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Greybody factors for a black hole in massive gravity

Ruifeng Dong, Dejan Stojkovic
HEPCOS, Department of Physics, SUNY at Buffalo, Buffalo, NY 14260-1500

An exact solution was recently found in the massive gravity theory having the form of
Schwarzschild-dS black holes with some additional background fields. Hawking radiation will occur
at the event and cosmological horizons having the blackbody spectrum, which will be modified by
the geometry outside the black hole. In this paper, we study the greybody factors of a test scalar,
considering its minimal coupling with the background geometry. The case of small black holes with
the horizon radius much smaller than the cosmological dS radius is studied numerically. The case
of near-extremal black holes with the horizon radius comparable to the cosmological dS radius is
studied analytically. In addition, we considered the coupling of the test field with the background
Stückelberg fields, which in turn leads to reductions in particle emission and some non-trivial features
(resonances) in the greybody factors.

PACS numbers:

I. INTRODUCTION

Hawking emission from a black hole is characterized
by two factors: the black body factor which gives the
probability that a particle is created in the vicinity of a
horizon, and the greybody factor which gives the prob-
ability that this particle penetrates the potential barrier
and escapes to infinity. The pedagogical difference be-
tween these two factors can be found in [1] (see also [2]).
The number of distinct models with the exact black hole
solutions is constantly increasing, which in turn implies
the need for concrete calculations of the corresponding
greybody factors (for some recent developments see for
example [3–15]). The main goal in this paper is to cal-
culate the greybody factors for black holes in massive
gravity, which is the case that has not been studied in
the literature so far.

Massive gravity is a collective name for theories where
gravitons appear to be massive. The original idea is old,
appearing for the first time in [16], but gained a lot of at-
tention recently. Namely, massive gravitons emerge nat-
urally in some higher-dimensional models like the Dvali,
Gabadadze, Porrati model [17], cascading gravity [18–
24] and ghost-free massive gravity [27]. For nice reviews
please see [25, 26].

In massive gravity models, the asymptotically flat so-
lution of vacuum Einstein equations converts the horizon
to a spacetime singularity. One way out of this problem is
to study the asymptotically de Sitter solutions [28]. Then
the simplest case is a Schwarzschild-dS black hole, with
background Stückelberg scalar fields. As a first study of
Hawking emission in this class of black holes, we consider
the emitted scalar field minimally coupled to the gravi-
tational background with and without coupling to these
external fields. Though emission from a Schwarzschild-
dS black hole has been studied before, coupling to the
background fields will introduce some non-trivial features
in the greybody factors.

The Lagrangian we will consider is

L =
√
−g

(
M2
pl

2
(R+mg

2U(g, φa))− 1

2
gµν∂µϕ∂νϕ

)
.

(1)
Here mg is the graviton mass and U is the graviton
potential which depends on the metric as well as the
Stückelberg fields φa. Explicitly,

U(g, φa) = U2 +
α− 1

3
U3 −

(
η

2
+
α− 1

12

)
U4, (2)

where α3, α4 are free parameters, and

U2 = [K]2 − [K2],

U3 = [K]3 − 3[K][K2] + 2[K3],

U4 = [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4],

(3)

with the matrix Kµν (g, φa) = δµν−
√
gµα∂αφa∂νφbηab, and

[K] is the trace of it.
As found in [28], neglecting the backreaction of the test

fields ϕ on spacetime, there exist Schwarzschild-dS type
of black hole solutions for a special choice of parameters

α and η as η = −α
2

6 .

ds2 = −(1−rg
r
− 2

3α
mg

2r2)dt2+
dr2

1− rg
r −

2
3αmg

2r2
+r2dΩ2,

(4)
where the free parameter rg is the gravitational radius of
the black hole. In this solution, the cosmological horizon
size is determined by the the graviton mass. In what
follows, we consider the equation of motion of ϕ in this
given spacetime.

