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We test a model of inflation with a fast-rolling kinetic-dominated initial condition against data
from Planck using Markov chain Monte Carlo parameter estimation. We test both an m2φ2 potential
and the R+R2 gravity model and perform a full numerical calculation of both the scalar and tensor
primordial power spectra. We find a slight (though not significant) improvement in fit for this model
over the standard eternal slow roll case.

I. INTRODUCTION

One of the greatest sources of data for modern
cosmology is the cosmic microwave background ra-
diation (CMB). This has been measured to extreme
precision and the concordance model of cosmology
has achieved tremendous success in matching the
data. However, there are still small anomalies, one
of which is a deficit of power in the CMB at low
multipoles. A cutoff in the primordial power spec-
trum from inflation at small k translates into a re-
duction of power in the CMB at low multipoles. This
low-` anomaly consists mainly of a slight dip in the
power spectrum at ` ∼ 20−40 and a slightly reduced
quadrupole, though because of cosmic variance the
significance of the anomaly is not high. In light of
this low-` anomaly, there has been a great deal of in-
terest in theories that predict a cutoff in the power
spectrum [1, 2]. One of these theories is a kinetic-
dominated (or fast-roll) start to slow-roll inflation,
studied in [3–12].

The standard slow roll model of inflation works
by positing a new field, φ, the inflaton, with some
potential V (φ). One of the most common choices of
potential and the one we will use here is V = 1

2m
2φ2.

The field rolls down the inflaton potential, obeying
the equation of motion

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0, (1)

where H = ȧ
a is the Hubble parameter and a is the

scale factor. The second term in this equation can
be viewed as a friction term, and so the field can
approach a terminal velocity and the field is in slow
roll. If the field starts very high up on a suitably
chosen potential, it will rapidly approach slow roll,
and then will have a long period of slow roll inflation
until the field exits the slow roll regime as it nears
the minimum of the potential.

It is possible that the effective field theory de-
scription of inflation breaks down near the Planck

scale. In some models this manifests itself as a cut-
off on the minimum value of the wavenumber k in
the primordial power spectrum [1]. This cutoff in the
primordial power spectrum also appears in theories
with a finite number of total e-foldings of inflation.
Our work is partially motivated by holographic ideas
that suggest an upper bound to the total number of
e-foldings of inflation [13–17], and in Sec. IV we dis-
cuss how our model relates to those bounds.

In this work, we start the motion of the inflaton
field on the potential in a period of fast roll before
slow roll inflation, and vary the initial conditions
of the field. We solve for the predicted CMB power
spectrum using a full numerical approach, and deter-
mine which parameters are the best fit to the Planck
data by varying them with a Markov chain Monte
Carlo (MCMC) sampler.

The Planck collaboration has just published their
latest data and results [3], and have included a an-
alytic model [6] intended to be an approximation to
the numerical model we analyze here. Our model
is very similar, but more complete by not making
as many approximations, and performing the full
calculations for both the scalar and tensor primor-
dial power spectra. Our more accurate model better
tests the underlying theory and a comparison of our
model to theirs1 can be found in Sec. IV. Unfortu-
nately, the improvements introduced in our model
do not yield a significant improvement in the fit to
the Planck data.

II. BACKGROUND

We first consider a model of inflation with a poten-
tial V = 1

2m
2φ2. We numerically calculate the pri-

1 The authors of Ref. [6] also perform an exact numerical cal-
culation of the scalar primordial power spectrum to fit data
from WMAP using a grid method but this exact numerical
solution is not used by the Planck team.



mordial power spectrum using the Mukhanov-Sasaki
equation [18, 19] with a Bunch-Davies vacuum [20]
at early times and kinetic-dominated initial condi-
tions to start inflation.

