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Resonant Dampers for Parametric Instabilities in Gravitational Wave Detectors

S. Gras,∗ P. Fritschel, L. Barsotti, and M. Evans
Massachusetts Institute of Technology, 185 Albany St. NW22-295, 02139 MA, USA

Advanced gravitational wave interferometric detectors will operate at their design sensitivity
with nearly ∼1MW of laser power stored in the arm cavities. Such large power may lead to the
uncontrolled growth of acoustic modes in the test masses due to the transfer of optical energy to
the mechanical modes of the arm cavity mirrors. These parametric instabilities have the potential
of significantly compromising the detector performance and control. Here we present the design
of “acoustic mode dampers” that use the piezoelectric effect to reduce the coupling of optical to
mechanical energy. Experimental measurements carried on an Advanced LIGO-like test mass have
shown a 10-fold reduction in the amplitude of several mechanical modes, thus suggesting that this
technique can greatly mitigate the impact of parametric instabilities in advanced detectors.
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I. INTRODUCTION

The network of advanced gravitational wave detectors
currently under construction (two LIGO [1] detectors in
the USA, the Advanced Virgo [2] detector in Italy, and
Kagra [3] in Japan) promises to open the new window of
gravitational wave astronomy within this decade. These
large optical interferometers are built to make extremely
high precision measurement of the test mass motion in-
duced by gravitational waves [4].
Sensitivity to gravitational wave strains of order 10−24

requires high optical power circulating in the arm cavities
of these detectors. For instance, up to 750 kW of optical
power will be sustained in the steady-state regime inside
the Advanced LIGO arm cavities.
It has been experimentally observed that the stored

energy in a resonant cavity can leak from the optical
modes to the mechanical modes of the cavity mirrors
via a 3-mode interaction [5]. Given sufficiently high cir-
culating optical power, and mirror materials with very
low mechanical loss as required to avoid thermal noise,
the uncontrolled growth of test mass acoustic modes can
lead to Parametric Instabilities (PI) [6, 7]. If left unad-
dressed, PI will prevent high power operation, and thus
limit the astrophysical output of gravitational wave de-
tectors. While Advanced LIGO will serve as the primary
example in this paper, all advanced gravitational wave
detectors are susceptible to these instabilities.
Several schemes have been proposed to damp PI [8, 9].

In particular, solutions directly applicable to Advanced
LIGO involve active damping of acoustic modes by means
of the test mass electro-static drive actuators [10], and
thermal tuning of the optical modes using the test mass
ring heaters [11]. A significant constraint on any tech-
nique is that it must preserve the inherently low me-
chanical loss of the test mass in the gravitational wave
frequency band to maintain a low level of thermal noise.
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Here we present a novel method to passively control
PI by reducing the Q-factor of the test mass acoustic
modes with small resonant dampers. These “acoustic
mode dampers” (AMD) dissipate the strain energy of the
test mass mode through a resistive element after convert-
ing it to electrical energy via the piezoelectric effect (see
figure 2).
The resonant nature of the AMD allows it to effectively

damp test mass acoustic modes without introducing sig-
nificant mechanical loss at lower frequencies where ther-
mal noise can limit detector performance. With respect
to other proposed solutions, this approach has the ad-
vantage of being simple, self-contained, and completely
passive. Models indicate that AMDs can provide a broad-
band reduction in the Q of mechanical modes relevant to
PI, and are therefore particularly beneficial in the pres-
ence of a large number of unstable modes.
The structure of this paper is as follows. In section II

we set the stage by giving a brief overview of parametric
instabilities, including equations of particular relevance
to evaluating AMD performance. section III presents a
simple 1-dimensional model of the AMD which highlights
the principles of AMD operation. This is followed by a
description of the detailed finite element model (FEM)
used to analyze the AMDs ability to suppress PI when
attached to an Advanced LIGO test mass. The FEM
predictions are compared with experimental results from
a full-scale prototype in section IV. Finally, in section V
we discuss an AMD design that will provide Advanced
LIGO with protection from instabilities, without signifi-
cantly increasing test mass thermal noise.