II. GENERAL ANALYSIS

Now we consider the spherically symmetric spacetime,

ds2 = −F (r)dt2 + F−1(r)dr2 + r2dΩ2. (5)
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For the scalar Hawking emission, the equation governing
its kinematics is the Klein-Gordon equation. The scalar
field must retain the form where the variables can be
separated as

ϕ(t, r,Ω) =
1

r
eiωtΨω,l(r)Ylm(Ω), (6)

where ω is the (real) frequency under consideration, and
Ylm are the spherical harmonics. Now the Klein-Gordon
equation reduces to a single radial equation,[

d2

dr∗2
+ ω2 − V (r)

]
Ψω,l = 0. (7)

Here r∗ is the tortoise coordinate defined as

r∗ =

∫
dr

F (r)
, (8)

and V (r) is the effective potential determined by the met-
ric,

V (r) =
F (r)∂rF (r)

r
+ l(l + 1)

F (r)

r2
. (9)

We now rewrite F (r) concretely for Schwarzschild-dS
black holes (4) in the popular form,

F (r) = 1− rg/r − κ2r2, (10)

with κ ≡
√

2
3αmg. The event horizon RH and the cos-

mological horizon RC will be two of the three roots of
F (r), and the third one denoted as RX , i.e.

F (r) = −κ
2(r −RH)(r −RC)(r −RX)

r
. (11)

By extracting out the constant term in the numerator,
we get

rg = −RHRCRX > 0, (12)

thus RX = − rg
RHRC

< 0, which means that there are no
singularities, coordinate or physical, between the event
and cosmological horizons, which makes it straightfor-
ward to numerically solve Eq. (7) between RH and RC .

In terms of the parameters in massive gravity,

RH ≈ rg, (13)

RC ≈
√

3α/2

mg
, (14)

for small black holes RH � RC , and

RH ≈ RC ≈
√
α/2

mg
≈ 3rg

2
, (15)

for near-extremal black holes RH ≈ RC .
We can see that F (r) vanishes at both event and cos-

mological horizons, and that r∗ → −∞ as r → RH ,

r∗ → +∞ as r → RC . Therefore, the solution to Eq. (7)
is readily written once the boundary condition is speci-
fied.

First, if particles are emitted from the event horizon,
travel to the cosmological horizon and are partly reflected
back, then the solution (”up” modes) assumes the follow-
ing form,

Ψ ∼ e−iωr
∗

+Reiωr
∗
, r∗ → −∞

∼ Te−iωr
∗
, r∗ → +∞. (16)

Second, if particles are injected from the cosmological
horizon, partly reach the event horizon and partly get re-
flected back, then the solution (”in” modes) should have
the form

Ψ ∼ T ′eiωr
∗
, r∗ → −∞

∼ eiωr
∗

+R′e−iωr
∗
, r∗ → +∞. (17)

For real frequencies, the radial equation is invariant un-
der complex conjugation, so there is another solution,

Ψ ∼ eiωr
∗

+R∗e−iωr
∗
, r∗ → −∞

∼ T ∗eiωr
∗
, r∗ → +∞. (18)

A linear combination of solutions (16) and (18) is also a
solution of the linear equation (7), so we can define

Ψ ∼ (1−RR∗)eiωr
∗
, r∗ → −∞

∼ T ∗eiωr
∗
−R∗Te−iωr

∗
, r∗ → +∞. (19)

Equations (17) and (19) are two linearly dependent solu-
tions, thus

T ′

1−RR∗
=

1

T ∗
= − R′

R∗T
, (20)

Combining this with the definition of the greybody fac-
tors γ(ω) = TT ∗ = 1−RR∗, we get

TT ∗ = T ′T ′∗. (21)

This means that the black hole particle transmission co-
efficient (greybody factor) is equal to the transmission
coefficient for emissions from the cosmological horizon.

In Penrose diagram, Fig. (1) [29], particles emitted
from the past event horizon H− partly travel to the fu-
ture cosmological horizon H+

C and partly get reflected
back to the future event horizon H+. Similarly, particles
emitted from the past cosmological horizonH−C are partly
received at the future event horizon H+, and partly re-
flected to the future cosmological horizon H+

C . And as
shown above, the greybody factors for these two pro-
cesses are equal.

