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The bulk to boundary mapping for massive scalar fields is constructed, providing a de Sitter analog
of the LSZ reduction formula. The set of boundary correlators thus obtained defines a potentially
new class of conformal field theories based on principal series representations of the global conformal
group. Conversely, we show bulk field operators in de Sitter may be reconstructed from boundary
operators. While consistent at the level of the free field theory, the boundary CFT does not satisfy
cluster decomposition. The resulting conformal field theory does not satisfy the basic axioms of
Euclidean quantum field theory due to Osterwalder and Schrader, so is likely not well-defined once
interactions are included.
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I. INTRODUCTION

The Bekenstein-Hawking entropy [1, 2]

S =
A

4G
,

states that the entropy of any black hole is proportional to its surface area. This is law widely applicable in various
kinds of spacetime. This law suggests that any theory in the bulk can be described in terms of some boundary theory
of spacetime in one lesser dimension.

There has been a lot of progress in understanding this correspondence between bulk quantum theory in anti-de
Sitter spacetime and boundary conformal field theory [3]. One expects these ideas to carry over in some form to the
cases of asymptotically flat spacetime and asymptotically de Sitter spacetime. In these cases the situation is much
less clear, and our aim in the present work is to carefully set up the bulk/boundary correspondence in the de Sitter
case. This will allow us to draw some interesting conclusions about the structure of the novel conformal field theories
that must appear in this case, and their ultimate consistency.

Various different formulations of dS/CFT has been proposed, following Strominger’s initial work [4]. Some for-
mulations simply extend the AdS/CFT correspondence to the dS space via analytic continuation, which has been
successful for massless fields (and possibly sub-Hubble mass fields) and the massless higher spin gravity theories [5].
Our goal in the present work is to investigate the situation for generic fields with masses larger than the Hubble
scale, which are related by analytic continuation to tachyonic fields in anti-de Sitter spacetime. New methods must
be developed to treat this case. It is worth noting that in the CFT these fields will correspond to quasi-primary fields
with complex conformal weights. Nevertheless, these form unitary representations of the global conformal group [6–9],
opening the door to possibility that an entirely new class of conformal field theories might be defined based on these
representations.

One of the key mysteries in the dS/CFT correspondence is the origin of bulk time, since the dual CFT is a purely
Euclidean theory. In the AdS/CFT correspondence this is not an issue because the bulk time is parallel to the
boundary time and the CFT lives in a spacetime with Lorentzian signature. As a result, it becomes more interesting
to see how unitarity and time ordering in the bulk theory emerges from the Euclidean CFT, and we will obtain partial
results in this direction.

The paper is organized as follows. We begin by presenting an analog of the LSZ construction [10] for quantum fields
in de Sitter spacetime, which provides a clear definition of correlators in the boundary CFT. This step is necessary
because the representations of the conformal group in question, the principal series, are not commonly studied in
the context of conformal field theory. The construction is inspired by the integral geometry approach of Gelfand
[11], and many of the results detailed there carry over to the present case. For the most part, our focus will be on
three-dimensional de Sitter spacetime, though many of the ideas carry over to the higher dimensional case.

We then consider the inverse map, reconstructing bulk field operators in terms of the CFT data. At leading order
(essentially the free level from the viewpoint of quantum field theory in the bulk) we construct bulk creation and
annihilation field operators using operators in the CFT. Bulk operator ordering in correlators can be accomplished
by adopting an iǫ-prescription, complexifying the radial direction in the CFT. This is sufficient to recover the bulk
Wightman two-point correlation function, with the correct Hadamard singularity at light-like separations. This ap-
proach may also be used to build higher point correlators, for bulk theories with perturbative expansions, by using the
creation and annihilation operators to reproduce the Wick expansion. However a completely general nonperturbative
understanding of the bulk operator ordering, and hence the origin of bulk time, is elusive.

