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Among various strong-curvature extensions of General Relativity, Einstein-Dilaton-Gauss-Bonnet
gravity stands out as the only nontrivial theory containing quadratic curvature corrections while
being free from the Ostrogradsky instability to any order in the coupling parameter. We derive an
approximate stationary and axisymmetric black hole solution of this gravitational theory in closed
form, which is of fifth order in the black hole spin and of seventh order in the coupling parameter of
the theory. This extends previous work that obtained the corrections to the metric only to second
order in the spin and at the leading order in the coupling parameter, and allows us to consider values
of the coupling parameter close to the maximum permitted by theoretical constraints. We compute
some quantities which characterize this solution, such as the dilaton charge, the moment of inertia
and the quadrupole moment, and its geodesic structure, including the innermost stable circular
orbit and the epicyclic frequencies for massive particles. The latter provides a valuable tool to test
General Relativity against strong-curvature corrections through observations of the electromagnetic
spectrum of accreting black holes.

I. INTRODUCTION

Observational and experimental tests of General Re-
lativity (GR) [1] have mostly probed the weak-field/slow-
motion regimes of the theory, while a number of strong-
field, relativistic GR predictions still remain elusive and
difficult to verify [2, 3]. Furthermore, a series of long
lasting problems in Einstein’s theory – such as the accel-
erate expansion of the Universe, dark matter, the nature
of curvature singularities and the quest for an ultraviolet
completion of GR – have motivated strong efforts to de-
velop extended theories of gravity which would modify
GR in its most extreme regimes while conforming with
current weak-field observations [4].

Black holes (BHs) are genuine strong-field predictions
of GR and have no analog in Newtonian theory. Thus,
they are natural candidates to test gravity in the strong-
field regime. Future networks of electromagnetic detect-
ors [5–8] and ground-based gravitational-wave detect-
ors [9, 10] will allow us to measure some crucial prop-
erties of BHs, such as their shadows, the location of the
event horizon and of the innermost stable circular orbit
(ISCO). This information will be instrumental to test the
Kerr hypothesis, according to which all stationary astro-
physical BHs are uniquely described by the Kerr family,
and are thus characterized by only two parameters: their
mass and angular momentum (see e.g. Ref. [11] and ref-
erences therein).

In recent years, several modified theories of gravity
have been proposed. They can be divided in various cat-
egories, each one lifting some of the fundamental prin-
ciples (Lorentz invariance, weak and strong equivalence
principles, massless spin-2 mediators, etc...) upon which
Einstein’s theory is uniquely built [4]. From this and
other classifications, it emerges that one of the simplest

and best motivated ways to modify GR consists of includ-
ing a fundamental scalar field which is non-minimally
coupled to the metric tensor. In order to modify the
strong-curvature regime, it is natural to couple this scalar
field, in the gravitational action, to terms quadratic in
the curvature tensor. Such couplings can also be inter-
preted as the first terms in the expansion in all possible
curvature invariants, as suggested by low-energy effect-
ive string theories [12]. Generally, a quadratic curvature
term in the action leads to field equations of third (or
higher) order, which are subject to Ostrogradsky’s in-
stability [13]. Therefore, these theories should be con-
sidered as effective, i.e., truncations of a theory with
further terms in the action, which are neglected in the
perturbative regime.

It should also be mentioned that quadratic curvature
terms are crucial, not only to modify the strong-curvature
regime of GR, but also to affect the behavior of stationary
BHs; indeed, standard scalar-tensor theories (in which
one or more scalar fields are included in the gravitational
sector of the action) satisfy the so-called no-hair theor-
ems, i.e., stationary, vacuum BHs are the same as in GR
[14–16] (but see [17–19] for possible violations of these
theorems). When quadratic curvature terms are included
in the action, instead, stationary BH solutions are differ-
ent.

We shall consider a member of this family of mod-
ified gravity theories, Einstein-Dilaton-Gauss-Bonnet
(EDGB) theory, in which a scalar field (the dilaton) is
coupled to the Gauss-Bonnet invariant [12, 20]:

R2
GB = RαβγδR

αβγδ − 4RαβR
αβ +R2 (1)

in the action. EDGB gravity is one of the best motivated
alternatives to GR. Indeed, it is the only theory of gravity
with quadratic curvature terms in the action, whose field
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equations are of second differential order for any coup-
ling, and not just in the weak-coupling limit which is as-
sumed in the effective-field-theory approach [4]. As a con-
sequence, EDGB gravity is ghost-free, i.e. it avoids the
Ostrogradsky instability [13]. Furthermore, as mentioned
above, the higher-curvature coupling – which modifies
the strong-curvature regime of gravity – violates the hy-
pothesis of the BH no-hair theorems, so that BH solu-
tions in EDGB gravity are different from those predicted
by GR and provide the ideal arena for genuine strong-
field tests of the Kerr hypothesis. Finally, the EDGB
term naturally arises in low-energy effective string theor-
ies [21].

In this work, we construct an analytical, perturbat-
ive solution of EDGB theory, which describes a slowly-
rotating BH endowed with a scalar field. To this aim, we
extend the formalism developed in [22, 23] up to fifth or-
der in the BH (dimensionless) spin parameter χ = J/M2,
where J and M are the angular momentum and the
Arnowitt-Deser-Misner mass of the solution, respectively.

Analytical BH solutions of EDGB theory in the small-
coupling limit have been investigated in [24, 25], where
stationary, spherically-symmetric configurations where
found. Approximate, stationary and axisymmetric solu-
tions to linear and quadratic order in the BH spin
were obtained in [26] and [27], respectively. Both these
works considered a weak-field expansion of the coupling
between the scalar field and the Gauss-Bonnet invariant
R2

GB in terms of a dimensionful coupling constant α. Ex-
act numerical solutions were constructed to zeroth [20]
and first order [28] in the spin, and also for arbitrary
values of the angular momentum [29, 30]. Although ex-
act in α, such solutions are of limited practical use (for
instance for Monte Carlo data analysis) because they re-
quire a numerical integration for each set of parameters.
On the other hand, numerical solutions are necessary in
regimes where the slow-spin expansion does not converge
and are therefore complementary to our analysis.

Our results extend the study carried out so far. In
particular, we go beyond the analysis of Ref. [27], where
a BH solution was obtained to second order both in the
spin and in the coupling parameter. Indeed, we compute
the metric tensor and the scalar field up to O

(
ζ7, χ5

)
,

where ζ ≡ α/M2 and α is the EDGB coupling constant.
We use this expansion to derive the main features of the
solution, such as the geometry of the event horizon and
of the ergoregion. Furthermore, we study the geodesic
structure of this solution, by computing the ISCO and
the epicyclic frequencies (see e.g. Refs. [31–33]) consist-
ently with our approximation scheme. We compare these
quantities with those obtained in [34], where a numer-
ical solution was derived, which is exact in the coupling
parameter (i.e., with no perturbative expansion in ζ) and
approximate to linear order in the BH spin. We find rel-
ative errors at most of the order of 1% for the maximum
value of ζ allowed by theoretical constraints for the ex-
istence of BH solutions, ζ . 0.691 [20], and much smaller
for less extreme couplings.

