∂n + u2∂
n−2 + · · ·+ un−1∂ + un. (2.17)

Here ∂ = ∂
∂x

and ui = ui(x, t). The formalism of pseudo differential operators (PDO) intro-

duces negative powers ∂−k of differentiation while preserving the standard rules of differenti-

ation such as the Leibniz rule (see [26, 27] for reviews). This formalism makes it possible to

define fractional powers of L, in particular L1/n.

L1/n = ∂ +
1

n
u2∂

−1 + o(∂−2). (2.18)

For another integer m one defines

Pm =
(
Lm/n

)
+

(2.19)

where the subscript ()+ denotes the non-negative part of the pseudo differential operator,

which has terms with ∂k, k ≥ 0. An integrable system is constructed due to the fact that P,L

form a Lax pair, i.e. the evolution equation

∂

∂t
L = [Pm, L] (2.20)

gives a system of partial differential equations for ui(x, t) which is integrable. In [20] it

was found that for the concrete example sl(3,R), z = 2 and sl(4,R), z = 3 it was possible

for a specific gauge choice for at (called KdV gauge) to map the flatness conditions for the

asymptotically Lifshitz connection to the evolution equation (2.20) of an element of KdV

hierarchy. Furthermore, it was conjectured that this hold in general with the identification of

Chern Simons parameters N, z with the KdV parameters m,n given by

m = z, n = N. (2.21)

3 Explicit Chern-Simons to KdV maps

In this section, we illustrate the specific form of the CS-KdV map in various explicit examples.

3.1 z = 2

A particularly simple case is when the exponent z takes its minimal non-trivial value z = 2.

We can write the equations of motion for the CS fields αi and for the KdV fields ui in closed
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form for generic N . For the αi fields, we have 1

α̇n =
n (n2 −N2)

2n+ 1
α′n+1 +

1

(n− 1)(2n− 3)
α′′′n−1 +

n−1∑
m=2

2 (2n−m)

2 (n−m) + 1
α′n−m+1 αm. (3.1)

For the ui fields of the KdV (2, N) hierarchy, we have

u̇i = u′′i + 2u′i+1 −
2

N

(
N

i

)
u
(i)
2 −

i−1∑
j=2

2

N

(
N − j
i− j

)
uj u

(i−j)
2 . (3.2)

Assuming an Ansatz for the map consistent with the scaling Eq. (2.16) 2, the matching between

the two set of equations can be solved recursively term by term. The explicit expression of

the map for the first seven fields turns out to be:

u2 = N(N2 − 1)
α2

6
, (3.3)

u3 = N(N2 − 1)(N − 2)

(
1

30
α3(−N − 2) +

α′2
12

)
, (3.4)

u4 = N(N2 − 1)(N − 2)(N − 3)

(
1

60
(−N − 2)α′3 +

1

360
α2
2(5N + 7)

+
1

140
α4(N + 2)(N + 3) +

α′′2
40

)
,

(3.5)

u5 = N(N2 − 1)(N − 2)(N − 3)(N − 4)

(
1

360
α2(5N + 7)α′2 +

1

280
(N + 2)(N + 3)α′4

+
1

210
(−N − 2)α′′3 −

α2α3(N + 2)(7N + 13)

1260
− 1

630
α5(N + 2)(N + 3)(N + 4) +

α2
(3)

180

)
,

(3.6)

1 The derivation of Eq. (3.1) is completely similar (and even simpler) to the case z = 3 that is treated
in full details in Sec. (5.2) of [20]. Notice also that the second term on the right hand side of Eq. (3.1) is
understood to be zero for n = 2.

2 In other words, each field un is written as a general linear combination of monomials in the various α’s
and their spatial derivatives with the correct dimension n. Taking into account [∂x] = 1 and [αm] = m, it is
clear that only a finite number of terms must be considered at each n.

8



u6 = N(N2 − 1)(N − 2)(N − 3)(N − 4)(N − 5)

(
α3
2 (35N2 + 112N + 93)

45360

+
α2
3(N + 2) (7N2 + 34N + 44)

12600
− α2(N + 2)(7N + 13)α′3

2520
+

(7N + 10) (α′2)
2

2016

− α3(N + 2)(7N + 13)α′2
2520

− (N + 2)(N + 3)(N + 4)α′5
1260

+
α2(21N + 29)α′′2

5040

+
(N + 2)(N + 3)α′′4

1008
+
α4α2(N + 2)(N + 3)(3N + 7)

2520
+

α6(N + 2)(N + 3)(N + 4)(N + 5)

2772
+
α3

(3)(−N − 2)

1008
+
α2

(4)

1008

)
,

(3.7)

u7 = N(N2 − 1)(N − 2)(N − 3)(N − 4)(N − 5)(N − 6)

(
α2
2 (35N2 + 112N + 93)α′2

30240

+
α3(N + 2) (7N2 + 34N + 44)α′3

12600
− α3α

2
2(N + 2) (35N2 + 144N + 157)

75600

− α3α4(N + 2)(N + 3) (11N2 + 65N + 106)

46200
+

(7N + 10)α′2α
′′
2

3360

+
α2(N + 2)(N + 3)(3N + 7)α′4

5040
+
α4(N + 2)(N + 3)(3N + 7)α′2

5040
−

(N + 2)(21N + 40)α′2α
′
3

15120
+

(N + 2)(N + 3)(N + 4)(N + 5)α′6
5544

− α2(N + 2)(6N + 11)α′′3
7560

−

α3(N + 2)(21N + 38)α′′2
25200

− (N + 2)(N + 3)(N + 4)α′′5
4620

−

α5α2(N + 2)(N + 3)(N + 4)(11N + 31)

41580
+
α2

(3)α2(14N + 19)

15120

− α7(N + 2)(N + 3)(N + 4)(N + 5)(N + 6)

12012
+
α4

(3)(N + 2)(N + 3)

5040

+
α3

(4)(−N − 2)

6048
+
α2

(5)

6720

)
.

(3.8)

As expected, these equations truncate for positive integer N and define a differential map

between the first N CS and KdV fields.

3.2 Generic z > 2 and universality of the map

To analyse cases with z > 2, we begin by briefly recalling the algorithmic construction of

CS solutions with asymptotic Lifshitz scaling presented in [20]. The main ingredient are the

equations (2.14), (2.15) for the two components of the connection. As discussed in section
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2.4, it is convenient to assign the scaling dimension [αn] = n to the fields and [V s
m] = m to the

generators. This implies that all terms in (2.14) have the same dimension 1. Let Φ(α) be the

set of monomials built with the α-functions and their ∂x derivatives. Then we can write the

following explicit ansatz for at

at = (∗ax)z|traceless +
∞∑
n=2

z−2∑
m=−n+1

Onm(α)V n
m, (3.9)

where Onm(α) is a linear combination of elements of Φ(α) with homogeneous dimension z−m.

The upper bound on m is due to the fact that the minimal dimension is 2, obtained forO ∼ α2.

Solving the flatness condition amounts to solve algebraic equations for the coefficients in the

O combinations in (3.9). This system has a triangular structure and can be fully reduced to

a finite dimensional one for λ = N when hs(λ) reduces to sl(N,R). 3

For our purposes, it is important to revisit the case z = 3, N = 4 that has already been

discussed in [20]. Solving the Ansatz (3.9), we obtain the following non-zero polynomials Onm:

O2
−1 =

(
41

5
− k
)
α2
2 −

k

2
α′′2, O2

0 = k α′2, O2
1 =

(
41

5
− k
)
α2,

O3
−2 =

(
41

5
− k
)
α2α3 −

1

2
α′′3, O3

−1 = 2α′3,

O4
−3 =

(
41

5
− k
)
α2α4 +

3

10
(α′2)

2 +
23

60
α2α

′′
2 +

1

10
α′′4 +

1

120
α′′′′2 ,

O4
−2 = −9

5
α2 α

′
2 −

3

5
α′4 −

1

20
α′′′2 , O4

−1 =
1

4
α′′2, O4

0 = −α′2,

(3.10)

3 In the example discussed in this section, as well as in the data collected in Appendix C, we worked at
fixed N (and z). We found computationally efficient to deal directly with the N ×N matrix representation of
the flatness condition, without projecting onto the generators V n

m. We solved the linear equations giving the
time derivatives α̇n and replaced in the other entries that become linear combinations of elements of Φ(α).
These elements are all linearly independent and this gives a set of linear constraints for the coefficients in
On

m(α).
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where k is an undetermined coefficient. The associated equations of motion are

α̇2 = −3 k α2α
′
2 −

k

2
α′′′2 +

54

5
α′4,

α̇3 = −3

(
k +

9

5

)
α3α

′
2 −

(
k +

34

5

)
α2α

′
3 −

1

2
α′′′3 ,

α̇4 = −
(
k − 14

5

)
α′4α2 − 2

(
2k − 7

5

)
α4α

′
2 +

24

5
α′2α

2
2 +

13

30
α′′′2 α2

− 12α3α
′
3 +

59

60
α′2α

′′
2 +

1

10
α′′′4 +

1

120
α′′′′′2 .