II. PARAMETRIC INSTABILITIES (PI)

The acousto-optic interactions responsible for para-
metric instabilities have been extensively studied [6, 8,
12]. They consist of a scattering process and radia-
tion pressure operating together in an optical cavity in a
closed-loop manner. The graphical representation of this
process is shown in figure 1.
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FIG. 1. PI described as a positive feedback process. The pro-
cess is started when thermally perturbed mirror surface dis-
torts a steady state cavity field inside the interferometer arm
cavity. Two transverse optical sidebands are created. Both
sidebands exert force on the test mass via radiation pressure.
When the energy dissipation of the acoustic mode and the rate
of work done by the radiation pressure are unbalanced, one of
the sidebands excites the exponential growth of the acoustic
mode amplitude. The dynamic of this process is commonly
described in terms of the parametric gain R, with R > 1 in
the case of instability.

The e-folding growth time, or “ring-up time”, of an
acoustic mode in the presence of a 3-mode interaction is
τ = 2Qm/(ωm(R−1)) [13], where Qm and ωm are the Q-
factor and angular frequency of the mode, respectively,
and R is the parametric gain. When R > 1 the ampli-
tude increases exponentially until a saturation point is
reached [14]. The parametric gain R for the single opto-
mechanical interaction can be approximated as

R ≈ PcΛQmΓ(δνhom,∆ω) (1)

where Pc is the optical power circulating in the arm cav-
ity, δνhom is the cavity linewidths (full width, half max-
imum) for the higher-order optical mode. The parame-
ter Λ measures the spatial overlap between the acoustic
and the higher-order optical modes; Γ is representative of
the interferometer optical configuration and is a function
of the 3-mode interaction tuning ∆ω = ωm − 2π∆νhom,
where ∆νhom is the frequency difference between the fun-
damental and higher-order optical modes. For ∆ω → 0,
the parameter Γ reaches its maximum (see [15] for a more
detailed description).

Unstable acoustic modes with parametric gain up to
R ≃ 100 may arise in Advanced LIGO in the 10-90 kHz
band [6]. To prevent these instabilities, a damping mech-
anism must be introduced to reduce the Q-factor of all
unstable acoustic modes in this frequency band without

introducing excess thermal fluctuation in the detection

band of 10 Hz to 1 kHz.

III. MODEL OF THE ACOUSTIC MODE
DAMPER (AMD)

In order to reduce the Q of test mass acoustic modes we
designed a resonant AMD which can be attached to the
test mass and provide dissipation via the piezo-electric
effect.
In this section we first describe the interaction between

the AMD and the test mass with a simple 1-D model,
then we present a complete Finite Element Model of the
entire system.

A. Simplified 1-D Model

The AMD and test-mass system can be described as a
pair of coupled oscillators with a large mass ratio. The
AMD mass m is attached to the much more massive test
mass via piezo electric shear plates, which are modeled as
a lossy spring with complex spring constant of magnitude
k and loss angle η.
The test mass acoustic mode for which we would like

to estimate the impact of the AMD is simplified in this
model to a mass M , equal to the modal mass of the
acoustic mode, attached to a fixed reference by a lossless
spring K. The coupled systems is then excited by the
radiation pressure force F applied to the TM mode, as
shown in figure 2.
At frequencies near the resonance of the AMD, the

lossy spring produced by the piezoelectric material and
resistive load will dissipate the energy of the excited
acoustic mode, as seen in figure 3.
For this system of coupled oscillators, the amplitude

A(ω) of the acoustic mode driven by force F at angular
frequency ω is

A(ω) =
F

Mω2

√
ǫ2 + η2

(δǫ+ µ)2 + η2(δ + µ)2
(2)

where δ = 1− ω2
0/ω

2, ǫ = 1− ω2/ω2
D

ω2
0 =

K

M
, ω2

D =
k

m
, and µ =

m

M
.

(3)

The resulting effective Q-factor is

Qeff =
max(A(ω))

A(ω = 0)
≃ η2 + (1− ρ)2

ηµρ
(4)

where ρ = ω0/ωD, and we assume µ ≪ 1.
When the acoustic mode resonance is near that of the

AMD, η ≫ |1 − ρ|, the acoustic mode Q is reduced to
Qeff ≃ η/µ. When the acoustic mode resonance is well
above the AMD resonance, Qeff ≃ ρ/ηµ, and when it is
well below the AMD resonance, Qeff ≃ 1/ηµρ, assuming
η2 ≪ 1.
To suppress PIs, the test mass acoustic mode Q-factors

only need to be reduced from ≈ 107 to 105 − 106. Using
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FIG. 2. Overview of the Acoustic Mode Damper (AMD). The AMD can be described as a small spring-mass system attached
to a larger mass M . M represents a modal mass of an acoustic test mass mode which vibrates due to an external force F
(radiation pressure). Such induced vibration causes deformation of the lossy spring of the damper. The non-zero loss angle of
the damping spring (piezoelectric material) results in the lag of strain with respect to stress and thus energy dissipation. As a
consequence of this dissipation process the amplitude of the acoustic mode vibration is reduced.

