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The effective description of loop quantum cosmology (LQC) has proved to be a convenient

platform to study phenomenological implications of the quantum bounce that resolves the

classical big-bang singularity. Originally, this description was derived using Gaussian quan-

tum states with small dispersions. In this paper we present a generalization to incorporate

states with large dispersions. Specifically, we derive the generalized effective Friedmann and

Raychaudhuri equations and propose a generalized effective Hamiltonian which are being

used in an ongoing study of the phenomenological consequences of a broad class of quantum

geometries. We also discuss an interesting interplay between the physics of states with larger

dispersions in standard LQC, and of sharply peaked states in (hypothetical) LQC theories

with larger area gap.

I. INTRODUCTION

Loop quantum gravity (LQG) has led to a specific quantum geometry [1–3] that replaces the

Riemannian geometry used in all modern gravitational theories. The primary goal of loop quantum

cosmology (LQC) is to investigate the implications of the quantum nature of this geometry in the

cosmological sector of general relativity. Specifically, in LQG one can naturally define self-adjoint

operators representing geometric observables –such as areas of physical surfaces and volumes of

physical regions [4, 5]. Riemannian geometry is quantized in the direct sense that eigenvalues of

these geometric operators are discrete [4–6]. In particular, there is a smallest non-zero eigenvalue

of the area operator, which represents the fundamental area gap of the theory, denoted ∆o (in

Planck units) [4]. This microscopic parameter sets the scale for new phenomena that distinguish

LQC from both general relativity and the Wheeler-DeWitt theory. In particular, dynamics of

general relativity is drastically modified at this scale, leading to a natural resolution of the big-

bang singularity in a variety of cosmological models. These include the k=0 and k=1 (FLRW)

models [7–15], possibly with a non-zero cosmological constant [16–18], the anisotropic Bianchi I, II
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and IX models [19–22] and the simplest of the inhomogeneous models —the Gowdy space-times—

widely studied in exact general relativity [23–27]. (For a review, see, e.g., [28]). In this paper

we will restrict ourselves to the simplest case, the k=0, Friedmann, Lemâıtre, Robertson, Walker

(FLRW) model.

The analysis leading to a natural resolution of the big bang singularity was originally driven by

the central conceptual and mathematical questions of quantum gravity. However, in recent years

singularity resolution has also had phenomenological applications because it provides a natural

avenue to directly address the trans-Planckian issues that arise in the pre-inflationary phase of

the dynamics of cosmological perturbations [29–32]. In these and other applications of the LQC

singularity resolution, effective equations (EEs ) [28, 33, 34] have played an important role in

the intermediate steps of the analysis because they capture the leading order quantum effects

that are responsible for the quantum bounce. However, in the detailed investigations carried out

so far, these equations are derived starting from sharply peaked quantum states Ψ. While the

restriction to sharply peaked states in this analysis is well motivated [9, 11, 18], in order to probe

the robustness of these results, it is of interest to allow more general states and investigate the

resulting dynamics. Recently, thanks to a significant improvement in numerical techniques used

in LQC, detailed simulations could be performed using widely spread Gaussian and non-Gaussian

states Ψ in full LQC [35, 36]. They showed that, in spite of this significant increase in generality, the

quantum evolution of states Ψ remains qualitative similar and, in particular, the bounce persists

(as expected from the fact that energy density operator has an upper bound ρsup). But, whereas

for sharply peaked states the standard EEs track the expectation values of physical observables

very accurately [11, 28], this ceases to be the case for the widely spread states Ψ. This is not

surprising, given that the derivation of the standard EEs is tailored to sharply peaked quantum

states [33, 34].

The goal of this paper is to obtain generalized effective equations (GEEs ) which do track the

expectation values of the principal physical observables accurately even for widely spread states.

The groundwork laid down in this paper is being used to analyze how the observable predictions

such as the power spectrum of cosmological perturbations change if the underlying wave function

Ψ of the background FLRW quantum geometry is not sharply peaked [37].

The paper is organized as follows. In section II we recall properties of the solvable k=0 FLRW

model [12] that are needed in the derivation of the GEEs. The derivation is presented in section III.

These GEEs only track the evolution of expectation values of the principal observables associated

with the background FLRW geometry, and not their uncertainties or higher fluctuations. Therefore
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we will not need the machinery of geometric quantum mechanics that was used in the ‘embedding

method’ of deriving the standard EEs in LQC [28, 34]. Rather, we will use just the quantum

equations governing this model, summarized in section II. Various features of the GEEs are dis-

cussed in section IV. In particular, there is a 1-1 correspondence between the GEEs associated

with widely spread states in LQC, and the standard EEs associated with sharply peaked states in

a hypothetical LQC theory with a larger area gap. Thus, the GEEs could also have been derived

using geometric quantum mechanics [38] and the ‘embedding method’ of approximating the quan-

tum dynamics of sharply peaked states [28, 34] in a mathematical theory which is identical to LQC

but has a larger area gap ∆ than the ∆o used in LQC. Section IV will also feature a comparison

between predictions of GEEs and exact numerical results that underlie the construction of the

quantum corrected, dressed metric g̃ab, used in the study of cosmological perturbations during the

pre-inflationary phase. This discussion will show that the differences are typically smaller than the

observational errors in CMB measurements. Therefore it is possible to use the GEEs also in the

computation of the inflationary power spectrum –and in the investigation of observable effects of

pre-inflationary dynamics– for a large class of widely spread states Ψ. Section V summarizes the

results and puts them in a broader perspective. Technical intermediate steps used in section IV

are spelled out in Appendix A.

II. PRELIMINARIES

This section is divided in two parts. In the first we recall the LQC description of a soluble

FLRW model and in the second we discuss the effective description that captures the key quantum

features associated with the dynamics of sharply peaked physical states Ψ. We have taken this

opportunity to rearrange the material by eliminating the Barbero-Immirzi mathematical parameter

γ in favor of the area gap ∆o which plays a direct physical role in the theory. This discussion will

also serve to fix the notation and provide the key equations that are used in subsequent analysis.

A. LQC of a soluble model

In this paper we focus on the k=0 FLRW model with a massless scalar field φ as the source

because this model is exactly solvable both in general relativity and LQC. The analytical results

obtained here provide guidance for more realistic inflationary models that are being investigated

numerically [37].
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As in much of the cosmology literature, we will assume R3 spatial topology. In this case, one

encounters trivial infrared divergences already in the classical phase space framework because of

homogeneity and spatial non-compactness. The simplest way to address this issue is to work with

a fiducial cell C, construct the Hamiltonian framework, pass to quantum theory and remove this

infrared cut-off at the end (see, e.g., [28]). In LQC, one uses the pair (v, φ) as configuration

variables where v determines the physical volume of the cell C via1

V = 2πG|v| . (2.1)

In place of the canonically conjugate momentum pv, we will use h = 2pv because h has a simple

space-time interpretation: it equals the Hubble parameter, ȧ/a, on solutions to classical Einstein’s

equations. Therefore, the non-vanishing Poisson brackets are given by

{v, h} = 2 and {φ, pφ} = 1. (2.2)

This phase space inherits a single Hamiltonian constraint from general relativity. Adapted to the

cosmic time t (or, equivalently to the lapse function N = 1), it reads

HGR :=
p2
φ

4πGv
− 3h2v

4
≈ 0 . (2.3)

This constraint is equivalent to the Friedmann equation and dictates the dynamics of general

relativity in the Hamiltonian framework. It turns out that in the quantum theory one can ‘de-

parametrize’ the quantum Hamiltonian constraint readily if one uses, in place of t, a harmonic time

variable τ satisfying �τ = 0 (for which the lapse is Nτ = 4πGv). Then the Hamiltonian constraint

is rescaled as follows:

p2
φ − 3πG (hv)2 ≈ 0 , (2.4)