(3.11)

These can be compared with the equations of motions quoted in [20]

α̇2 = −(
123

5
− 3c)α2α

′
2 − (

41

10
− c

2
)α′′′2 +

54

5
α′4,

α̇3 = −(30− 3c)α3α
′
2 − (15− c)α2α

′
3 −

1

2
α′′′3 ,

α̇4 = −
(

27

5
− c
)
α′4α2 − (30− 4c)α4α

′
2 +

24

5
α′2α

2
2 +

13

30
α′′′2 α2

− 12α3α
′
3 +

59

60
α′2α

′′
2 +

1

10
α′′′4 +

1

120
α′′′′′2 ,

(3.12)

where c is a gauge parameter analogous to k. If we set

k =
41

5
− c, (3.13)

then equations (3.11) and (3.12) match. They must be compared with the KdV equations for

the (4, 3) case, i.e.

u̇2 = −3

4
u2 u

′
2 + 3u′4 −

3

2
u′′3 +

1

4
u′′′2 ,

u̇3 = −3

4
u3 u

′
2 −

3

4
u2 u

′
3 + 3u′′4 − 2u′′′3 +

3

4
u
(4)
2 ,

u̇4 = −3

4
u3 u

′
3 +

3

4
u2 u

′
4 +

3

8
u3 u

′′
2 −

3

4
u2 u

′′
3 +

3

8
u2 u

′′′
2 + u′′′4 −

3

4
u
(4)
3 +

3

8
u
(5)
2 .

(3.14)

We can try to relate the CS and KdV equations of motion by postulating a generic CS-KdV

map consistent with the scaling dimensions. In this case, it reads

u2 = ξ2,1 α2,

u3 = ξ3,1 α3 + ξ3,2 α
′
2,

u4 = ξ4,1 α
2
2 + ξ4,2 α4 + ξ4,3α

′
3 + ξ4,4 α

′′
2.

(3.15)
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Comparing the CS and KdV sides, we get a set of algebraic equations for k and the ξ-

coefficients which have the following two non-trivial solutions (ξ ≡ 0 is clearly a solution):

ξ2,1 = 10, ξ3,1 = ±24, ξ3,2 = 10, ξ4,1 = 9,

ξ4,2 = 36, ξ4,3 = ±12, ξ4,4 = 3, k =
7

10
.

(3.16)

The value of k implies c = 15/2 as in [20], see (3.13). However, the solution quoted in that

reference is the one with the plus sign in (3.16). 4 Taking instead the minus sign, we recover

precisely the KdV map for N = 4 and z = 2 as one can easily see just taking equations

(3.3-3.8) for N = 4. This simple remark suggests that the CS-KdV map is actually universal,

i.e. independent on the Lifshitz exponent z. We have systematically explored the map for

various z and N = 4, 5, 6, 7, 8. The explicit results for the CS-KdV maps and the equations

of motions are collected in Appendix C. One can check that in all cases there is always one

solution to the algebraic constraints such that the CS-KdV map is the same as for z = 2.

3.3 Conserved charges

A further check of universality of the CS-KdV map is provided by the conserved charges. In

particular, we expect that the charges determined for z = 2 are conserved for all z (and N).

The explicit form of the conserved charges for z = 2 can be determined by using the closed

form of the equations of motion. Guided by the results of [20], we look for densities ρn of the

form

ρn = αn + other fields of dimension n, (3.17)

such that, using (3.1), we get

∂tρn = ∂x(local field of dimension n+1). (3.18)

At each n, we find by direct inspection, a unique solution up to total derivatives of previously

determined densities ρm<n. The first expressions are trivial

ρ2 = α2, ρ3 = α3. (3.19)

4The extra map results from the symmetry of the CS equations of motion under the discrete transformation
αi → (−1)iαi.
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The next charges have an explicit N dependence and read

ρ4 = α4 −
7α2

2

6 (N2 − 4)
,

ρ5 = α5 −
4α2α3

N2 − 9
,

ρ6 = α6 −
11 (2N2 − 11) (α′2)

2

24 (N2 − 16) (N2 − 9) (N2 − 4)
+

11α2
3 (13N2 − 61)

36 (N2 − 16) (N2 − 9) (N2 − 4)

− 11α4α2

2 (N2 − 16)
− 11α3

2 (3N2 − 20)

10 (N2 − 16) (N2 − 9)
,

ρ7 = α7 +
143α3α

′′
2

50 (N2 − 25) (N2 − 16)
+

572α3α2
2

25 (N2 − 25) (N2 − 16)
− 104α5α2

15 (N2 − 25)
(3.20)

− 13α3α4 (17N2 − 173)

25 (N4 − 41N2 + 400)
,

ρ8 = α8 +
13α4 (17N2 − 227)α′′2

60 (N2 − 36) (N2 − 25) (N2 − 16)
+

13α4α2
2 (161N2 − 2441)

60 (N2 − 36) (N2 − 25) (N2 − 16)

− 25α6α2

3 (N2 − 36)
− 13 (5N4 − 93N2 + 388) (α′3)

2

30 (N2 − 36) (N2 − 25) (N2 − 16) (N2 − 9)

− 143α2
2 (38N4 − 605N2 + 1887)α′′2

720 (N2 − 36) (N2 − 25) (N2 − 16) (N2 − 9) (N2 − 4)

− 143 (3N4 − 50N2 + 167) (α′′2) 2

720 (N2 − 36) (N2 − 25) (N2 − 16) (N2 − 9) (N2 − 4)

− 143α2
4 (281N4 − 4210N2 + 12569)

2160 (N2 − 36) (N2 − 25) (N2 − 16) (N2 − 9) (N2 − 4)

+
13α3

2α2 (97N4 − 1989N2 + 9692)

30 (N2 − 36) (N2 − 25) (N2 − 16) (N2 − 9)
− 3α4

2 (271N4 − 7315N2 + 54684)

140 (N2 − 36) (N2 − 25) (N2 − 16)

− 4α3α5 (41N2 − 596)

15 (N4 − 61N2 + 900)
.

These have been derived using the z = 2 equations of motion. However, since the conserved

charges on the KdV side are by definition z-independent, we expect that these expressions are

valid for any z as well. Indeed, we checked that the above densities define conserved charges

for all the examples we explored, using the αi equations of motion collected in Appendix C.
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4 Integrability of Lifshitz Chern-Simons theory by Drinfeld-Sokolov
formalism

In the preceding sections we have shown that Lifshitz Chern-Simons theory is an integrable

system by appropriately choosing at. Though this fact can be verified by constructing the

explicit map between the Lifshitz Chern-Simons theory and the KdV hierarchy, an elegant

theoretic approach is desired. Such a formalism of integrable systems in terms of matrix

valued pseudo differential operators (PDO) was developed in the seminal paper by Drinfeld

and Sokolov [21] on which the present section is based.

To begin with, we rewrite the flatness condition in a Lax form

d

dt
Dx + [at, Dx] = 0, (4.1)

where the covariant derivative Dx = ∂x + ax is regarded as a Lie algebra valued differential

operator (and hence it can be regarded as a PDO without any negative powers ∂−i). For

the gauge algebra sl(N,R), we can use the matrix representation and the flatness condition

becomes a Lax equation of matrix valued PDO. One of our main results is that both the

Lifshitz Chern-Simons theory for sl(N,R) and the KdV hierarchy can be deduced from the

Drinfeld Sokolov formalism and are related by making two different gauge choices for the

PDOs. Consequently, almost all the questions previously studied about integrability of our

Lifshitz Chern-Simons theory for the gauge algebra sl(N,R), including the map from Lifshitz

Chern-Simons theory to KdV, the infinite tower of conserved quantities and the choice of at

to make Lifshitz Chern-Simons theory integrable, are given clear answers.