Evolution of perturbations and the primordial
power spectrum are given by the Friedmann equa-
tions and the Mukhanov-Sasaki equation:

H2 +
K

a2
=

1

3

(
1

2
φ̇2 + V (φ)

)
(2)

φ̈+ 3Hφ̇+
dV (φ)

dφ
= 0 (3)

ξ′′k +

(
k2 − z′′

z

)
ξk = 0 (4)

y′′k +

(
k2 − a′′

a

)
yk = 0 (5)

z =
φ′

H
= a

φ̇

H
, (6)

where K is the curvature which we set to zero to re-
quire a flat universe, ξk and yk are the scalar and
tensor mode functions respectively for a mode of
wavenumber k, and a prime represents the derivative
with respect to conformal time η, while a dot rep-
resents the derivative with respect to proper time t.
Here we are working in units where h̄ = c = 8πG =
1.

For the quadratic inflation potential in a flat uni-
verse with a fast roll start where φ̇2 � m2φ2, we
choose the initial conditions of the background for
the fast roll start to inflation as in [6]. We set the
scale factor a = 1 and the conformal time η = 0 at
the start of the numerical integration in the fast-roll
regime:

a =
√

1 + 2hη (7)

z′′

z
=
a′′

a
=

−h2

(1 + 2hη)2
, (8)

where h is the conformal time Hubble parameter at
η = 0.

We assume initial conditions for the scalar and
tensor mode functions as done in [6]:

ξk = yk =

√
π

8h

√
1 + 2hηH

(2)
0

(
kη +

k

2h

)
, (9)

where H
(2)
0 denotes the Hankel function of the sec-

ond kind with index zero. These initial conditions
have been obtained by solving Eqns. (4) and (5) as-
suming Eq. (8) and requiring that we must have con-
sistency with the predictions of inflation without a

kinetic stage in the limit that the kinetic stage is
pushed infinitely far into the past.

To make the calculation easier for large k, we make
the reparameterization

ξ → Xe−ikη (10)

y → Y e−ikη, (11)

which results in a set of transformed Mukhanov
Sasaki equations

X ′′ − 2ikX ′ − z′′

z
X = 0 (12)

Y ′′ − 2ikY ′ − a′′

a
Y = 0, (13)

with initial conditions

X0 = ξ0 (14)

Ẋ0 = ξ̇0 +
ik

a0
ξ0 (15)

Y0 = y0 (16)

Ẏ0 = ẏ0 +
ik

a0
y0. (17)

We will choose to start the numerical integration
in the kinetic dominated regime when φ̇0 is one hun-
dred times the value of mφ0. For convenience, in

several equations we use rinit ≡ φ̇0

mφ0
.2 In order to

set up the numerical integration, we take the limit
η → 0 and the initial conditions are:

a(0) = a0 = 1 (18)

φ(0) = φ0 (19)

φ̇(0) = φ̇0 = rinitmφ0 (20)

h =

√
r2init + 1

6
mφ0 (21)

X0 = Y0 =

√
π

8h
H

(2)
0

(
k

2h

)
(22)

Ẋ0 = Ẏ0 =

√
πh

8
f

(
k

2h

)
(23)

f(x) = (1 + 2ix)H
(2)
0 (x)− 2xH

(2)
1 (x), (24)

We solve the Friedmann equations to get the back-
ground geometry (shown in Fig. 1), and then use the

2 Equations (7) and (8) are correct in the r → ∞ limit. In
practical terms, the error caused by using these equations
for r = 100 is negligible.
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results of this to find z′′/z, from which we solve the
Mukhanov-Sasaki equation where we use ordinary
time, not conformal time, as the independent vari-
able. Finally, we obtain the scalar and tensor power
spectra for primordial perturbations:

PR =
k3

2π2

∣∣∣∣ξkz
∣∣∣∣2 (25)

Pt =
k3

π2

∣∣∣∣2yka
∣∣∣∣2 . (26)

The evolution of modes of k can be seen from
Fig. 2 and for comparison the same plot for stan-
dard slow-roll inflation is shown in Fig. 3. When
k2 � z′′/z, |ξk| does not evolve, but z does, and
is roughly proportional to a in both the fast roll
and slow roll cases (though not during the transi-
tion between them), causing the downward slope of
the large k modes on Fig. 2. When k2 � z′′/z,

