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We revisit the topic of triple-product asymmetries which probe CP violation through differential
distributions. We construct distributions with well-defined discrete symmetry properties and char-
acterize the asymmetries formed upon them. It is stressed that the simplest asymmetries may not
be optimal. We explore systematic generalizations having limited reliance on the process dynam-
ics and phase-space parametrization. They exploit larger fractions of the information contained
in differential distributions and may lead to increased sensitivities to CP violation. Our detailed
treatment of the case of spinless four-body decays paves the way for further experimental studies.

I. INTRODUCTION

The fully differential rates of some multibody meson
decays are being more and more accurately measured.
In the search for new sources of CP violation, such pro-
cesses present several advantages. They often feature a
rich variety of interfering contributions from which dif-
ferences in CP-violating—weak—phases could manifest
themselves. In addition, the multiplication of measurable
independent four-vectors permits the construction of so-
called triple-product observables. Those have a couple
of interesting characteristics. Unlike total rate asymme-
tries between CP-conjugate processes, their sensitivity
to small differences in CP-violating phases is not condi-
tioned by the presence of CP-conserving—strong or uni-

tary—phase differences. They can also be measured us-
ing untagged samples in which CP-conjugate processes
need not be distinguished, provided their fractions are
equal.

In this paper, we explore the variety of possible triple-

product observables. The ever-increasing amount of data
collected allows finer details of the differential distribu-
tions for which they are proxies to become measurable.
We stress that the most common asymmetries may not
be the most sensitive ones, due to cancellations in phase-
space integrals. As much as possible, we would like to
abstract our treatment from the particular dynamics of
the studied process. In many multibody decays, only
phenomenological descriptions of various degrees of ac-
curacy are achieved. They may not capture all the fine
details of interfering contributions which could reveal CP
violation. A systematic procedure that is less likely to
miss unpredicted forms of CP violation is therefore de-
sirable. Although we will mostly focus, for concreteness,
on four-body meson decays involving spinless particles,
our discussion has a wider range of application.

A. Differential CP violation

Let us consider two transitions of amplitudes
M({λi, pi}) and M̄({λı̄, pı̄}). They involve an equal

number particles respectively labeled by i and ı̄, with
helicities λi,ı̄ and four-momenta pi,ı̄. We would like to
perform a comparison of those two amplitudes phase-
space point by phase-space point so we take λı̄ = λi as
well as pı̄ = pi.

If these two processes are CP conjugate of each other,
with ı̄ = CP[i], CP violation at any phase-space point
takes the form of a difference between the squared moduli
of

M({λi, pi}) and M̄({λi, p̄i})

where p̄ ≡ P[p] is the parity conjugate of the momentum
p. Testing CP conservation phase-space point by phase-
space point thus implies a comparison of the differential
rates of two processes involving CP-conjugate particles
of identical helicities but opposite three-momenta.

It reveals useful to define an operator, called motion re-

versal and denoted here by T̂, that reverts both momen-
tum and spin three-vectors [1, 2]. Its action on helicities
and momenta is thus identical to that of CP and it can
be viewed as the unitary component of the antiunitary
time-reversal operator T. It is therefore sometimes called
naive T. In general, the amplitudes above can then be
decomposed into two pieces that are respectively T̂-even
and T̂-odd [3]:

M({λi, pi}) = Me({λi, pi}) + Mo({λi, pi}),

M̄({λi, p̄i}) = M̄e({λi, p̄i}) + M̄o({λi, p̄i})

= M̄e({λi, pi}) − M̄o({λi, pi}).