The Drinfeld Sokolov formalism starts by defining the PDO valued in sl(N,R)

L = ∂x + q(x, t) + Λ, (4.2)

where q is a lower triangular matrix (or non-positive weight element, if we use the terminology

in hs(λ) and view sl(N,R) as a truncation of it) and

Λ = V 2
1 + λe. (4.3)

The parameter λ was introduced by Drinfeld and Sokolov and should not be confused with

the deformation parameter in the gauge algebra hs(λ). In fact the construction in the present

section is limited to sl(N,R) and it is an interesting open question how to generalize the

present construction to hs(λ).
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Here ei,j denotes the matrix with a single one in the i’th row and j’th column, and zeros

elsewhere. In the matrix representation we use, V 2
1 =

∑N−1
i=1 ei,i+1, and e = eN,1 is proportional

to V N
−N+1. The Lax equation is defined as

d

dt
L = [P,L], (4.4)

where P is some differential polynomial in q that has to be carefully chosen. The left hand side

of the Lax equation is independent on λ and lower triangular, so we want the commutator

on the right hand side to be also independent on λ and lower triangular. Suppose M =∑n
i=−∞miλ

i is a matrix that commutes with L where mi’s are matrix valued coefficients (i.e.

matrices multiplied by powers in λ), then we can set P = M+, the part of M with non-negative

powers in λ. From [M,L] = 0 it follows [M+, L] = −[M−, L]. Since the left hand side only

contains non-negative powers in λ but the right hand side only contains non-positive powers

in λ, they should be both independent on λ and −[M−, L] = [m−1, e] is necessarily lower

triangular. Now we have [P,L] = [M+, L] = [m0, ∂x + V 2
1 + q]. We identify V 2

1 + q as ax, so

we have L = Dx + λe. We furthermore identify −m0 = −Zero(P ) as at, where symbolically

Zero means to take the λ0 part. Then the Lax equation is reduced to our flatness condition

in Chern-Simons Lifshitz theory. It should be noted that the parameter λ is used in setting

up the PDOs, the actual equations of motion and the conserved charges are all independent

on λ.

An important restriction we want to impose on the Lax equation is that it must preserve

gauge equivalence. Furthermore it will be shown that the Lifshitz Chern-Simons theory and

the KdV hierarchy are just reduction of Drinfeld Sokolov formalism by special gauge choices.

The crucial notion, a gauge transformation, is defined for a PDO as

L′ = S−1LS, (4.5)

where S is a λ-independent lower triangular matrix with ones in the diagonal, or in the higher

spin algebra language, S is V 1
0 plus negative weight terms. Define L′ = ∂x + a′x + λe =

∂x + V 2
1 + q′ + λe, then this PDO gauge transformation induces a transformation of ax (or q)

a′x = S−1axS + S−1∂xS,

q′ = S−1V 2
1 S − V 2

1 + S−1∂xS, (4.6)

where we used the fact that e commutes with S in the calculation. By the explicit construction

specified later P is a differential polynomial in q and so is the commutator [P,L]. Hence the
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Lax equation is essentially a evolution equation for q

∂tq = p(q), (4.7)

where p(q) means a differential polynomial in q. We require the evolution equation to preserve

gauge equivalence 5, that is, when starting with two initial conditions for q which are connected

by a gauge transformation, the two solutions should be also connected by a (time-dependent)

gauge transformation at any time. The Lax equation preserving gauge equivalence is actually

an evolution equation of gauge equivalent classes. Needless to say, we can choose representa-

tives of some special form to specify the time evolution of the gauge equivalent classes. This

motivates the definition of the canonical form of L, or q. We denote the part of q with weight

−i by qi. In principle qi lies in the N −|i| dimensional linear space spanned by V
|i|+1
i , . . . , V N

i .

By restricting qi to be in a one dimensional subspace, that is, a specific linear combination,

we define a canonical form for q. For technical reasons, we also require the one dimensional

subspace has a nonzero lowest weight projection. The name canonical form is justified by the

following theorem, for any q there is a unique gauge transformation to transform it into the

canonical form, and the expression in the canonical form is unique. See Appendix B.1 for a

proof. The choice of the one dimensional subspaces that q′i lie in defines the specific canonical

form. Two choices are of particular importance in our discussion. The first one, we restrict

q′i to be lowest weight, if not an abuse of language, we call this the lowest weight canonical

form. The second one, we restrict q′i to be multiple of e1,i+1, which we call the KdV canonical

form. In the lowest weight canonical form,

q =
N∑
i=1

αiV
i
−i+1, (4.8)

the Lax equation d
dt
L = [P,L] gives us the flatness condition of Chern-Simons theory in the

lowest weight gauge (by appropriately choosing at). In the KdV canonical form

q = −
N∑
i=1

uie1,i, (4.9)

5This notion of preserving gauge equivalence has nothing to do with the gauge invariance of the flatness
condition. The former is about the gauge transformation of the PDO or q defined in the paper by Drinfeld
and Sokolov, the latter is about the usual gauge transformation in field theory simultaneously acted on ax and
at.
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the Lax equation d
dt
L = [P,L] gives us KdV, as proved in the paper by Drinfeld and Sokolov.

The evolution equation in the lowest weight canonical form and that in the KdV canoni-

cal form are just two special explicit forms of the same equation. There is a unique gauge

transformation that transforms between these two canonical forms, which establish the one-

to-one correspondence between Lifshitz Chern-Simons theory with sl(N,R), z and KdV with

n = N,m = z, and explicitly the map from αi’s to ui’s. From the relation

Tr[P,L] = −Tr[m−1, e] = 0, (4.10)

it follows that the trace part of L must be constant by the equation of motion. In the following

we set to be zero for simplicity. For example, we can set α1 = 0 for the q in the lowest weight

canonical form.

Now let’s construct the conserved quantities from the Lax equation. In general, a general

matrix A whose elements are power series in λ (both positive and negative) can be uniquely

expanded in the form

A =
∑
i

aiΛ
i, (4.11)

where ai’s denote diagonal matrices which are independent of λ. Note that the summation

index i in (4.11) ranges over positive and negative integers.

Here q is lower triangular, so it has the expansion
∑N−1

i=0 diΛ
−i, or equivalently

L = ∂x + Λ +
N−1∑
i=0

diΛ
−i. (4.12)

There is a similarity transformation to transform L into a scalar coefficient form, that is, there

is a formal series

T = E +
∞∑
i=1

hiΛ
−i, (4.13)

where hi’s are diagonal matrices, such that

L0 = TLT−1 = ∂x + Λ +
∞∑
i=0

fiΛ
−i, (4.14)

where fi’s are scalar functions, as opposed to matrices multiplied to the left. T is determined

up to multiplication by series of the form E +
∑∞

i=1 tiΛ
i where ti’s are scalar functions, and

fi’s are determined up to a total derivative. Most importantly

qi =

∫
fi , (4.15)
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are conserved by the Lax equation. See Appendix B.2 for the proof.

The scalar coefficient form L0 = ∂x + Λ +
∑∞

i=0 fiΛ
−i not only gives us the conserved

quantities, but also can help us to determine the form of the matrices that commute with L,

and ultimately the form of P . Matrices that commute with L0 must take the form
∑n

i=−∞ ciΛ
i

with ci’s as constant coefficients, see Appendix B.3 for a proof. Therefore matrices that

commute with L must have the form

M = T−1
( n∑
i=−∞

ciΛ
i

)
T. (4.16)

because [M,L] = 0 is equivalent to [TMT−1, L0] = 0. Setting P = M+, we get the consistent

Lax equation d
dt
L = [P,L]. Despite the simple appearance, several remarks about this equation

are necessary. First, T is the series that transforms L into a form with scalar coefficients L0

and it’s in general a differential polynomial in q, hence P is a differential polynomial in q

and so is the commutator [P,L]. Second, though T has the indeterminacy of a multiplicative

series E+
∑∞

i=1 tiΛ
−i where ti’s are scalar functions, P is uniquely defined because

∑n
i=−∞ ciΛ

i

commute with this series. Last but the most important, this Lax equation preserves gauge

equivalence, a proof of this statement will be given in the Appendix B.4.

As a evolution equation of gauge equivalent classes, the explicit form of the Lax equation
d
dt
L = [P,L] is certainly not unique and different explicit forms correspond to choice of different

representatives in gauge equivalent classes. We have the following theorem, if the difference

between P1 and P2 is a negative weight matrix with no time or λ dependence, then d
dt
L =

[P1, L] and d
dt
L = [P2, L] give the same evolution equations of gauge equivalent classes. See

Appendix B.5 for a proof. Applying this theorem, we can add a negative weight matrix

both independent on time and λ to P without actually changing the evolution equation of

gauge equivalent classes. We do need to do so when we want to obtain the Lax equation in

certain canonical form, because the commutator [P,L] is guaranteed to be negative weight,

but not necessarily in the specific canonical form. The correction added to P can be uniquely

determined. The proof of this statement will be omitted because it’s structurally the same as

the proof of existence and uniqueness of the gauge transformation that transforms L into a

canonical form.

At last we have enough ingredients to explain how the integrable Lifshitz Chern-Simons

theory for sl(N,R) and z emerges from the Drinfeld Sokolov formalism. First the Lax equation
d
dt
L = [P,L] is equivalent to the flatness condition d

dt
Dx + [at, Dx] = 0 with the identification
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ax = V 2
1 + q and at = −Zero(P ). Second, the Lax equation, viewed as evolution equation of

gauge equivalent classes, can be put in the lowest weight canonical form, which corresponds

to lowest weight gauge choice in the Chern-Simons theory. Then, considering the Lifshitz

exponent is z, we set P = (T−1ΛzT )+ up to a multiplicative constant. At last we add a

correction to P to make [P,L] lowest weight. From P obtained in this way, at = −Zero(P )

coincides with at in ”KdV gauge” in our previous paper. If we choose the KdV canonical

form for L, we get KdV hierarchy as proved in the paper by Drinfeld and Sokolov. The gauge

transformation between the two canonical forms gives us the explicit map between the Lifshitz

Chern-Simons theory and the KdV hierarchy. This map is z independent simply because z

doesn’t involve in the construction of gauge transformation between the two canonical forms.