this simple model we can estimate that a 3g AMD with
η = 0.1 on a 10kg test mass, can give Qeff

<∼ 105 for
resonances with 1

3 < ρ < 3.
However, this model ignores a number of important

factors. One of these is the location of the AMD relative
to the nodes and anti-nodes of each test mass acoustic
mode. Quantitatively speaking, the modal mass M of
a given mode should be increased in this model by the
ratio of the displacement at the AMD location to that
of the mode’s anti-node squared M ′ = M(xmax/xAMD)

2.
Thus, an AMD located near a node will have a reduced
value of µ, and will provide little damping.

Other important factors include the multiple coupled
degrees of freedom of the AMD and the directional nature
of the piezo damping material, both of which are covered
in the follow section.

B. Finite Element Model (FEM)

The simple 1-D model introduced in the previous sec-
tion is useful to provide an intuitive understanding of the

AMD damping mechanism. However, it is inadequate to
represent the details of the interaction between the AMD
and the test mass acoustic modes (TMAMs). Each AMD
has at least six resonant modes and hundreds of TMAMs
are present in the frequency band of interest; a Finite El-
ement Model is required in order to properly reproduce
these modes and calculate the frequency overlap between
them.

A FEM of the Advanced LIGO test mass with two
attached AMDs was constructed with the ANSYS pro-
gram [17]. The AMD model corresponds to the param-
eters of our prototype AMD (see table I), and the test
mass model parameters are reported in table VI. All dis-
sipation mechanisms in the test mass substrate, coating
and bonds were included in the FEM, along with all the
losses related to the acoustic mode damper structure (see
table V for a full list).

A piezoelectric material (PZT), for which energy dis-
sipation can be easily controlled, is ideal for AMD con-
struction. The AMD design modeled here has 2 PZTs
sandwiched between a reaction mass and the interferom-
eter test mass (see figure 2). The PZTs respond to shear
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TABLE I. List of the components for acoustic mode damper prototype. The dimensions and loss angle value are used in finite
element modeling described in Sec. III B

.

Component Material Dimensions Loss angle

Resistor Ceramic, surface mount 0.7×1.2×0.5 mm3 10 kΩ

Reaction mass Tungsten h=6.5 mm, d=9.6 mm 4e-5a

Epoxy conductive TruDuct 2902 25 µm 0.15a

Piezo shear plate TRS 200HD 4×4×0.76 mm3 0.014

Base fused silica + gold coating h=3 mm, d=10 mm 7.6 · 10−12·f 0.77b

Epoxy non-conductive (EP30, MasterBond) 25 µm 0.1 a

a Assumed loss value.
b Loss obtained from [16].
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FIG. 3. A viscous-like behavior of the loss angle for shunted
piezoelectric material. The total loss factor is a combination
of the shunting loss and structural loss of the piezoelectric
material. The maximum peak position is located at 40 kHz
which corresponds to the shunt with 10 kΩ resistor. The
larger the resistor the lower is frequency of the peak loss.
The peak height is proportional to electromechanical coupling
coefficient k15. Note, the loss angle at low frequency section is
mainly dominated by the structural loss angle of piezoelectric
material.

stress, and are poled orthogonally to ensure that all but
1 of the 6 lowest frequency AMD modes are damped. See
figure 4 for mode shapes; the compression mode is not
damped by the shear plates.
For the shear resonant damper, the spring constant can

be associated with the shear deformation of the piezoma-
terial

k(1 + iη) = Re(csu55)
(
1 + iηpzt

) S
h
, (5)

where csu55 is the active shunted shear stiffness matrix
component, S is the area, and h is the height of the shear
plate, respectively.
The loss factor ηpzt is induced by shunting the shear plate
with a resistor resulting in c55 becomes a complex quan-
tity with a nonzero imaginary stiffness. The magnitude of

compression

flag (F) anti−flag (aF)

rotation (R)

FIG. 4. Principal modes of AMD. The flag and anti-flag
modes are in dublets due to AMD geometry. The difference
between flag and anti-flag modes corresponds to the location
of the rotation axis about which reaction mass rocks. For
the flag pole the rotation axis is at the bottom surface of the
shear plate whereas for the anti-flag mode the rotation axis
is at the height of mass center of the reaction mass.