The construction we describe allows one to define a CFT from some set of bulk correlators in de Sitter spacetime.
We may then proceed to analyze the basic consistency of the resulting CFT, to check whether it satisfies the basic
axioms expected of a Euclidean quantum field theory. These are known as the Osterwalder-Schrader axioms [12, 13].
One of these axioms is the Euclidean version of cluster decomposition, which requires correlators to factorize in the
limit of large separations. We find this fails in the case of the principal series, if, for example, operators of the form
L1L̄1O∆ are considered, where L1 and L̄1 are conformal generators that raise the weight by 1, and O∆ is a quasi-
primary operator with weight ∆. Note in ordinary CFTs with O∆ a primary field with positive conformal weight,
the combination L1O∆ would vanish. The operator L1L̄1O∆ will be dual to a graviton plus a massive matter field
insertion. The failure of cluster decomposition signals that the vacuum of the CFT is not unique, i.e. there can be
many excitations in the bulk that give rise to nontrivial operators on the boundary satisfying L0 = L̄0 = 0. This
follows from the lack of a positive energy theorem in the bulk theory [14],[15]. We note this does not immediately
imply infrared divergences in the bulk theory. In fact, the classical stability of de Sitter spacetime for pure gravity
or massless conformal matter coupled to gravity has been demonstrated [16–18]. Most likely, this result should be
interpreted as an incompleteness in the CFT dual to an interacting theory in de Sitter spacetime, a point we hope to
return to in future work.



3

A related construction of bulk operators from boundary operators in dS/CFT has been considered in [19, 20]. There
are numerous differences in the details and conclusions with the present work.

II. BASIC SETUP

In this section we will introduce some notation, broadly following the integral geometry approach of [11] in imaginary
Lobachevskian space, also known as elliptic de Sitter spacetime [21, 22]. Elliptic de Sitter is simply global de Sitter
modulo the antipodal map. Our main focus will be global de Sitter. In some ways elliptic de Sitter is simpler because
there is a single connected boundary at infinity, while in global de Sitter there are two disconnected boundaries, one
in the distant past, and one in the distant future. We will find in global de Sitter a CFT may be defined on either
boundary, and for the sake of definiteness we choose the past boundary. Our formulas will be explicitly written for
the case of three-dimensional de Sitter spacetime, but the results generalize immediately to higher dimensions.

The de-Sitter space can be realized on a hyperboloid embedded in four-dimensional Minkowski spacetime

x2
0 − x2

1 − x2
2 − x2

3 = −R2 , (1)

where R is some positive constant. The geodesic distance r between any two points

cosh2 kr =
〈x, y〉2

〈x, x〉 〈y, y〉 , (2)

where

〈x, y〉 = x0y0 − x1y1 − x2y2 − x3y3 ,

is the inner product of two vectors and k = 1
R is another positive constant.

The family of points satisfying 〈x, x〉 = −R2 with antipodal points (x ∼ −x) identified is called imaginary
Lobachevskian space or elliptic de Sitter spacetime. Without the identification we have ordinary global de Sitter
spacetime. The distance r can be real and non-negative (if 1 ≤ cosh kr ≤ ∞) or imaginary in the interval [0, πi

2k ] (if
0 ≤ coshkr ≤ 1). Any point on the light cone in the embedding space will be denoted by ξ, that is [ξ, ξ] = 0.

Now let us consider some surfaces in de Sitter with particularly simple transformation properties under the isometry
group. The equation describing a sphere of radius r with center at a is given by

〈x, a〉 2 = c 〈a, a〉 〈x, x〉 .

Consider taking the center to the infinity while ensuring that the sphere passes through a fixed point b. The surface
obtained in this way is called a horosphere. In this limit, the product c 〈a, a〉 is fixed to some constant c1 to obtain
the surface

〈x, ξ〉 2 = c1 〈x, x〉 . (3)

When c1 < 0 this is called a horosphere of the first kind. It is possible to normalize c1 = −1 by normalizing ξ. If
we set R = 1, so that 〈x, x〉 = −1 then the horospheres of the first kind look like

| 〈x, ξ〉 | = 1 . (4)

Thus a horosphere of the first kind may be specified by choosing a point ξ on the positive cone, 〈ξ, ξ〉 = 0 , ξ0 > 0.
When c1 = 0 one gets a horosphere of the second kind

〈x, ξ〉 = 0 . (5)

In this paper, our focus will be on the horospheres of the first kind, which will correspond to principal series repre-
sentations of the de Sitter group [11]. We consider further the horospheres of the second kind, which correspond to
the discrete series representations, in future work.
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III. BOUNDARY CFT OPERATORS