III. NUMERICAL RESULTS

In this section we restrict our attention to small black
holes, that is, RH � RC or M � 1/κ. We chose κRH =
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FIG. 1: Partial Penrose diagram for the
Schwarzschild-dS spacetime, along with the emission
and transmission of the emitted particles from both

horizons.[29]

0.01 without loss of generality. For this horizon radius,

the surface temperature TH = kH
2π = F ′(RH)

4π ≈ 8κ. To
obtain the black hole emission rate and spectrum, we
take the cutoff l to be 3. We adopt the fourth-order
Runge-Kutta method in the numerical integration. To
get convergent results independent of the computation,
we chose the step size of integration as 10−3 for l = 0, 1, 2,
and 10−4 for l = 3 to treat the higher frequency modes
correctly. The results are shown in the figures (2)(3)(4).

As seen from equation (9), the potential barrier gets
higher as l gets larger, making it more difficult for
low-energy particles to get across, consistent with Fig.
(2). Besides, the contribution to the total emission rate
and power from modes with frequencies well beyong the
Hawking temperature is exponentially depressed. So we
restrict ourselves to ω/κ ≤ 100, at which energy the mode
l = 3 contributes less than 1/1000, as seen from Fig. (2).
This gives roughly a precision of one part in a thousand
in the spectral emission rate and power spectrum we ob-
tained in figures (3)(4).

Our result for l = 0 at low frequencies is consistent
with the analytical approximation of Harmark et al. [29],

γ0(ω) ≈ 4(κRH)2(1 + ω2/κ2), (22)

as was derived by matching the solution forms in different
regions of r, and is also consistent with the result of grey-
body factors in the ω → 0 limit for (4 + n)-dimensional
Schwarzschild-dS black holes by Kanti et al. [33],

γ0,n(ω → 0) = 4
(RCRH)n+2

(Rn+2
C +Rn+2

H )2
, (23)

in the case of n = 0 and RH � RC . Qualitatively, our
numerical results also agree with those by Crispino et al.
[35], though for a different small event horizon size.

We also plot the expected emission rate 〈n(ω)〉 and the
power spectrum dE

dtdλ , which have the well-known expres-

sions as

〈n(ω)〉 =
∑
l

(2l + 1)γl(ω)

exp(2πω/kH)− 1
(24)

dE

dtdλ
=

ω2

2π

dE

dtdω
=

ω3

4π2

∑
l

(2l + 1)γl(ω)

exp(2πω/kH)− 1
.

(25)

Compared with the blackbody radiation, the emission
rate is largely reduced at low frequencies due to the small
greybody factors there. This reduction shrinks at higher
frequencies. Also, the peak frequency on the power spec-
trum moves to higher values, from that of the Planck’s
radiation specturm.
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FIG. 2: Greybody factors for Schwarzschild-dS black
holes for l from 0 to 3. The thin vertical black line

shows the position of the Hawking temperature, and the
thick solid black line is the low-frequency appximation

in Eq. (22).

IV. NEAR-EXTREMAL BLACK HOLES

In this section we consider the case of near-extremal
Schwarzschild-dS black holes, where the black hole event
horizon and cosmological horizon are very close. Now
we can get approximately a closed form of V (x), to the

leading order in surface gravity kH ≈ 3κ2(RC−RH)
2RH

. Then,

V (r∗) ≈ 1

3
l(l + 1)

kH
2

(κRH)2 cosh2(kHr∗)
+O(kH

3). (26)

This is the Pöschl-Teller potential, which makes the
Schrodinger equation exactly solvable [30]. With the
boundary condition Ψ ∼ eiωr

∗
as r∗ → −∞, we can

get

Ψ(r∗) = [ξ(1− ξ)]
iω

2kH 2F1(1+
iω

kH
+β,

iω

kH
−β; 1+

iω

kH
; ξ),

(27)
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FIG. 4: Emission power spectrum of small
Schwarzschild-dS black holes, compared with the

blackbody power spectrum. Here λ ≡ 2π/ω, where we
have taken the speed of light to be 1. The greybody
spectrum is amplified by a factor of 10 to be more
visible. dE/dtdλ has the unit κ3. Note that the

greybody spectrum is always below the blackbody one
before the artificial amplification.

with ξ ≡
(
1 + e−2kHr

∗)−1
, β ≡ i

√
l(l+1)

3(κRH)2 −
1
4 −

1
2 . As

r∗ → +∞ or ξ → 1, the above solution has the asymp-
totic form

Ψ(r∗) ∼ C
(
eiωr

∗
+Re−iωr

∗
)
, (28)

where R and C can be written in terms of Gamma func-
tions [30]. The greybody factor is readily obtained as