Im(c55) is strictly related to the impedance of the shear
plate-resistor circuit. Thus, the loss factor of the shunted
shear plate can be defined as

ηpzt =
Im(csu55)

Re(csu55)
. (6)

Because the impedance of any PZT is capacitive, the
loss factor ηpzt is frequency dependent. As such, careful
selection of the shunting resistor and PZT dimensions
can be used to maximize loss in the band of interest,
as shown in figure 3. A more detailed discussion of the
piezoelectric loss angle can be found in Appendix A.
We validated the FEM of the AMD by computing its

principal resonances, and comparing them with direct
measurements performed on a prototype AMD. The prin-
cipal resonances were measured with a capacitive bridge
circuit where one of the matching capacitors was the
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TABLE II. Verification of the finite element model for AMD.
Five principle resonances (two flag, two anti-flag and one ro-
tational mode) obtained with the model are compared to the
measured values. The x, y suffix corresponds to the shear
plate orientation.

Mode type FEM [kHz] Measured [kHz]

Fy-mode 9.96 9.77

Fx-mode 12.87 12.61

R-mode 23.28 24.13

aFy-mode 38.36 37.39

aFx-mode 50.51 48.86

AMD prototype. A total of five principal resonances
were identified, with three types of modes: two flag, two
anti-flag, and one rotation mode (see table II). All these
modes are characterized by large shear deformation for
the double piezo configuration in the AMD. The sixth
compression mode was not measured as it does not in-
volve shear of the piezo plate. table II shows the good
agreement between the output of the model and mea-
surements on the AMD prototype.

Harmonic analysis (finite element analysis with an ex-
citation at a fixed frequency) was conducted to estimate
the Q-factor of each of the TMAMs. This approach al-
lows us to include frequency dependent variables such as
the shear plate stiffness Re(csu55), and its loss angle (see
Appendix A).

The modal Q-factor of each resonant mode of the sys-
tem was calculated as

Q(fn) =

∑
m Em(fn)∑

m Em(fn) tan(φm)
, (7)

where fn is the frequency of the nth acoustic mode (see
figure 5). The loss associated with each structural com-
ponent is treated separately; Em is the strain energy
stored in the mth component and tan(φm) is its loss fac-
tor (see tables I and VI).

The modeled resonant frequencies of 12 TMAMs were
then compared to the measured resonance frequencies
(see table III), obtained according to methods described
in section IV. The front face displacement of the modes
are shown in figure 5.

Note that the agreement between calculated and mea-
sured Q-values increases with frequency. According to
the model, surface strain energy decreases with resonant
frequency. This may indicate an additional dissipation
process which is missing in the model. Nevertheless, a
small relative frequency offset ∆f below 1% in table III
indicates a good agreement of the FEM with measured
values.

TABLE III. The Q-factor of the test mass modes without
AMDs installed. The 4th and 7th column correspond to the
relative frequency noise ∆f% and Q-factor ratio between cal-
culated and measured value, respectively. Mode number cor-
responds to the first twelve modes with an anti-node in the
center (drumhead modes).

Mode # Freq. [Hz] Freq. [Hz] ∆f % Q-factor

FEM Measured FEM Measured Ratio

1 8128.3 8150.9 0.3 37M 1.9M 19.5

2 10391.1 10418.1 0.3 63M 14M 4.5

3 12999.1 12984.7 0.1 29M 15M 1.9

4 15101.4 15047.2 0.4 56M 17M 3.3

5 15151.0 15539.1 2.5 55M 16M 3.4

6 19487.0 19544.9 0.3 30M 7.0M 4.3

7 20113.6 20185.5 0.3 27M 13M 2.1

8 24824.0 24901.8 0.3 32M 16M 2.0

9 26504.3 26681.2 0.7 48M 18M 2.7

10 29767.4 29699.5 1.0 18M 15M 1.1

11 30912.1 31003.3 0.3 18M 12M 1.5

12 32664.1 32743.2 0.2 14M 13M 1.1

FIG. 5. Test mass drumhead modes for which Q-factor was
measured. The color-code corresponds to the test mass front-
face displacement amplitude. This figure was obtained from
FEM analysis of the test mass model without AMDs.