5 Discussion

In the present paper we showed that there is an explicit relation of the Chern-Simons Lifshitz

theories and the integrable KdV hierarchy. This relation identifies the parameters N and z

of the Chern Simons theory to the parameters n and m of the KdV hierarchy. Consequently

the map exists for all values of N . We discuss the status of the generalization to the infinite

dimensional algebra hs(λ).

The fact that the equations of motion obey the scaling laws implies that the equation of

motion, as well as the KdV map for a CS field αi, only contains finitely many terms since

fields with a too large scaling dimension cannot appear. Since the hs(λ) truncates to sl(N,R)

and we adopted the normalization of our sl(N,R) generators which is compatible with this

truncation, for a finite number of fields the results for sl(N,R) are mapped to the general hs(λ)

case by replacing N → λ. It would nevertheless be interesting to see whether its possible to

derive a closed form expression valid for all ai.

The construction of the CS Lifshitz theory has a close relation to the construction of the

asymptotically AdS theories which realize W algebras, with many equations related by an

exchange of lightcone coordinates x± with space and time x, t (see [28] for the discussion of

the SL(3, R) case). It would be interesting to see whether this relation can also be understood

on the level of the conformal field theory, for some early discussion in this direction in the

literature see [29, 30].

In the present paper we have related the CS Lifshitz theory to the integrable KdV hierarchy.

There exists a related and in some sense more universal integrable hierarchy the so called KP
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hierarchy [31]. It would be interesting to investigate whether a relation of the CS Lifshitz

theory for hs(λ) to the KP hierarchy exists (see for possibly relevant work [32, 33, 34, 35, 36,

37]). We leave these interesting questions for future work.
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A Conventions for gauge algebras

In this appendix we collect our conventions for the sl(N,R) and hs(λ) algebras. We recall

that for integer values of λ = N the hs(λ) algebra has an ideal and by factoring the algebra

over this ideal, it truncates to a finite algebra, namely sl(N,R). We use the same notation

for the generators of the two algebras.

A.1 sl(N,R) conventions

In the fundamental representation the generators of the sl(N,R) algebra are N ×N matrices,

labelled by two integers s, m with 2 ≤ s ≤ N and |m| < s ≤ N . All generators are built

starting from the generators {V 2
0 , V

2
±1} of the canonical sl(2,R) subalgebra, whose non-zero

matrix elements are given by (indices range from 1 to N)(
V 2
0

)
j,j

=
N + 1

2
− j,

(
V 2
1

)
j+1,j

= −
√
j(N − j),

(
V 2
−1
)
j,j+1

=
√
j(N − j) . (A.1)

The other generators are obtained according to:

V s
m = (−1)s−m−1

(s+m− 1)!

(2s− 2)!
[V 2
−1, [V

2
−1, . . . , [V

2
−1,︸ ︷︷ ︸

s−m−1

(
V 2
1

)s−1
] . . . ]. (A.2)

A.2 hs(λ) conventions

The hs(λ) algebra is spanned by the infinite set of generators V s
m, s = 1, 2, 3, . . . and m =

−s+ 1,−s+ 2, . . . , s− 1. The associative lone star product is defined as

V s
m ∗ V t

n =
1

2

s+t−|s−t|−1∑
u=1

gstu (m,n, λ)V s+t−u
m+n . (A.3)

The structure constants of the hs(λ) algebra were defined in [38] and can be represented as

follows

gstu (m,n;λ) =
qu−2

2(u− 1)!
φstu (λ)N st

u (m,n), (A.4)

where q is a normalization constant which can be eliminated by a rescaling of the generators;

we choose q = 1/4 to agree with the literature. The other terms in (A.4) are given by

N st
u (m,n) =

u−1∑
k=0

(−1)k
(
u− 1
k

)
[s− 1 +m]u−1−k[s− 1−m]k[t− 1 + n]k[t− 1− n]u−1−k,
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φstu (λ) = 4F3

[
1
2

+ λ 1
2
− λ 2−u

2
1−u
2

3
2
− s 3

2
− t 1

2
+ s+ t− u

∣∣∣∣∣1
]
. (A.5)

The descending Pochhammer symbol [a]n is defined as

[a]n = a(a− 1)...(a− n+ 1) , (A.6)

and the commutator is defined as

[V s
m, V

t
n ] = V s

m ∗ V t
n − V t

n ∗ V s
m. (A.7)

V 1
0 is the unit element. The trace of a hs(λ) element is defined as the coefficient of V 1

0 up

to a multiplicative constant tr(V 1
0 ). When λ = N integer, hs(λ) is truncated to sl(N,R).

That means, we can consistently set V s
m to be zero if s > N , and the remaining elements can

be identified with the sl(N,R) generators defined above; the star product becomes the usual

matrix multiplication and the trace the usual matrix trace.

B Proofs of statements used in the Drinfeld Sokolov formalism

In this part of appendix we give the proofs to the theorems used in Drinfeld Sokolov formalism.

Most of them are essentially contained in the original paper by Drinfeld and Sokolov. However,

the original paper is a little bit condensed, so we add details to the proofs to make them easier

to follow.

B.1 Gauge transformation of PDOs

Here we give the proof of the following statement: For any q and any canonical form, there

exist a unique gauge transformation S to transform q into q′ = S−1V 2
1 S−V 2

1 +S−1∂xS in the

canonical form chosen.

The proof proceeds as follows: We rewrite the gauge transformation as

Sq′ = qS + [V 2
1 , S] + ∂xS (B.8)

and then by comparing the weight −i part we get

i∑
j=0

Si−jq
′
j =

i∑
j=0

qjSi−j + [V 2
1 , Si+1] + ∂xSi (B.9)
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which holds for all i’s. Using the fact S0 is the identity matrix E, we put it in a recursive

form

q′i − [V 2
1 , Si+1] = qi + ∂xSi −

i−1∑
j=0

Si−jq
′
j +

i−1∑
j=0

qjSi−j. (B.10)

Given q, and suppose q′j and Sj+1 are known for all j < i, from the lowest weight projection

of the right hand side we can find q′i if we restrict it to be in a one dimensional subspace of

weight −i elements which has nonzero lowest weight projection. Then Si+1 is also determined

by equating non lowest weight terms on both sides. The initial conditions, needless to say,

are q′0 = q0 and S0 = E.

B.2 Scalar coefficient form and conserved quantities

Here we proof the following statement: For generic L, there is a formal series

T = E +
∞∑
i=1

hiΛ
−i, (B.11)

where hi’s are diagonal matrices, such that

L0 = TLT−1 = ∂x + Λ +
∞∑
i=0

fiΛ
−i, (B.12)

where fi’s are scalar functions. T is determined up to multiplication by series of the form

E+
∑∞

i=1 tiΛ
i where ti’s are scalar functions, and fi’s are determined up to a total derivative.

Furthermore qi =
∫
fi are conserved by the Lax equation.

The proof proceeds as follows: By equating the coefficients of the same powers of Λ in the

equality TL = L0T we get

di + hi+1 +
i−1∑
j=0

hi−jd
σ−(i−j)

j = fiE + ∂xhi + hσi+1 +
i∑

j=1

fi−jh
σ−(i−j)

j . (B.13)

Here the notation Aσ
i

means ΛiAΛ−i, which is i times cyclic permutation of the diago-

nal elements for a diagonal matrix A. For example if A = Diag{a1, a2, a3, a4} then Aσ =

Diag{a2, a3, a4, a1}. We rewrite the equation above as

hi+1 − hσi+1 − fiE = −di + ∂xhi −
i−1∑
j=0

hi−jd
σ−(i−j)

j +
i∑

j=1

fi−jh
σ−(i−j)

j . (B.14)
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fi is obtained by taking the trace on both sides, then hi+1 is determined up to an additive

multiple of identity. Now suppose T ′ transforms L to

L′0 = T ′LT ′−1 = ∂x + Λ +
∞∑
i=0

f ′iΛ
−i. (B.15)

Define TT ′−1 = A = E +
∑∞

i=1 aiΛ
i where ai’s are diagonal matrices. We have A−1L0A = L′0

or L0A = AL′0. By equating the coefficients of the same power in Λ we get

ai+1 − aσi+1 + f ′iE − fiE = ∂xai +
i−1∑
j=0

fia
σ−i

i−j −
i−1∑
j=0

f ′iai−j (B.16)

with the initial conditions

a1 − aσ1 + f ′0E − f0E = 0,

a2 − aσ2 + f ′1E − f1E = ∂xa1. (B.17)

From this recursive formula it’s easy to see ai − aσi = 0 for all i, that is ai’s are all multiples

of identity, say, ai = tiE. Plug this back into the recursive formula we have

f ′i − fi = ∂xti −
i−1∑
j=0

ti−j(f
′
j − fj) (B.18)

with the initial condition

f ′0 − f0 = 0,

f ′1 − f1 = ∂xt1. (B.19)

One can prove by induction that f ′i − fi is a total derivative.