R = ξk
z does not evolve, and we say that the modes

have frozen out. The integration may be stopped
when the curvature perturbation R stops evolving
(see Fig. 2), which in the standard slow roll model is
usually assumed to happen after k/aH � 1, which is
a good approximation for modes larger than the cut-
off. For modes k smaller than the cutoff, freeze-out
of modes can be well approximated by the condition
that the slow roll parameter obeys η � 1 [21].3 For
these small k modes in our model, we find that η � 1
when t� 1/m and stop the integration accordingly.

The end of inflation is assumed to occur when
1/aH reaches a minimum. At this time, we as-
sume instant reheating into a radiation dominated
universe as shown in Fig. 1. A longer period of re-
heating would impact the matching of the solution
for the power spectrum from inflation onto the sub-
sequent evolution of the universe. As such, it would
result in a shift in the relationship between φ0 and
the value of the cutoff in k. A longer period of re-
heating would correspond to fewer e-foldings of in-
flation, and hence a decrease in the effective value of
ns for the part of the power spectrum with k greater
than the cutoff.4 An example of the power spectra
for both scalars and tensors is shown in Fig. 4.

3 The general condition for freeze-out is always k2 � z′′/z.
4 Since the constraints on φ0 are found to be weak in Sec. IV,

a full analysis of the impact of uncertainties in reheating
was not performed.
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FIG. 1: Comoving Hubble length as a function of scale
factor from the numerical code for a universe with an
initial period of kinetic-dominated fast roll (KD), fol-
lowed by slow roll inflation and reheating. In this plot,
modes with wavenumber k can be represented as horizon-
tal lines, and a range of observable scales are shown. We
have chosen this plot to correspond to the best fit param-
eters to the Planck data, φ0 = 20.65, and m = 6× 10−6

corresponding to roughly 65 total e-foldings of inflation.
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FIG. 2: The power in modes of R (shown for the
best fit values of m and φ0) as a function of scale
factor for selected modes with log10(k/Mpc−1) ∈
{−6,−5,−4,−3,−2,−1, 0} from lower to upper. The
features near ln(a) ≈ 2 − 3 originate from the transi-
tion between the kinetic stage and slow-roll. We see
from this plot that power is suppressed in modes with
log10(k/Mpc−1) <∼ −3.5. We show the case of standard
slow-roll inflation in Fig. 3 for comparison.

III. NUMERICAL IMPLEMENTATION

We solve the full Mukhanov-Sasaki equation start-
ing from initial conditions, and solve for exact pri-
mordial power spectra for both scalars and tensors,
and use this as numeric input for the Boltzmann
code CLASS [22, 23] to calculate the C`’s. We per-
form a full MCMC calculation, solving for the ex-
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FIG. 3: The power in modes of R for standard slow-roll
inflation as a function of scale factor for selected modes
with log10(k/Mpc−1) ∈ {−6,−5,−4,−3,−2,−1, 0}
from lower to upper. The convergence of the curves to
approximately the same value shows the approximate
scale-invariance of the power spectrum.

Scalars

Tensors

10-6 10-5 10-4 0.001 0.01 0.1 1
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

k�Mpc-1

P
HkL

�10
-

9

FIG. 4: The primordial power spectrum for scalars
and tensors from the best fit numerical solution of the
Mukhanov-Sasaki equation. Here mφ = 6 × 10−6 and
φ0 = 20.65.

act numerical solution at every choice of parame-
ters. We find that the speed of the program is
roughly halved by adding the numerical computa-
tion of scalar and tensor primordial power spectra.

