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We discuss the “constant speed of sound” (CSS) parameterization of the equation of state of high density
matter and its application to the Field Correlator Method (FCM) model of quark matter. We show how observa-
tional constraints on the maximum mass and typical radius of neutron stars are expressed as constraints on the
CSS parameters. We find that the observation of a 2M� star already severely constrains the CSS parameters,
and is particularly difficult to accommodate if the squared speed of sound in the high density phase is assumed
to be around 1/3 or less.

We show that the FCM equation of state can be accurately represented by the CSS parameterization, which
assumes a sharp transition to a high-density phase with density-independent speed of sound. We display the
mapping between the FCM and CSS parameters, and see that FCM only allows equations of state in a restricted
subspace of the CSS parameters.

PACS numbers: 25.75.Nq, 26.60.-c, 97.60.Jd

I. INTRODUCTION

There are many models of matter at density significantly
above nuclear saturation density, each with their own param-
eters. In studying the equation of state (EoS) of matter in this
regime it is therefore useful to have a general parameterization
of the EoS which can be used as a generic language for relat-
ing different models to each other and for expressing experi-
mental constraints in model-independent terms. In this work
we use the previously proposed “Constant Speed of Sound”
(CSS) parameterization [1–3] (for applications, see, e.g., [4]).
We show how mass and radius observations can be expressed
as constraints on the CSS parameters. Here we analyze a spe-
cific example, where the high-density matter is quark matter
described by a model based on the Field Correlator Method
(Sec. IV), showing how its parameters can be mapped on to
the CSS parameter space, and how it is constrained by cur-
rently available observations of neutron stars.

The CSS parameterization is applicable to high-density
equations of state for which: (a) there is a sharp interface be-
tween nuclear matter and a high-density phase which we will
call “quark matter”, even when (as in Sec. II) we do not make
any assumptions about its physical nature; (b) the speed of
sound in the high-density matter is pressure-independent for
pressures ranging from the first-order transition pressure up
to the maximum central pressure of neutron stars. One can
then write the high-density EoS in terms of three parameters:
the pressure ptrans of the transition, the discontinuity in energy
density ∆ε at the transition, and the speed of sound cQM in the
high-density phase. For a given nuclear matter EoS εNM(p),
the full CSS EoS is then

ε(p) =
{

εNM(p) p < ptrans
εNM(ptrans)+∆ε + c−2

QM(p− ptrans) p > ptrans
(1)

The CSS form can be viewed as the lowest-order terms of
a Taylor expansion of the high-density EoS about the tran-
sition pressure. Following Ref. [1], we express the three
parameters in dimensionless form, as ptrans/εtrans, ∆ε/εtrans

(equal to λ − 1 in the notation of Ref. [5]) and c2
QM, where

εtrans ≡ εNM(ptrans).
The assumption of a sharp interface will be valid if, for ex-

ample, there is a first-order phase transition between nuclear
and quark matter, and the surface tension of the interface is
high enough to ensure that the transition occurs at a sharp in-
terface (Maxwell construction) not via a mixed phase (Gibbs
construction). Given the uncertainties in the value of the sur-
face tension [6–8], this is a possible scenario. One can also
formulate generic equations of state that model interfaces that
are smeared out by mixing or percolation [9–11].

The assumption of a density-independent speed of sound is
valid for a large class of models of quark matter. The CSS
parameterization is an almost exact fit to some Nambu–Jona-
Lasinio models [2, 12–14]. The perturbative quark matter
EoS [15] also has roughly density-independent c2

QM, with a
value around 0.2 to 0.3 (we use units where h̄ = c = 1), above
the transition from nuclear matter (see Fig. 9 of Ref. [16]).
In the quartic polynomial parameterization [17], varying the
coefficient a2 between ±(150MeV)2, and the coefficient a4
between 0.6 and 1, and keeping ntrans/n0 above 1.5 (n0 ≡
0.16fm−3 is the nuclear saturation density), one finds that c2

QM
is always between 0.3 and 0.36. It is noticeable that mod-
els based on relativistic quarks tend to have c2

QM ≈ close to
1/3, which is the value for systems with conformal symmetry,
and it has been conjectured that there is a fundamental bound
c2

QM < 1/3 [18], although some models violate that bound,
e.g. [19, 20] or [14] (parameterized in [2]).

In Sec. II we show how the CSS parameterization is con-
strained by observables such as the maximum mass Mmax, the
radius of a maximum-mass star, and the radius R1.4 of a star of
mass 1.4M�. In Secs. III and IV we describe a specific model,
based on a Brueckner-Hartree-Fock (BHF) calculation of the
nuclear matter EoS and the Field Correlator Method (FCM)
for the quark matter EoS. We show how the parameters of this
model map on to part of the CSS parameter space, and how
the observational constraints apply to the FCM model param-
eters. Sec. V gives our conclusions.
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II. CONSTRAINING THE CSS PARAMETERS

A. Topology of the mass-radius relation
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FIG. 1: Schematic phase diagram (from [1]) for hybrid star branches
in the mass-radius relation of compact stars. We fix c2

QM and vary
ptrans/εtrans and ∆ε/εtrans. The four regions are (A) no hybrid branch
(“absent”); (B) both connected and disconnected hybrid branches;
(C) connected hybrid branch only; (D) disconnected hybrid branch
only.