The results of this paper can be useful to devise tests
of GR in the strong-field regime through astrophysical
observations of BHs. For instance, we have shown [34]
that observations of quasi-periodic oscillations of accret-
ing BHs, with the sensitivity of recently proposed large-
area X-ray space telescopes (e.g. [6, 7]), allow us to set
constraints on the parameter space of EDGB theory,
thus probing the strong-field regime of gravity (see also
Ref. [35] for a recent study). However, since BH solu-
tions in EDGB theory (for finite α) were only known at
first order1 in the spin parameter χ, in [34] we only con-
sidered BHs with very slow rotation rate, for which the
deviations from GR are expected to be small.

This paper is organized as follows. In Section II we de-
rive our solution of the EDGB field equations, describing
rotating BHs up to O

(
ζ7, χ5

)
. In Section III we study

this solution, computing its geometrical properties, the
location of the ISCO, the azimuthal and epicyclic fre-
quencies. We also estimate the accuracy of our approx-
imation in the determination of these quantities and how
our results improve on the existing literature. In partic-
ular, we discuss how the spin correction to the azimuthal
and epicyclic frequencies can affect possible tests of GR
based on observations of accreting BHs, such as those
discussed in [34]. Finally, in Section IV we draw our
conclusions.

II. SPINNING BLACK HOLES IN
EINSTEIN-DILATON-GAUSS-BONNET THEORY

In this Section we derive the spacetime metric and
scalar field, describing rotating BHs in EDGB theory,
up to O

(
ζ7, χ5

)
.

A. EDGB gravity

Einstein-Dilaton-Gauss-Bonnet theory is defined by
the following action [12, 20]:

S =
1

2

∫
d4x
√
−g
[
R− 1

2
∂µΦ∂µΦ +

αeΦ

4
R2

GB

]
, (2)

where g < 0 is the metric determinant, Φ is a scalar field
coupled to the Gauss-Bonnet invariant (1) and α > 0 is
the coupling constant [20]. Since we are interested in BH
solutions, in the action above we have neglected matter
fields. We use geometric units G = c = 1: with this
choice, the scalar field Φ is dimensionless and α has the
dimensions of a length squared.

1 As mentioned above, a solution for finite spin and coupling is only
known in numerical form [29, 30], and it is impractical for extens-
ive studies of geodesic properties. However, numerical solutions
are necessary to explore the high-spin regime, especially because
EDGB BHs can violate the Kerr bound and can have χ > 1 [29].
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The field equations of EDGB gravity are found by vary-
ing the action (2) with respect to gµν and Φ:

Gµν =
1

2
∂µΦ∂νΦ− 1

4
gµν∂αΦ∂αΦ− αKµν , (3)

S ≡ 1√
−g

∂µ(
√
−g∂µΦ) +

α

4
eΦR2

GB = 0 , (4)

where Gµν = Rµν − 1
2gµνR is the Einstein tensor,

Kµν =
1

8
(gµρgνλ + gµλgνρ) ε

kλαβ

×∇γ
(
εργµνRµναβ∂ke

Φ
)
, (5)

and εµναβ is the Levi-Civita tensor, with ε0123 =
−(−g)−1/2. Note that – by virtue of the GB combina-
tion entering the action (2) – the equations are of second
differential order, and therefore this theory is free from
the Ostrogradsky instability [13]. Indeed, EDGB gravity
is a particular case [36] of Horndeski gravity – the most
general scalar-tensor theory with second-order field equa-
tions [37]. This special subcase is the only one known
to date in which regular, stationary, asymptotically-flat,
hairy BH solutions other than GR ones are found [38].
Furthermore, EDGB gravity can be obtained from the
low-energy expansion of the bosonic sector of heterotic
string theory [12, 21], in such case the coupling α is re-
lated to the string tension.

In order to simplify our notation, in the next sections
we shall introduce the modified Einstein tensor G̃µν =
Gµν − Tµν , where

Tµν =
1

2
∂µΦ∂νΦ− 1

4
gµν∂αΦ∂αΦ− αKµν , (6)

is the effective stress-energy tensor for the dilaton.

B. Static BH solutions

Since the EDGB coupling constant has the dimensions
of the inverse of the curvature tensor, it is natural to ex-
pect that in this theory the strongest deviations from GR
will come from physical systems involving high curvature,
such as BHs, neutron stars and the early Universe. We
focus here on BH solutions and, in particular, on rotating
BH geometries that are obtained through a slow-rotation
expansion around a static background solution.

The exact BH background solution (first derived
in [20]) is described by the static, spherically-symmetric
line element

ds2 = −eΓ(r)dt2 + e−Λ(r)dr2 + r2dΩ2 , (7)

and by a spherically-symmetric scalar field, Φ = φ(r).
The field equations (3)-(4) supplied by the metric ansatz
(7) reduce to a set of differential equations for the scalar

field and for the functions Γ and Λ. Indeed, Eq. (4) yields

φ′′ + φ′
(

Γ′ − Λ′

2
+

2

r

)
=
αeφ

2r2

(
Γ′Λ′e−Λ +

+ (1− e−Λ)

[
Γ′′ +

Γ′

2
(Γ′ − Λ′)

])
, (8)

while the t-t, r-r and θ-θ components of G̃µν = 0 reduce
to [

1 +
αeφ

2r
φ′(1− 3e−Λ)

]
Λ′ =

φ′2r

4
+

1− eΛ

r
+

+
αeφ

r
(1−e−Λ)(φ′′ + φ′2) , (9)[

1 +
αeφ

2r
φ′(1− 3e−Λ)

]
Γ′ =

φ′2r

4
+
eΛ − 1

r
, (10)

Γ′′ +

(
Γ′

2
+

1

r

)
(Γ′ − Λ′) = −φ

′2

2
+
αeφ−Λ

r
×

×
[
φ′Γ′′ + Γ′(φ′′ + φ′2) +

Γ′φ′

2
(φ′ − 3Λ′)

]
. (11)

Note that Eqs. (9)–(11) are not all independent and that
the r-r component can be solved analytically, yielding

eΛ =
−β +

√
β2 − 4γ

2
, (12)

where

β =
φ′2r2

4
− 1− Γ′

(
r +

eφφ′

2

)
, γ =

3

2
Γ′φ′eφ . (13)

The remaining two independent equations can be written
as

φ′′ = −d1

d
, Γ′′ = −d2

d
, (14)

where the radial functions d, d1 and d2 are given in Ap-
pendix A of [20]. The Arnowitt-Deser-Misner mass M
and the dilatonic charge D can be read off the asymp-
totic behavior of the metric and of the dilaton field,

gtt → −1 + 2M/r + . . . (15)

φ→ D/r + . . . (16)

It turns out that for each value of M there is only one
solution describing a static BH. In other words, the scalar
field is a “secondary hair”: the dilatonic charge D is not
an independent parameter but is determined in terms of
the BH mass M .