γl(ω) ≡ 1− |R|2

= 1−
| sin(πβ)Γ(−β + i ωkH )Γ(1 + β + i ωkH )|2

π2
.(29)

Note that this result doesn’t hold for l = 0, in which
case the potential V (r) ∼ O(kH

3), thus the transmis-
sion coefficient will be much higher than the l > 0 cases.
On the other hand, for very large l and low frequencies
around the scale of kH , γl(ω) vanishes, from the property
of gamma functions,

Γ(−β + i
ω

kH
)Γ(1 + β + i

ω

kH
) ≈ Γ(−β)Γ(1 + β)

= − π

sin(πβ)
. (30)

At high energy and l >∼ 10, then the arguments in all
functions in Eq. (29) are practionally imaginary, mak-
ing further simplification possible. Using the asymptotic
approximation

Γ(ix) ≈ e−ix(ix)ix
(

2π

ix

)1/2

(1 +O(1/x)), (31)

we can put γl(ω) in a cleaner form for ω not close to
lkH√
3κRH

, so that arguments of the gamma functions in

Eq. (29) are both imaginarily large. Therefore, keeping
only the leading order term,

γl(ω)

≈ 1− 4e
−π

(∣∣∣ ω
kH

+ l√
3κRH

∣∣∣+∣∣∣ ω
kH
− l√

3κRH

∣∣∣)∣∣∣( ω
kH

+ l√
3κRH

)( ω
kH
− l√

3κRH
)
∣∣∣ sinh2

(
πl√

3κRH

)

= 1− 4e
−2πmax

(
ω
kH

, l√
3κRH

)
∣∣∣∣( ω
kH

)2
− l2

3(κRH)2

∣∣∣∣ sinh2

(
πl√

3κRH

)
. (32)

Thus for ω � lkH√
3κRH

,

γl(ω) ≈ 1−
(
kH
ω

)2

e−2πω/kH , (33)

which is exponentially approaching 1 as ω increases. And
for kH � ω � lkH√

3κRH
,

γl(ω) ≈ 1− 3(κRH)2

l2
, (34)

which is independent of ω, but approaching 1 quadrati-
cally as l increases.

For l from 1 to 8, our analytical expression will be
shown to be perfectly consistent with the numerical re-
sults in figure (8).

V. COUPLING WITH BACKGROUND FIELDS

As we have demonstrated in previous sections, without
the coupling of the test scalar field to the background
Stückelberg fields, calculations effectively reduce to the
Schwarzschild-dS black hole case. In this section, we take
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the coupling into consideration. Massive gravitons can
be decomposed into tensor modes, as well as vector and
scalar modes Aµ and π, which turn out to be the non-
unitary parts of the background Stückelberg fields [28],
i.e. xµ − φµ = (mgA

µ + ∂µπ)/Λ3. In the Schwarzschild
coordinates, the vector modes were found to be

Ai = 0, (35)

A0 = −Mplmg

κ0
f(r), (36)

and the scalar mode π depends on both r and t. Here
the free dimensionless parameter κ0 is an integration con-
stant when solving the Einstein equation to obtain the
Schwarzschild-dS metric [28], and

f(r) = ±
∫
dr

√
rg
r + 2

3αm
2r2

1− rg
r −

2
3αm

2r2
, (37)

which diverges at both horizons.
The π mode depends on the coordinate time [28], so

coupling with it will destroy our assumed solution form
in (6). So for simplicity, we focus on the interaction with
the vector modes Aµ, and further require invariance un-
der the Lorentz and discrete ϕ → −ϕ transformations,
and renormalizability. This leaves only

√
−gA2ϕ2 and√

−gϕ∂µϕAµ couplings in the lagrangian density. How-
ever,

√
−gϕ∂µϕAµ =

1

2
∂µ(
√
−gϕ2Aµ)− 1

2
ϕ2∂µ(

√
−gAµ),

(38)
where the first term on the right-hand side is a total
derivative thus not contributing to the equations of mo-
tion of ϕ, and the second term vanishes because gµν and
the only nonzero component of the vector mode A0 do
not depend on the coordinate time. Therefore, from now
on, we consider only the interaction term

Lcoupling =
1

2

√
−g
(
λA2ϕ2

)
. (39)

Here λ is a dimensionless coupling constant. This form
of coupling is the only possible renormalizable form con-
sistent with the symmetries in the model. It would break
any eventual gauge invariance for the field Aµ, since it
will act as an effective mass for the field Aµ, but in mas-
sive gravity this field is massive anyway.