To pass to quantum theory, one uses the LQG techniques. While this construction has been

carried out both in the (v, φ) and (h, φ) representations, exact solubility of the model becomes

manifest in the latter [12] (see Appendix A). In this representation, the quantum analog of (2.4)

1 While in geometrodynamics one works with 3-metrics, in LQG one works with their ‘square-roots’, the triads.
Therefore the configuration variable v ranges over the entire real line, assuming positive values if the physical triad
has the same orientation as the fiducial, co-moving one and negative values if the orientation is opposite. The fact
that v is not constrained to be positive simplifies the quantization procedure. The 2πG factor is introduced just
to simplify the subsequent equations in quantum theory.
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turns out to have the form:2

∂2
φΨ(h, φ) = 12πG

(sin(`oh)

`o
∂h

)2
Ψ(h, φ) , where `2o =

∆3
o

48π2
`2Pl . (2.5)

Thus, in the quantization based on LQG, because of the underlying quantum geometry, the phase

space variable h in (2.4) is effectively replaced by the multiplicative operator (sin `oh)/`o in (2.5) in

the (h, φ) representation. Since h is the Hubble parameter on any dynamical trajectory of classical

general relativity, it ranges over (0,∞). By contrast, in LQC it ranges over only a finite interval,

(0, π/`o); the classical range is recovered only in the limit in which the area gap ∆o tends to zero.

Every physical quantum state Ψ(h, φ) satisfies (2.5) in LQC.

Note that because the left side of (2.5) has two derivatives with respect to φ and the operator

on the right side is independent of φ, (2.5) has the form of the Klein-Gordon equation in a (fic-

titious) static space-time in which φ plays the role of time and h of the spatial coordinate, with

the operator on the right side serving as the spatial Laplacian. In this sense, there is a natural

deparametrization of the Hamiltonian constraint in which the dynamical variable φ serves as time.

Using this deparametrization, one can endow the space of physical states Ψ(h, φ) with an appro-

priate Hermitian inner product by using a standard group averaging procedure [10]. This structure

arises naturally once we adapt the classical Hamiltonian constraint (2.4) to harmonic time because

φ satisfies �φ = 0.

Conceptually, φ serves as the ‘internal’ or ‘relational’ time variable with respect to which physical

observables such as the volume and the matter density evolove. Since the right side of (2.5) is φ-

independent, p̂φ = −i~∂/∂φ is a constant of motion, and therefore a Dirac observable. The second

family of useful Dirac observables is provided by V̂ |φ, the operators corresponding to the physical

volume of the fiducial cell C at any given time instant φ. The expectation values of these observables

turn out to have a surprisingly simple form [12]:

〈V̂ 〉 |φ = V+e
αφ + V−e

−αφ, with α =
√

12πG (2.6)

where V± are constants defined by the given physical state Ψ(h, φ) (see Appendix A). Note that

this evolution of 〈V̂ 〉 |φ is exact and holds for all states Ψ(h, φ) (in the domains of the volume

operator); there is no restriction to sharply peaked states. Eq. (2.6) explicitly shows that the

2 For details on this point and on the results reported in the rest of this section, see [12] and [28]. Our variables h, `o
are related to the variables b, λ used there via h = b/γ and `o = γ λ, where γ is the Barbero-Immirzi parameter
of LQG. In the earlier references both the area gap ∆o and the Barbero Immirzi parameter γ appear explicitly in
key equations, e.g., the expression of ρsup, although the two are in fact linearly related. This obscures the true
role played by the area gap itself. The use of (h, `o) removes this redundancy. We will write all equations using
only the area gap.
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universe expands for large positive values of the internal time φ and contracts for large negative

values, for all physical states Ψ(h, φ). The expectation values of p̂φ are, of course, independent of

the internal time variable φ.

B. The standard effective description

In this sub-section, we will restrict ourselves to physical states Ψ(h, φ) which are sharply peaked

at a late time φo in the sense that the relative uncertainties in the Dirac observables p̂φ and

V̂ |φo are small. A natural question is whether they continue to remain sharply peaked in these

two observables at all times, in particular in the Planck regime. Detailed investigations of the

quantum evolution of (2.5) showed that the answer is in the affirmative. (While this result may

seem surprising at first, it can be understood by considering simpler systems whose Hamiltonian

is related to the two observables of interest in a similar way.) It turns out that for these sharply

peaked states Ψ, using ideas from geometric quantum mechanics [38] one can systematically derive

certain EEs governing the evolution of v and h, that provide the key quantum corrections to classical

dynamics [28, 33, 34].

The geometric quantum mechanics framework allows one to regard the space of all quantum

states as an infinite dimensional phase space ΓQ in which the exact quantum dynamics is rep-

resented by the flow generated by a Hamiltonian vector field XQ, just as in classical mechanics.

Furthermore, there is natural projection from ΓQ to the classical phase space ΓC. The strategy

is to obtain quantum corrections by embedding ΓC into ΓQ. The image Γ of this imbedding is

of course a sub-manifold of ΓQ that is naturally isomorphic to ΓC. The idea is to choose Γ ju-

diciously so that the Hamiltonian vector field XQ (implementing the full quantum dynamics) is

tangential to Γ to a high degree of approximation. In one succeeds in finding such a Γ ⊂ ΓQ, then

the projection of XQ into Γ provides a dynamical flow on Γ which approximates the full quantum

dynamics very well. This flow can be faithfully projected to the classical phase space ΓC because

by construction Γ is isomorphic to ΓC, providing us with the desired quantum corrections to clas-

sical dynamics. To summarize, the embedding provides a set of quantum states –represented by

points of Γ ⊂ ΓQ– whose full quantum dynamics is extremely well-approximated by the quantum

corrected trajectories on ΓC.

The key question is whether one can find the desired embedding of ΓC into ΓQ by locating its
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appropriate sub-manifold Γ.3 An ideal example is a harmonic oscillator (or a linear field theory

in a stationary space-time). In this case, Γ can be taken to be the sub-manifold of quantum

states consisting of the standard coherent states, which is naturally isomorphic to ΓC because

each coherent state is completely determined by the point of ΓC at which it is peaked. As is

well-known, the full quantum evolution generated by XQ is in fact exactly tangential to this Γ.

In this case, the quantum corrected dynamical trajectories capture full quantum dynamics. In

simple cosmological models, one can find an embedding of ΓC to ΓQ such that XQ is tangential to

Γ to a high degree of accuracy (which can be specified precisely [33, 34]). This Γ is also spanned

by a family of carefully chosen, sharply peaked Gaussian quantum states Ψ in ΓQ. The resulting

quantum corrected dynamical trajectories in ΓC approximate the full quantum evolution of these

Ψ to a high degree of accuracy even in the Planck regime [28, 34]. These trajectories again define

certain quantum corrected FLRW metrics, denoted ḡab, whose coefficients now depend on ~. The

evolution of the scale factor of ḡab becomes significantly different from that in classical general

relativity once the expectation value of matter density (or curvature) enters the Planck regime,

leading to the resolution of the big-bang singularity.