The field equations are invariant under the rescaling

φ → φ + φ̂ and r → reφ̂/2 (or equivalently M → Meφ̂/2

and D → Deφ̂/2) where φ̂ is a constant. We fix this
freedom by requiring that φ → 0 at spatial infinity; this
means that at infinity, the Gauss-Bonnet invariant ap-
pears in the action (2) multiplied by the constant α/4.
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As noted in [20] static BH solutions in EDGB gravity
exist only if

eφh ≤ rh

α
√

6
, (17)

where φh is the value of the scalar field computed at the
horizon rh. As shown in [28], by requiring that φ→ 0 at
spatial infinity, Eq. (17) can be recast in the form

0 ≤ α

M2
. 0.691 . (18)

Thus, smaller BHs would correspond to a more stringent
bound on α.

Presently, the tightest observational bound on the
EDGB coupling parameter (obtained by the orbital de-
cay of X-ray binaries) is α . 47M2

� [39]. As discussed
in [34], this upper bound is weaker than the theoretical
constraint (17) for BHs with M . 8.2M�. For such BHs,
the entire range (18) is phenomenologically allowed.

Solutions of Eqs. (14) has been solved numerically in
Ref. [20], while an analytical, static BH solution has been
derived to second order in α/M2 in Refs. [24, 25].

C. Spinning BH solutions

To describe slowly-rotating BH solutions we extend the
approach developed by Hartle [22, 23], in which spin cor-
rections to the static solutions are introduced within a
perturbative framework. The procedure described in this
section is generic and can be applied also to other theories
and different spinning solutions.

Let us start with the most general solution for a sta-
tionary, axially-symmetric spacetime2 which is given by

ds2 = −H2dt2 +Q2dr2 + r2K2[dθ2 +

+ sin2 θ(dϕ− Ldt)2] , (19)

where H,Q,K and L are functions of (r, θ). The an-
satz (19) can be expanded perturbatively in the spin
around the static solution

ds2 =−eΓ[1 + 2h(r, θ)]dt2 + e−Λ[1 + 2m(r, θ)]dr2

+r2[1 + 2k(r, θ)][dθ2 + sin2 θ(dϕ− ω̂(r, θ)dt)2] ,

(20)

where the functions ω̂, h, m, and k can be expanded in
a complete basis of orthogonal functions accordingly to

2 We also assume equatorial symmetry and invariance under (t→
−t, ϕ→ −ϕ).

their symmetry properties as

ω̂ =

Nχ−q∑
n=1,3,5,...

n∑
l=1,3,5,...

χnω
(n)
l (r)Sl(θ) , (21)

h =

Nχ−p∑
n=2,4,...

n∑
l=0,2,4,...

χnh
(n)
l (r)Pl(cos θ) , (22)

m =

Nχ−p∑
n=2,4,...

n∑
l=0,2,4,...

χnm
(n)
l (r)Pl(cos θ) , (23)

k =

Nχ−p∑
n=2,4,...

n∑
l=0,2,4,...

χnk
(n)
l (r)Pl(cos θ) , (24)

(25)

where Pl are the Legendre polynomials, Sl =

− 1
sin θ

dPl(cos θ)
dθ (note that P0 = S1 = 1), and p (resp.

q) is zero when the order Nχ of the spin expansion is
even (resp. odd) whereas p = 1 (resp. q = 1) otherwise.

The radial functions
(
ω

(n)
l , h

(n)
l ,m

(n)
l , k

(n)
l

)
are of the or-

der O(χn). Note that, since the metric (20) is invariant

under the rescaling r → f(r), the functions k
(n)
0 (r) can

be set to zero without loss of generality [22, 23].
Because the dilaton field transforms as a scalar under

rotation, we expand it as

Φ(r) = φ(r) +

Nχ−p∑
n=2,4,...

n∑
l=0,2,4,...

χnφ
(n)
l (r)Pl(cos θ) (26)

where φ is the background static solution and the radial

functions φ
(n)
l are of the order O(χn).

1. O(χ) corrections

Rotating BH solutions in EDGB gravity have been in-
vestigated to linear order in the spin angular momentum
in Refs. [26, 28]. At this order the metric (20) reduces to
the static case with a nonvanishing gravitomagnetic term

described by ω̂(r, θ) = ω
(1)
1 ≡ ω(r) [see Eq. (21)]:

ds2 = −eΓ(r)dt2 + e−Λ(r)dr2 + r2dΩ2 +

−2r2ω(r) sin2 θdtdϕ . (27)

From G̃tϕ = 0, it is easy to show that ω satisfies the
second-order equation [28]:

ω′′+
[
2r2eΛ − 2αrφ′eφ

]−1(
−αeφ [2φ′′r + φ′(6 + 2φ′r − Γ′r − 3Λ′r)]

−eΛr [−8 + r(Γ′ + Λ′)]
)
ω′ = 0 , (28)

where the coefficient of ω′ depends on the nonspinning
solution. The BH angular momentum can be read off the
asymptotic behavior of the gyromagnetic term,

ω(r)→ 2J

r3
, (29)
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at large distance.

2. O(χn) corrections: n ≥ 2 and even

Replacing the metric ansatz (20) into the field equa-
tions and using the decomposition in Legendre polyno-
mials, a set of ordinary differential equations can be ob-
tained, at each order in the spin expansion. The equa-
tions are inhomogeneous with source terms given by the
lower-order functions.

At each given order n ≥ 2 with even n, the equations
are found from E1 ≡ G̃tt = 0, E2 ≡ G̃rr = 0, E3 ≡ G̃θθ+
(sin θ)−2G̃ϕϕ = 0, and E4 ≡ S for the scalar equation (4),
each contracted with a Legendre polynomial,∫ π

0

dθ sin θPl(cos θ)Ei(r, θ) = 0 , (30)

where i = 1, 2, 3, 4 and l = 0, 2, 4, ..., n. Due to the
symmetry properties of the field equations and of the
background, this procedure gives a set of purely radial,

inhomogeneous, ordinary differential equations for h
(n)
l ,

m
(n)
l , k

(n)
l and φ

(n)
l with l = 0, 2, 4, .., n (we recall that

k
(n)
0 = 0).

3. O(χn) corrections: n ≥ 3 and odd

Similarly, at a given order n ≥ 3 (with odd n) in
the spin expansion, a set of radial equations for the
gravitomagnetic terms can be obtained by contracting
G̃tϕ = 0 with the (axisymmetric) vector spherical har-
monics, namely∫ π

0

dθ sin θ
dPl(cos θ)

d cos θ
G̃tϕ = 0 (31)

with l = 1, 3, 5, ..., n. Again, this procedure yields a set of
purely radial, inhomogeneous, ordinary differential equa-

tions for ω
(n)
l with l = 1, 3, 5, .., n.