IV. EXPERIMENTAL RESULTS

Several AMD prototypes were constructed, each con-
sisting of six components (see table I):
Reaction Mass: A 10 g tungsten cylinder which tunes

the AMD principal resonances to frequencies above 10
kHz is located on top of the shear plates.
Shear Plate: Two piezoelectric shear plates, oriented

with perpendicular polarizations are glued to the reaction
mass and base with conductive epoxy Tra-Duct2902. The
epoxy serves to electrically connect the PZT electrodes
to the reaction mass and base.
Base: The interface between flat shear plates and

curved barrel of the test mass. The top flat surface is
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gold coated with separate sections to which shear plates
are glued. The bottom surface is curved to match the test
mass barrel curvature. The base is made from fused silica
and glued to the test mass with nonconductive epoxy.
Shunting circuit: One 10 kΩ resistor for each shear

plate is glued to the reaction mass with conductive
epoxy. The circuit is closed with 100 µm diameter silver
coated copper wire, which is soldered to the resistor and
gold coated surface of the base.

To measure Q-factors of the test mass modes, both
with and without AMDs attached, a 16 m optical cavity
was used, with the test mass forming the end mirror of
the cavity. The test mass was suspended with monolithic
fused silica suspension [18]. The optical cavity supports
a 2 mm diameter Gaussian mode; the resonant beam
probes the motion in the center of the test mass face, so
that modes with an anti-node in the center of the mass
are easily measured. A total of 12 modes were identi-
fied (figure 5) and measured, with the results shown in
table III.
In order to measure the impact of the AMD on the

Q of the TMAMs, several modes of the test mass were
excited using electrostatic actuators [19] and their ring-
down times observed. This measurement was repeated in
three configurations: with no AMD, with 2 AMDs, with 2
AMDs which lacked resistive damping (shunt wires cut).
Each acoustic mode was detected in the cavity locking

error signal as a peak in the Fourier domain. After being
excited, each mode amplitude was recorded as a function
of time to estimate the decay time τ . The Q-factor was
determined from the decay time τ , according to

Q = πf0τ. (8)

where f0 is the resonant frequency in Hz and τ is the
exponential decay time constant.
Measurements of the test mass mode Q-factor per-

formed after installing two AMDs clearly show the sub-
stantial damping capability of the AMD prototype, as
reported in table IV (see also table VII in Appendix for
additional details).
The results indicate that out of 12 modes, 11 are sup-

pressed by at least factor of 10 and in some cases by
more than two orders of magnitude. The relatively large
discrepancy between model and measurement for mode
#2 can be explained by the AMD and test mass (TM)
interaction condition for this particular mode. The FEM
predicts that mode #2 will be within 500Hz of the AMD
Fy-mode at 10 kHz, while the measured values give a
separation of 800Hz (mostly due to the AMD resonance
being off), reducing the interaction between the AMD
and TM mode.
In the off-resonance interactions, which are more com-

mon and set the lower limit to AMD performance, the
discrepancy is generally less than a factor of a few.
Surprisingly, modes #2 and #6 show a counterintu-

itive behavior; opening the resistive circuit of the AMDs

AMD

Test Mass

FIG. 6. Two acoustic mode dampers attached to the bar-
rel of a suspended aLIGO-like test mass. The AMDs are on
opposite sides of the test mass, ∼ 45◦ down from the midline.

decreases the TMAM Q-factor. However, since the elec-
trical circuit of AMD affects the mechanical stiffness of
the shear plates, it is expected that the principal reso-
nances also changed when the circuit is opened. And,
if the AMD resonance is close to the TMAM frequency,
equation 4 indicates that the mode Q can be decreased
by lowering the AMD loss.

The large Q reduction for modes #3 and #4 is due to
the on-resonance interaction between TMAM and AMD,
whereas for modes #5 and #12 the large Q reduction is
due to the anti-node AMD location on the TMAM.

TABLE IV. Test mass mode suppression obtained with two
AMDs. The damping factor refers two overall mode damping
efficiency where the resistive contribution corresponds to the
contribution of the shunt to the damping mechanism.