We split the equations for the perturbations X
and Y into real and imaginary parts, and integrate
these equations together with the Friedmann equa-
tions for the evolution of the background simultane-
ously. For this purpose, we use a C implementation
of a numerical differential equation solver that auto-
matically switches between methods suitable for stiff
and non-stiff equations (LSODA) [24] and run this
solver from the command line in the external P(k)

module [25] of CLASS.
A comparison of our model to the data for the

CMB power spectrum is shown in Figs. 5 and 6.
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FIG. 5: A comparison with data of different predicted
CMB power spectra with varying cutoffs (Calculated
using the CLASS Boltzmann code). The plots are
all generated with mφ = 6 × 10−6 and where φ0 ∈
{20.5, 20.6, 20.7, 20.9} (From the lowest curve to the
highest on the left hand side).

IV. MCMC

We run the MCMC using the CosmoSLik sam-
pler [26], and vary over the values of m and φ0, in
addition to the standard ΛCDM parameters using
the likelihoods for the temperature and low-` polar-
ization CMB power spectra from the Planck 2013
data. The results of the MCMC are shown in Fig. 7.
Because large values for φ0 are observationally indis-
tinguishable from standard slow-roll inflation and in
order for the chain to converge, we impose an upper
bound on the value of φ0 shown in Fig. 7. We find a
slight preference for a kinetic start to inflation with
the m2φ2 potential as opposed to always being in
slow roll. However, the likelihood is only a factor of
two larger for the best fit cutoff model, and hence
the improvement is not significant. The Planck col-
laboration [3] showed that in a similar model [6],
the expected improvement in log likelihood is not
significant compared to the expected improvement
from fitting an ensemble of cosmologies with perfect
power laws as initial conditions and departures due
solely to cosmic variance. The model used for the
power spectrum in that case is similar to our exact
numerical solution. Our numerical solution shows
that there is a sharper suppression of power at small
k, and more narrow oscillations of greater amplitude
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FIG. 6: A comparison with data of different pre-
dicted CMB power spectra with varying cutoffs (Cal-
culated using the CLASS Boltzmann code). The plots
of the numerical primordial power spectra (solid) are
all generated with mφ = 6 × 10−6 and where φ0 ∈
{20.5, 20.6, 20.7, 20.9} (From the lowest curve to the
highest on the left hand side). The dashed curves
show the ansatz of Ref. [6], with ln(kc/Mpc−1) ∈
{−7,−8,−9}. Though all curves are capable of suppress-
ing the lower multipoles, they are unable to reproduce
the deficit of power seen in the data at ` ≈ 20− 40 while
preserving the good fit to the rest of the power spectrum.

in the cutoff region as compared to the model of [6]
used in the Planck paper as shown in Fig. 8. Also it
appears that the kinetic start to inflation is unable to
reproduce the shape of the observed dip in the CMB
power spectrum in the neighborhood of ` ≈ 20− 40.
Interestingly, our best fit value of φ0 ≈ 20.65 is very
close to saturating the holographic bounds of Banks-
Fischler [17] and de Sitter Equilibrium [14–16] shown
in Fig. 9.

V. R+R2 INFLATION

We also adapt the method utilized for the m2φ2

potential to an R + R2 gravity model [27]. This
model is the first inflationary model proposed, and
is still an excellent fit to the Planck data.5 It has an
action

S =

∫
d4x
√
−g

M2
pl

2

(
R+

R2

6M2

)
. (27)

We work in the Einstein frame where the infla-
tionary potential becomes:

V (φ) = Λ4
(
e−
√

2
3φ − 1

)2
. (28)

This model is attractive due to its prediction of
reduced tensor power. For this model, we also ac-
commodate a variable length of reheating through
varying an additional parameter kc corresponding to
the minimum value of aH which occurs during the
transition from kinetic domination to slow roll. We
incorporate the same formalism used for the m2φ2

model and obtain parameter constraints on Λ, kc,
and φ0 as shown in Fig. 10. Because of the reduced
tensor power, this potential is a better fit to the
Planck data than the m2φ2 potential, however we
still do not obtain a significant improvement in the
fit due to the presence of a fast-roll start to inflation.

VI. DISCUSSION

Our work suggests that adding in a kinetic-
dominated start to inflation does not significantly
improve the fit to the CMB data from Planck. De-
spite this, there is a slight (though not significant)
preference for a cutoff at approximately the value
expected from a theory of finite inflation such as
in [28].