D. Small-coupling approximation

The set of equations presented above provides a full
description of the BH solution at any perturbative or-
der in the spin, but generic (i.e., nonperturbative) in
the EDGB coupling. However, such equations are cum-
bersome and it is impractical to solve them numeric-
ally. More importantly, the theoretical constraint (18)
shows that the dimensionless coupling parameter has to
be smaller than unity. This motivates a small-coupling
approximation [26–28], in which the field equations are
solved perturbatively in α/M2 � 1 to some desired or-
der. Actually, because we are interested in the regime

α/M2 . 1 (the maximum value3 of this parameter is
0.691), we shall compute terms of relatively high order
in this expansion.

To simplify the notation, we introduce the dimension-
less parameter

ζ =
α

M2
. (32)

As a result of our approximation scheme, we expand all
quantities, such as the metric functions and the scalar
field, in terms of the two parameters ζ , χ. For example,

gµν = g(0,0)
µν +

Nχ∑
i=1

Nζ∑
j=1

χiζjg(i,j)
µν , (33)

where the double superscript (i,j) denotes the order of the
expansion in the BH spin parameter and in the EDGB

coupling parameter, respectively; g
(0,0)
µν is the Schwarz-

schild metric. In practice, using the spin decomposition
previously discussed, we simply expand the set of radial

variables ~f = {Γ,Λ, φ, ω(n)
l ,m

(n)
l , h

(n)
l , k

(n)
l , φ

(n)
l } as

f =

Nζ∑
j=0

ζjf (j) , (34)

where f (j) are radial functions which do not depend on
the coupling parameter ζ. By replacing these expressions
into the field equations derived in Sec. II C, and solving
them order by order in ζ, we obtain the desired expansion
for the metric tensor and the scalar field. Remarkably,
this procedure yields an analytical solution. We compute
the explicit solution up to O(ζ7, χ5), but the procedure
can be straightforwardly extended to higher order both
in ζ and in χ.

Solving the differential equations at each order in χ and
ζ yields some integration constants, which are uniquely
fixed by requiring that:

1. the metric is asymptotically flat, and the scalar
field vanishes at spatial infinity;

2. there exists an event horizon, where perturbations
are regular;

3. the physical mass and angular momentum of the
BH are given by M and M2χ, as measured by an
observer at spatial infinity. In particular, the bare
mass of the O(ζ0) solution acquires some correc-
tions to each order in ζ, which are reabsorbed in
the physical mass M .

3 Note that the constraint ζ ≡ α/M2 . 0.691 is valid for non-
spinning solutions at finite coupling. The precise value of the
upper bound can be modified for large rotation rates [29]. In-
deed, as discussed later in this section, the BH mass acquires
O(χ2) corrections which can be reabsorbed in the definition of
the mass. Nonetheless, the bound on α/M2 emerges only from
the nonperturbative BH solutions and does not appear in the
small-coupling approximation (to any order in ζ).
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We note that only one of the two integration constants
appearing in the solution of the scalar field at each or-
der in ζ is fixed by requiring regularity outside the ho-
rizon, while the metric is regular for each value of the
remaining constants. Although this is not evident in the
Schwarzschild coordinates adopted here, it can be non-
etheless checked by computing some curvature invariants.
However, the remaining integration constants can all be
reabsorbed in the definitions of the physical mass and
angular momentum, so that the final solution truncated
at a given order depends only on two parameters, as in
the Kerr case.

The explicit expressions of the metric tensor and of
the scalar field up to O(ζ7, χ5) are quite long, and are
available in a Mathematica R© notebook provided in the
Supplemental Material. For completeness, the explicit
Kerr metric to O(χ5) in the Hartle-Thorne coordinates
is given in Appendix A.

III. GEOMETRICAL AND GEODESIC
PROPERTIES OF THE SOLUTION

We here study the properties of the analytical solution
we have derived. To this aim, we compute some geo-
metrical and geodesic quantities which characterize the
spinning EDGB BH solution to O(ζ7, χ5).

A. Event horizon, ergosphere, intrinsic curvature
and dilaton charge

The event horizon is given by the largest root r = rh of
the equation (cf. e.g. [40]) gφφgtt − g2

tφ = 0, which yields
the following power expansion in terms of ζ and χ:

rh

M
=

7∑
i=0

ζi(ai + biχ+ ciχ
2 + diχ

3 + eiχ
4 + fiχ

5) .

(35)

where the coefficients (ai, bi, ci, di, ei, fi) are listed4 in
Table II of Appendix B. As in the Kerr case, the ho-
rizon radius rh does not depend on the angular coordin-
ates. Nonetheless, its intrinsic geometry – as computed
by considering a spatial section dt = 0 at r = rh – is
nonspherical. Indeed

ds2
t=const,r=rh

= gθθ(r = rh, θ)dΩ2 , (36)

and since gθθ explicitly depends on θ, the intrinsic geo-
metry is non spherical. For the line element (36), the
curvature radius is

Rintr =
2

gθθ
− cot θg′θθ

g2
θθ

+
g′2θθ
g3
θθ

− g′′θθ
g2
θθ

, (37)
where (only in the above formula) a prime denotes dif-
ferentiation with respect to θ, and for our solution is

M2Rintr =

7∑
i=0

ζi[li + χ2(mi + ni cos 2θ) +

+ χ4(pi + qi cos 2θ + ui cos 4θ)] ; (38)

this is constant only when ζ = 0 = χ. Hereafter we ad-
opt the same expansion of Eqs. (35) and (38) for other
physical quantities. The numerical values of the coef-
ficients of these expansions are given in Appendix B,
whereas their exact form is provided in the supplement-
ary Mathematica R© notebook.

The location of the ergosphere is given by the largest
root of gtt = 0:

rergo

M
=

7∑
i=0

ζi[li + χ2(mi + ni cos 2θ) +

+ χ4(pi + qi cos 2θ + ui cos 4θ)] , (39)

where the only nonvanishing spin corrections correspond
to even powers of χ.

Finally, the dilaton charge D can be extracted from
the leading-order, large-distance behavior of the dilaton
field, Φ→ D/r, and reads

D
M

=

7∑
i=1

ζi(ai + biχ+ ciχ
2 + eiχ

4) , (40)

where the coefficients di and fi identically vanish.