We use the term “hybrid star” to refer to stars whose cen-
tral pressure is above ptrans, and so they contain a core of the
high-density phase. The part of the mass-radius relation that
arises from such stars is the “hybrid branch”. In all models
of nuclear/quark matter we find the same four topologies of
the mass-radius curve for compact stars: the hybrid branch
may be connected to the nuclear branch (C), or disconnected
(D), or both may be present (B) or neither (A). The occur-
rence of these as a function of the CSS parameters ptrans/εtrans
and ∆ε/εtrans at fixed c2

QM is shown schematically in Fig. 1
(taken from Ref. [1]). The mass-radius curve in each region
is depicted in inset plots, in which the thick green line is the
hadronic branch, the thin solid red lines are stable hybrid stars,
and the thin dashed red lines are unstable hybrid stars.

In the phase diagram the solid red line shows the thresh-
old value ∆εcrit below which there is always a stable hybrid
star branch connected to the neutron star branch. This critical
value is given by [5, 21, 22]

∆εcrit

εtrans
=

1
2
+

3
2

ptrans

εtrans
(2)

and was obtained by performing an expansion in powers of
the size of the core of high-density phase. Eq. (2) is an ana-
lytic result, independent of c2

QM and the nuclear matter EoS.
The dashed and dot-dashed black lines mark the appearance-
disappearance of the connected or disconnected hybrid star
branch. The position of these lines depends on the value of
c2

QM and (weakly) on the accompanying nuclear matter EoS
[1].

Once a nuclear matter EoS has been chosen, any high-
density EoS that is well-approximated by the CSS parame-
terization can be summarized by giving the values of the three
CSS parameters, corresponding to a point in the phase dia-
gram. We then know what sort of hybrid branches will be
present.

B. Maximum mass of hybrid stars

property BHF, Av18 DBHF,
+ UVIX TBF Bonn A

saturation baryon density n0(fm−3) 0.16 0.18
binding energy/baryon E/A (MeV) -15.98 -16.15

compressibility K0 (MeV) 212.4 230
symmetry energy S0 (MeV) 31.9 34.4
L = 3n0 [dS0/dn]n0 (MeV) 52.9 69.4

maximum mass of star (M�) 2.03 2.31
radius of the heaviest star (km) 9.92 11.26
radius of M = 1.4M� star (km) 11.77 13.41

TABLE I: Calculated properties of symmetric nuclear matter for the
BHF and DBHF nuclear equations of state used here. BHF is softer,
DBHF is stiffer (see Sec. III)

In Fig. 2 we show how mass measurements of neutron
stars can be expressed as constraints on the CSS parameters.
Each panel shows dependence on ptrans/εtrans and ∆ε/εtrans
for fixed c2

QM, as in Fig. 1. The region in which the transition
to quark matter would occur below nuclear saturation density
(ntrans < n0) is excluded (hatched band at left end) because in
that region bulk nuclear matter would be metastable. There
is also an upper limit on the transition pressure, which is the
central pressure of the heaviest stable nuclear matter star. This
depends on the hadronic EoS that had been assumed.

The contours show the maximum mass of a hybrid star
as a function of the EoS parameters. The region inside the
M = 2M� contour corresponds to EoSes for which the max-
imum mass is less than 2M� so it is shaded to signify that
this region of parameter space for the high-density EoS is ex-
cluded by the observation of a star with mass 2M� [23]. For
high-density EoSes with c2

QM = 1 (right hand plots), this re-
gion is not too large, and leaves a good range of transition
pressures and energy density discontinuities that are compat-
ible with the observation. However, for high-density matter
with c2

QM = 1/3 (left hand plots), which is the typical value in
many models (See Sec. I), the Mmax > 2M� constraint elim-
inates a large region of the CSS parameter space [1, 18]. We
discuss this in more detail below.

The upper plots in Fig. 2 are for a stiffer nuclear mat-
ter EoS, Dirac-Brueckner-Hartree-Fock (DBHF)[24], and the
lower plots are for a softer nuclear matter EoS, Brueckner-
Hartree-Fock (BHF) [25] (see Sec. III). Properties of these
nuclear matter EoSes are given in table I. As one would ex-
pect, the stiffer EoS gives rise to heavier (and larger) stars,
and therefore allows a wider range of CSS parameters to be
compatible with the 2M� measurement.
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FIG. 2: Contour plots showing the maximum hybrid star mass as a function of the CSS parameters of the high-density EoS. Each panel shows
the dependence on the CSS parameters ptrans/εtrans and ∆ε/εtrans. The left plots are for c2

QM = 1/3, and the right plots are for c2
QM = 1. The top

row is for a DHBF (stiff) nuclear matter EoS, and the bottom row is for a BHF (soft) nuclear matter EoS. The grey shaded region is excluded
by the measurement of a 2M� star. The hatched band at low density (where ntrans < n0) is excluded because bulk nuclear matter would be
metastable. The hatched band at high density is excluded because the transition pressure is above the central pressure of the heaviest stable
hadronic star.

In Fig. 2 the dot-dashed (red) contours are for hybrid stars
on a connected branch, while the dashed (blue) contours are
for disconnected branches. As discussed in Ref. [1], when
crossing the near-horizontal boundary from region C to B
the connected hybrid branch splits into a smaller connected
branch and a disconnected branch, so the maximum mass of
the connected branch smoothly becomes the maximum mass
of the disconnected branch. Therefore the red contour in the
C region smoothly becomes a blue contour in the B and D
regions. When crossing the near-vertical boundary from re-
gion C to B a new disconnected branch forms, so the con-
nected branch (red dot-dashed) contour crosses this boundary
smoothly.