The evolution equation of L0 is

d

dt
L0 = [P0, L0], (B.20)

where P0 = dT
dt
T−1 + TPT−1. Expand P0 as

∑n
i=−∞ piΛ

i, then the Lax equation above gives

us

0 = pn − pσn,
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0 = −∂xpi + pi−1 − pσi−1 +
n∑
j=i

fj−i(pj − pσ
j−i

j ), 0 < i ≤ n,

ḟ−i = −∂xpi + pi−1 − pσi−1 +
n∑
j=i

fj−i(pj − pσ
j−i

j ), i ≤ 0. (B.21)

This recursive formula demands all pi’s to be multiples of identity. From this, in turn, the

commutator simplifies to −∂xP0, hence ḟi’s are equal to total derivatives and
∫
fi’s are con-

served.

B.3 Matrices that commute with L0

Here we would like to show that All matrices that commute with L0 = ∂x + Λ +
∑∞

i=0 fiΛ
−i

have the form
∑n

i=−∞ ciΛ
i with ci’s as constant coefficients.

This follows from letting M =
∑n

i=−∞miΛ
i be a matrix commuting with L0. By equating

coefficients of the same power in Λ in the equation ML0 = L0M we get

mn −mσ
n = 0,

−∂xmi +mi−1 −mσ
i−1 +

n∑
j=i

fj−i(mj −mσj−i

j ) = 0, i ≤ n. (B.22)

Therefore all mi’s are constants times identity matrix.

B.4 The Lax equation preserves gauge equivalence

In this subsection we prove the statement that by choosing P = (T−1(
∑n

i=−∞ ciΛ
i)T )+ the

Lax equation preserves gauge equivalence.

This can be shown as follows: It suffices to prove if L satisfies the Lax equation, then so

does L′ = S−1LS where S is a gauge transformation matrix that only depends on x. In other

words ∂tq = p(q) implies ∂tq
′ = p(q′). Using the original Lax equation, it’s straightforward to

get
d

dt
L′ = [S−1PS,L′]. (B.23)

So we want S−1PS = P ′, which means, S−1PS is the same differential polynomial in q′ as P

in q. Explicitly we have

S−1PS = S−1(T−1(
n∑

i=−∞

ciΛ
i)T )+S = ((TS)−1(

n∑
i=−∞

ciΛ
i)(TS))+. (B.24)

25



Suppose T ′ transforms L′ into the form of scalar coefficients, that is T ′L′T ′−1 = L′0, so T ′ is the

same differential polynomial in q′ as T in q. Plug in L′ = S−1LS we get (T ′S−1)L(T ′S−1)−1 =

L′0 = L0 = TLT−1. Hence T ′S−1 = T or TS = T ′, and at last we get

S−1PS = (T ′−1(
n∑

i=−∞

ciΛ
i)T ′)+ = P ′. (B.25)

B.5 Equivalent evolution equations of gauge equivalent classes

We want to prove the following statement: Given that the difference between P1 and P2 is a

negative weight matrix with no time or λ dependence, then d
dt
L = [P1, L] and d

dt
L = [P2, L]

give the same evolution equations of gauge equivalent classes.

The proof proceeds as follows: Let’s R denote the ring of scalar differential polynomials

in q which are invariant under gauge transformation. For any f ∈ R the time derivative of f

by the Lax equation also belongs to R, and the form of time derivatives of all f ∈ R uniquely

specify the evolution equation of gauge equivalent classes. Now for any f ∈ R, let g be the

difference of the time derivative of f by the above two Lax equations, then g is actually the

time derivative of f by the Lax equation d
dt
L = [P1 − P2, L]. Formally

g(L) =
d

dt
f(L(t))|t=0, (B.26)

where L(t) satisfies

L(0) = L,

d

dt
L(t)|t=0 = [P1 − P2, L]. (B.27)

Apparently L(t) = SLS−1 where S = E + t(P1 − P2) satisfies these conditions, and its time

evolution is just a gauge transformation. Therefore we have g = 0 because g ∈ R.

C Explicit results for various N and z

In this appendix we collect explicit results for several pairs (N, z). For each N , we list the

z-independent CS-KdV map and, for various z, the explicit KdV and CS equations of motion.

Due to the length of the equations we don’t write all the cases for N = 6 and N = 7, limiting

the presentation to the first values of z (up to z = 4, 3 respectively). 6

6Additional data are available from the authors upon request.
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N = 3

CS-KdV map:

u2 = 4α2,

u3 = 2α′2 − 4α3. (C.28)

KdV equations of motion at z = 2:

u̇2 = 2u′3 − u′′2,

u̇3 = −2

3
u2 u

′
2 + u′′3 −

2

3
u′′′2 . (C.29)

CS equations of motion at z = 2:

α̇2 = −2α′3,

α̇3 =
8

3
α2 α

′
2 +

1

6
α′′′2 . (C.30)

N = 4

CS-KdV map:

u2 = 10α2,

u3 = 10α′2 − 24α3, (C.31)

u4 = −12α′3 + 3α′′2 + 9α2
2 + 36α4.

KdV equations of motion at z = 2:

u̇2 = 2u′3 − 2u′′2,

u̇3 = −u2 u′2 + 2u′4 + u′′3 − 2u′′′2 , (C.32)

u̇4 = −1

2
u3 u

′
2 −

1

2
u2 u

′′
2 + u′′4 −

1

2
u
(4)
2 .

CS equations of motion at z = 2:

α̇2 = −24

5
α′3,

α̇3 =
8

3
α2 α

′
2 − 3α′4 +

1

6
α′′′2 , (C.33)
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α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 +

1

15
α′′′3 .

KdV equations of motion at z = 3:

u̇2 = −3

4
u2 u

′
2 + 3u′4 −

3

2
u′′3 +

1

4
u′′′2 ,

u̇3 = −3

4
u3 u

′
2 −

3

4
u2 u

′
3 + 3u′′4 − 2u′′′3 +

3

4
u
(4)
2 , (C.34)

u̇4 = −3

4
u3 u

′
3 +

3

4
u2 u

′
4 +

3

8
u3 u

′′
2 −

3

4
u2 u

′′
3 +

3

8
u2 u

′′′
2 + u′′′4 −

3

4
u
(4)
3 +

3

8
u
(5)
2 .

CS equations of motion at z = 3 :

α̇2 = −21

10
α2 α

′
2 +

54

5
α′4 −

7

20
α′′′2 ,

α̇3 = −15

2
α3 α

′
2 −

15

2
α2 α

′
3 −

1

2
α′′′3 , (C.35)

α̇4 =
59

60
α′2 α

′′
2 +

24

5
α2

2 α′2 +
21

10
α2 α

′
4 − 12α3 α

′
3 +

13

30
α2 α

′′′
2 +

1

10
α′′′4 +

1

120
α
(5)
2 .

N = 5

CS-KdV map:

u2 = 20α2,

u3 = 30α′2 − 84α3,

u4 = −84α′3 + 18α′′2 + 64α2
2 + 288α4, (C.36)

u5 = 64α2 α
′
2 + 144α′4 − 24α′′3 + 4α′′′2 − 192α2 α3 − 576α5.

KdV equations of motion at z = 2:

u̇2 = 2u′3 − 3u′′2,

u̇3 = −6

5
u2 u

′
2 + 2u′4 + u′′3 − 4u′′′2 ,

u̇4 = −4

5
u3 u

′
2 + 2u′5 −

6

5
u2 u

′′
2 + u′′4 − 2u

(4)
2 , (C.37)

u̇5 = −2

5
u4 u

′
2 −

2

5
u3 u

′′
2 + u′′5 −

2

5
u2 u

′′′
2 −

2

5
u
(5)
2 .

CS equations of motion at z = 2:

α̇2 = −42

5
α′3,
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α̇3 =
8

3
α2 α

′
2 −

48

7
α′4 +

1

6
α′′′2 ,

α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 − 4α′5 +

1

15
α′′′3 , (C.38)

α̇5 =
14

5
α3 α

′
3 + 4α4 α

′
2 +

16

7
α2 α

′
4 +

1

28
α′′′4 .