B. Moment of inertia

The moment of inertia is defined as I = J/Ωh, where
J is the BH angular momentum and Ωh is the angular
velocity at the horizon of locally nonrotating observers,

Ωh = − lim
r→rh

gtϕ
gϕϕ

. (41)

In our case we obtain

4 For the sake of clarity, the coefficients shown in the appendix will
be rounded to some numerical factors. The exact expressions are

available in a supplemental MathematicaR© notebook.
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I

M3
= 4− 0.2625000ζ2 − 0.1721966ζ3 − 0.1458764ζ4 − 0.1409996ζ5 − 0.1474998ζ6 − 0.1627298ζ7 +

− χ2[1− 0.2359276ζ2 − 0.2175544ζ3 − 0.2431079ζ4 − 0.2776072ζ5 − 0.3283860ζ6 +

− 0.3984877ζ7] + χ4[0.25− 0.1170266ζ2 − 0.04956483ζ3 + 0.01732049ζ4 + 0.09842336ζ5 +

+ 0.2055222ζ6 + 0.3503737ζ7] , (42)

where again the only nonvanishing spin corrections cor-
respond to even powers of χ.

C. Quadrupole moment

According to the BH no-hair theorems, the quadru-
pole moment (as well as the higher-order multipole mo-
ments) of any regular, stationary, asymptotically-flat BH
in GR is uniquely determined by its mass M and angu-
lar momentum J [41–43]. A deformed Kerr geometry as
the one just discussed, does not necessarily possess this
unique no-hair property. Since the dilaton charge of this
solution is not an independent parameter, the multipole
moments of an EDGB BH can all be written in terms of
M and J but the relations among them will change with
respect to Kerr. The ζ-corrections to the BH quadrupole
moment are thus relevant to test the Kerr hypothesis [2–
4].

To compute the quadrupole moment, we follow the
general approach described in [44], in which the multipole
moments of an asymptotically-flat geometry are read off
the asymptotic behavior of the metric. This approach

requires the metric to be expressed in asymptotically-
Cartesian and mass-centered (ACMC) coordinates. In
particular, in order to extract the quadrupole moment
the metric has to be ACMC-2, i.e. gtt and gij (i, j 6=
t) should not contain any angular dependence up to
O(1/r2) terms. In our case, the coordinate transform-
ation that enforces such property is

r → r +
χ2M2

2r

[
1 +

M

r
− 2M2

r2
+
M(6M − r)

r2
cos2 θ

]
,

θ → θ +
χ2M3

r3
sin θ cos θ ,

and does not involve the EDGB coupling ζ nor spin cor-
rections higher than second order. In the new ACMC-2
coordinates, the gtt component reads:

gtt = −1 +
2M

r
+

√
3

2r3
[Q20Y

20 +

+ (l = 0 pole)] +O
(
M4

r4

)
, (43)

where Y20 is the (l = 2,m = 0) spherical harmonic and
Q20 is the m = 0 mass quadrupole moment. From our
explicit solution we obtain, to order O(ζ7, χ5),

Q20 =−
√

64π

15
χ2M3

[(
1 + 0.1061619ζ2 + 0.07524246ζ3 + 0.07459416ζ4 + 0.07756926ζ5 +

+0.08553316ζ6 + 0.09805643ζ7
)
− χ2ζ2

(
0.0308519 + 0.0408857ζ + 0.0638894ζ2 +

+0.0866408ζ3 + 0.116314ζ4 + 0.154763ζ5
)]
. (44)

Interestingly, the O(χ4) corrections to the quadrupole
moment are proportional to ζ2, i.e. they vanish in the
GR limit. For ζ ∼ 0.4, the O(ζ2, χ2) correction to the
quadrupole moment relative to the Kerr case is about
1.7%, whereas the O(ζ3, χ2) correction is approximately
0.5%. Finally, for ζ ∼ 0.4 and χ ∼ 0.6, the O(ζ2, χ4)
correction is approximately 0.1%.

We remark that the quadrupole moment of spinning
EDGB BHs has been computed numerically in [30]. Our
solution has the advantage of giving this quantity in ana-
lytical form.

D. Geodesics and epicyclic frequencies

We shall now consider time-like geodesics in the slowly-
rotating EDGB BH spacetime. We assume a minimally-
coupled test particle and restrict to equatorial orbits, for
which θ = π/2 and dθ = 0. We firstly compute stable cir-
cular orbits; then, by considering small perturbations of
these orbits we derive the epicyclic frequencies ωr and ωθ
(see e.g. Refs. [31–33]). For a stationary-axisymmetric
spacetime, the ISCO corresponds to the radius at which
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the second derivative of the effective potential,

V (r) =
1

grr

(
E2gϕϕ + 2ELgtϕ + L2gtt

g2
tϕ − gttgϕϕ

− 1

)
, (45)

vanishes. Here, we have introduced the particle specific
energy and angular momentum, E and L [45], given by

E =− gtt + gtϕωϕ√
−gtt − 2gtϕωϕ − gϕϕω2

ϕ

, (46)

L =
gtϕ + gϕϕωϕ√

−gtt − 2gtϕωϕ − gϕϕω2
ϕ

, (47)

where ωϕ is the azimuthal angular velocity

ωϕ =
−gtϕ,r +

√
g2
tϕ,r − gtt,rgϕϕ,r
gϕϕ,r

. (48)

Solving V ′′(r) = 0 order by order, we obtain the ISCO
radius up to O(ζ7, χ5):

rISCO

M
=

7∑
i=0

ζi(ai + biχ+ ciχ
2 + diχ

3 +

+ eiχ
4 + fiχ

5) . (49)

Orbits with radius r > rISCO are stable. Under a small
perturbation, a massive particle orbiting in one of these
stable, circular orbits oscillates with radial and vertical
frequencies given by [31–33]

ω2
r =

(gtt + ωϕgtφ)2

2grr

∂2U
∂r2

∣∣∣∣
l

, (50)

ω2
θ =

(gtt + ωϕgtφ)2

2gθθ

∂2U
∂θ2

∣∣∣∣
l

. (51)

These are the epicyclic frequencies. Here U = gtt −
2lgtϕ + l2gϕϕ, with l = L/E being the ratio between
the particle angular momentum and its energy [33]. The
full expressions for ωr, ωθ, as well as for ωϕ as functions
of (r,M, χ, ζ) and up to order O(ζ7, χ5) are available in
a Mathematica R© notebook provided as supplemental
material. We explicitly show here their values at the
ISCO:

Mωϕ
∣∣
ISCO

=

7∑
i=0

ζi(ai + biχ+ ciχ
2 + diχ

3 +

+ eiχ
4 + fiχ

5) , (52)

Mωθ
∣∣
ISCO

=

7∑
i=0

ζi(ai + biχ+ ciχ
2 + diχ

3 +

+ eiχ
4 + fiχ

5) , (53)

whereas ωr
∣∣
ISCO

= 0 as in the Kerr case.
E. Comparison with previous results

As a check, we can compare our results with those de-
rived in [27], where the metric of the EDGB spinning
BH was found to O(ζ2, χ2) in Boyer- Lindquist coordin-
ates. A direct comparison of the metric coefficients is not
possible, since the BH solutions have been derived on dif-
ferent charts. However, we can overcome this problem by
computing the Kretschmann invariant K = RαβγδR