Mode # Freq. [Hz] Damping Resistive

factor contribution [%]

1 8150.9 32.2 12

2 10418.1 31.8 -57

3 12984.7 441.2 21

4 15047.2 81.0 9

5 15539.1 >320 >71

6 19544.9 15.6 -2

7 20185.5 13.8 41

8 24901.8 5.2 4

9 26681.2 >360 >0

10 29699.5 23.8 43

11 31003.3 307.7 68

12 32743.2 >260 >4
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V. ANALYSIS OF THE AMD THERMAL NOISE

The AMD is designed to increase the mechanical
damping of the test mass acoustic modes above 10 kHz.
At the same time, the AMD must introduce minimal ad-
ditional mechanical loss in the 10-1000 Hz band, where
low mechanical loss is required to keep test mass ther-
mal noise small [20]. Thus it is critical to calculate the
thermal noise resulting from the AMDs in our overall
evaluation of this PI mitigation technique.
We used the FEM described above to calculate the

thermal noise resulting from our experimental test of two
AMDs attached to a test mass. The AMD thermal noise
was calculated numerically at 100 Hz, the most sensitive
part of the detection band, using Levin’s approach [21].
The energy dissipation per cycle was computed using
equation A15 for a pressure profile corresponding to the
Advanced LIGO geometry (laser beam radius ω0 = 5.5
cm, incident on the front face of the TM). Results are
shown in table V.
The test mass thermal noise level of 5.2×10−21m/

√
Hz

corresponds to the design level for Advanced LIGO, and
is dominated by optical coating loss [22, 23]. As table V
shows, while our prototype AMD would contribute sig-
nificantly to thermal noise, it is not orders of magnitude
above the more fundamental sources of thermal noise.

TABLE V. Thermal noise budget for test mass and acoustic
mode damper prototype when attached to the test mass. The
thermal noise was calculated for the laser beam spot size of
ω = 5.5 cm.

Component Thermal noise @ 100 Hz

[10−21m/
√
Hz]

Test Mass:

Substrate 0.8

Optical coating 5.1

Suspension ears 0.0

Ears bond 0.6

Total per TM 5.2

AMD:

Reaction mass (RM) 0.3

Epoxy (RM-PZT) 4.8

Shear plate (PZT-X)a 5.5

Shear plate (PZT-Y)a 5.5

Epoxy Base-PZT 7.2

Base 0.0

Epoxy Base-TM 6.0

Total per AMD 13
a A product of a structural+resistive loss angle. Note that a
major contribution to that value comes from the structural loss,
see figure 3.

Relative to the prototype device, our model points to
several design and material improvements that can be
made to significantly reduce the thermal noise impact.

The major AMD thermal noise contributors are the epox-
ies used to bond the AMD elements, and structural loss
in the piezo shear plates. The former can be improved
with lower loss epoxy and thinner bond layers. The lat-
ter can be improved with a more suitable choice of piezo
material.
Other design elements can also be altered. The mass

of the reaction mass can be reduced to lower the thermal
noise without significantly affecting the acoustic mode
damping performance. Another modification would be
to avoid alignment of the piezo shear plate polarization
with the laser beam axis, to minimize the contribution
of resistive loss to the thermal noise. These and other
design optimizations will be explored in a future paper.
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VI. CONCLUSION

Acoustic mode dampers represent a simple yet effective
approach to damping parametric instabilities. The great
advantage of this approach over active damping [10] is
that many test mass acoustic modes are effected simul-
taneously, and no further intervention is necessary. This
is likely to be a critical feature in instruments that would
otherwise suffer from multiple acoustic modes simultane-
ously excited by parametric instabilities.

The investigation presented here involved modeling
and construction of a prototype AMD, which was shown
to effectively damp test mass acoustic modes. The ther-

mal noise associated with this prototype AMD was also
computed. Though the prototype AMD does not meet
the stringent thermal noise requirements of gravitational
wave detectors, several design elements were identified for
improvement, making this approach a potentially viable
solution to parametric instabilities.
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Appendix A: Piezoelectric material

Any piezoelectric material is strictly characterized by
electromechanical properties. The fact that both electri-
cal and mechanical properties are inseparable allows us
to represent the dissipation process in a shunted piezo-
electric material either as a Johnson heat or mechanical
loss. For the purpose of this work we focus on disspation
process in terms of the mechanical loss.
From the stress-charge of the piezoelectric constitutive
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equation it is straightforward to derive the total induced
stress in the shunted piezoelectric material [24]. Assum-

ing no external current plugged to the piezoelement elec-
trode we get

σ(6×1) =
(
cE(6×6) − iωet(6×3)Z

TOT
(3×3)A(3×3)e(3×6)L

−1
(3×3)