KdV equations of motion at z = 3:

u̇2 = −6

5
u2 u

′
2 + 3u′4 − 3u′′3 + u′′′2 ,

u̇3 = −6

5
u3 u

′
2 −

6

5
u2 u

′
3 + 3u′5 + 3u′′4 − 5u′′′3 + 3u

(4)
2 ,

u̇4 = −6

5
u3 u

′
3 −

3

5
u4 u

′
2 +

3

5
u2 u

′
4 +

3

5
u3 u

′′
2 −

9

5
u2 u

′′
3 + 3u′′5 +

6

5
u2 u

′′′
2 +

u′′′4 − 3u
(4)
3 +

12

5
u
(5)
2 , (C.39)

u̇5 = −3

5
u4 u

′
3 +

3

5
u2 u

′
5 −

3

5
u3 u

′′
3 +

3

5
u4 u

′′
2 +

3

5
u3 u

′′′
2 −

3

5
u2 u

′′′
3 + u′′′5 +

3

5
u2 u

(4)
2 −

3

5
u
(5)
3 +

3

5
u
(6)
2 .

CS equations of motion at z = 3:

α̇2 = −24

5
α2 α

′
2 +

216

5
α′4 −

4

5
α′′′2 ,

α̇3 = −120

7
α3 α

′
2 −

120

7
α2 α

′
3 +

144

7
α′5 −

8

7
α′′′3 ,

α̇4 =
59

60
α′2 α

′′
2 +

24

5
α2

2 α′2 −
36

5
α2 α

′
4 −

147

5
α3 α

′
3 − 12α4 α

′
2 +

13

30
α2 α

′′′
2 −

1

5
α′′′4 +

1

120
α
(5)
2 , (C.40)

α̇5 =
97

140
α′3 α

′′
2 +

29

56
α′2 α

′′
3 +

144

35
α2

2 α′3 +
396

35
α3 α2 α

′
2 +

36

7
α2 α

′
5 −

126

5
α4 α

′
3 −

72

5
α3 α

′
4 +

5

28
α2 α

′′′
3 +

123

280
α3 α

′′′
2 +

1

7
α′′′5 +

1

560
α
(5)
3 .

KdV equations of motion at z = 4:

u̇2 =
6

5
u′2

2 − 4

5
u3 u

′
2 −

4

5
u2 u

′
3 + 4u′5 +

6

5
u2 u

′′
2 − 2u′′4 + u

(4)
2 ,

u̇3 =
24

5
u′2 u

′′
2 +

12

25
u2

2 u′2 −
4

5
u2 u

′
4 −

2

5
u′2 u

′
3 −

4

5
u3 u

′
3 −

4

5
u4 u

′
2 −

2

5
u2 u

′′
3 +

6u′′5 + 2u2 u
′′′
2 − 4u′′′4 + u

(4)
3 +

6

5
u
(5)
2 ,

29



u̇4 =
16

5
u′2 u

′′′
2 +

12

25
u2 u

′
2
2 +

8

25
u3 u2 u

′
2 +

8

5
u2 u

′
5 −

4

5
u4 u

′
3 −

2

5
u′2 u

′
4 −

4

5
u3 u

′
4 +

12

25
u2

2 u′′2 −
8

5
u2 u

′′
4 +

12

5
u′′2

2 +
2

5
u4 u

′′
2 +

2

5
u2 u

′′′
3 +

2

5
u3 u

′′′
2 +

4u′′′5 +
6

5
u2 u

(4)
2 − 3u

(4)
4 +

6

5
u
(5)
3 +

2

5
u
(6)
2 , (C.41)

u̇5 =
12

25
u2 u

′
2 u
′′
2 +

4

5
u′2 u

(4)
2 +

4

25
u4 u2 u

′
2 +

4

25
u3 u

′
2
2 − 4

5
u4 u

′
4 −

2

5
u′2 u

′
5 +

4

5
u3 u

′
5 +

8

5
u′′2 u

′′′
2 +

4

25
u3 u2 u

′′
2 +

4

5
u2 u

′′
5 +

2

5
u4 u

′′
3 −

4

5
u3 u

′′
4 +

4

25
u2

2 u′′′2 −
4

5
u2 u

′′′
4 +

2

5
u3 u

′′′
3 +

2

5
u2 u

(4)
3 + u

(4)
5 +

4

25
u2 u

(5)
2 −

4

5
u
(5)
4 +

2

5
u
(6)
3 .

CS equations of motion at z = 4

α̇2 =
144

5
α3 α

′
2 +

144

5
α2 α

′
3 −

576

5
α′5 +

18

5
α′′′3 ,

α̇3 = −24

7
α′2 α

′′
2 −

64

7
α2

2 α′2 +
384

7
α2 α

′
4 +

336

5
α3 α

′
3 +

384

7
α4 α

′
2 −

12

7
α2 α

′′′
2 +

24

7
α′′′4 −

1

14
α
(5)
2 ,

α̇4 = −68

15
α′3 α

′′
2 −

61

15
α′2 α

′′
3 −

96

5
α2

2 α′3 −
208

5
α3 α2 α

′
2 −

64

5
α2 α

′
5 +

336

5
α4 α

′
3 +

336

5
α3 α

′
4 −

26

15
α2 α

′′′
3 −

13

5
α3 α

′′′
2 −

4

5
α′′′5 −

1

30
α
(5)
3 , (C.42)

α̇5 =
1108

315
α2 α

′
2 α
′′
2 −

7

2
α′3 α

′′
3 +

12

35
α′4 α

′′
2 +

8

7
α′2 α

′′
4 +

13

168
α′2 α

(4)
2 +

256

35
α2

3 α′2 +

256

35
α2

2 α′4 −
272

5
α3 α2 α

′
3 +

32

35
α4 α2 α

′
2 +

62

63
α′2

3 − 32α3
2 α′2 +

576

5
α4 α

′
4 −

144

5
α3 α

′
5 +

47

360
α′′2 α

′′′
2 +

244

315
α2

2 α′′′2 +
4

7
α2 α

′′′
4 −

19

10
α3 α

′′′
3 −

38

35
α4 α

′′′
2 +

29α2 α
(5)
2

1260
+

1

140
α
(5)
4 +

α
(7)
2

5040
.

N = 6

CS-KdV map:

u2 = 35α2,

u3 = 70α′2 − 224α3,

u4 = −336α′3 + 63α′′2 + 259α2
2 + 1296α4, (C.43)
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u5 = 518α2 α
′
2 + 1296α′4 − 192α′′3 + 28α′′′2 − 1760α2 α3 − 5760α5,

u6 = −880α2 α
′
3 + 130α′2

2 − 880α3 α
′
2 − 2880α′5 + 155α2 α

′′
2 + 360α′′4 − 40α′′′3 + 5α

(4)
2

+225α2
3 + 3600α4 α2 + 1600α3

2 + 14400α6.

KdV equations of motion at z = 2:

u̇2 = 2u′3 − 4u′′2

u̇3 = −4

3
u2 u

′
2 + 2u′4 + u′′3 −

20

3
u′′′2 ,

u̇4 = −u3 u′2 + 2u′5 − 2u2 u
′′
2 + u′′4 − 5u

(4)
2 , (C.44)

u̇5 = −2

3
u4 u

′
2 + 2u6′ − u3 u

′′
2 + u′′5 −

4

3
u2 u

′′′
2 − 2u

(5)
2 ,

u̇6 = −1

3
u5 u

′
2 −

1

3
u4 u

′′
2 + u6′′ − 1

3
u3 u

′′′
2 −

1

3
u2 u

(4)
2 −

1

3
u
(6)
2 .

CS equations of motion at z = 2:

α̇2 = −64

5
α′3,

α̇3 =
8

3
α2 α

′
2 −

81

7
α′4 +

1

6
α′′′2 ,

α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 −

80

9
α′5 +

1

15
α′′′3 , (C.45)

α̇5 =
14

5
α3 α

′
3 + 4α4 α

′
2 +

16

7
α2 α

′
4 − 5α′6 +

1

28
α′′′4 ,

α̇6 =
16

5
α4 α

′
3 +

18

7
α3 α

′
4 +

14

3
α5 α

′
2 +

20

9
α2 α

′
5 +

1

45
α′′′5 .

KdV equations of motion at z = 3:

u̇2 = −3

2
u2 u

′
2 + 3u′4 −

9

2
u′′3 +

9

4
u′′′2 ,

u̇3 = −3

2
u3 u

′
2 −

3

2
u2 u

′
3 + 3u′5 + 3u′′4 − 9u′′′3 +

15

2
u
(4)
2 ,

u̇4 = −3

2
u3 u

′
3 − u4 u

′
2 +

1

2
u2 u

′
4 + 3u6′ +

3

4
u3 u

′′
2 − 3u2 u

′′
3 + 3u′′5 +

5

2
u2 u

′′′
2 + u′′′4 −

15

2
u
(4)
3 +

33

4
u
(5)
2 , (C.46)

u̇5 = −u4 u′3 −
1

2
u5 u

′
2 +

1

2
u2 u

′
5 −

3

2
u3 u

′′
3 + u4 u

′′
2 + 3u6′′ +

7

4
u3 u

′′′
2 − 2u2 u

′′′
3 + u′′′5 +

5

2
u2 u

(4)
2 − 3u

(5)
3 + 4u

(6)
2 ,
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u̇6 =
1

2
u2u6′ − 1

2
u5 u

′
3 −

1

2
u4 u

′′
3 +

3

4
u5 u

′′
2 −

1

2
u3 u

′′′
3 +

3

4
u4 u

′′′
2 + u6′′′ +

3

4
u3 u

(4)
2 −

1

2
u2 u

(4)
3 +

3

4
u2 u

(5)
2 −

1

2
u
(6)
3 +

3

4
u
(7)
2 .