αβγδ,
and evaluating it at a specific point. From our solution
truncated at O(ζ2, χ2), we get

K(r, θ) = 48
M2

r6
+

144M2

r8

[
(1− 8 cos2 θ) +

M

r
sin2 θ + 2

M2

r2
(3 cos2 θ − 1)

]
− ζ2

r4

[
2M3

r3
+
M4

r4
+ 144

M5

r5
+

+14
M6

r6
+

128

5

M7

r7
− 1680

M8

r8

]
+
ζ2χ2

r4

[
M3

r3
+

54431

1750

M4

r4
+

12846

175

M5

r5
+

77047

1225

M6

r6
+

−348909

350

M7

r7
− 304938

175

M8

r8
− 28023

35

M9

r9
+

359468

35

M10

r10
+

53848

5

M11

r11
− 21984

M12

r12
+

+

(
−80334

875

M4

r4
− 19638

175

M5

r5
− 234816

1225

M6

r6
+

1448877

350

M7

r7
+

711114

175

M8

r8
+

92679

35

M9

r9
+

−2168052

35

M10

r10
− 59544

5

M11

r11
+ 65952

M12

r12

)
cos2 θ

]
. (54)

Replacing the explicit expression for rh in Eq. (35), we
find that on the horizon

K(rh, π/2) =
3

4M4
+

9χ2

8M4
+

+
ζ2

M4

[
327

1280
+

404023χ2

784000

]
. (55)

This results coincides with the Kretschmann scalar de-
rived in [27] and evaluated at the event horizon on the
equatorial plane in Boyer-Lindquist coordinates. Finally,
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we have verified the agreement between the expression
for Mωϕ at the ISCO – which is also a gauge invariant
quantity – obtained from the metric derived in Ref. [27],
and the same expression obtained truncating the expres-
sion in Eq. (52) to O(ζ2, χ2).

F. Accuracy of the expansion

In this section we estimate the accuracy of our perturb-
ative scheme. In particular, we estimate the truncation
error arising from neglecting O(ζ8) terms in the expan-
sion. To this aim, we compare our results with those
obtained in Refs. [20, 28, 34], where a solution for slowly-
rotating BHs in the EDGB theory has been derived at
first order in χ, and is “exact” in ζ (i.e., with no perturb-
ative expansion in ζ). To be consistent, we neglect terms
of the order O(χ2) in Eqns. (35), (49), (52) and (53).

In Fig. 1, we compare the dilatonic charge computed
in [20, 28] non-perturbatively in ζ, with the expression
in Eq. (40), for χ = 0, truncated at various orders of
ζ. As expected, for ζ � 0.2 higher-order corrections are
negligible, but they contribute significantly as ζ → 0.691.
To O(ζ7), the deviation from the “exact” result is about
1% for ζ ∼ 0.6 and is as large as 5% for ζ ∼ 0.691. In
contrast, the O(ζ2) truncation differs by about 30% as ζ
increases to its maximum value.

●
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● Numerical
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Figure 1. (color online). Top panel: dilatonic charge as a
function of ζ = α/M2 computed in [20, 28] (gray markers)
compared with the expression in Eq. (40) truncated at O(ζ2),
O(ζ5) and O(ζ7) and for vanishing spin. Bottom panel: rel-
ative discrepancy between the perturbative and nonperturb-
ative estimates of the dilatonic charge, as a function of α for
various truncations.

Likewise, for the set of quantities f =
{rh, rISCO,Mωϕ|ISCO,Mωθ|ISCO}, we compute the

relative error

εn =
f (n,1)

f̄
− 1 , (56)

where f̄ represents the “exact” quantity (non-
perturbative in ζ) [28, 34]. We estimate εn at various
orders of approximation in ζ, for different values of the
BH spin parameter. In Table I we show the largest
relative errors obtained for all considered quantities, at
different levels of accuracy, in the limiting case ζ = 0.691
(left) and ζ = 0.576 (right). We remark that ζ = 0.691
is an extreme situation, since for slightly smaller values
of ζ (i.e., ζ = 0.576) the deviations are much smaller.

Fig. 1 and Table I show that our analytical solution
approaches the “exact” solution of [20, 28] as the value
of n increases, i.e. when we consider more and more
terms in the small-coupling expansion. In particular, for
rISCO,Mωϕ|ISCO,Mωθ|ISCO the relative errors (for n =
7) are always smaller than 1% for any value of ζ, even for
the maximum allowed value, ζ ∼ 0.691. For the horizon,
the threshold above which εn=7 > 0.01 is lower, namely
ζ ∼ 0.55.

G. Are spin corrections important?

The analysis presented in the Section III F shows that
the metric expanded in powers of ζ, which we derived
in a closed, analytic form, is a very good approximation
of the “exact” numerical result: it reproduces the most
relevant geodesic quantities within 1% for the maximum
value ζ ∼ 0.691 and within 0.3% for ζ ∼ 0.576. It is
therefore justified to adopt such higher-order perturbat-
ive expansion as a starting point to devise strong-field
tests of gravity.

In Ref. [34] we studied the deviations of the azimuthal
and epicyclic frequencies in a slowly-rotating EDGB BH
to first order in the spin. However, deviations from the
Kerr case should increase with higher values of the spin.
Indeed, as the spin increases, the ISCO gets closer to
the horizon, and therefore observables from orbits near
the ISCO probe a region of higher curvature, where the
deviations should be larger.

In Fig. 2, we confirm this claim by showing the de-
viations of the horizon and ISCO locations and, most
importantly, of the azimuthal frequency ωϕ and angu-
lar epicyclic frequency ωθ at the ISCO, relative to their
values computed using the Kerr metric approximated at
O(χ5), and as functions of ζ and χ. For a fixed value of
ζ, the percentual errors are systematically larger as the
spin increases, reaching up to 7% for χ = 0.6. This large
value of the spin parameter should be considered as an
extrapolation. Indeed, our results neglects terms of the
order O(χ6), which introduce corrections of roughly 5%
for χ ∼ 0.6.