In each panel of Fig. 2, the physically relevant allowed re-

gion is the white unshaded region. The grey shaded region is
excluded by the existence of a 2M� star. We see that increas-
ing the stiffness of the hadronic EoS or of the quark matter
EoS (by increasing c2

QM) shrinks the excluded region.

For both the hadronic EoSes that we study, the CSS param-
eters are significantly constrained. From the two left panels
of Fig. 2 once can see that if, as predicted by many models,
c2

QM . 1/3, then we are limited to two regions of parameter
space, corresponding to a low pressure transition or a high
pressure transition. In the low transition pressure region the
transition occurs at a fairly low density ntrans . 2n0, and a
connected hybrid branch is possible. In the high transition
pressure region the connected branch (red dot-dashed) con-
tours are, except at very low ∆ε , almost vertical, correspond-
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ing to EoSes that give rise to a very small connected hybrid
branch which exists in a very small range of central pressures
pcent just above ptrans. The maximum mass on this branch is
therefore very close to the mass of the purely-hadronic matter
star with pcent = ptrans. The mass of such a purely hadronic
star is naturally independent of parameters that only affect the
quark matter EoS, such as ∆ε and c2

QM, so the contour is ver-
tical. These hybrid stars have a tiny core of the high density
phase and cover a tiny range of masses, of order 10−3 M� or
less, and so would be very rare.

Disconnected hybrid branches are of special interest, be-
cause they give a characteristic signature in mass-radius mea-
surements. For both the hadronic EoSes that we study, the
region B and D, where disconnected hybrid star branches can
occur, are excluded for c2

QM 6 1/3. Even for larger c2
QM dis-

connected branches only arise if the nuclear matter EoS is suf-
ficiently stiff. It is interesting to note that using an extremely
stiff hadronic matter EoS such as DD2-EV [26] can further
shrink the region that is excluded by the Mmax > 2M� con-
straint, allowing disconnected branches of hybrid stars to oc-
cur.

C. Minimum radius of hybrid stars

In Fig. 3 we show contour plots of the radius of the
maximum-mass star (on either a connected or disconnected
hybrid branch) as a function of the CSS quark matter EoS pa-
rameters. Since the smallest hybrid star is typically the heav-
iest one, this allows us to infer the smallest radius that arises
from a given EoS.

The layout is as in Fig. 2: each panel shows dependence on
ptrans/εtrans and ∆ε/εtrans for fixed c2

QM; the plots on the left
are for c2

QM = 1/3 and the plots on the right are for c2
QM = 1;

the plots on the top are for the stiffer DBHF nuclear matter
EoS, while the lower plots are for the softer BHF nuclear mat-
ter EoS. As in Fig. 2, the region that is eliminated by the ob-
servation of a 2M� star is shaded in grey.

The smallest stars, with radii as small as 9 km, occur when
the high-density phase has the largest possible speed of sound
c2

QM = 1. They are disconnected branch stars arising from
EoSes having a low transition pressure (ntrans . 2n0) with a
fairly large energy density discontinuity (∆ε/εtrans & 1).

As in Fig. 2, the contours in the high-transition-pressure
region are almost vertical because the hybrid branch is then a
very short extension to the nuclear mass-radius relation, and
its radius is close to that of the heaviest purely hadronic star,
which is independent of ∆ε/εtrans and c2

QM. The radius of the
hybrid stars decreases with ptrans in this region, because the
radius of hadronic stars decreases with central pressure.

For c2
QM = 1/3, the allowed low-transition-pressure region

is disconnected from the high-transition pressure region and
is so small that it is hard to see on this plot. By magnifying
it (left hand plots of Fig. 5) we see that in this region the ra-
dius contours closely track the border of the allowed region
(the Mmax = 2M� line) so we can say that the radius must
be greater than 11.5 km almost independent of the transition

pressure and hadronic EoS. For a stiff hadronic EoS this mini-
mum is raised to 11.7 km. These values are comparable to the
minimum radius of about 11.8 km found in Ref. [18], which
explored a larger set of hadronic EoSes but did not explore
the full CSS parameter space for the high-density EoS. If a
star with radius smaller than this minimum value were to be
observed, we would have to conclude that either the transition
occurs outside the low-density region or that c2

QM is greater
than 1/3. In the magnified figure we also show how the ex-
cluded region would grow if a 2.1M� star were to be observed
(long-dashed line for connected branch stars and short-dashed
line for disconnected branch stars). This would increase the
minimum radius to about 12.1 km for the soft hadronic EoS
and 12.2 km for the stiff hadronic EoS.

D. Typical radius of hybrid stars

In Fig. 4 we show contours (the U-shaped lines) of typical
radius of a hybrid star, defined as R1.4, the radius of a star of
mass 1.4M�, as a function of the CSS quark matter EoS pa-
rameters. The contours only fill the part of the CSS parameter
space where there are hybrid stars with that mass. The dashed
(magenta) lines delimit that region which extends only up to
moderate transition pressure.