Those two terms can receive several contributions whose
absorptive parts [4, 5] take the form of CP-even phases
δ. One can then write

Me({λi, pi}) = aj
e ei(δj

e+ϕj
e),

M̄e({λi, pi}) = aj
e ei(δj

e−ϕj
e),

Mo({λi, pi}) = ak
o ei(δk

o +[ϕk
o+π/2]),

M̄o({λi, pi}) = ak
o ei(δk

o −[ϕk
o+π/2]),

(1)

with implicit summation over the j, k indices, and real
aj,k

e,o, δj,k
e,o , ϕj,k

e,o functions of the helicities and momenta
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{λi, pi}. The above conventions imply that all CP viola-
tion is encoded in the CP-odd phases ϕj,k

e,o. When they
vanish,

M̄e({λi, pi}) = +Me({λi, pi}),

M̄o({λi, pi}) = −Mo({λi, pi}),

so that the CP-conjugate rates are identical, phase-space
point by phase-space point. As the physical amplitude is
defined up to an overall phase, a departure from zero for
differences in these ϕj,k

e,o is what we are after.

B. CP violation without CP-even phases

The T̂-transformed differential rates are obviously ac-
cessible experimentally since the measured momenta can
be artificially reversed. For processes involving only
scalars in their initial and final states, T̂ is actually equiv-
alent to parity conjugation P. The measured differential
rates of any pair of CP-conjugate processes can there-
fore be decomposed into four pieces of definite T̂ and CP
transformation properties:

dΓ

dΦ

∣∣∣∣
T̂-even

odd

CP-even
odd

≡ I ± T̂

2

I ± CP

2

dΓ

dΦ
(2)

with the shorthand Φ ≡ {λi, pi}.
For simplicity, let us assume there are respectively two

and one contribution(s) to the T̂-even and T̂-odd parts
of the amplitude in the process under scrutiny:

M({λi, pi}) = a1
eei(δ1

a+ϕ1
a)+ a2

e ei(δ2
a+ϕ2

a) + ia1
o ei(δ1

o+ϕ1
o),

M̄({λi, p̄i}) = a1
eei(δ1

a−ϕ1
a)+ a2

e ei(δ2
a−ϕ2

a) + ia1
o ei(δ1

o−ϕ1
o).

All functions of the phase space are evaluated at {λi, pi}.
Note the convention of Eq. (1) causes the appearance of

a factor of i in front of the T̂-odd term. Up to a flux
factor, the squared modulus of this expression and of
its CP conjugate provides us with the differential rates
which can be decomposed as prescribed in Eq. (2):

dΓ

dΦ

∣∣∣∣
T̂-even

CP-even

∝ a1
e a1

e + a2
e a2

e + a1
o a1

o

+2 a1
e a2

e cos(δ1
e − δ2

e) cos(ϕ1
e − ϕ2

e),

dΓ

dΦ

∣∣∣∣
T̂-odd

CP-even

∝ 2 a1
e a1

o sin(δ1
e − δ1

o) cos(ϕ1
e − ϕ1

o)

+2 a2
e a1

o sin(δ2
e − δ1

o) cos(ϕ2
e − ϕ2

o),

dΓ

dΦ

∣∣∣∣
T̂-even

CP-odd

∝ −2 a1
e a2

e sin(δ1
e − δ2

e) sin(ϕ1
e − ϕ2

e),

dΓ

dΦ

∣∣∣∣
T̂-odd

CP-odd

∝ 2 a1
e a1

o cos(δ1
e − δ1

o) sin(ϕ1
e − ϕ1

o)

+2 a2
e a1

o cos(δ2
e − δ1

o) sin(ϕ2
e − ϕ1

o).

The last two expression above vanish in the CP limit.
There are thus two distinct kinds of CP-violating differ-
ential rates [6]: the presence of the T̂-even one requires

non-vanishing differences in CP-even phases δ while the
T̂-odd–CP-odd does not. This can be understood as, in
the absence of absorptive part to the amplitude, T̂ is
equivalent to T so that CPT conservation imposes any
CP-odd quantity to be also T̂ odd [7].

On the other hand, the T̂-odd–CP-even piece of the
differential rate could be used to isolate relatively small
differences in CP-even phases δ, in the absence of CP-
odd phase ϕ. It can thus serve to better understand
final-state interactions.