By construction, the phase space of the effective theory is the same as in the classical theory,

but the effective Hamiltonian constraint (generating the projection of the Hamiltonian flow XQ

into Γ) is different. When tailored to the proper time t of the FLRW space-times, it is given by

[12, 28, 34]:

Heff :=
p2
φ

4πGv
− 3v

4`2o
sin2(`oh) ≈ 0. (2.7)

The leading order quantum corrections are encoded in (2.7) through `o; in the limit `o → 0, one

recovers the classical Hamiltonian constraint (2.3). To obtain the EEs governing the space-time

geometry, one first obtains the equations of motion starting from the effective Hamiltonian (2.7):

v̇ = {v, Heff} =
3v

2`o
sin(2`oh) , φ̇ = {φ, Heff} =

pφ
2πGv

,

ḣ = {h, Heff} =
3

2

sin2(`oh)

`2o
+

p2
φ

2πGv2
, ṗφ = {pφ, Heff} = 0 . (2.8)

Let us set

ρ :=
p2
φ

2V 2
and ρsup :=

3

8πG`2o
≡ 18π

G2~∆3
o

, (2.9)

3 This task is somewhat analogous to that of finding the ‘trial wave function’ in the variational method in the
standard perturbation theory of quantum mechanics. It is a mixture of science and art!
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so that ρsup is the upper bound of the density operator ρ̂ on the physical Hilbert space [12]. For

concreteness, one generally uses the value ∆o = 5.17 by appealing to black hole entropy calculation

in LQG, which yields ρsup ≈ 0.41ρPl.

Using (2.7) and (2.8) we obtain the following quantum corrected or effective Friedmann equation:

H2 =
( v̇

3v

)2
=

8πG

3
ρ
(

1− ρ

ρsup

)
, (2.10)

where H is the Huuble rate. Similarly, by taking the time derivative of (2.10) and using the

equation of motion for φ we obtain the quantum corrected Raychaudhuri equation

Ḣ = −8πGρ
(

1− 2
ρ

ρsup

)
≡ −4πG (ρ + p)

(
1− 2

ρ

ρsup

)
, (2.11)

where in the last step we cast the equation in the more familiar form using the fact that p = ρ

for massless scalar fields, p being the pressure of the scalar field. Eqs (2.10) and (2.11) are the

EEs that govern the quantum corrected geometry corresponding to sharply peaked Gaussian states

Ψ in Hphy of LQC. Note that ρsup, the upper bound of the density operator ρ̂ in the full quantum

theory, plays a direct role in the effective dynamics. In particular, since the Hubble parameter

vanishes at ρ = ρsup, the effective dynamical trajectories bounce there. Finally, since (2.10) and

(2.11) do not refer to the fiducial cell at all, we can trivially remove the infrared cut-off by letting

the cell occupy all of R3.

Note that as the area gap goes to zero, ρsup diverges and we recover the standard Friedmann

and Raychaudhuri equations of general relativity. These EEs extend to more general models with

appropriate modifications [19–22]. They have been extremely useful in providing physical intuition

for the mechanism underlying singularity resolution because they involve ~-dependent but smooth

space-time fields, rather than the more abstract wave functions Ψ. These equations have often

provided the first glimpses of the novel aspects of Planck scale physics contained in the sharply

peaked states Ψ, which was later confirmed by numerical simulations of full quantum equations.

III. GENERALIZED EFFECTIVE EQUATIONS

Recently, numerical simulations were carried out to probe the quantum dynamics of states Ψ

which are not sharply peaked [36, 39]. Specifically, one considers states Ψ –both Gaussian and

non-Gaussian– which have large dispersions in the volume operator V̂ |φo at a late time φo, evolves

them back in time, and evaluates the expectation values of the principal Dirac observables p̂φ, V̂ |φ
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for earlier times φ. These evolutions became feasible thanks to the introduction of new numerical

techniques in a framework called the “Chimera numerical scheme” [39]. As mentioned in section

I, these simulations showed that while the dynamics of the expectation values of p̂φ and V̂ |φ is

qualitatively similar to that in sharply peaked states which were studied earlier [11], there are

major departures in the detailed quantitative behavior. In particular, the bounce continues to

occur for states with wide spreads –as is obvious from Eq (2.6). But the details of dynamics are

very different from those predicted by EEs (2.10) and (2.11). In particular, the matter density at

the bounce can be significantly lower and there is a clear pattern: more the state is spread at late

times, smaller the density at the bounce. These numerical results naturally led to a number of

questions. Are there generalized effective equations that correctly capture the quantum dynamics

of these expectation values? Put differently, can one derive the equations governing these mean-

value trajectories (MVTs) from first principles? Do these MVTs also define a smooth FLRW

geometries in a consistent fashion? Are there generalizations of (2.10) and (2.11) that capture the

key quantum corrections induced by the widely spread states Ψ(h, φ)? Since ρsup is the upper

bound of the density operator ρ̂ on the physical Hilbert space Hphy, it is not surprising that for

general widely spread states the density at the bounce, ρB is less than ρsup. But is there a formula

that quantitatively expresses the anti-correlation between the spread of the state Ψ and the density

at the bounce? We will answer these questions in this and the next section.

Let us then consider general quantum states Ψ(h, φ) in the physical Hilbert space Hphy. The

expectation values of the Dirac observables V̂ |φ, p̂φ have a well-defined evolution with respect to

the internal time φ. We will denote them by V and p̄φ. Thus, given any physical state Ψ, Eq. (2.6)

provides us a MVT given by:

V (φ) = V+e
αφ + V−e

−αφ, p̄φ(φ) = p̄oφ (3.1)

where α =
√

12πG as before, and p̄oφ and V± are constants determined by Ψ [12, 28] (see Appendix

A). The key questions are: i) Can one assign to each of these trajectories a smooth, quantum

corrected FLRW metric ḡab consistently, such that φ satisfies the wave equation �̄φ = 0; and, if

so, ii) What are the quantum corrected equations governing ḡab? We will show that the answer

to the first question is in the affirmative, and the answer to the second question provides the

generalization of the standard LQC EEs (2.10) and (2.11) that hold for all states Ψ.

To specify the desired mean-value FLRW metric ḡab, we need to specify the relation between φ

and the proper time t̄ and specify the time-dependent scale factor ā of ḡab. The intuition derived

from the classical phase space formulation of general relativity summarized in section II A suggests
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that we define t̄ and ā via:

dφ

dt̄
:=

p̄oφ

V (φ)
, and ā(φ) :=

(V (φ)

Vo

) 1
3

(3.2)

where Vo is the co-moving volume of the cell C. We can then consider a 4-manifold, topologically

R4 and define on it the FLRW metric

ḡabdx
adxb = −dt̄2 + ā2(t̄) d~x2 . (3.3)

We will refer to ḡab as the mean value FLRW metric determined by the given quantum state Ψ. Is

there a simple equation that φ automatically satisfies on this mean value FLRW space-time? Note

first that (3.2) and (2.6) immediately imply

∂t̄φ = p̄oφ
[
V+ e

αφ + V−e
−αφ]−1

. (3.4)

By taking the second time derivative, one finds that φ satisfies the massless Klein-Gordon equation

with respect to the mean value metric ḡab:

�̄φ = ∂2
t̄ φ

2 + 3H̄ ∂t̄φ = 0, (3.5)

where H̄ := (∂t̄V /3V ) is the Hubble parameter of the mean-value metric.

Next, let us compute the equations that govern the dynamics of the mean value metric ḡab itself.