The overall behavior is that, at fixed ∆ε/εtrans, the typi-
cal radius is large when the transition density is at its low-
est. As the transition density rises the radius of a 1.4M�
star decreases at first, but then increases again. This is re-
lated to the previously noted fact [27] that when one fixes the
speed of sound of quark matter and increases the bag con-
stant (which increases ptrans/εtrans and also varies ∆ε/εtrans in
a correlated way) the resultant family of mass-radius curves
all pass through the same small region in the M-R plane: the
M(R) curves “rotate” counter-clockwise around this hub (see
Fig. 2 of Ref. [27]). In our case we are varying ptrans/εtrans at
fixed ∆ε/εtrans, so the hub itself also moves. At low transi-
tion density the hub is below 1.4M�, so R1.4 decreases with
ptrans/εtrans. At high transition density the hub is at a mass
above 1.4M� so R1.4 will increase with ptrans/εtrans.

The smallest stars occur for c2
QM = 1 (right hand plots),

where R1.4 & 9.5km at large values of the energy density
discontinuity, and the radius rises as the discontinuity is de-
creased. This is consistent with the absolute lower bound of
about 8.5 km [28] for the maximally compact c2

QM = 1 star
obeying Mmax > 2M�.

For c2
QM = 1/3 the allowed region at low transition pressure

is small, so in the right panels of Fig. 5 we show a magnifica-
tion of this region. We see that in the allowed (Mmax > 2M�
and ntrans > n0) region there is a minimum radius 12.2km
for the BHF (soft) hadronic EoS, and about 12.5km for the
DBHF (stiff) hadronic EoS. This minimum is attained at the
lowest possible transition density, ntrans ≈ n0. As the transi-
tion density rises to values around 2n0, the minimum radius
rises to 12.5 km (BHF) or 13.3 km (DBHF). This is compara-
ble to the minimum radius of about 13 km found in Ref. [18],
which explored a wider range of hadronic EoSes but assumed
ntrans = 2n0. These results are consistent with the lower bound
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FIG. 3: Contour plots showing the radius of the maximum-mass star as a function of the CSS parameters. Dashed lines are for the case
where this star is on the disconnected branch; for dot-dashed lines it is on the connected branch. The grey shaded region is excluded by the
measurement of a 2M� star. The hatched band at low density (where ntrans < n0) is excluded because bulk nuclear matter would be metastable.
The hatched band at high density is excluded because the transition pressure is above the central pressure of the heaviest stable hadronic star.
For a magnified version of the low-transition-pressure region for c2

QM = 1/3, see Fig. 5.

on R1.4 for c2
QM = 1/3 of about 11 km established in Ref. [28]

(Fig. 5) using the EoS that yields maximally compact stars
(corresponding to CSS with ptrans = 0 and c2

QM = 1/3) obey-
ing Mmax > 2M�. If a 1.4M� star were observed to have
radius below the minimum value, one would have to conclude
that either it is not a hybrid star or that c2

QM > 1/3.

The dashed line shows how the excluded region would grow
if a star of mass 2.1M� were to be observed. This would in-
crease the minimum radius to about 12.7 km (BHF) or 13 km
(DBHF).

III. THE BHF AND DBHF EOS OF NUCLEAR MATTER

We now discuss in more detail the nuclear matter equations
of state that we use in this work. We adopt the Brueckner-
Hartree-Fock (BHF) scheme, in which the only input needed
is the realistic free nucleon-nucleon (NN) interaction V in the
Brueckner-Bethe–Goldstone (BBG) equation for the reaction
matrix G

G[ρ;ω] =V + ∑
kakb

V
|kakb〉Q〈kakb|

ω− e(ka)− e(kb)
G[ρ;ω], (3)

where ρ is the nucleon number density, and ω the start-
ing energy. The propagation of intermediate baryon pairs
is determined by the single-particle energy e(k;ρ) = k2

2m +
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FIG. 4: Contour plots similar to Fig. 3 showing the radius at of a hybrid star of mass M = 1.4M� as a function of the CSS parameters. Such
stars only exist in a limited region of the space of EoSes (delimited by dashed (magenta) lines). The grey shaded region is excluded by the
observational constraint Mmax > 2M�. For a magnified version of the low-transition-pressure region for c2

QM = 1/3, see Fig. 5.

U(k;ρ), and the Pauli operator Q. Because of the oc-
currence of G in the single-particle potential U(k;ρ) =
Re∑k′≤kF 〈kk′|G[ρ;e(k)+e(k′)]|kk′〉a, where the subscript “a”
indicates antisymmetrization of the matrix element, the BBG
equation (Eq. (3)) has to be solved in a self-consistent manner
for several momenta of the particles involved, at the consid-
ered densities.

In the non-relativistic BHF approximation the energy per
nucleon is given by [29]

E
A
=

3
5

k2
F

2m
+

1
2ρ

∑
k,k′≤kF

〈kk′|G[ρ;e(k)+ e(k′)]|kk′〉a. (4)

The nuclear EoS can be calculated with good accuracy in the
Brueckner two hole-line approximation with the continuous
choice for the single-particle potential, and the results in this
scheme are quite close to the calculations which include also
the three hole-line contribution [30–32]. The dependence on

the NN interaction, also within other many-body approaches,
has been systematically investigated in Ref. [33].

It is well known that, in order to reproduce the correct sat-
uration point of symmetric nuclear matter, we must introduce
nuclear three-body forces (TBF’s). In our approach the TBF is
reduced to a density-dependent two-body force by averaging
over the position of the third particle, assuming that the prob-
ability of having two particles at a given distance is reduced
according to the two-body correlation function [34, 35].