It is useful to begin by reviewing the decomposition of some general bounded, normalizable function on de Sitter
into components that transform as unitary irreducible representations of the conformal group [11]. For every f(x)
one constructs the integral transform

h(ω) =

ˆ

ω

f(x)dσ , (6)

and dσ is an invariant measure, and the integral is over a horosphere of first kind ω. Let the equation of a horosphere
be | 〈x, ξ〉 | = 1. Equation (6) can also be written as

h(ξ) =

ˆ

f(x)δ (| 〈x, ξ〉 | − 1)dx , (7)

where dx is the invariant measure on the de Sitter spacetime. This above map is nothing but a generalization of the
Fourier transform, which takes a function defined on the horosphere to a function defined on the lightcone labelled
by ξ. As we will see, ξ can be used to parametrize the boundary at past infinity in de Sitter.

Now consider functions h(ξ) over the positive sheet of the light cone where ξ0 > 0. These functions may be
decomposed into components with well-defined conformal weights by Fourier transforming

F (ξ; ρ) =

ˆ ∞

0

h(tξ)t−iρdt , (8)

where the complex conformal weight ∆ is related to the real parameter ρ via iρ = 1−∆. Let us note that inserting
(7) into (8) we have

F (ξ; ρ) =

ˆ ∞

0

dt

ˆ

dxf(x)δ (|〈x, tξ〉| − 1) t−iρ .

Performing the integral over t we arrive at

F (ξ; ρ) =

ˆ

dxf(x) |〈x, ξ〉|−∆
. (9)

Generalizing f to some bulk correlator of some scalar field of mass m, our goal will then be to view the analog
of F as a boundary correlator. A key difference with the work of Gelfand is that we must give up the condition of
normalizability (in the sense that

´

|f(x)|2dx is finite). As we will see, this the de Sitter isometry covariant component
of (7) will correspond to the residue of a pole in ρ2 −m2 reminiscent of the LSZ reduction formula in flat spacetime
[10].

A. Flat slicing

Horospheres of the first kind are diffeomorphic to flat spatial slices in de Sitter. It therefore will be convenient to
express the general coordinate invariant expression (9) on flat slices. See [23] for some related work in the context
of four-dimensional de Sitter. Setting R = 1, the 3-dimensional de Sitter hyperboloid can be parameterized by the
coordinates (η, y1, y2) via

x0 =
1

2
(η − 1

η
)−

∑

y2i
2η

x1 =
y1

η

x2 =
y2

η

x3 = −1

2
(η +

1

η
) +

∑

y2i
2η

,
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Figure 1. Penrose diagram for de-Sitter space. The vertical dashed line is the South pole. The left and right edges are North
pole which are identified with each other. Horizontal dashed lines are constant η slices. The figure shows the calculation of
bulk field from boundary operator in the past boundary. The boundary operator is smeared over the whole boundary. There
is branch cut in the smearing function for r > η. Continuing r and η to the complex plane via an iǫ prescription selects the
branch yielding a Bunch-Davies/Euclidean vacuum positive or negative frequency mode.

yielding the de Sitter metric with a flat spatial slicing and conformal time η

ds2 =
dη2

η2
− 1

η2

(

dy21 + dy22
)

.

The volume measure is

dx =
1

η3
dηdy1dy2 . (10)

A point on a light cone may be parameterized by

ξ = kλ(1 + z2, 2z1, 2z2, 1− z2) , (11)

where z2 = z21 + z22 . The coordinates z1, z2 label a point on the boundary at past infinity in de Sitter. In these
coordinates we have

〈x, ξ〉 = λη

(

1− (y1 + z1)
2

η2
− (y2 + z2)

2

η2

)

.

We will also need the measure on the cone

dξ =
dξ1dξ2dξ3

ξ0
,

and the measure on the boundary at infinity

dω = d2z .
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B. Transform from bulk to boundary

Our aim is to use the transform of Gelfand [11] as a guide to constructing the transform for the class of functions that
appear in correlation functions of quantum fields in de Sitter. In particular, these functions do not satisfy the compact
support condition used in Gelfand’s inversion theorem. This will lead us to build an analog of the flat-spacetime LSZ
reduction formula for de Sitter spacetime, requiring some important differences with Gelfand’s construction.