Though our model has many similarities to the an-
alytical model of Ref. [6] used to fit the Planck data
in [3], we had hoped that by correcting for these
differences in the MCMC we would improve the fit
to the Planck data. However, it appears that the
Planck data is not able to distinguish these differ-
ences, and thus our results do not significantly favor
a cutoff in the primordial power spectrum.
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FIG. 7: The MCMC likelihood distributions of parameters. The mean values of parameters are displayed along with
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FIG. 8: The primordial power spectrum for scalars from
the numerical solution of the Mukhanov-Sasaki equation
(dotted), and compared to the ansatz of Contaldi et al.
(lower solid) and the analytic model again from Contaldi
et al. used in the Planck paper (upper solid). The dotted
numerical curve has mφ = 6× 10−6 and φ0 = 20.5.
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FIG. 9: Comoving Hubble length as a function of scale
factor from the numerical code evolved from the fast
roll start to the end of inflation joined with the ana-
lytic solution for instantaneous reheating into radiation
domination followed by matter domination and cosmo-
logical constant domination (solid). Increasing the ini-
tial value of the scalar field causes slow roll inflation
to begin earlier as shown by the dotted lines where
φ0 ∈ {20.0, 20.5, 21.0, 21.5}, and m = 6 × 10−6. Chang-
ing the value of m in a manner consistent with the ob-
served perturbation amplitude results in subtle differ-
ences that are too small to be seen on the scale of this
plot. Modes with wavenumber k can be represented as
horizontal lines, and the holographic bounds of Banks-
Fischler (lower) and from de Sitter Equilibrium (upper)
are shown as dashed lines. The solid line corresponds to
the best fit value of φ0 ≈ 20.65 from the MCMC, and
this value almost exactly saturates the Banks-Fischler
bound.

8



τ

9.36

9.51

9.66

9.80

9.95

φ
0

7.51

8.21

8.91

9.61

10.31

lo
g(
k
c
)

3.02

3.25

3.48

3.72

3.95

Λ
/1

0−
3

0.02159
0.02184
0.02209
0.02234
0.02259

Ω
b
h

2

0.1153

0.1174

0.1196

0.1217

0.1239

Ω
c
h

2

0
.0

6
4

0
.0

7
6

0
.0

8
9

0
.1

0
1

0
.1

1
4

τ

0.0104044
0.0104103
0.0104163
0.0104223
0.0104282

θ M
C

9
.3

6

9
.5

1

9
.6

6

9
.8

0

9
.9

5

φ0

7
.5

1

8
.2

1

8
.9

1

9
.6

1

1
0
.3

1

log(kc )

3
.0

2

3
.2

5

3
.4

8

3
.7

2

3
.9

5

Λ/10−3

0
.0

2
1
5
9

0
.0

2
1
8
4

0
.0

2
2
0
9

0
.0

2
2
3
4

0
.0

2
2
5
9

Ωbh
2

0
.1

1
5
3

0
.1

1
7
4

0
.1

1
9
6

0
.1

2
1
7

0
.1

2
3
9

Ωch
2

0
.0

1
0
4
0
4
4

0
.0

1
0
4
1
0
3

0
.0

1
0
4
1
6
3

0
.0

1
0
4
2
2
3

0
.0

1
0
4
2
8
2

θMC

FIG. 10: The MCMC likelihood distributions of parameters for the R + R2 inflation model. The mean values of
parameters are displayed along with one and two sigma confidence intervals. The parameters Λ and φ0 together
determine both the amplitude of primordial perturbations and their effective spectral index. The parameter kc is
not sufficiently constrained. Small values of kc are ruled out as they would give too much power suppression, and
large values would be observationally indistinguishable from standard slow roll inflation. As with m2φ2 inflation, the
presence of a cutoff can at best increase the likelihood by a small factor relative to standard slow roll inflation.
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