In this work we use the Argonne v18 NN potential [36], and
the so-called Urbana model for TBF’s, which consists of an
attractive term due to two-pion exchange with excitation of an
intermediate ∆ resonance, and a repulsive phenomenological
central term [37, 38]. Those TBF’s produce a shift of about
+1 MeV in energy and −0.01 fm −3 in density. This adjust-
ment is obtained by tuning the two parameters contained in the
TBF’s, and was performed to get an optimal saturation point
[34, 35]. At present the theoretical status of microscopically
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FIG. 5: Magnified version of the c2
QM = 1/3 plots in Figs. 3 and 4. In the two left panels, the contours are for the radius of the maximum

mass star, which is typically the smallest star for the given EoS. In the two right panels, the contours are for R1.4, the radius of a 1.4M� star.
The region under and to the left of the hatched bar is probably unphysical because ntrans < n0, and it was excluded (hatched band) in earlier
figures. The grey shaded region is excluded by the observational constraint Mmax > 2M�. The dashed line shows how that region would grow
if a 2.1M� star were observed.

derived TBF’s is still quite rudimentary, however a tentative
approach has been proposed using the same meson-exchange
parameters as the underlying NN potential [39, 40].

Along with the nonrelativistic BHF EoS we consider its rel-
ativistic counterpart, the DBHF scheme [24] where the Bonn-
A potential is used for the nucleon-nucleon interaction. In
the low density region (ρ < 0.3 fm−3), the BHF (including
TBF) and DBHF equations of state are very similar, whereas
at higher densities the DBHF is slightly stiffer. The discrep-
ancy between the nonrelativistic and relativistic calculation
can be easily understood by recalling that the DBHF treatment
is equivalent to introducing in the nonrelativistic BHF the TBF
corresponding to the excitation of a nucleon-antinucleon pair,
the so-called Z-diagram [41], which is repulsive at all densi-
ties. In the BHF treatment with Urbana TBF, both attractive
and repulsive TBF are introduced and therefore a softer EoS

is expected. We report in Table I the main properties of both
EoSes.

In this work we perform all calculations for both the BHF
and DBHF equations of state for hadronic matter. This pro-
vides a reasonable range of possible hadronic EoSes, and al-
lows us to gauge the sensitivity of our results to this source of
uncertainty, although even DBHF is not as stiff as an ultra-stiff
hadronic EoS such as DD2-EV [26] (see Sec. II B).

We do not include the effects of hyperons because these are
unknown, and including them would not increase the physical
accuracy of our results. Calculating a hyperonic EoS requires
knowledge of hyperon interactions with other baryons, and
there is little data on hyperon-nucleon interactions [42] and
none on hyperon-hyperon interactions or three-body interac-
tions. There have been various conjectures about the hyperon
interaction [43–46] and how to include it in BHF [44, 47, 48]
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and DBHF [49] but there is no consensus on the correct result.

IV. QUARK MATTER VIA THE FIELD CORRELATOR
METHOD

A. The FCM EoS

The approach based on the Field Correlator Method (FCM)
provides a natural treatment of the dynamics of confinement in
terms of the Color Electric (DE and DE

1 ) and Color Magnetic
(DH and DH

1 ) Gaussian correlators, the former being directly
related to confinement, so that its vanishing above the criti-
cal temperature implies deconfinement [50]. The extension of
the FCM to finite temperature T at chemical potential µq = 0
gives analytical results in reasonable agreement with lattice
data, giving us some confidence that it correctly describes the
deconfinement phase transition [51, 52]. In order to derive
an EoS of the quark-gluon matter in the range of baryon den-
sity typical of the neutron star interiors, we have to extend the
FCM to non-zero chemical potential [51, 52]. In this case, the
quark pressure for a single flavor is simply given by

Pq/T 4 =
1

π2

[
φν

(
µq−V1/2

T

)
+φν

(
−

µq +V1/2
T

)]
(5)

where

φν(a)=
∫

∞

0
du
(

u4/
√

u2 +ν2
)(

exp
[√

u2 +ν2−a
]
+1
)−1

(6)
with ν = mq/T , and V1 is the large distance static qq poten-
tial whose value at zero chemical potential and temperature is
V1(T =µB =0) = 0.8 to 0.9 GeV [53, 54]. The gluon contri-
bution to the pressure is

Pg/T 4 =
8

3π2

∫
∞

0
dχχ

3 1

exp
(

χ + 9V1
8T

)
−1

(7)

and the total pressure is

Pqg = ∑
j=u,d,s

P j
q +Pg−

(11− 2
3 N f )

32
G2

2
(8)

where P j
q and Pg are given in Eq. (5) and (7), and N f is the

number of flavors. The last term in Eq. (8) corresponds to the
difference of the vacuum energy density in the two phases,
G2 being the gluon condensate whose numerical value, deter-
mined by the QCD sum rules at zero temperature and chem-
ical potential, is known with large uncertainty, G2 = 0.012±
0.006 GeV4. At finite temperature and vanishing baryon den-
sity, a comparison with the recent available lattice calculations
provides clear indications about the specific values of these
two parameters, and in particular their values at the critical
temperature Tc. Some lattice simulations suggest no depen-
dence of V1 on µB, at least for very small µB, while different
analyses suggest a linear decreasing of G2 with the baryon
density ρB [55], in nuclear matter. However, for simplicity, in
the following we treat both V1 and G2 as numerical parameters
with no dependence on µB.