To obtain these equations it is natural to define the mean value matter density ρ̄ and pressure p̄

as

ρ̄ =
1

2

(p̄oφ)2

V
2 and p̄ = ρ̄ , (3.6)

since φ satisfies the massless Klein Gordon equation with respect to ḡab. Using (2.6) it is easy to

verify that the expectation value of the volume bounces in any given state Ψ, and at the bounce

the mean value volume and hence the mean value matter density are given by

V B = 2
√
V+V− and ρB =

(p̄oφ)2

8V+V−
. (3.7)

With these notions at hand, we can obtain the generalized effective Friedmann equation using

(3.2):

H̄2 :=
(∂t̄V

3V

)2
=

8πGρ̄

3

(
1 − 4V+V−

V
2

)
=

8πGρ̄

3

(
1 − ρ̄

ρB

)
. (3.8)
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By taking the time derivative of H and using (2.6), one obtains the generalized effective Ray-

chaudhuri equation. Using the fact that p̄ = ρ̄, it can be cast in the form

Ḣ = −4πG(ρ̄+ p̄)

(
1− 2

ρ̄

ρB

)
, (3.9)

or, alternatively, as an equation involving the second time derivative of the mean value scale ā:

¨̄a

ā
= −4πG

3
ρ̄

(
1− 4

ρ̄

ρB

)
− 4πGp̄

(
1− 2

ρ̄

ρB

)
, (3.10)

which brings out the fact that it reduces to the familiar Raychaudhuri equation of general relativity

as ρB → ∞. Thus, in the mean value approximation, the dynamics encapsulated in a general

quantum state Ψ is specified by the coupled, non-linear system of equations (3.5), (3.8) and (3.9).

The form of these equations is similar to the system consisting of the Klein-Gordon, Friedmann

and Raychaudhuri equations of classical relativity but there are ~-dependent quantum corrections,

encoded in ρB , that carry the signature of the quantum state Ψ. A non-trivial feature of these

equations is that they are not all independent, but constitute a consistent set: For example, as in

classical general relativity, the (generalized, effective) Raychaudhuri equation can be derived from

the (generalized, effective) Friedmann equation and the Klein-Gordon equation. Finally, since ρsup

is the upper bound on the spectrum of the density operator ρ̂ on the physical Hilbert space, it

follows that ρB ≤ ρsup. Comparing the GEEs with the EEs in section II B, it then follows that the

quantum gravity corrections set in earlier –i.e., at lower densities and curvatures– for the widely

spread quantum states than they do for the sharply peaked ones. We will return to the last two

issues in section IV.

Let us summarize. We began with a general quantum state Ψ in the physical Hilbert space.

We know from [12] that the mean values, V , p̄φ of the principal Dirac observables evolve via (3.1).

We showed that this MVT in phase space variables (v̄, p̄φ, φ) naturally defines a mean value FLRW

metric ḡab given in (3.3) and (3.2) that satisfies the GEE (3.8) and (3.9). Furthermore, the field φ

we began with automatically satisfies the Klein-Gordon equation with respect to this ḡab. Finally,

since the GEEs make no reference to the fiducial cell, they remain unaltered in the infinite volume

limit. In this precise sense, the quantum state Ψ leads to a self-consistent mean value space-time

description of gravity coupled to a Klein Gordon field. It captures the dynamics of expectation

values of the principal Dirac observables exactly without any approximations. Interestingly, the

information about the quantum state Ψ is encoded in these GEEs only through the mean value ρB

of the matter density at the bounce. It is rather striking that the GEEs differ from the EEs (2.10)

and (2.11) only through the replacement of the constant ρsup by the Ψ-dependent parameter ρB .
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Note however that the GEEs have no information at all about dynamics of the fluctuations of

these Dirac observables. For widely spread states these fluctuations are large and therefore the

mean value space-time description misses a great deal of information about full quantum dynamics

of Ψ. Nonetheless, the GEEs are useful for at least two reasons. First, they provide a rather

simple analytical understanding of the results of numerical simulations of Refs [36, 39]. Second,

as discussed in section IV C, these equations also facilitate the analysis of the pre-inflationary

dynamics of cosmological perturbations.

IV. FEATURES OF THE GENERALIZED EFFECTIVE EQUATIONS

This section is divided into three parts. In the first we obtain the Hamiltonian constraint

governing the GEEs by exploiting an interplay between the area gap and the value of the matter

density at the bounce. In the second we discuss the relation between the matter density at the

bounce and the dispersions in the volume at late time. In the third, we report results that show

that, even when the dispersions in volume are significant at late times, the mean value metric ḡab

can provide a good approximation to the ‘dressed, quantum corrected metric’ used in the analysis

of pre-inflationary dynamics of cosmological perturbations.

A. The area gap and the generalized effective Hamiltonian

Recall from section II B that the interplay between the quantum phase space ΓQ and the classical

phase space ΓC provides an effective Hamiltonian constraint (2.7) which then leads to the standard

EEs (2.10) and (2.11). However, this interplay depends on the availability of a suitable embedding

of the classical phase space ΓC into the quantum phase space ΓQ, and the image Γ ⊂ ΓQ of ΓC

is spanned by sharply peaked states Ψ. That is why, while the EEs (2.10) and (2.11) provide an

excellent approximation to full quantum dynamics, they do so only for these very special Ψ. The

GEEs (3.8) and (3.9), on the other hand, were derived through an entirely different strategy. We

allowed general states Ψ and used only the equations that govern the dynamics of the expectation

values of the principal Dirac observables p̂φ and V̂ |φ. Nonetheless given the close similarity in the

forms of GEEs and the standard EEs, it is natural to ask if the GEEs can also be derived from

a generalized effective Hamiltonian. We will now show that this is indeed possible, thanks to an

interesting interplay between the density at the bounce and the area gap.

Let us begin by noting that the leading quantum corrections are encoded in the EEs (2.10)
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and (2.11) via ρsup = 18π/(G2~∆3
o). Furthermore, the only difference in the forms of the EEs and

the GEEs is the replacement of ρsup by ρB . Finally neither set of equation features the area gap

∆o (or `o) explicitly. These three features motivate the introduction of a fictitious LQC theory in

which the area gap ∆o is replaced by ∆:

∆ =
( 18π

G2~ρB

) 1
3 ≡

(18πρPl

ρB

) 1
3

(4.1)

Then, we can use geometric quantum mechanics in this fictitious ∆-LQC and obtain the

EEs following the procedure that was used to obtain the standard EEs in the ∆o-LQC [28, 34].

This purely mathematical strategy will then lead us precisely to our GEEs equations (3.8) and

(3.9) of the ∆o-LQC. Therefore, it follows that our GEEs of section III are indeed governed by a

generalized effective Hamiltonian constraint

Hgen
eff =

p̄2
φ

4πG|v̄|
− 3|v̄|

4`2
sin2(`h̄) ≈ 0 , where `2 =

∆3

48π2
`2Pl (4.2)

Thus, the only difference between Heff and Hgen
eff is that `o in (2.7) is replaced by ` in (4.2). As

in section II B, we can now obtain equations of motion for phase space variables, now denoted by

v̄, h̄;φ, p̄φ, and derive from them the equations governing φ and the mean value metric ḡab. These

are precisely the Klein-Gordon equation (3.5) for φ and the GEEs (3.8) and (3.9) for ḡab.

To summarize, the mean value metric ḡab defined by a general quantum state Ψ in the standard

∆o-LQC obeys GEEs which are identical to the standard EEs in a fictitious ∆-LQC, where ∆ is

determined by the given Ψ via (4.1). Note, however, that the EEs in the ∆-theory accurately

capture the full quantum dynamics only for those states which are sharply peaked in the ∆-theory.

They do not inform us about the quantum evolution of the given widely spread state Ψ beyond the

expectation values of the principal Dirac observables p̂φ and V̂ |φ; they have no information about

the dynamics of ‘higher moments’ of Ψ such as the uncertainties
(
〈V̂ 2〉φ − 〈V̂ 〉2φ

)
.