This coupling term induces an additional potential
term in Eq. (9),

Vcoupling(r) = −λA2(r)F (r) (40)

= λ

(
Mplmg

κ0

)2
[
F (r)

∫
dr

√
1− F (r)

F (r)

]2
.

The integral term has logarithmic divergences at both
horizons. However it is multiplied by the F (r) term in
front of it which fixes this divergence, thus enabling us to

use the techniques in section II to compute the greybody
factors in this case. The forms of the effective potentials
are shown for the small black holes in figure (5). Here, the
contributions from black hole geometry, i.e. Eq. (9), are
seen as the spikes on the left side of the figure, while the
contributions from the coupling with massive gravitons
are shown as the spikes on the right part.

The total effective potential for near-extremal black
holes is shown in Fig. (7) for l up to 8. For B = 0, the
potential is Pöschl-Teller, and becomes effectively wider
and wider as B increases.

The same step sizes are used as in section III 1. The
results for greybody factors are shown for both small and
near-extremal black holes in figures (6) and (8).

B=130

110

90

70

50

30

10
1

RH RC

20000

40000

60000

FIG. 5: Effective potential for κRH = 0.01 and different
values of l and coupling strength B. Two terms

contributes, one due to the black hole geometry, i.e. Eq.
(9) (left crests, in black), and the other due to coupling

with background fields, i.e. Eq. (40) (right crests, in
red).

It turns out that effect of the coupling can be measured

by a parameter B ≡ λ
3

(
Mplmg
κ0κkH

)2
= λα

2

(
Mpl

κ0kH

)2
, which

is independent of the graviton mass. Note that α and κ0
are dimensionless parameters in massive gravity. In the
small black hole case, γl is moved to higher frequencies as
B gets larger due to higher potential barrier, similar to
increasing l. This argument also holds for near-extremal
black holes. Besides, nonzero coupling will also make γl
show additional peaks and dips at some frequencies, for
relatively large values of B and smaller values of l, for
both small and near-extremal black holes.

To explain the appearance of the visible peaks (and
associated dips) in the near-extremal case, we write ex-
plicitly the form of the effective potential appearing in

1 A stepsize of 10−4 is also sufficient for the numerical calculation
for l up to 8 and B up to 80, in the near-extremal case.
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FIG. 6: Greybody factors for small black holes κRH = 0.01, with coupling between test scalars and background
vector modes. The spikes in the greybody factors are due to resonances in transmission rate which in principle

increase the transmission and allow more particles to penetrate the barrier.

equation (7) to the leading order in surface gravity.

V (r) =
1

3
l(l + 1)

kH
2

(κRH)2 cosh2(kHr∗)
+B

k2H(kHr
∗)2

cosh2(kHr∗)

+O(kH
3). (41)

As B gets larger while keeping l fixed, the second term
makes this potential barrier effectively wider, more sim-
ilar in shape to the rectangular potential barrier or the
double delta-function barrier(see Fig. (7)), where the res-
onances in transmission rate are well known [34]. A reso-
nance in transmission rate increases the transmission, so
more particles will penetrate the barrier, which in turn
produces a spike in the greybody factor. This qualita-
tively explains the resonance in the present scattering
problem, as well as the tendency that the value of B
needed for resonance grows with l. In general, what kind
of analytical potentials do or do not display the resonance
in scattering is still an unsolved problem.

Although the analytical form of the effective potential
V (r) is not available for the case of small black holes,

peaks are also expected when B is large enough, from
the above discussion. This is verified by Fig. (6).