B. The FCM EoS and the CSS parameterization

The CSS parameterization will be applicable to the FCM
EoS if the speed of sound in the FCM EoS depends only
weakly on the density or pressure. In Fig. 6 we show that
this is indeed the case. The upper panel shows the speed of
sound vs. pressure in the FCM quark matter EoS for different
values of the FCM parameters, displayed in the lower panel.
We see that the speed of sound varies by less than 5% over
the considered range of pressures along each curve, and lies
in the interval 0.28 < c2

QM < 1/3. The value of c2
QM shows

a weak dependence on V1 and extremely weak on G2, which
appears as an additive constant in the quark matter EoS ac-
cording to Eq. (8). The transition pressure is more sensitive to
the FCM parameters, increasing rapidly with V1 and with G2.
The energy density at a given pressure increases slightly with
an increase in V1 or G2.
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FIG. 6: The squared speed of sound c2
QM (panel (a) ) is displayed

vs. quark matter pressure for several values of V1 (in MeV) and G2
(in GeV4). In panel (b), the FCM energy density is represented by
full symbols, whereas the full lines denote the CSS parameterization
given by Eq. (1).

To illustrate how well the CSS parameterization fits the
FCM EoS, we show in the lower panel of Fig. 6 that, for the
same FCM parameter choices, we can always find suitable
values of the CSS parameters which fit the FCM calculation
extremely well. This means that there exists a well-defined
mapping between the FCM parameters (V1, G2) and the CSS
parameters (ptrans/εtrans, ∆ε/εtrans, c2

QM). Note that the map-
ping depends on the EoS of the hadronic matter.

The mapping is displayed in Fig. 7, which shows the re-
gion of the CSS parameter space where FCM equations of
state are found. As in the phase diagrams in Sec. II, we show
the plane whose co-ordinates are the CSS parameters ∆ε/εtrans
and ptrans/εtrans. For the hadronic EoS we use BHF (left panel)
and DBHF (right panel). The lines without points represent
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FIG. 7: The mapping of the FCM quark matter model onto the CSS parameterization. Results are obtained using the BHF (left panel) and
DBHF (right panel) nuclear matter EoS. The undecorated curves are the phase boundaries for the occurrence of connected and disconnected
hybrid branches (compare Fig. 1 and 2). The thin dashed (black) line and the solid (black) line studded with circles delimit the region yielded
by the FCM model. Within that region, lines decorated with symbols give CSS parameter values for FCM quark matter as G2 is varied at
constant V1 (given in MeV). The (orange) cross denotes the EoS with the highest ptrans, which gives the heaviest FCM hybrid star. See text for
details.

the phase boundaries, as for the figures in Sec. II, for con-
nected and disconnected branches. Whether a given FCM EoS
yields stable hybrid stars depends on which of those phase re-
gions (see Fig. 1) it is in. The solid (green) phase boundary
with a cusp at ptrans/εtrans ≈ 0.17 delimits the region with a
disconnected branch for c2

QM = 1/3, while the nearby dashed
(green) line is for c2

QM = 0.28, so these span the range of c2
QM

relevant for the FCM, as discussed in Fig. 6. It is evident that
the dependence on c2

QM is tiny and negligible for practical pur-
poses.

The thin dashed (black) line and the solid (black) line stud-
ded with circles delimit the equations of state yielded by the
FCM calculation. Within that region, the lines studded with
points show the CSS parameterization of the FCM quark mat-
ter EoS, where along each line we keep V1 constant and vary

G2. Above that region, which corresponds to negative values
of V1, the EoS cannot reproduce the 2M� limit, and in this
sense is unphysical (Fig. 8). Below that region, there would
be no transition from hadronic to quark matter, as explained
below.

In Fig. 7, V1 varies from 0 up to the maximum value at
which hybrid star configurations occur, which is indicated
by an (orange) cross. For the BHF case that value is V1 =
240 MeV, G2 = 0.0024 GeV4 and for the DBHF case it is
V1 = 255 MeV, G2 = 0.0019 GeV4. Along each FCM curve in
Fig. 7 the parameter G2 starts at the minimum value at which
there is a phase transition from hadronic to FCM quark mat-
ter; at lower G2 the quark and the hadronic pressures p(µ)
do not cross at any µ . On each curve one point is labelled
with its value of G2/(10−3 GeV4), and subsequent points are
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FIG. 8: Contour plots, analogous to Fig. 2, showing the maximum mass of hybrid stars with FCM quark matter cores, given in terms of the
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at intervals where G2 increases in increments of 1 in the same
units.

We observe that along each line of constant V1, ptrans/εtrans
grows with G2. This can be explained by recalling the linear
dependence of the quark pressure on G2 in Eq. (8), so that, at
fixed chemical potential, an increase of G2 lowers the quark
pressure, making quark matter less favorable, and shifting the
transition point to higher chemical potential or pressure. This
was already discussed in Ref. [56] for BHF nuclear matter,
and is equally applicable to DBHF nuclear matter. Obviously
if G2 becomes too small, the phase transition takes place in a
region of low densities where finite nuclei are present, and the
homogeneous nuclear matter approach becomes invalid.