B. Relation between ρ
B

and (∆V )/V

As noted above, the only difference between the EEs (2.10) and (2.11) and the GEEs (3.8) and

(3.9) is that ρsup is replaced by ρB . The standard EEs govern the dynamics of states Ψpeak that are

sharply peaked in volume at late times, while the GEEs hold for more general states Ψgen which

can have arbitrary spread in volume at late times. Therefore, one would expect the standard

EEs to be a special case of the GEEs . Indeed, at an intuitive level, it is clear that this is the case

because numerical simulations have shown that the sharply peaked states bounce when ρ = ρsup
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[11]. However, as we explained in section IV A, the two sets of equations are derived via entirely

different avenues and their physical meanings are also rather different. Physically, Ψpeak remain

sharply peaked in both the Dirac observables and the standard EEs track their peaks. Ψgen on

the other hand may have no peak or multiple peaks and the GEEs track only the evolution of the

expectation values of p̂φ and V̂ |φ. Therefore, to establish a clear relation between the two sets

of equations, we will now restrict ourselves to states Ψgen that are Gaussian (in the precise sense

spelled out below) but can have large dispersions in volume at late times. For this class, we will

be able to establish a relation between the matter density at the bounce with the dispersion in the

volume at late times. It will follow, in particular, that as the dispersion is reduced, the density ρB

at the bounce increases and tends to ρsup.

Let us denote the expectation value of the Dirac observable p̂φ by p̄oφ =: ~ko(1 + σ2/4k2
o) and

the dispersion in pφ by (∆pφ) = (~σ/2)
√

1− σ2/4k2
o [40] (also see Appendix A). Because p̂φ

is a constant of motion, ko and σ are time independent and they determine the Gaussian state

completely. We will restrict ourselves to physical states Ψ for which σ � ko and α ≡
√

12πG� ko.

(Both ko and σ have the same physical dimensions as α.) Thus, all our states in this sub-section

will be sharply peaked in p̂φ. However, there is no restriction on the dispersions in volume (or

matter density). This is possible because p̂φ and V̂ |φ fail to commute on physical states.

As shown in Appendix A, at late times the relative dispersion in the volume in this state is

given by [40](
∆V

V

)2

late time

= eα
2/σ2

(
1 +

3σ2 + 4α2

4k2
0

)(
1 +

σ2 + α2

4k2
0

)−2

− 1 ≈ eα
2/σ2 − 1 , (4.3)

where the last approximate equality follows from the fact that the round brackets in the first step

are approximately equal to 1 by our assumption on σ/ko and α/ko. Thus, the late time uncertainty

in volume is dictated by the relative magnitude of α and σ. The state Ψ is sharply peaked in volume

at late times if α � σ, and is widely spread if α > σ. For example, the early simulations of this

model [10, 11] were carried out using σ/ko = 5× 10−2 and α/σ = 2.5× 10−2. For these values we

have the following relative dispersions:

∆pφ
pφ
≈ 2.5× 10−2 and

(∆V

V

)
late time

≈ 3.5× 10−2. (4.4)

More recent simulations [35, 36] considered σ/ko = 1.2× 10−3 and α/σ = 1.02, leading to states

in which there is a wide spread in the relative volume at late times:

∆pφ
pφ
≈ 3× 10−3 and

(∆V

V

)
late time

≈ 1.35. (4.5)
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FIG. 1: Left Panel: The plot of the mean value density ρ̄B at the bounce against the relative dispersions

in volume at late times in a family of Gaussian states. Here, the parameter ko of the Gaussian states was

set to ko = 1000 (in Planck unit), and the parameter σ varies with (∆V/V ). Right Panel: The plot of the

mean value density ρ̄B at the bounce against the relative dispersions in volume at the bounce for the same

family of Gaussian states as was used in the left panel.

Therefore, these states do not qualify as semi-classical. Next, let us examine the density at the

bounce. From [40] (also Appendix A), we have

ρ̄B :=
(p̄oφ)2

8V+V−
= ρsup e−

α2

σ2

(
1 +

σ2

4k2
0

)2(
1 +

σ2 + α2

4k2
0

)−2

. (4.6)

Hence, using (4.3) we conclude that

ρ̄B

ρsup
=

(
1 +

σ2

4k2
0

)2(
1 +

3σ2 + 4α2

4k2
0

)(
1 +

σ2 + α2

4k2
0

)−4 (
1 +

(∆V

V

)2

late time

)−1

≈
(

1 +
(∆V

V

)2

late time

)−1

, (4.7)

where in the last approximate equality we have again used our assumptions on σ/ko and α/ko. In

particular, for two examples we considered, we have the following results: for the sharply peaked

state considered in [10, 11], we have ρ̄B ≈ 0.99ρsup and for the state with wide spread considered

in [35, 36], we have ρ̄B ≈ 0.35ρsup. Eq. (4.7) provides a precise relation between the spread in

volume at late times and the density at the bounce for the general class of Gaussian states specified

above. It brings out the fact that as we consider states that are more and more sharply peaked in

volume at late times, the density ρ̄B at the bounce tends to ρsup, the upper bound in the physical

Hilbert space of the density operator ρ̂. Note that one can easily construct states that are more

and more sharply peaked in both p̂φ and V̂ |φ by increasing ko such that α� σ � ko. Even in the

example of sharply peaked states we considered from the early simulations [10, 11], to maintain

numerical accuracy, ko was chosen to be only 5 × 103 in Planck units. If one were to model the
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FIG. 2: Left Panel: The evolution of the relative dispersion (∆V/V ) in volume for a Gaussian state with

parameters: ko = 1000, σ = 16 (in Planck units) and Right Panel: parameters: ko = 1000, σ = 6 (in Planck

units). The evolution is shown with respect to both the proper time t̄ and the internal time φ. The two

plots bring out the fact that the asymptotic value of the relative dispersion is reached rather quickly for this

family of states.

universe more realistically, the relative fluctuations in the two Dirac observables would become

astronomically small. Then, for the Gaussian states, the energy density ρ̄B at the bounce would

be indistinguishable from ρsup.

The left panel of Fig. 1 shows the exact relation –without the approximation made in the

second step in (4.7)– between the density ρ̄B at the bounce and the relative dispersion in volume

at late times, using a family of Gaussian states. One can see that ρ̄B first decreases rapidly with

(∆V/V ) and can become arbitrarily small for states which are extremely quantum mechanical

just as one would expect from the (1 + (∆V/V )2)−1 behavior. This behavior highlights the fact

that the departures from classical general relativity can occur in tame regimes if the states are

highly non-classical. In this respect the situation is qualitatively the same as in ordinary quantum

mechanics which admits states in which macroscopic objects have a significant probability of being

in two widely separated places at the same time. It is just that such states are not seen in Nature.

Similarly, the cosmological model under consideration also admits states Ψ in which the universe

can bounce at the density of water. But such states are so extremely quantum mechanical that

the relative uncertainty (∆V/V ) in volume in them would be ∼ 1047 at late times!

In this discussion we considered the relative spread in volume at late times rather than at

the bounce itself because the analog of (4.7) has a more complicated form in terms of (∆V/V )B.