C. Untagged samples

Another remarkable characteristic of the T̂-odd-CP-
odd part of the differential rate is that it can be measured
with samples which contain an equal number of events
from CP-conjugated processes. It can also be evaluated
in the decay of self-conjugate states like the Z and h
bosons, or any Majorana fermion. This can be under-
stood by rewriting the T̂-odd–CP-odd differential rate
defined in Eq. (2) as

I − T̂

2

(
I + CPT̂

2

dΓ

dΦ

)
,

using the fact that T̂ is an involution: T̂
2

= I. It only
involves d(Γ + Γ̄)/dΦ evaluated at the phase-space point

{λi, pi} and at its T̂ conjugate {λi, p̄i}.
Other discrete symmetry operators can be introduced.

In particular, let us denote a permutation of the external
particles as E{i1, i2, . . . , in} = {E[i1], E[i2], . . . , E[in]}.
For transitions involving a self-conjugate subset of ex-
ternal particles, there is an especially relevant permu-
tation E∗ that takes each particle in the subset to its
CP conjugate. For example, E∗{K+, K−, π+, π−} =
{K−, K+, π−, π+}.

A part of the differential rate that is odd under a per-
mutation E can also be used to test CP conservation with
samples containing an equal number of events from CP-
conjugate processes:

I − E

2

(
I + CP E

2

dΓ

dΦ

)
.

However, resorting to such samples is only desirable when
a subset of the particles involved is self conjugate. Ex-
perimentally, the tagging that discriminates between the
CP-conjugate processes then comes with an efficiency
cost. Importantly, without tagging, what is then actually
measured is

I + CPT̂ E∗

2

dΓ

dΦ
.

In an untagged sample, one can therefore measure two
CP-odd differential rates that are either T̂-odd–E∗-even
or T̂-even–E∗-odd:
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I ± T̂

2

I ∓ E∗

2

I − CP

2

dΓ

dΦ

=
I ± T̂

2

I ∓ E∗

2

(
I + CPT̂ E∗

2

dΓ

dΦ

)
.

Some asymmetries of either kind were measured by
the LHCb Collaboration in its study of the B0

s →
K+K−π+π− decay with an untagged sample [8] (see dis-
cussion in Section II.H).

On the contrary, the differential rates of identical T̂
and E∗ parities are CP even in an untagged sample:

I ± T̂

2

I ± E∗

2

(
I + CPT̂ E∗

2

dΓ

dΦ

)

=
I ± T̂

2

I ± E∗

2

I + CP

2

dΓ

dΦ
.

As in the tagged sample case, they provide an handle on
the CP-even phases.

D. Integrated observables

No phase-space integration or spin averaging is in prin-
ciple required to test for the existence of CP-violating
phases. Such procedures are only applied because of
practical constraints like finite statistics. The total rate
asymmetry is constructed upon the T̂-even–CP-odd dif-
ferential rate

∫
dΦ

dΓ

dΦ

∣∣∣∣
T̂-even

CP-odd

. (3)

A second family of observables can be obtained from in-
tegrals of its T̂-odd–CP-odd homologue

∫
dΦ f (Φ)

dΓ

dΦ

∣∣∣∣
T̂-odd

CP-odd

(4)

with some T̂-odd function f (Φ) without which the phase-

space integral would vanish. Similarly, any T̂-even func-
tion g(Φ) could be inserted in the T̂-even–CP-odd in-
tegral to construct observables sharing the properties of
the total rate asymmetry.

As a product of a T̂-odd kinematic function with a T̂-
odd–CP-even differential rate, the observables of Eq. (4)

are T̂-even and CP-odd but have not definite T transfor-
mation properties.

E. T̂-oddity and triple products

There are two tensors available to construct Lorentz in-
variants from spin and momenta four-vectors. The met-
ric gµν leads to T̂-even contractions like invariant masses,

and the completely antisymmetric ǫµνρσ produces T̂-odd
combinations of four-vectors.