For better comparison with the blackbody radiation
and the case without coupling, we plot the particle emis-
sion rate 〈n(ω)〉 and power spectrum dE/dtdλ, as shown
in figures (9)(11)(10)(12). Although there are additional
peaks in the greybody factors, which can raise the num-
ber and power emission, these peaks moves to higher fre-
quencies as the coupling becomes stronger and so become
less important. For example, for small black holes with
TH ≈ 8κ in Fig. (6) for the B = 1 case, only the peak
in γ0(ω) show up in figures (9)(10), but the peaks in
γ1(ω), γ2(ω), γ3(ω) are all suppressed by the Boltzmann
factor.

Similar things happen in the near-extremal case, where
TH = 1

2πkH . Spikes move to higher frequencies as B gets
larger, reducing their effects on the emission rate and
spectrum. However, as seen from Fig. (8), there are
also ”incidental” spikes. For example, l from 0 to 8 all
contribute spikes near ω/kH = 4. So, conservatively, we
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FIG. 7: Effective potentials for near-extremal black holes, with various coupling strength between test scalars and
the background vector fields, and l up to 8. Different couplings are differentiated by different colors.

only calculate the emission rate and spectrum for B =
0, 1, 5, 10, using the greybody factors from l up to 8.

VI. CONCLUSIONS

In this paper, we studied the greybody factor correc-
tions to the Hawking radiation of black holes in massive
gravity theory. We did the calculations numerically for
small black holes, and analytically for the near-extremal
ones (where the event and cosmological horizons are of
the same order). Similarly, features of γl(ω) were found,
with very small values at low frequencies while approach-
ing unity at higher frequencies, and the main contribu-
tion to the radiated power comes from low-l modes.

To the best of our knowledge, the first results on grey-
body factors of Schwarzschild-dS black holes (though in
a different underlying context) were obtained by Kanti
et al. [33]. Also, in recent papers [31, 35], analyti-
cal form of the greybody factors for Schwarzschild-dS
black holes were obtained, consistent with our results,
by matching the solution forms (usually hypergeometric
functions) in different regions of r. However, these ap-
proximations only hold either for small black holes, or

for low energy modes. In contrast, we worked out the
calculations for small black holes numerically, while for
the near-extremal black holes analytically (exactly). This
special case for the near-extremal black holes was found
more than 30 years ago for normal mode calculations [30],
but remained unnoticed for computing the transmission
coefficients.

Once we couple the test field to the the background
Stückelberg fields, the situation becomes more compli-
cated. The background fields can be decomposed into
two modes, of which the vector mode has r-dependence
only, while the scalar mode has t-dependence. We con-
sistently couple the test field with the vector mode only,
which in turn drives the greybody factors to higher fre-
quencies and introduces some non-trivial features (reso-
nances) as explained in Section V.
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FIG. 8: Greybody factors for near-extremal black holes, with various coupling strength between test scalars and
background vector modes. The black dashed lines are the analytical approximation of Eq. (29) for zero coupling,
which can be seen to coincide with our numerical calculations. Different couplings are differentiated by different

colors.
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FIG. 9: The particle emission rate of small
Schwarzschild-dS black holes (κRH = 0.01) with

different coupling with the background vector fields.
The amplitudes of the black hole emission have all been

amplified by 104 times to be more visible. Different
couplings are differentiated by different colors. Note

that the greybody spectrum is always below the
blackbody one before the artificial amplification.
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FIG. 10: The emission power spectrum of small
Schwarzschild-dS black holes (κRH = 0.01) with

different coupling with the background vector fields.
The amplitudes of the black hole emission have all been

amplified by 10 times to be more visible. Different
couplings are differentiated by different colors. Note

that the greybody spectrum is always below the
blackbody one before the artificial amplification.
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FIG. 11: The particle emission rate of near-extremal
Schwarzschild-dS black holes with different coupling

with the background vector fields. Different couplings
are differentiated by different colors. The emission rates
for B = 1, 5, 10 are amplified by 500, 5000, 50000 times
respectively, to be more visible. Note that the 〈n(ω)〉

decreases with increasing B before this artificial
amplification.
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FIG. 12: The emission power spectrum of near-extremal
Schwarzschild-dS black holes with different coupling

with the background vector fields. The unit of dE/dtdλ
is k3H . Different couplings are differentiated by different
colors. The power for B = 1, 5, 10 are amplified by 2,

10, 50 times respectively, to be more visible. Note that
the power gets more suppressed for larger B before the

artificial amplification.
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