CS equations of motion at z = 3:

α̇2 = −81

10
α2 α

′
2 +

3888

35
α′4 −

27

20
α′′′2 ,

α̇3 = −405

14
α3 α

′
2 −

405

14
α2 α

′
3 +

540

7
α′5 −

27

14
α′′′3 ,

α̇4 =
59

60
α′2 α

′′
2 +

24

5
α2

2 α′2 −
557

30
α2 α

′
4 −

152

3
α3 α

′
3 −

80

3
α4 α

′
2 +

100

3
α′6 +

13

30
α2 α

′′′
2 −

17

30
α′′′4 +

1

120
α
(5)
2 , (C.47)

α̇5 =
97

140
α′3 α

′′
2 +

29

56
α′2 α

′′
3 +

144

35
α2

2 α′3 +
396

35
α3 α2 α

′
2 −

85

14
α2 α

′
5 −

252

5
α4 α

′
3 −

1188

35
α3 α

′
4 −

35

2
α5 α

′
2 +

5

28
α2 α

′′′
3 +

123

280
α3 α

′′′
2 −

1

14
α′′′5 +

1

560
α
(5)
3 ,

α̇6 =
9

25
α′3 α

′′
3 +

79

140
α′4 α

′′
2 +

19

56
α′2 α

′′
4 +

80

21
α2

2 α′4 +
976

105
α3 α2 α

′
3 +

196

15
α4 α2 α

′
2 +

55

6
α2 α

′
6 +

45

7
α3

2 α′2 −
972

35
α4 α

′
4 −

224

5
α5 α

′
3 −

120

7
α3 α

′
5 +

41

420
α2 α

′′′
4 +

92

525
α3 α

′′′
3 +

7

15
α4 α

′′′
2 +

1

6
α′′′6 +

α
(5)
4

1680
.

KdV equations of motion at z = 4:

u̇2 =
8

3
u′2

2 − 4

3
u3 u

′
2 −

4

3
u2 u

′
3 + 4u′5 +

8

3
u2 u

′′
2 − 4u′′4 +

2

3
u′′′3 +

8

3
u
(4)
2 ,

u̇3 =
40

3
u′2 u

′′
2 +

8

9
u2

2 u′2 −
4

3
u2 u

′
4 −

2

3
u′2 u

′
3 −

4

3
u3 u

′
3 −

4

3
u4 u

′
2 + 4u′6 −

2

3
u2 u

′′
3 + 6u′′5 +

16

3
u2 u

′′′
2 −

28

3
u′′′4 +

13

3
u
(4)
3 +

34

9
u
(5)
2 ,

u̇4 =
40

3
u′2 u

′′′
2 +

4

3
u2 u

′
2
2 +

2

3
u3 u2 u

′
2 +

4

3
u2 u

′
5 −

4

3
u4 u

′
3 −

2

3
u′2 u

′
4 −

4

3
u3 u

′
4 −

2

3
u5 u

′
2 +

4

3
u2

2 u′′2 −
10

3
u2 u

′′
4 + 10u′′2

2 +
2

3
u4 u

′′
2 + 6u′′6 +

4

3
u2 u

′′′
3 + u3 u

′′′
2 +

4u′′′5 +
14

3
u2 u

(4)
2 − 9u

(4)
4 + 6u

(5)
3 +

5

3
u
(6)
2 , (C.48)

u̇5 =
8

3
u2 u

′
2 u
′′
2 +

20

3
u′2 u

(4)
2 +

4

9
u4 u2 u

′
2 +

4

3
u2 u

′
6 +

2

3
u3 u

′
2
2 − 4

3
u4 u

′
4 −

2

3
u5 u

′
3 −

2

3
u′2 u

′
5 +

2

3
u3 u

′
5 +

40

3
u′′2 u

′′′
2 +

2

3
u3 u2 u

′′
2 +

2

3
u2 u

′′
5 +

2

3
u4 u

′′
3 − 2u3 u

′′
4 +

2

3
u5 u

′′
2 +

32



8

9
u2

2 u′′′2 −
8

3
u2 u

′′′
4 +

4

3
u3 u

′′′
3 +

4

9
u4 u

′′′
2 + 4u′′′6 + 2u2 u

(4)
3 +

1

3
u3 u

(4)
2 + u

(4)
5 +

14

9
u2 u

(5)
2 − 4u

(5)
4 +

10

3
u
(6)
3 ,

u̇6 =
2

3
u3 u

′
2 u
′′
2 +

8

9
u2 u

′
2 u
′′′
2 +

4

3
u′2 u

(5)
2 +

2

9
u5 u2 u

′
2 +

2

9
u4 u

′
2
2 − 2

3
u5 u

′
4 −

2

3
u′2 u

′
6 +

2

3
u3 u

′
6 +

10

3
u′′2 u

(4)
2 +

2

3
u2 u

′′
2
2 +

2

9
u4 u2 u

′′
2 +

2

3
u2 u

′′
6 −

2

3
u4 u

′′
4 +

2

3
u5 u

′′
3 +

2

9
u3 u2 u

′′′
2 +

20

9
u′′′2

2 +
2

3
u4 u

′′′
3 −

2

3
u3 u

′′′
4 −

1

9
u5 u

′′′
2 +

2

9
u2

2 u
(4)
2 −

2

3
u2 u

(4)
4 +

2

3
u3 u

(4)
3 −

1

9
u4 u

(4)
2 + u

(4)
6 +

2

3
u2 u

(5)
3 −

1

9
u3 u

(5)
2 +

1

9
u2 u

(6)
2 −

2

3
u
(6)
4 +

2

3
u
(7)
3 −

1

9
u
(8)
2 .

CS equations of motion at z = 4:

α̇2 =
2048

21
α3 α

′
2 +

2048

21
α2 α

′
3 −

4608

7
α′5 +

256

21
α′′′3 ,

α̇3 = −160

21
α′2 α

′′
2 −

1280

63
α2

2 α′2 +
1440

7
α2 α

′
4 +

5072

21
α3 α

′
3 +

1440

7
α4 α

′
2 −

1800

7
α′6 −

80

21
α2 α

′′′
2 +

90

7
α′′′4 −

10

63
α
(5)
2 ,

α̇4 = −272

27
α′3 α

′′
2 −

244

27
α′2 α

′′
3 −

128

3
α2

2 α′3 −
832

9
α3 α2 α

′
2 +

1504

27
α2 α

′
5 +

896

3
α4 α

′
3 +

896

3
α3 α

′
4 +

2800

27
α5 α

′
2 −

104

27
α2 α

′′′
3 −

52

9
α3 α

′′′
2 +

8

9
α′′′5 −

2

27
α
(5)
3 , (C.49)

α̇5 =
1108

315
α2 α

′
2 α
′′
2 −

884

105
α′3 α

′′
3 −

549

140
α′4 α

′′
2 −

51

28
α′2 α

′′
4 +

13

168
α′2 α

(4)
2 +

256

35
α2

3 α′2 −
1504

105
α2

2 α′4 −
2720

21
α3 α2 α

′
3 −

6208

105
α4 α2 α

′
2 −

800

21
α2 α

′
6 +

62

63
α′2

3 −
528

7
α3

2 α′2 +
1944

5
α4 α

′
4 +

448

3
α5 α

′
3 +

1088

21
α3 α

′
5 +

47

360
α′′2 α

′′′
2 +

244

315
α2

2 α′′′2 −

19

42
α2 α

′′′
4 −

156

35
α3 α

′′′
3 −

156

35
α4 α

′′′
2 −

10

7
α′′′6 +

29α2 α
(5)
2

1260
− 1

280
α
(5)
4 +

α
(7)
2

5040
,

α̇6 =
11828α2 α

′
3 α
′′
2

4725
+

8902α2 α
′
2 α
′′
3

4725
+

3673α3 α
′
2 α
′′
2

1050
− 104

25
α′4 α

′′
3 −

56

25
α′3 α

′′
4 +

32

63
α′5 α

′′
2 +

116

63
α′2 α

′′
5 +

451α′3 α
(4)
2

9450
+

41α′2 α
(4)
3

1890
+

128

21
α2

3 α′3 +
2624

105
α3 α2

2 α′2 +

3200

189
α2

2 α′5 −
2080

21
α4 α2 α

′
3 −

1824

35
α3 α2 α

′
4 +

448

135
α5 α2 α

′
2 +

6577α′2
2 α′3

3150
−

608

7
α3

2 α′3 −
752

7
α3 α4 α

′
2 +

1728

5
α5 α

′
4 +

1152

7
α4 α

′
5 −

1936

21
α3 α

′
6 +

33



559α′′3 α
′′′
2

9450
+

8

175
α′′2 α

′′′
3 +

1538α2
2 α′′′3

4725
+

2459α3 α2 α
′′′
2

1575
+

152

189
α2 α

′′′
5 −

664

175
α4 α

′′′
3 −

108

175
α3 α

′′′
4 −

392

135
α5 α

′′′
2 +

1

189
α2 α

(5)
3 +

131α3 α
(5)
2

6300
+

2

315
α
(5)
5 +

α
(7)
3

37800
.