We begin by noting the mode expansion for a bulk scalar field of mass m [24]

φ(η, y) = c1

ˆ

d2k

(2π)2

(

akηH
(2)
iµ (|k|η) eik.y + a

†
kηH

∗(2)
iµ (|k|η) e−ik.y

)

, (12)

where c1 =
√
π
2 e

πµ

2 , µ =
√
m2 − 1, and H

(2)
iµ (|k|η) are Hankel functions of second kind. The operators ak and a

†
k are

annihilation and creation operators, with the ak annihilating the Bunch-Davies vacuum, and

[ak, a
†
k′ ] = (2π)2δ(2)(k − k′) .

To construct the boundary operator, we perform the following integral over region I of figure 1,

Φ∆(z) = c1

ˆ

d2k

(2π)2
(akηH

(2)
iµ (|k|η)eik.y + a

†
kηH

∗(2)
iµ (|k|η)e−ik.y)

(

1− (y1 + z1)
2

η2
− (y2 + z2)

2

η2

)−∆

η−(3+∆)dηd2y . (13)

We define the cut in the x−∆ factor as

x−∆ = |x|−∆e−i∆arg x ,

where argx ∈ (−π, π]. Note this choice of phase differs from the expression (9) and will be related to the choice of the
Bunch-Davies/Euclidean vacuum for the free theory. Other phase conventions can lead to the more general α-vacua
[25] which are thought to be unphysical [26].

At the level of the bulk correlators, the operator ordering is determined by continuing the bulk time η → η ± iǫ.
This then yields the distinctive signature of the Hadamard singularity of the two-point correlator in the light-like
limit, which in turn matches the short-distance singularities of flat-spacetime [27]. This continuation determines the

branch of the cut in (13), and as we will see projects onto the ak or the a
†
k terms dependent on the sign. Therefore

we define P∆ and P
†
∆ as follows

P∆(z) = Φ∆(z) , η → η + iǫ

P
†
∆(z) = Φ∆(z) , η → η − iǫ

with ǫ > 0. Performing the integrals we then get

P∆(z) = d(∆)
1

(∆ − 1)2 + µ2

ˆ

d2k

(2π)2
ak|k|−1+∆eik·z

P
†
∆(z) = d̃(∆)

1

(∆− 1)2 + µ2

ˆ

d2k

(2π)2
a
†
k|k|−1+∆e−ik·z ,

where

d(∆) = i22−∆e−iπ∆/2√πΓ(1 −∆) sin (π∆)

d̃(∆) = −i22−∆eiπ∆/2√πΓ (1−∆) sin (π∆)

We note the prefactors of the boundary operators have poles when ∆ = 1 ± iµ, reminiscent of the poles arising in
momentum space when one performs the LSZ reduction in flat spacetime, which yields the S-matrix. In the same way,
we find by taking the residues of these poles, we are able to define conformally covariant operators on the boundary

O∆(z) = d(∆)
i

2(∆− 1)

ˆ

d2k

(2π)2
ak|k|−1+∆eik·z , (14)
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where now ∆ = 1− iµ. The other pole yields the operator O2−∆(z). As we will see there is an equivalence between
these two operators, since either may be used to reconstruct the bulk annihilation mode. A similar relation is found
in the work of Gelfand. For the principal series, the representations corresponding to ∆ and 2 − ∆ are equivalent,
so the minimal spectrum of representations corresponds to µ > 0. The formulas carry over straightforwardly to the

operators O†
∆ and O†

2−∆ .
Using this construction, we may then build the boundary two-point correlators from the bulk Wightman function

by plugging into (13). The bulk Wightman function is [27]

GE(x, x
′) =

Γ(∆)Γ(2 −∆)

(4π)3/2Γ
(

3
2

) 2F1

(

∆, 2−∆;
3

2
;
1 + 〈x, x′〉

2

)

, (15)

where x and x′ are complexified to give the correct iǫ prescription near the light-like singularity. This may also be
written in terms of the integral over mode functions as

GE(x, x
′) = c21

ˆ

d2k

(2π)2
ηH

(2)
iµ (|k|η) η′H(2)∗

iµ (|k|η′) eik.(y−y′) .

Performing the bulk to boundary transform on each mode function, and taking residues yields the non-vanishing
two-point correlators

〈

O∆(z)O†
∆(0)

〉

= −π sin (π∆)

(∆− 1)
2

1

|z|2∆
〈

O2−∆(z)O†
2−∆(0)

〉

=
π sin (π∆)

(∆− 1)
2

1

|z|2(2−∆)
.