However, as the right panel of Fig. 1 shows, the qualitative behavior is the same. Also, it is worth
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FIG. 3: Comparison of ‘dressed’ and ‘mean value’ quantities for a sharply peaked states with ∆V/V = 0.035

considered in Eq. (4.4). The ‘internal’ time is shown on lower x-axis, and the corresponding proper time t̄

on the upper x-axis. Left Panel: Relative difference between the dressed and mean value conformal times

η̃ and η. It is evident that the difference is less than 0.04%. Right Panel: Relative difference between the

dressed and mean value scale factors ã and a. The difference is only 0.02%. This shows that for sharply

peaked states considered in early simulations (such as the ones performed in [10, 11]) the effective metric is

an excellent approximation to the dressed metric.

noting that the dispersion reaches its asymptotic values rather quickly in the Gaussian states

considered here. This is illustrated in Fig. 2 which shows the evolution of the relative dispersion

with the internal time φ as well as the proper-time t for two different Gaussian states. Finally, for

analytic control, we restricted ourselves to Gaussian states. But numerical simulations have been

carried out also for non-Gaussian states with wide dispersions [35, 36]. The qualitative behavior

of ρ̄B as a function of the relative dispersion in volume is the same. But, not surprisingly, our

analysis of Gaussian states does not account for the detailed quantitative behavior.

C. Relation to the ‘dressed’ metric

As mentioned in section I, because of singularity resolution, in LQC one can analyze the dy-

namics of the cosmological perturbations in the pre-inflationary epoch by facing the so-called

“trans-Planckian” issues squarely [29–31] (for a summary, see, e.g., [32]). In the Planck regime of

LQC, these perturbations are treated as quantum fields propagating on a quantum FLRW geom-

etry, described by a wave function Ψ. Detailed analysis has been performed both for the scalar

modes R and the two tensor modes TI , (with I = 1, 2). This analysis became possible because of

an unforeseen simplification: It turns out that, so long as the back reaction on the wave function
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FIG. 4: Left Panel: The relative difference between the ‘dressed’ and ‘mean value’ conformal times η̃ and η̄

as a function of the ‘internal’ time φ (the lower x axis) and proper time (the upper x-axis). The difference

is only ∼ 0.5% if the relative dispersion in volume at large times is 0.2 but grows to ∼ 10% as ispersion

grows to 1.2. Here the parameters of the Gaussian states are: ko = 1000/α, σ = 6.5/α, 15/α, and 30/α

(in Planck units) which correspond to the late time ∆V/V values of 1.2, 0.4, and 0.2 respectively. Right

Panel: The relative difference between the ‘dressed’ and ‘mean value’ scale factors ã and ā as a function of

the ‘internal’ time φ (the lower x-axis) and proper time t̄ (the upper x-axis). The difference is only ∼ 0.9%

if the relative dispersion in volume at late times is 0.2 but grows to ∼ 5% as dispersion grows to 1.2. Both

relative differences grow after the bounce but quickly reach their asymptotic values. For any given desired

accuracy of results, these simulations determine the class of states Ψ with wide relative dispersions for one

can replace the ‘dressed’ metric g̃ab with the mean value metric ḡab.

Ψ of geometry can be neglected, dynamics of the quantum fields (R̂, T̂I) is completely equivalent

to that of quantum fields propagating on a smooth but quantum-corrected, ‘dressed’ FLRW met-

ric g̃ab determined by Ψ [41]. The metric g̃ab arises from a detailed calculation and carries more

information than the mean value metric ḡab; in particular, it ‘knows’ about certain higher order

fluctuations in the quantum FLRW geometry encoded in Ψ. Since it is customary to use conformal

time in the theory of cosmological perturbations, g̃ab is expressed in terms of a ‘dressed’ conformal

time η̃ and a ‘dressed’ scale factor ã as

g̃abdx
adxb = ã2(−dη̃2 + d~x2) . (4.8)

In turn, η̃ and ã are constructed from the internal time φ and the φ-dependent scale factor operator

â = (V̂ /Vo)
1/3, where Vo the co-volume of the fiducial cell C. The precise relations are:

dη̄ = 〈Ĥ−1/2
o 〉 [〈Ĥ−1/2

o â4Ĥ−1/2
o 〉]1/2 dφ; and ā4 = (〈Ĥ−1/2

o â4Ĥ−1/2
o 〉)/〈Ĥ−1

o 〉 (4.9)
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where Ĥo = p̂2
φ is the Hamiltonian governing the time evolution in relational time as in (2.5). Thus,

the dressed metric g̃ab is quite subtle to construct from the quantum state Ψ. Its form could not

have been guessed; it arose from a detailed calculation showing the equivalence of the dynamics of

the quantum fields (R̂, T̂I) on the quantum geometry defined by Ψ and on the continuum FLRW

geometry defined by g̃ab

Because of the singularity resolution, space-time curvature remains finite in LQC, achieving its

maximum value at the quantum bounce that replaces the big bang. This finiteness has interesting

and unforeseen consequences on the dynamics of cosmological perturbations [31]. First, because the

scale factor of g̃ab never vanishes, the wave-lengths of modes never shrink to zero in LQC. Second,

modes with wave lengths greater than the curvature radius of g̃ab at the bounce get excited in

the LQC pre-inflationary dynamics and are not in the Bunch Davies (BD) vacuum at the onset

of inflation. Among modes observable in the CMB, these turn out to be the longest wave length

modes corresponding to angular scales ` . 30. Thus, the LQC ultraviolet modifications of the

background FLRW dynamics lead to new observable effects in the infrared regime of perturbations

that are directly relevant to the large angular scale anomalies seen in the (WMAP and) Planck

data. This interplay between theory and observations is being investigated in detail from a number

of different perspectives [32].

So far, this analysis of perturbations was carried out using sharply peaked states Ψ for the

background quantum geometry. As Fig. 3 shows, for these states the effective metric ḡab is so

close to the quantum corrected dressed metric g̃ab that the difference between them is smaller than

the numerical errors even in quite accurate simulations such as those performed in [31]. While

the use of sharply peaked states is well-motivated, it is of considerable interest to know whether

the unforeseen and deep interplay between the ultraviolet and infrared regimes is robust. Does it

persist if we replace the sharply peaked states with those in which the the relative dispersion in

volume is non-negligible? A first step in systematically probing this issue is to analyze the difference

between the mean value geometry ḡab and the ‘dressed’ metric g̃ab that governs the dynamics of

perturbations, when both are determined by states Ψ that have significant relative dispersions in

volume. We will now report on the results of these calculations.

In order to compute the dressed scale factor, it is more convenient to work in the (v, φ) rep-

resentation, rather than (h, φ), because one has to calculate the expectation values of a fractional

power, V̂ 4/3, of the volume operator V̂ . In (v, φ) representation, the physical solutions to the

quantum Hamiltonian constraint can be written as [11]:
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Ψ(v, φ) =

∫ ∞
0

dk Ψ̃(k) ek(v)eiαk(φ−φo), (4.10)

where φo is some initial time and ek(v) are the eigenfunctions of the Hamiltonian operator. For

our analysis we consider Ψ̃(k) to be Gaussian wave-packets,

Ψ̃(k) = e
−(k−ko)2

σ2 , (4.11)

and numerically compute the difference between the dressed and mean value geometries.

The results are shown in Figs. 3 and 4. Note that the expression (4.9) of ‘dressed’ conformal

time η̃ and the dressed scale factor ã in terms of Ψ are quite complicated. Since they involve

fractional and negative powers of the Hamiltonian Ĥo and the 4/3rd power of the volume operator

V̂ , a priori there is no reason to expect that η̃ and ã would be well-approximated by the mean value

quantities η̄ and ā which are computed simply using the expectation values of p̂φ and V̂ |φ. Yet

we see that the dressed quantities are extremely well approximated by the mean value quantities

within the accuracy of 0.02% for scale factor and 0.04% for the conformal time, if one considers a

sharply peaked state having the late time relative volume dispersion 0.035. Moreover, even when

the relative dispersion in volume at late times is as high as 0.2, the two scale factors approximate

each other to within a 0.5% accuracy. If one were interested only in 10% accuracy, one can use

the easy to calculate mean value metric ḡab in place of the much more subtle g̃ab even when the

relative dispersions in volume are greater than 1!