The qualitative behavior of the curves of constant V1 can
be understood in terms of the Maxwell construction between
the purely hadronic phase and the quark phase. The fact

that ∆ε/εtrans goes through a minimum (which is always at
ptrans/εtrans ≈ 0.1) as G2 is increased at constant V1 can be un-
derstood from Fig. 2 of Ref. [56], which shows pressure p as
a function of baryon density n and the location of the hadron
(BHF EoS) to quark (FCM EoS) transition when G2 is varied.
The hadronic EoS is strongly curved, especially at low pres-
sure, while the FCM EoS is closer to a straight line. Conse-
quently, the baryon density difference between the two phases
at a given pressure has a minimum at densities around 2n0,
which corresponds to ptrans/εtrans ≈ 0.1. As G2 increases, the
transition pressure rises, scanning through this minimum. It
follows that the energy density difference also goes through a
minimum, because ε = µn− p, and p and µ are continuous at
the transition, so ∆ε = µ∆n. The DBHF hadronic EoS is very
similar to BHF at low pressure, so the curves have their min-
ima at the same value of ptrans/εtrans in both panels of Fig. 7.
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FIG. 9: Shaded areas show range of radii of stars with a given max-
imum mass when varying FCM parameters. The thick dashed lines
indicate the purely hadronic mass-radius configurations. The crosses
at the top of the shaded regions correspond to the maximal config-
uration indicated by the same symbol in Fig. 7. The observational
constraint [23] on the star mass is indicated by a horizontal line.

We also see in Fig. 7 that an increase of V1 moves the curves
slightly downward and to the right. This is expected since V1
is a measure of the interparticle strength, and is inversely pro-
portional to the pressure of the system, so that the pressure
decreases as V1 is increased at fixed µ , and, as already dis-
cussed for the parameter G2, a decrease of the quark pressure
raises ptrans. The role of V1 and G2 in the quark EoS discussed
so far, provides in the same way a qualitative understanding
of c2

QM in panel (a) in Fig. 6, although, as already noticed, the
effect in Fig. 7 of the change in c2

QM is negligible.

C. Expected properties of Mass-Radius curves

By comparing Fig. 7 with Fig. 1 we can see that when
combining FCM quark matter with BHF (soft) nuclear matter,
the physically allowed range of FCM parameter values yields
EoSes that are mostly in regions C and A, where there is no
disconnected hybrid branch. At the lowest transition densi-
ties the FCM EoS can achieve a large enough energy density
discontinuity to yield a disconnected branch (region D).

For the DBHF (stiff) nuclear EoS there is a wider range
of values of V1 and G2 that give disconnected branches, and
some of them give simultaneous connected and disconnected
branches. This difference can be understood in terms of the
stiffness of the EoSes. A change from a soft hadronic EoS
(BHF) to a stiff one (DBHF) produces a steeper growth of the

hadronic pressure as a function of the baryon density. Re-
ferring again to Fig. 2 of Ref. [56], this pulls the DBHF p(n)
curve further away from the FCM curve, giving a larger differ-
ence in baryon density at given pressure, and hence, as noted
above, a larger ∆ε . This is why the curves for DBHF+FCM
(right panel of Fig. 7) are shifted upwards along the ∆ε/εtrans
axis compared to the BHF+FCM curves (left panel of Fig. 7).

We can calculate the maximum mass of a hybrid star con-
taining an FCM core as a function of the FCM parameters, and
then use the mapping described above to obtain the CSS pa-
rameter values for each FCM EoS, producing a contour plot of
maximum mass (Fig. 8) for BHF (left panel) and DBHF (right
panel) hadronic EoS. Given that the CSS parameterization is a
fairly accurate representation of the FCM EoS, one would ex-
pect this to be very similar to the corresponding plot for CSS
itself with c2

QM = 1/3 (Fig. 2), and this is indeed the case. The
contours in Fig. 8 are restricted to the region corresponding to
physically allowed FCM parameter values, so they end at the
edges of that region.

The triangular shaded area at the edge of each panel shows
the region of the parameter space that is accessible by the
FCM and is consistent with the measurement of a 2M�, by
having hybrid stars of maximum mass greater than 2M�.
The (orange) cross in each panel of Fig. 7 is at the high-
transition-pressure corner of that triangular area. The heav-
iest BHF+FCM hybrid star has a mass of 2.03M�, and the
heaviest DBHF+FCM hybrid star has a mass of 2.31M�.

As noted in Sec. II B, the hybrid stars in this physically al-
lowed and FCM-compatible region of the phase diagram lie
on a very tiny connected branch, covering a very small range
of central pressures and masses and radii, and would therefore
occur only rarely in nature. These stars have very small quark
matter cores (see Ref. [1], Figs. 5 and 6), and their mass and
radius are very similar to those of the heaviest purely hadronic
star, but there could be other clear signatures of the presence
of the quark matter core, such as different cooling behavior.

The CSS parameterization has another region where heavy
hybrid stars occur, at low transition pressure (see Fig. 2), but
the FCM does not predict that the quark matter EoS could be
in that region.

To characterize the radius of FCM hybrid stars we cannot
construct contour plots like Fig. 4 because, as we have just
seen, the FCM predicts that only hybrid stars with mass very
close to the maximum mass are allowed. There are no FCM
hybrid stars with mass around 1.4M�. Instead, in Fig. 9 we
show the range of radii of stars with a given maximum mass
when varying FCM parameters, for our two different hadronic
EoSes. The right hand edge of each shaded region traces
out the mass-radius relation for hadronic stars with the cor-
responding hadronic EoS. The FCM hybrid stars form very
small connected branches which connects to the nuclear mat-
ter where the central pressure reaches the transition pressure
(See Sec. II B), so the hybrid stars do not deviate very far from
the hadronic mass-radius curve. Hence the shaded regions in
Fig. 9 are narrow, especially in the observationally allowed
(Mmax > 2M�) region, which perfectly matches the predic-
tion of CSS parametrization on the maximum-mass star ra-
dius in the high transition-pressure region (see left panels of
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Fig. 3). For BHF (soft) nuclear matter, the hadronic stars, and
hence the hybrid stars, are smaller because the nuclear mantle
is more compressed by the self-gravitation of the star.