It is helpful to recall that scalings and translations fix the form of the correlator, but only covariance under inversions
gives the requirement that each operator in the two-point function have the same conformal weight. Potential off-
diagonal contributions vanish as required when the integrals (13) are performed.

The operators O∆, etc. are quasi-primary operators, in the sense that they transform under SL(2, C) transforma-
tions

z → αz + β

γz + δ
, αδ − βγ = 1

O∆(z) → |γz + δ|−2∆ O∆

(

αz + β

γz + δ

)

.

Note, however, that in the principal series, they are not annihilated by the positive weight generators of SL(2, C).
Thus L1O∆ 6= 0 and L̄1O∆ 6= 0 so that the operators are not primary operators. The only representations of the
conformal group that behave as the usual CFT primary operators are the discrete series.

The appearance of O∆ and O†
∆ as separate operators in the CFT is somewhat unusual. The Hermitian conjugation

is not the natural one typically used in conformal field theory, but rather refers to bulk Hermitian conjugation with
respect to the Klein-Gordon inner product. Likewise, it is with respect to this bulk inner product, the one typically
used in quantum field theory in curved spacetime, that the representations are unitary.

Having performed this construction for a single set of de Sitter mode functions, and the two-point function, one
can try to generalize to higher point functions. As is clear from the above discussion, the residue of the integral
transform (13) essentially picks off a free ingoing or outgoing mode, depending on the branch of the integrand the iǫ
term picks. Therefore, if the bulk quantum field theory satisfies cluster decomposition, one may apply the transform
to a multi-point correlation function to define a de Sitter version of the S-matrix, in analogy with the LSZ reduction
formula. The resulting S-matrix should transform covariantly under global conformal transformations. As we will see
shortly, the existence of this S-matrix will hinge on this assumption of cluster decomposition.

IV. RECONSTRUCTING THE BULK

It is helpful to again recall the integral geometry construction of [11]. Having constructed the boundary function
h(ξ), the bulk function is reconstructed by the inverse transform

f(x) = − 1

16π2

ˆ

δ′′ (|[x, ξ]| − 1)h(ξ)dξ , (16)
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where the measure dξ is described in more detail in [11]. This can also be written as

f(x) = − 1

16π2

ˆ ∞

0

δ′′(t− 1)H(x, t)dt = − 1

16π2
H ′′

t (x, 1) , (17)

where

H(x, t) =

ˆ

h(ξ)δ (|[x, ξ]| − t) dξ .

Now consider functions h(ξ) over the positive sheet of the light cone. These functions may be decomposed into
components with well-defined conformal weights by Fourier transforming

F (ξ; ρ) =

ˆ ∞

0

h(tξ)t−iρdt , (18)

where the complex conformal weight ∆ is related to the real parameter ρ via iρ = 1−∆. The inverse Fourier transform
becomes

h(ξ) =
1

8π

ˆ ∞

−∞
F (ξ; ρ)dρ . (19)

Using equation (18) and (19) we get

f(x) = − 1

2(4π)3

ˆ ∞

−∞

ˆ

F (ξ; ρ)δ′′ (|[x, ξ]| − 1)dξdρ . (20)

This can be written in the form

f(x) =
1

4(8π)3

ˆ ∞

−∞
dρ ρ(ρ+ 4i)

ˆ

Γ

dω F (ξ; ρ) |[x, ξ]|−iρ−1 , (21)

where dω is a measure on the boundary at infinity, obtained by modding out the overall scale from dξ. The surface
Γ is an arbitrary surface on the light-cone that intersects each of its generators, and dω is defined by dξ = dωdP
where P (ξ) = 1 is the equation of Γ. Thus we get a function in the bulk by applying the inverse integral transform
to functions on the boundary transforming with well-defined conformal weights. Finally, a symmetry of this integral
relates the integral over ρ from −∞, 0 to the range 0,∞, allowing the range to be collapsed to one copy of each
irreducible principal series representation ρ = 0 · · ·∞.