)
S(6×1), (A1)

where cE is the mechanical stiffness matrix under con-
stant electric field, et and e are the piezoelectric stress
constant. The upper script t refers to transpose operator
[25]. Electrode area is represented by matrix A, whereas
thickness of the piezomaterial between electrodes by ma-
trix L. The strain S is a product of the acting stress σ
on piezo-element and charge accumulation in the piezo-
element. Each bracket corresponds to the matrix dimens-
sion. It is assumed that piezoelectric element has a brick
shape thus matrices ZTOT ,A, and L are diagonal.
The total impedance in equation A1 is inverse sum of the
piezoelement admittance under constant electric field Y E

and the admittance of the external circuit Y su connected
to the piezoelement electrodes, thus

ZTOT =
(
Y E + Y su

)−1
. (A2)

The admittance of piezelement Y E is assumed to be ex-
clusively capacitive. Hence,

Y E = iωAǫSL−1 = iωCS = iωCT
(
ǫT

)−1
ǫS , (A3)

where C, ǫ is the capacitance and the dielectric constant
matrices under constant strain S and constant stress T ,
respectively. It is convenient to operate with CT since
this quantity can be easily measured at stress free condi-
tions and no shortened piezelement electrodes.
According to equation A1, if the piezoelement is inte-
grated with a nonzero impedance electric circuit, the
imaginary part of the stiffness tensor arises. The imagi-
nary part can be interpreted as a dissipative component
of the stiffness tensor. The total shunted stiffness matrix
is

csu = cE − iωetZTOTAeL−1. (A4)

Because matrices A, ZTOT , and L are diagonal and
knowing that AL−1 = CT (ǫT )−1 equation A4 can be
written as

csu = cE − eteẐ
(
ǫS

)−1
, (A5)

where Ẑ is the nondemensional impedance

Ẑ = ZTOTY E . (A6)

Note, for zero impedance the shunted circuit sets Ẑ to be

a unity matrix Ẑ = I whereas for the nonzero impedance

shunting Ẑ is a complex quantity. Using indexing equa-
tion A4 can be written as

csuij = cEij −
ekiekj Ẑkk

ǫSkk
. (A7)

where k = 1, 2, 3 and corresponds to the electrode posi-
tion, ǫS is the dielectric permittivity of the piezoelectric
material. It is a general equation for the stiffness matrix
of PZT with arbitrary number of electrode pairs.
From equation A3 and A7 becomes clear that loss can

be controlled with the shunting circuit. Moreover, such
loss is in fact a frequency dependent quantity with loss
curve shape dependent on shunting circuit.

For the shear plate with the single pair of electrodes,
which is our case, only a stiffness matrix element csu55 is
affected by shunting resistor, thus

csu55 = cE55 −
e15e15Ẑ11

ǫS11
. (A8)

and the nondemensional complex impedance Ẑkk has a
single nonunity element

Ẑ11 =
iωǫS11RCT

iωǫS11RCT + ǫT11
=

(
ωǫS11RCT

)2
(
ωǫS11RCT

)2
+
(
ǫT11

)2 +

i
ωǫS11ǫ

T
11RCT

(
ωǫS11RCT

)2
+
(
ǫT11

)2 . (A9)

Since the stiffness matrix csu is a complex quantity we
can define the loss factor η as

η =
Im(csu)

Re(csu)
, (A10)

and thus

ηij =
Im(Ẑkk)χkij

Re(Ẑkk)χkij + 1
, (A11)

where χkij = ekiekj(c
E
ijǫ

S
kk)

−1. Index k is associated with
the electrodes orientation, whereas indices i and j corre-
spond to stress-strain directions in the stiffness matrix
csu. The shunting loss factor of the shear plate becomes

η55 =
Im(Ẑ11)χ155

Re(Ẑ11)χ155 + 1
. (A12)

This is the main loss mechanism based on which shear
AMDs operate. The quantity χ155 is simply a function
of electromechanical coupling coefficient k15 and is equal
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to χ155 =
k2

15

1−k2

15

. Note, that according to equation A8,

the material stiffness (the real part of csu55) is also reduced
and should be included in the analysis.