Our perturbative solution is also useful to estimate the
convergence properties of the expansion. From the coef-
ficients listed in Table II, we can compute the ratio of
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χ εn=2(%) εn=4(%) εn=6(%) εn=7(%)

rh/M 0 5.90 4.45 3.72 3.48

rISCO/M 0 1.00 0.58 0.43 0.39

0.05 1.11 0.65 0.49 0.44

0.10 1.23 0.72 0.54 0.49

Mωϕ|ISCO 0 1.36 0.79 0.59 0.53

0.05 1.56 0.95 0.72 0.66

0.10 1.88 1.22 0.98 0.91

Mωθ|ISCO 0.05 1.53 0.92 0.69 0.63

0.10 1.78 1.13 0.88 0.81

χ εn=2(%) εn=4(%) εn=6(%) εn=7(%)

rh/M 0 1.33 0.52 0.24 0.17

rISCO/M 0 0.32 0.093 0.038 0.026

0.05 0.37 0.12 0.055 0.042

0.1 0.42 0.14 0.074 0.059

Mωϕ|ISCO 0 0.44 0.13 0.053 0.036

0.05 0.56 0.23 0.14 0.13

0.1 0.80 0.44 0.35 0.33

Mωθ|ISCO 0.05 0.54 0.20 0.12 0.10

0.1 0.71 0.36 0.27 0.25

Table I. Left: the relative error εn [cf. Eq. (56)] between different quantities listed in the first column, computed through the
solution derived in [28], nonperturbative in ζ, and compared with our perturbative results truncated at O(ζn). We consider
the maximum value of ζ allowed for BH solutions in EDGB gravity, ζ = 0.691, and different values of the BH spin parameter.
Right: Same for ζ = 0.576.
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Figure 2. (color online). (Left panel) The percentual error in the horizon radius rh and in the ISCO rISCO for our perturbative
result [Eqs. (35) and (49)], relative to the Kerr solution expanded at O(χ5), as a function of the EDGB coupling parameter
α. We consider three values of the BH spin parameter χ = (0.2, 0.4, 0.6). (Right panel) Same as the left panel, but for the
epicyclic frequencies Eqns. (52)-(53) evaluated at the ISCO.

the O(χn) and O(χn−1) corrections for a given quant-
ity. For the angular epicyclic frequency Mωθ|ISCO, this
ratio is roughly (0.41, 0.39, 0.37) for n = (3, 4, 5), in the
extreme case χ ∼ 0.5 and ζ ∼ 0.5. Therefore, the fifth-
order spin correction is about 20% of the quadratic one.
Other quantities show a similar behavior. Clearly, the
convergence improves for smaller values of χ, whereas it
is almost insensitive to the values of the EDGB coupling
ζ.

Finally, we note that the percentual error of the ho-
rizon location is almost insensitive to the spin, whereas
the epicyclic frequencies are much more sensitive to this
parameter.

IV. CONCLUDING REMARKS

With the advent of precision measurements of the spec-
trum of accreting compact objects, it is of utmost import-
ance to devise tests of gravity that use these measure-
ments to probe the geometry near compact objects. To
this aim, we have considered a specific modified theory
– namely EDGB gravity– as a case-study. This theory
has some appealing theoretical features, for example it
is free from instabilities and circumvents the BH no-hair
theorems. Furthermore, it modifies GR precisely in the
strong-curvature regions, while passing all current solar-
system and binary-pulsar tests [4].

Spinning BHs in this theory have been studied in the
past, both numerically [20, 28–30] and analytically [24–
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27] to leading order in the coupling parameter. Numer-
ical solutions have the advantage of being general, but
they are impractical for some applications, for example
for Monte Carlo simulations spanning a high-dimensional
parameter space. Approximate analytical solutions can
be very useful for this purpose, although they are usually
perturbative.

Here, as a first step to develop precision tests of grav-
ity based on geodesic motion near stationary BHs, we
have constructed an analytical, approximate solution of
EDGB theory describing a deformed Kerr BH. The solu-
tion is valid to fifth order in the spin and to seventh or-
der in the coupling parameter, thus extending previous
solutions that are valid only to quadratic order in the
coupling and the spin. With the analytical solution at
hand, it is straightforward to compute various quantities
of interest. We presented the corrections to the horizon
and ergoregion location, moment of inertia and quadru-
pole moment relative to the Kerr metric, as well as the
charge of the dilaton field that characterizes this solu-
tion. For a given value of the coupling ζ, the solution
depends only on the mass M and on the dimensionless
angular momentum χ, while the dilaton charge is fixed
in terms of M . In addition, we have computed some
geodesic quantities, namely the ISCO location and the
azimuthal and epicyclic frequencies as functions of M , χ,
ζ and the orbital radius r.

When truncated at first order in the BH spin, our solu-
tion reproduces the most relevant geodesic quantities ob-
tained in [20, 28] with a numerical approach, within 1%
for the maximum value ζ ∼ 0.691, and within 0.3% for
ζ ∼ 0.576. The accuracy of the solution grows dramat-
ically for smaller values of the coupling. These results

indicate that our perturbative solution is a good approx-
imation of the exact numerical results.

In a future publication we will extend the analysis
of Ref. [34], which studied how observations of quasi-
periodic oscillations in the spectrum of accreting BHs
can be used to constrain EDGB theory in the strong-
field regime, to larger values of the BH spin. An similar
analysis can also performed for other tests based on sta-
tionary BHs, for example those based on the broadened
iron line (e.g. [46, 47]) or the continuum fitting method
(e.g. [48], see also [35]). On the technical side, our per-
turbative approach is generic: it can be applied to any
order in ζ and in χ, as well as to other modified-gravity
theories and different spinning solutions.
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Appendix A: Kerr metric in the Hartle-Thorne
approximation

In this appendix we show the form of the BH solution
in the Hartle-Thorne approximation for α = 0, i.e. the
slowly-rotating Kerr BH in GR, up to the fifth order in
the BH spin angular momentum.
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gtt = 1− 2M

r
+ J2

[(
2

Mr3
− 2

r4
− 4M

r5

)
P2(cos θ) +

2 cos 2θ

r4

]
+ J4

{
2

5M2r6
− 12M

5r9
+

11

5Mr7
+

+
6

5r8
+

[
146

7r8
− 16

7M2r6
+

44M

7r9
+

46

7Mr7
− cos(2θ)

(
4

Mr7
+

8

r8

)]
P2(cos θ) +

−
(

8

5Mr7
+

24

5r8

)
cos(2θ) + sin2(θ)

(
8

3M2r6
− 8

15Mr7
− 48

5r8

)
S3(θ) +

+

(
66

35M2r6
− 2

M3r5
− 192M

35r9
+

316

35Mr7
− 48

7r8

)
P4(cos θ)

}
, (A1)

grr =− r

r − 2M
+

2J2

r2(r − 2M)

[
1

rM

(r − 5M)

(r − 2M)
P2(cos θ) + 1

]
+

J4

(2M − r)3

[
152M2

5r7
+

9

5M2r3
+

−264M

5r6
− 59

5Mr4
+

196

5r5
+

(
−1464M2

7r7
+

52

7M2r3
+

1496M

7r6
− 242

7Mr4
− 106

7r5

)
P2(cos θ) +

+

(
2

M3r2
+

2112M2

35r7
− 358

35M2r3
− 4512M

35r6
− 8

35Mr4
+

2616

35r5

)
P4(cos θ)

]
, (A2)

gθθ =− r2 + J2

(
2

Mr
+

4

r2

)
P2(cos θ)− J4

[(
4

7M2r4
+

26

7Mr5
+

68

7r6

)
P2(cos θ) +

(
2

M3r3
+

+
162

35M2r4
+

24

35Mr5
+

24

35r6

)
P4(cos θ)