N = 7

CS-KdV map:

u2 = 56α2,

u3 = 140α′2 − 504α3,

u4 = −1008α′3 + 168α′′2 + 784α2
2 + 4320α4,

u5 = 2352α2 α
′
2 + 6480α′4 − 864α′′3 + 112α′′′2 − 8928α2 α3 − 31680α5, (C.50)

u6 = −8928α2 α
′
3 + 1180α′2

2 − 8928α3 α
′
2 − 31680α′5 + 1408α2 α

′′
2 + 3600α′′4 −

360α′′′3 + 40α
(4)
2 + 2304α2

3 + 40320α4 α2 + 18000α3
2 + 172800α6,

u7 = 708α′2 α
′′
2 + 3456α2

2 α′2 + 20160α2 α
′
4 − 4488α′2 α

′
3 + 18000α3 α

′
3 +

20160α4 α
′
2 + 86400α′6 − 2544α2 α

′′
3 − 2664α3 α

′′
2 − 8640α′′5 + 312α2 α

′′′
2 +

720α′′′4 − 60α
(4)
3 + 6α

(5)
2 − 13824α3 α2

2 − 103680α5 α2 − 86400α3 α4 −

518400α7.

KdV equations of motion at z = 2:

u̇2 = 2u′3 − 5u′′2,

u̇3 = −10

7
u2 u

′
2 + 2u′4 + u′′3 − 10u′′′2 ,

u̇4 = −8

7
u3 u

′
2 + 2u′5 −

20

7
u2 u

′′
2 + u′′4 − 10u

(4)
2 ,

u̇5 = −6

7
u4 u

′
2 + 2u′6 −

12

7
u3 u

′′
2 + u′′5 −

20

7
u2 u

′′′
2 − 6u

(5)
2 , (C.51)

u̇6 = −4

7
u5 u

′
2 + 2u′7 −

6

7
u4 u

′′
2 + u′′6 −

8

7
u3 u

′′′
2 −

10

7
u2 u

(4)
2 − 2u

(6)
2 ,

u̇7 = −2

7
u6 u

′
2 −

2

7
u5 u

′′
2 + u′′7 −

2

7
u4 u

′′′
2 −

2

7
u3 u

(4)
2 −

2

7
u2 u

(5)
2 −

2

7
u
(7)
2 .

CS equations of motion at z = 2:

α̇2 = −18α′3,

34



α̇3 =
8

3
α2 α

′
2 −

120

7
α′4 +

1

6
α′′′2 ,

α̇4 =
10

3
α3 α

′
2 +

12

5
α2 α

′
3 −

44

3
α′5 +

1

15
α′′′3 ,

α̇5 =
14

5
α3 α

′
3 + 4α4 α

′
2 +

16

7
α2 α

′
4 −

120

11
α′6 +

1

28
α′′′4 , (C.52)

α̇6 =
16

5
α4 α

′
3 +

18

7
α3 α

′
4 +

14

3
α5 α

′
2 +

20

9
α2 α

′
5 − 6α′7 +

1

45
α′′′5 ,

α̇7 =
20

7
α4 α

′
4 +

18

5
α5 α

′
3 +

22

9
α3 α

′
5 +

16

3
α6 α

′
2 +

24

11
α2 α

′
6 +

1

66
α′′′6 .

KdV equations of motion at z = 3:

u̇2 = −12

7
u2 u

′
2 + 3u′4 − 6u′′3 + 4u′′′2 ,

u̇3 = −12

7
u3 u

′
2 −

12

7
u2 u

′
3 + 3u′5 + 3u′′4 − 14u′′′3 + 15u

(4)
2 ,

u̇4 = −12

7
u3 u

′
3 −

9

7
u4 u

′
2 +

3

7
u2 u

′
4 + 3u′6 +

6

7
u3 u

′′
2 −

30

7
u2 u

′′
3 + 3u′′5 +

30

7
u2 u

′′′
2 + u′′′4 − 15u

(4)
3 + 21u

(5)
2 ,

u̇5 = −9

7
u4 u

′
3 −

6

7
u5 u

′
2 +

3

7
u2 u

′
5 + 3u′7 −

18

7
u3 u

′′
3 +

9

7
u4 u

′′
2 + 3u′′6 +

24

7
u3 u

′′′
2 −

30

7
u2 u

′′′
3 + u′′′5 +

45

7
u2 u

(4)
2 − 9u

(5)
3 + 15u

(6)
2 , (C.53)

u̇6 = −6

7
u5 u

′
3 −

3

7
u6 u

′
2 +

3

7
u2 u

′
6 −

9

7
u4 u

′′
3 +

9

7
u5 u

′′
2 + 3u′′7 −

12

7
u3 u

′′′
3 +

15

7
u4 u

′′′
2 +

u′′′6 + 3u3 u
(4)
2 −

15

7
u2 u

(4)
3 +

27

7
u2 u

(5)
2 − 3u

(6)
3 +

39

7
u
(7)
2 ,

u̇7 = −3

7
u6 u

′
3 +

3

7
u2 u

′
7 −

3

7
u5 u

′′
3 +

6

7
u6 u

′′
2 −

3

7
u4 u

′′′
3 +

6

7
u5 u

′′′
2 + u′′′7 −

3

7
u3 u

(4)
3 +

6

7
u4 u

(4)
2 +

6

7
u3 u

(5)
2 −

3

7
u2 u

(5)
3 +

6

7
u2 u

(6)
2 −

3

7
u
(7)
3 +

6

7
u
(8)
2 .

CS equations of motion at z = 3:

α̇2 = −12α2 α
′
2 +

1620

7
α′4 − 2α′′′2 ,

α̇3 = −300

7
α3 α

′
2 −

300

7
α2 α

′
3 +

1320

7
α′5 −

20

7
α′′′3 ,

α̇4 =
24

5
α′2 α2

2 − 32α′4 α2 +
13

30
α′′′2 α2 − 44α4 α

′
2 −

379

5
α3 α

′
3 + 120α′6 +

59

60
α′2 α

′′
2 −

α′′′4 +
1

120
α2

(5),
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α̇5 =
144

35
α′3 α2

2 +
396

35
α3 α

′
2 α2 −

1488

77
α′5 α2 +

5

28
α′′′3 α2 −

420

11
α5 α

′
2 −

882

11
α4 α

′
3 −

4392

77
α3 α

′
4 +

540

11
α′7 +

97

140
α′3 α

′′
2 +

29

56
α′2 α

′′
3 +

123

280
α3 α

′′′
2 −

25

77
α′′′5 +

1

560
α3

(5), (C.54)

α̇6 =
80

21
α′4 α2

2 +
196

15
α4 α

′
2 α2 +

976

105
α3 α

′
3 α2 − 4α′6 α2 +

41

420
α′′′4 α2 +

45

7
α3

2 α′2 −

24α6 α
′
2 −

396

5
α5 α

′
3 − 54α4 α

′
4 −

275

7
α3 α

′
5 +

79

140
α′4 α

′′
2 +

9

25
α′3 α

′′
3 +

19

56
α′2 α

′′
4 +

7

15
α4 α

′′′
2 +

92

525
α3 α

′′′
3 +

α4
(5)

1680
,

α̇7 =
40

11
α′5 α2

2 +
816

55
α5 α

′
2 α2 +

3996

385
α4 α

′
3 α2 +

1940

231
α3 α

′
4 α2 +

156

11
α′7 α2 +

61

990
α′′′5 α2 +

304

21
α3 α4 α

′
2 +

77

15
α3

2 α′3 − 72α6 α
′
3 −

324

7
α5 α

′
4 −

220

7
α4 α

′
5 − 20α3 α

′
6 +

65

132
α′5 α

′′
2 +

443α′4 α
′′
3

1540
+

103

440
α′3 α

′′
4 +

491α′2 α
′′
5

1980
+

83

165
α5 α

′′′
2 +

69

385
α4 α

′′′
3 +

25

264
α3 α

′′′
4 +

2

11
α′′′7 +

α5
(5)

3960
.
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