These results provide a starting point for a systematic analysis of the robustness of pre-

inflationary dynamics that will be reported in [37]. Interestingly, it turns out that, although the

power spectrum does change if one uses states that fail to be sharply peaked, these modifications

can be absorbed simply by changing the assignment of the phenomenological parameters, without

enlarging the parameter space underlying the phenomenological predictions of LQC.

V. DISCUSSION

In LQC, the standard effective description [28, 34] has proved to be a powerful tool for un-

derstanding the physics of the bounce [11, 28]. As explained in sections I and II, the effective

Friedmann and Raychaudhuri equations, (2.10) and (2.11), incorporate the key quantum correc-

tions to Einstein’s equations. They bring out the fact that quantum geometry effects lead to a

new repulsive force. They show that the force is completely negligible in situations where general

relativity is known to be successful. However, they also show that the repulsive force grows rapidly

in the Planck regime, overwhelming the classical attraction and replacing the big bang with a big
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bounce. Thus, the effective equations make the physical origin of the quantum bounce transparent.

They have also played a role in the investigations of pre-inflationary dynamics of cosmological per-

turbations. In particular, they have helped us understand why the ultraviolet modifications of the

background FLRW dynamics can leave imprints on observable modes with longest wave lengths

[31, 32].

However, this highly successful effective description is tied to quantum states Ψ which are

sharply peaked in the principal Dirac observables p̂φ and V̂ |φ. In section III we extended that

effective description to go beyond the sharply peaked states. Specifically, using the known expres-

sions of the evolution of expectation values of p̂φ and V̂ |φ, we constructed a mean value metric

ḡab and obtained a generalization, (3.8) and (3.9), of the effective Friedmann and Raychaudhuri

equations, that governs the dynamics of ḡab. We also showed that the scalar field φ that under-

lies the construction of the mean field geometry automatically satisfies the Klein-Gordon equation

with respect to the mean value metric ḡab. Thus, by focusing on expectation values, we obtained a

consistent generalization of the effective space-time description of the Einstein-scalar field system,

now adapted to quantum geometry states Ψ that need not be sharply peaked. Interestingly this

space-time description continues to be internally consistent no matter how large the dispersions

are. In section IV, we used an interesting interplay between the area gap and the matter density

at the bounce to show that Eqs. (3.8) and (3.9) can be derived from a generalized effective Hamil-

tonian constraint. We then restricted ourselves to Gaussian states, but with possibly large relative

dispersions in V̂ |φ –i.e., the scale factor– and showed that there is a simple relation, (4.7), between

the density at the bounce and this relative dispersion which quantifies previous observations from

numerical simulations [35, 36]: greater the dispersion, lower is the density at the bounce. Finally,

we compared the mean value metric ḡab with the ‘dressed’ quantum corrected metric g̃ab that is

used to analyze cosmological perturbations in the Planck regime [31, 32]. We found that ḡab can

approximate g̃ab quite well even when the quantum state Ψ is not sharply peaked. This last result

provides a starting point for the investigation of how phenomenological predictions of LQC are

affected if the quantum geometry state is not sharply peaked [37].

On the whole, the GEEs nicely complement the numerical calculations of the exact quantum

evolution of widely spread states that have now become feasible, thanks to the development of the

“Chimera numerical scheme” [39]. Since this numerical scheme solves the LQC equations exactly,

it provides the evolution not only of the mean values of the principal Dirac observables but also

of their fluctuations and higher order moments. These cannot be read-off from the GEEs. On the

other hand, the GEEs provide a conceptual understanding of some of the key features of the exact
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numerical results. Furthermore, as we saw in section IV C, even in pre-inflationary dynamics where

the dressed effective metric is sensitive to certain ‘higher moments’ beyond the mean values of the

principal Dirac observables, the GEEs provide a good approximation to the exact numerical results.

Since the GEEs are ordinary differential equations, computationally they are significantly easier to

handle. Therefore, they provide an extremely useful tool to obtain a global understanding of the

effect of changing the initial state at the bounce, which can then be followed by exact “Chimera”

analysis when a more accurate treatment is warranted.

Finally, while summarizing the standard LQC framework [28], we took the opportunity in

section II to slightly reformulate it to bring out more clearly the role of the area gap. Important

formulas in the existing LQC literature generally feature both the area gap ∆o and the Barbero-

Immirzi parameter γ, although one can be eliminated in favor of the other because they are

proportional. This redundancy can cause occasional confusion while taking limits. While γ features

prominently in the construction of the mathematical framework, in the finished picture the new

physical parameter of the quantum theory is the area gap ∆o. To emphasize this fact, throughout

this paper we worked only with ∆o. This strategy makes the relation between LQC and the Wheeler

DeWitt theory more transparent: The Wheeler-DeWitt equation results from the LQC quantum

constraint (2.5) by letting `o –or equivalently, ∆o– go to zero. Similarly, classical Friedmann and

Raychaudhuri equations are obtained as limits of (3.8) and 3.9) when `o goes to zero. One no longer

has to carefully monitor what happens to the Barbero-Immirzi γ parameter in various limits.

We will conclude with an example to illustrate why this shift of emphasis can be physically

illuminating [32]: it brings out a qualitative similarity between the quantum effects that lead to

the singularity resolution in LQC and the physics of superconductivity. In the theory of super-

conductivity the fundamental microscopic parameter is the energy gap ∆E, the energy needed to

break apart the cooper pair of electrons in a given material. It determines the macroscopic be-

havior of that sample. In particular, the critical temperature is given by Tcrit = (const) ∆E: as

the the energy gap ∆E goes to zero in sample materials, the critical temperature goes to zero and

we no longer have the novel phenomenon of superconductivity. Similarly, in LQC the microscopic

parameter ∆o determines macroscopic observables such as ρsup, the upper bound of the spectrum

of the density operator ρ̂: ρsup = (const)/∆3
o. If we were to send the area-gap ∆o to zero –i.e.,

ignore the quantum nature of geometry underlying LQG– ρsup would diverge, quantum effects

would disappear, and we would be led back to the big bang singularity of GR.
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Appendix A: Calculations of expectation values and fluctuations

In this appendix we will briefly describe the soluble LQC model from [12] that is used in the

main body of the paper, and provide expressions of various quantities used in section IV B.

1. The physical Hilbert space

Let us begin by recalling that the quantum Hamiltonian constraint given in (2.5) can be rewrit-

ten as the 2-d flat space Klein-Gordon equation,

∂2
φΨ(x, φ) = ∂2

xΨ(x, φ), (A1)

by introducing

x =
1√

12πG
ln | tan

`oh

2
| .

The group averaging procedure of LQG [10] can then be used to construct the physical Hilbert

space. The physical states are certain positive frequency solutions to (A1). Every solution to (A1)

can be written as a sum of left and right moving components:

Ψ(x, φ) = ΨL(x+) + ΨR(x−) , (A2)

where x± = x ± φ. In addition to being a solution to the quantum Hamiltonian constraint, the

physical states have to satisfy the symmetry requirement, Ψ(−x, φ) = −Ψ(x, φ), which captures

the fact that the physical states remain invariant under the change of the orientation of the triad.

Therefore, Ψ(x, φ) has the following general form:

Ψ(x, φ) =
F (x+)− F (x−)√

2
, (A3)

where F (x±) is a positive frequency solution to (A1). The physical Hilbert space can be described

in terms of the left moving solution F (x+) –or, equivalently right moving F (x−)– alone, as the
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entire information of the physical states is contained in F . Here, we choose to work with F (x+).