A. Bulk operators

Again we will need to generalize these methods to the distributions encountered in quantum field theory. Our goal
is to reconstruct the bulk field, at the free level (12) using only the covariant boundary operators (14). For simplicity
we assume only a single mass field with mass m is present. Generalization to the quasi-free case, where a superposition
of masses is present is straightforward. The inverse transform of O∆ , in the flat-slicing, is

φ−(η, y) = − (∆− 1)2

2π2
(cotπ∆+ i)

ˆ

d2z

(

η2 − z2

η

)∆−2

O∆(z + y) .

The continuation of η → η − iǫ defines the branch of the integrand. Likewise we define

φ+(η, y) =
(∆− 1)

2

2π2
(cotπ∆− i)

ˆ

d2z

(

η2 − z2

η

)∆−2

O†
∆(z + y) ,

where now η → η+ iǫ. Inserting the expression (14) and performing the integrals, one recovers (12) with φ = φ++φ−.
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The same method may be used to reconstruct the bulk Wightman function in the Bunch-Davies/Euclidean vacuum

〈φ (η1, y1)φ (η2, y2)〉 = − (∆− 1)
4

4π4
csc2 (π∆)

ˆ

d2z1

(

η21 − z21
η1

)∆−2 ˆ

d2z2

(

η22 − z22
η2

)∆−2

×
〈

O∆(z1 + y1)O†
∆(z2 + y2)

〉

,

where on the right-hand-side a CFT correlator appears, while on the left, a bulk Wightman function appears. In
this formula, it is understood that η1 → η1 − iǫ and η2 → η2 + iǫ. Likewise the boundary radial directions must be
continued in the same way, which regulates the singularity in the integrand when points coincide. We emphasize this
reproduces the full bulk Wightman function for general points in the bulk of de Sitter (15).

This construction allows us to build field operators at arbitrary bulk points in de Sitter yielding important insight
into how the de Sitter time arises from the purely Euclidean CFT. Likewise, the Euclidean CFT does not have a
natural operator ordering. In the bulk, this arises from the complexification of the radial direction in the CFT,
combined with the branch choices in the smearing functions. This allows us to build ingoing or outgoing modes in
the bulk. For a bulk theory with some perturbative expansion, this approach is sufficient to reconstruct the bulk
correlators from the boundary correlators, by reconstructing the Wick expansion of the bulk correlators, using the
building blocks we have presented.

V. EUCLIDEAN AXIOMS

For a well-defined set of bulk correlators, we can use the prescription of section III to define a conformally covariant
set of boundary correlators. These then may be viewed as a definition of some Euclidean conformal field theory that
includes quasi-primary operators corresponding to the principal series.

The basic axioms of Euclidean quantum field theory were formulated long-ago by Ostwerwalder and Schraeder.
One of the most elementary axioms needed for a consistent Euclidean theory is that of cluster decomposition, namely

lim
r→∞

〈φ(r)φ′(0)〉 = 〈φ(r)|0〉 〈0|φ′(0)〉 ,

so that correlators factorize when groups of insertions are separated by long distance. This is the Euclidean analog
of uniqueness of the vacuum state in Lorentzian signature. It is straightforward to see this can never be the case for
a CFT that contains operators based on the principal series. Consider the CFT correlator

〈

(

L1L̄1

)n O∆(z)
(

L1L̄1

)n O†
∆

〉

∝ 1

|z|2∆−4n
.

This grows with distance for n > 0, violating cluster decomposition. If instead one had a typical CFT, and O was a
primary operator, one would have the identity LnO = 0 for n > 1, avoiding this problem.

We interpret the results of this paper as a proof by contradiction that nontrivial CFTs based on the principal series
cannot exist. Nevertheless, this result has important implications for theories in the bulk. In analogy with AdS/CFT,
we can interpret the operator

(

L1L̄1

)

O∆(z) as dual to a composite of a bulk graviton and a scalar matter field. This
violation of cluster decomposition on the boundary arises because the bulk theory has no positive energy theorem
[14]. The Killing vector associated with L0 + L̄0 is not globally timelike. There are therefore many bulk excitations
satisfying L0 = L̄0 = 0 at the boundary, which will appear as intermediate states when one tries to factorize a CFT
correlator.

We conclude then that the Euclidean CFT associated with a free massive scalar in de Sitter violates the basic
axioms of Euclidean quantum field theory. We take this as a sign that the holographic dual is incomplete as a CFT,
and we hope to return to a more constructive approach to building the correct holographic dual in future work.
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