]
, (A3)

gϕϕ =gθθ sin θ2 , (A4)

gtϕ =
2J

r
− J3

[
4

5Mr4
+

12

5r5
+

(
4

Mr4
+

8

r5

)
P2(cos θ) +

(
2

3M2r3
− 2

15Mr4
− 12

5r5

)
S3(θ)

]
+

+ J5

{
24

5Mr8
+

72

5r9
− 6

7M3r6
− 73

35M2r7
−
(

2

15M2r7
+

2

Mr8
+

28

5r9

)
S3(θ) +

[
96

35M2r7
+

+

(
4

3M3r6
+

12

5M2r7
− 16

3Mr8
− 48

5r9

)
S3(θ) +

108

7Mr8
+

1016

35r9

]
P2(cos θ) +

(
4

M3r6
+

+
324

35M2r7
+

48

35Mr8
+

48

35r9

)
P4(cos θ) +

2

5

(
1

M4r5
+

1

7M3r6
− 44

7M2r7
+

8

r9

)
S5(θ)

}
. (A5)

Appendix B: Coefficients of the small coupling

In the following table we show the numerical coeffi-
cients of various analytic expansions presented in the
previous sections, as function of the BH spin angular mo-
mentum and the EDGB coupling parameter. For sake of
clarity all the coefficients are rounded to the seventh di-
git. The exact expressions are available in a supplemental
Mathematica R© notebook.
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rh/M rISCO/M D/M Mωϕ|ISCO Mωθ|ISCO

a0 2.000000 6.000000 0 0.06804138 0.06804138

b0 0 -3.265986 0 0.05092593 0.04166667

c0 -0.2500000 -0.2962963 0 0.03717075 0.02488551

d0 0 -0.1436429 0 0.02797068 0.01521776

e0 -0.07812500 -0.08957762 0 0.02176680 0.009504151

f0 0 -0.06362468 0 0.01744794 0.005997155

a1 0 0 0.5000000 0 0

b1 0 0 0 0 0

c1 0 0 -0.1250000 0 0

d1 0 0 0 0 0

e1 0 0 -0.06250000 0 0

f1 0 0 0 0 0

a2 -0.07656250 -0.1047904 0.1520833 0.001563316 0.001563316

b2 0 -0.1201586 0 0.003733697 0.003267414

c2 -0.005273438 0.01442503 -0.06562500 0.003913488 0.002948313

d2 0 0.03108340 0 0.003160772 0.002041599

e2 0.0007317631 0.02534504 -0.01282676 0.002252579 0.001211371

f2 0 0.03275054 0 0.001261845 0.0005010288

a3 -0.05482722 -0.05057329 0.09658358 0.0007597788 0.0007597788

b3 0 -0.06564501 0 0.001933365 0.001708284

c3 0.003374719 0.02695641 -0.06503722 0.001759287 0.001360011

d3 0 0.03707053 0 0.0009886223 0.0006954496

e3 -0.003268537 0.008889195 0.006444151 0.0005021134 0.0004182817

f3 0 0.01125766 0 0.0001173107 0.0002713766

a4 -0.05139096 -0.03780985 0.08178788 0.0005969829 0.0005969829

b4 0 -0.05431288 0 0.001640950 0.001457307

c4 0.007351713 0.03876245 -0.06717236 0.001340086 0.001049576

d4 0 0.05336676 0 0.0003245650 0.0002579998

e4 -0.01308955 -0.0002670172 0.02912691 -0.00008270490 0.0001598391

f4 0 0.00005147144 0 -0.0002712206 0.0002346154

a5 -0.05266569 -0.03321722 0.07886477 0.0005272127 0.0005272127

b5 0 -0.04890924 0 0.001475785 0.001313209

c5 0.01223578 0.05011869 -0.07508136 0.0009815575 0.0007719423

d5 0 0.06775197 0 -0.0003132155 -0.0001796837

e5 -0.02668707 -0.01513785 0.05662227 -0.0005664351 -0.00003872048

f5 0 -0.02079280 0 -0.0003557189 0.0003967294

a6 -0.05753945 -0.03250101 0.08245910 0.0005165825 0.0005165825

b6 0 -0.04824270 0 0.001458090 0.001298530

c6 0.01812429 0.06363000 -0.08788829 0.0007567590 0.0005928172

d6 0 0.08594476 0 -0.0008980528 -0.0005936325

e6 -0.04690661 -0.03465520 0.09290842 -0.0009679387 -0.0001794779

f6 0 -0.04866939 0 -0.0002465314 0.0007018829

a7 -0.06565095 -0.03416370 0.09098999 0.0005425110 0.0005425110

b7 0 -0.05069519 0 0.001533246 0.001365759

c7 0.02592898 0.08041305 -0.1064184 0.0005835871 0.0004504112

d7 0 0.1086434 0 -0.001525555 -0.001044296

e7 -0.07619661 -0.06177540 0.1427116 -0.001328310 -0.0002654697

f7 0 -0.08762124 0 0.0001137773 0.001223565

rergo/M M2Rintr

l0 2.000000 0.5000000

m0 0 0

n0 -0.06640625 -0.05859375

p0 -0.2500000 -0.3750000

q0 -0.04687500 -0.2343750

u0 0.03515625 0.1054688

l1 0 0

m1 0 0

n1 0 0

p1 0 0

q1 0 0

u1 0 0

l2 -0.07656250 0.03828125

m2 0.02239583 -0.02182674

n2 -0.02390784 -0.01729976

p2 -0.02766927 -0.1164568

q2 0.003249614 -0.02236320

u2 0.02138998 0.1302572

l3 -0.05482722 0.02741361

m3 0.02660141 -0.02038983

n3 -0.02726616 0.001655395

p3 -0.02322669 -0.08694771

q3 0.006734437 0.01982431

u3 0.01726319 0.1306188

l4 -0.05139096 0.02789366

m4 0.03391131 -0.02622298

n4 -0.04523654 0.01648181

p4 -0.02655960 -0.1007545

q4 0.01024171 0.05758840

u4 0.02190527 0.1906275

l5 -0.05266569 0.02948113

m5 0.04318465 -0.03204816

n5 -0.06780117 0.03771938

p5 -0.03094887 -0.1122069

q5 0.01536541 0.1033644

u5 0.02574869 0.2495574

l6 -0.05753945 0.03296015

m6 0.05574249 -0.04017469

n6 -0.1009268 0.06678447

p6 -0.03761820 -0.1310279

q6 0.02256511 0.1634876

u6 0.03145506 0.3323836

l7 -0.06565095 0.03820390

m7 0.07278610 -0.05103945

n7 -0.1481975 0.1073399

p7 -0.04685712 -0.1565866

q7 0.03308656 0.2435265

u7 0.03891437 0.4418871

Table II. Numerical values of the coefficients of the expressions (35),(40),(49), (52)-(53) (left panel), and of the ergosphere and
intrinsic curvature radius (39)], (38) (right panel).
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