The physical inner product can then be conveniently written solely in terms of F (x+) as:

(Ψ1, Ψ2)phys = −2 i

∫ +∞

−∞
dxF (x+)∂x+F (x+). (A4)

In the following, for the simplicity of the notations we will drop the subscript from x+ and denote

it by x.

For the computation of the expectation values of the physical observable it is convenient to

write F (x) as the following Fourier transform:

F (x) =

∫ ∞
0

dk F̃ (k) e−i k (φ+x), (A5)

where the integral is taken only over the positive k-axis, because F (x) is a positive frequency

solution, and evaluated at a constant φ. Therefore the norm of a physical state can be written as

an integral at a constant φ slice:

‖Ψ‖2 = −2 i

∫ +∞

−∞
dxF (x) ∂xF (x) = 2

∫ ∞
0

dk F̃ (k)kF̃ (k). (A6)

2. Expectation values:

Having the physical Hilbert space at hand, we can now calculate the expectation values of the

principal Dirac observables in term of F [12]. We have:

〈p̂φ〉 = 2~
‖Ψ‖2

∫∞
−∞

∣∣dF
dx

∣∣2 dx, 〈p̂2
φ〉 =

−2 i ~
‖Ψ‖2

∫ ∞
−∞

dF

dx

d2F

dx2
dx, (A7)

〈V̂ 〉φ = V+ e
αφ + V− e

−αφ, 〈V̂ 2〉φ = W0 +W+ e
2αφ +W− e

−2αφ, (A8)

where α =
√

12πG, and

V± =
1

‖Ψ‖2
4πγ`2Plλ

α

∫ ∞
−∞

∣∣∣∣dFdx
∣∣∣∣2 e∓αx dx, (A9)

W0 =
1

‖Ψ‖2
2iπγ2`4Plλ

2

3G

∫ ∞
−∞

W̃ (x) dx, (A10)

W± =
1

‖Ψ‖2
iπγ2`4Plλ

2

3G

∫ ∞
−∞

W̃ (x)e∓2αxdx, (A11)

and

W̃ (x) =
d2F

dx2

dF

dx
− dF

dx

d2F

dx2
. (A12)
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3. Relative volume dispersion:

Using the expressions for the expectation values of the volume observables we can compute the

relative volume dispersion:(
∆V

V

)2

=
〈V̂ 2〉φ − 〈V̂ 〉2φ
〈V̂ 〉2φ

(A13)

=
W0 + (W+ − V 2

+)e2αφ + (W− − V 2
−)e−2αφ − 2V+V−

V 2
+e

2αφ + V 2
−e
−2αφ + 2V+V−

. (A14)

In order to find the relative dispersion far in future in the expanding branch we take φ→∞ limit

in the above expression: (
∆V

V

)2

late time

=
W+

V 2
+

− 1, (A15)

similarly in the contracting branch:(
∆V

V

)2

early time

=
W−
V 2
−
− 1. (A16)

With these expressions at our disposal, one can compute the expectation value of the physical

observables by specifying F̃ (k).

4. Gaussian states

In sections IV B we restricted our analysis to Gaussian states:

F̃ (k) = exp−(k − k0)2

σ2
, (A17)

with the assumptions: ko � σ and ko � α =
√

12πG. Note that the physical states we have

considered here are positive frequency solutions to the quantum Hamiltonian constraint, i.e. the

integrals involved in the computation of norm and expectation values are restricted to the positive

k-axis. The analytical expressions given in section IV B were obtained by integrating over the

entire k-axis, i.e. from −∞ to ∞. For the Gaussian states with large ko we are considering, this

simplification introduces very small errors [40]. In the following we provide estimates of these

errors.

• Norm:

‖Ψ‖2phys =
√

2πkoσ + Errornorm, (A18)
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where, Errornorm = 1
4σ

2e−2k2o/σ
2 − σko

√
π
2 erfc

(√
2ko
σ

)
is approximation error in the norm

[40]. For states considered in section IV B the numerical values for the approximation errors

in the norm are: O(10−346) for σ/ko = 5 × 10−2 and α/σ = 2.5 × 10−2 considered in (4.4),

and O(10−23975) for σ/ko = 6× 10−3 and α/σ = 1.02 considered in (4.5)

• 〈p̂φ〉:

〈p̂φ〉 = ~ko
(

1 +
σ2

4k2
o

)
+ Errorpφ , (A19)

where Errorpφ = 1
8σ
(

4koσe
−2k2o/σ

2 −
√

2π(4k2
o + σ2)erfc

(√
2ko
σ

))
is the approximation error

in the computation of 〈p̂φ〉. For the Gaussian states considered in section IV B the approx-

imation error is: O(10−345) for σ/ko = 5 × 10−2 and α/σ = 2.5 × 10−2 considered in (4.4),

and O(10−23977) for σ/ko = 6× 10−3 and α/σ = 1.02 considered in (4.5)

• V±:

V± =
∆

3/2
o `3Pl

4
√

3α
e
α2

2σ2

(
4k0 +

σ2 + α2

k0

)
+ ErrorV± . (A20)

ErrorV± = 1
16σe

−4k2o+α
2

2σ2

∣∣∣−2σ(2ko + iα)eα
4iko+α

2σ2 + e2k2o/σ
2√

2π(4k2
o + α2 + σ2)erfc

(
2ko−iα√

2σ

)∣∣∣,
is the approximation error in the estimation of V±. For the Gaussian states considered in

section IV B the approximation error is: O(10−345) for σ/ko = 5×10−2 and α/σ = 2.5×10−2

considered in (4.4), and O(10−23974) for σ/ko = 6× 10−3 and α/σ = 1.02 considered in (4.5)

• W0, W±:

W0 =
π∆3

o`
6
Pl

288πG

(
4k2

0 + 3σ2
)

+ ErrorW0 (A21)

W± =
π∆o`

6
Pl

576πG
e

2α2

σ2
(
4k2

0 + 4α2 + 3σ2
)

+ ErrorW± . (A22)

Similarly to the norm and V±, the approximation errors in W0 and W± are given in terms of

error function. For the Gaussian states considered in section IV B the numerical values of the

approximation errors in the estimation of W0 and W± are: O(10−345) for σ/ko = 5×10−2 and

α/σ = 2.5× 10−2 considered in (4.4), and O(10−23975) for σ/ko = 6× 10−3 and α/σ = 1.02

considered in (4.5)

The above analysis shows that for large ko and σ � ko, the approximation errors in evaluating

the integral over the entire k-axis are indeed extremely small. Therefore, for the Gaussian states
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of physical interest, the expectation values of the physical observables and their fluctuations for

Gaussian states can be given, to an excellent approximation by:

〈V̂ 〉|φ =
∆

3/2
o `3Pl

4
√

3α
e
α2

2σ2

(
4k0 +

σ2 + α2

k0

)
cosh (αφ) (A23)

〈p̂φ〉 = ~ko
(

1 +
σ2

4k2
o

)
(A24)

∆pφ =
~σ
2

√
1− σ2

4k2
o

(A25)

(
∆V

V

)2

late time

=
W+

V 2
+

− 1 = eα
2/σ2

(
1 + 3σ2+4α2

4k20

)
(

1 + σ2+α2

4k20

)2 − 1. (A26)

Similarly, the energy density at the bounce takes the from:

ρ̄B =
〈p̂φ〉2

8V+V−
=

18π

G2~∆3
o

(
1 + σ2

4k20

)2

(
1 + σ2+α2

4k20

)2 . (A27)

These are the expressions used in the main text.
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