1. Total mechanical loss angle

An assumption of the stiffness matrix being real in the
absence of shunt is not sufficient for accurate estimation
of energy dissipation. It becomes especially important in
the thermal noise analyisis, see Sec. V.
For known material loss angle of the nonshunted piezoele-
ment, the total loss factor of the piezoelectric material
can be defined as

ηtotij =
tan(φmat

ij ) + Im(Ẑkk)χkij

1 +Re(Ẑkk)χkij

, (A13)

where tan(φmat
ij ) is the material loss factor matrix of

piezo-element. The loss factor tan(φmat
ij ) of cE can be

easily computed using equation A10.

All piezoelectric material has anisotropic structure
which implies that strain energy dissipation in such mate-
rial must depend on the piezoelement geometric shape. It
is more convenient to use effective loss angle φeff rather
than the loss angle φ for each stiffness matrix compo-
nent. We define the energy dissipation per cycle in the

piezo-element

Wdis = 2πWstηeff (A14)

= 2π

∫
Re(SiS

∗

j )Re(csuji )η
tot
ji dV (A15)

where Wst is the stored strain energy such that 2πWst =∫
Re(SiT

∗

j )dV , where S, T are the complex strain and
stress, respectively and V is the volume of the piezo-
element.
Since the loss factor of the piezoelement is inverse of its
Q-factor or equally a ratio of dissipated energy per cycle
Wdis to energy stored Wst in the piezoelement, we can
define the effective noise fuctor ηeff

ηeff =
Wdis

2πWst

=

∫
Re(SiS

∗

j )Re(csuji )η
tot
ji dV∫

Re(SiT ∗

j )dV
, (A16)

where S, T are the complex strain and stress, respectively
and V is the volume of the piezo-element. This is a key
equation in the finite element analysis which properly
estimates the contribution of piezoelement in the strain
energy dissipation in the test mass.
In our analysis we assumed constant material intrinsic

loss factor for all cE elements equal to tan(φmat
ij )=0.014

[26], which leads to

ηtot55 =
0.014 + Im(Ẑ11)χ155

1 +Re(Ẑ11)χ155

. (A17)

Note, the remaining elements of the shunting induced loss
ηtotkij are equal to the material structural loss factor. The

total loss angle for the cE55 stiffness element is shown in
figure 3.

Appendix B: Additional Tables
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TABLE VI. Values for the aLIGO end test mass parameters used in this paper.

Optical parameters:

End test mass transmissivity 5.0 ppm

1 layer each of Ta2O5/SiO2 with thickness of 2.32 µm, and 3.49 µma, respectively

Mechanical properties of optical coating and ear bond:

Ta2O5 SiO2 Ear bond

Young’s modulus 140 GPa 70 GPa 7.2 GPa

Poisson ratio 0.23 0.17 0.17

Density 8300 kg/m3 2201 kg/m3 2202 kg/m3

Refractive index 2.06539 1.45 -

Loss angleb 2.4·10−4+f·1.8·10−9 0.4·10−4+f·1.1·10−9 0.1

Test mass dimensions:

Radius 0.17 m

Thickness 0.2 m

Flats width 0.095 m

Wedge angle 0.07 deg

Mass 40 kg

Loss anglec 7.6·10−12
·f 0.77

Materialc fused silica

a For the purpose of numerical analysis, a multilayer coating was reduced to double layers with a total thickness which corresponds to
the sum of all 18/19 layers of Ta2O5/SiO2 for the ETM.

b f-frequency. Note, the difference in loss angles for the substrate, and for the optical coating made from fused silica. Losses were
obtained from [27]. Additionally, coating loss angles were revised to the current measured values.

c Both test mass and suspension ears.

TABLE VII. Results of the Q-factor measurement with at-
tached AMDs for shunted and non-shunted cases.

Q-factor

Mode # Resistive Open Circuit

FEM Measured FEM Measured

1 52k 59k 70k 67k

2 7.9k 440k 9.9k 280k

3 23k 34k 23k 43k

4 420k 210k 510k 230k

5 2.4M <50k 2.2M 170k

6 1.9M 450k 4.8M 440k

7 1.1M 940k 1.6M 1.6M

8 6.7M 3.1M 9.5M 3.2M

9 49k <50k 64k <50k

10 1.9M 630k 3.3M 1.1M

11 61k 39k 116k 120k

12 25k <50k 260k 52k