V. CONCLUSIONS

We have shown how observational constraints on the mass
and radius of hybrid stars can be expressed as constraints
on the parameters of the CSS parameterization of the high-
density EoS, which, in the space of possible models of quark
matter, is a reasonably model-independent parameterization.
Of course, physical predictions from CSS depend on the
hadronic EoS with which it is combined. The CSS parame-
terization assumes a sharp transition from nuclear matter to a
high-density phase such as quark matter, and that the speed of
sound in that phase is independent of the pressure. We found
that the observation of a 2M� star constrains the CSS param-
eters significantly [1, 18].

If, as predicted by many physical models of quark matter,
c2

QM . 1/3, then for typical models of hadronic matter such
as BHF or DBHF there are two possible scenarios (we will
discuss ultra-stiff hadronic EoSes below).

Firstly, there is a low-transition-pressure scenario, where
the transition to the high density phase occurs at ntrans . 2n0
(unshaded region on the left side of the two left panels of
Figs. 2, 3, 4). In this scenario, the hybrid branch of the mass-
radius relation will be connected to the nuclear branch. In
the c2

QM . 1/3 and low-transition-pressure scenario there are
strong constraints on the radius of the star, as shown in Fig. 5.
The radius of the maximum mass star (which is typically the
smallest possible star) must be greater than about 11.5 km, and
the radius of a 1.4M� star must be greater than about 12.2 km
[28]. For a stiffer hadronic EoS, these minima are raised by
about 0.15 to 0.3 km. If a neutron star of mass 2.1M� were
observed then this constraint would tighten, increasing the
minimum radius to about 12.1 km. If a star smaller than the
minimum radius were observed, we would have to conclude
that either the transition is outside the low-density regime
or c2

QM > 1/3. Conversely, if theoretical considerations es-
tablished that c2

QM is smaller than 1/3, the minimum radius
would become larger [18].

Secondly, there is a high-transition-pressure scenario
(white region on the right side of the left panels of
Figs. 2, 3, 4). This tends to give a very small branch of hybrid
stars with tiny quark matter cores, occurring in a narrow range
of central pressures just above the transition pressure. This
is why the mass and radius contours become almost vertical
in this region: the hybrid star has almost the same mass and
radius as the heaviest purely hadronic star (the one where the
central pressure is ptrans), and so the properties of these hybrid
stars depend on the hadronic EoS (see Fig. 9) via ptrans/εtrans
but not on quark matter properties such as ∆ε or c2

QM.
If the hadronic matter is extremely stiff (e.g. DD2-EV [26])

or the quark matter has c2
QM larger than 1/3 then a larger re-

gion of the CSS parameter space becomes allowed. The right

panels of Figs. 2, 3, 4 show the extreme case where c2
QM = 1.

In this case the minimum possible radius is 9.0 km.
Disconnected hybrid branches are of special interest, be-

cause they give a characteristic signature in mass-radius mea-
surements. For both the hadronic EoSes that we study, discon-
nected hybrid star branches are excluded by the Mmax > 2M�
constraint for c2

QM 6 1/3, and even for larger c2
QM they only

arise if the hadronic matter EoS is stiff. Explorations of the
ultra-stiff hadronic DD2-EV EoS indicate that disconnected
hybrid star branches can occur at moderate c2

QM, and it would
be interesting to include this EoS in a future study.

Our work is intended to motivate the use of the CSS pa-
rameterization as a framework in which the implications of
observations of neutron stars for the high-density EoS can be
expressed and discussed in a way that is reasonably indepen-
dent of the modeling of the EoS of the high-density phase
(quark matter in our case) [4, 26].

As an application to a specific model, we performed cal-
culations for the FCM quark matter EoS. We showed that
the FCM equation of state can be accurately represented by
the CSS parameterization, and we displayed the mapping be-
tween the FCM and CSS parameters. We found that FCM
quark matter has a speed of sound in a narrow range around
c2

QM = 0.3, and the FCM family of EoSes covers a limited re-
gion of the space of all possible EoSes (Fig. 7). Once the ob-
servational constraint Mmax > 2M� is taken into account, the
allowed region in the parameter space is drastically reduced
to the shaded areas of Fig. 8. This corresponds to the high-
transition-pressure scenario, with a small connected branch of
hybrid stars with tiny quark matter cores. Such stars would
be hard to distinguish from hadronic stars via mass and radius
measurements, but the quark matter core could be detectable
via other signatures, such as cooling behavior. These hybrid
stars have central densities larger than 6.5n0 in the BHF case,
and 3.5n0 in the DBHF case (Fig. 8) which means that, ac-
cording to Refs. [43, 44, 46, 49], hyperons could play an im-
portant role in the BHF case, and they cannot be ruled out even
in the relativistic DBHF case. As discussed in Sec. III, we ig-
nored hyperons because we are already using two different
hadronic EoSes, one stiff and one soft, to estimate the sensi-
tivity of our results to the hadronic EoS, and the effect of hy-
perons remains unknown. In the future we hope that more ex-
perimental data will constrain the high-density hadronic EoS,
including the hyperonic contribution.
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