Dot products and antisymmetric contractions of four-
momenta and Pauli-Lubański spin vectors (respectively
denoted by p and w) have definite P parities. The P-even
combinations are:

p1 · p2, w1 · w2,

ǫµνρσ pµ
1 pν

2pσ
3 wρ

4 , and ǫµνρσ pµ
1 wν

2 wσ
3 wρ

4 ,

while the P-odd ones are:

p1 · w2,

ǫµνρσ pµ
1 pν

2pσ
3 pρ

4, ǫµνρσ pµ
1 pν

2wσ
3 wρ

4 , ǫµνρσ wµ
1 wν

2 wσ
3 wρ

4 .

The sensitivities to discrete symmetry violation of ob-
servables having definite P and T̂ transformation prop-
erties, in the presence or absence of absorptive parts in
the amplitude, are listed on p. 519 of Ref. [6].

The completely antisymmetric Lorentz structure
can originate directly from Lagrangian couplings like
iǫµνρσF µνF ρσ, or arise in the presence of chiral fermions,
since γ5 = i

4! ǫµνρσγµγνγργσ. Because it is completely
antisymmetric, however, a necessary condition for the
presence of a T̂-odd part Mo in an amplitude is the
availability of four independent and distinguishable four-
vectors. In a process involving scalars or particles of un-
measured spins, at least five external momenta are there-
fore required.

In a reference frame where aµ = (a0, 0), the com-
pletely antisymmetric combination of four four-vectors
ǫµνρσ aµ bν cρ dσ reduces to a a0

b · (c × d) scalar triple

product (for ǫ0123 ≡ +1). The observables constructed

from the T̂-odd parts of the differential rate are therefore
customarily called triple-product asymmetries. A signifi-
cant amount of effort, both theoretical and experimental
has been devoted to their study. A triple-product asym-
metry has been measured in KL → π+π−e+e− [9] and
applications are also found in heavy meson [10–26] [27–
31], baryons [32, 33], top [34], Z [35], Higgs [36–39], and
beyond-the-standard-model [40] physics.

F. Asymmetries

The simplest up-down triple-product asymmetries are
based on the sign of one of the constructible triple product

(see Eq. (4))

f (Φ) = sign{ ǫµνρσ aµbνcρdσ }. (5)

The usual quantities defined in the literature

֒ ֓
AT̂ ≡

∫
dΦ f (Φ)

[
dΓ
dΦ

∣∣T̂-odd

CP-even ֒±֓
dΓ
dΦ

∣∣T̂-odd

CP-odd

]

∫
dΦ

[
dΓ
dΦ

∣∣T̂-even

CP-even ֒±֓
dΓ
dΦ

∣∣T̂-even

CP-odd

]

are ratios of integrated T̂-odd and T̂-even differential
rates and have no definite CP transformation properties.
The converse could only be argued when differences of
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CP-even phases are proven vanishing. In the notations
of Section I.B,

AT̂ ∝ 2 aj
e ak

o sin
[
(δj

e − δk
e ) + (ϕj

e − ϕk
o)

]

then actually becomes a probe for small differences in
CP-odd phases ϕ. On the contrary,

ACP
T̂

≡ 1

2
(AT̂ − ĀT̂),

is always CP-odd. ĀP is occasionally defined as the
CPT̂-conjugate of AT̂ and has then a sign opposite to

ĀT̂ ≡ CP[AT̂] defined here. With this alternative con-

vention, ACP
T̂

becomes a sum. Other asymmetries were

for instance listed in Ref. [26]. Instead of ACP
T̂

, one may
consider

ÃCP
T̂

≡
∫
dΦ f (Φ) dΓ

dΦ

∣∣T̂-odd

CP-odd
∫
dΦ dΓ

dΦ

∣∣T̂-even

CP-even

.

This choice corresponds to the more common one when

the total rate asymmetry of Eq. (3) vanishes. Using ÃCP
T̂

,

the T̂-even–CP-odd and T̂-odd–CP-odd families of ob-
servables can be kept independent. Uncertainties in the
relative abundance of the two CP-conjugate initial states
can however make the use of ACP

T̂
experimentally prefer-

able.

G. Dilutions and f (Φ) sets

The ‘sign’ function used in Eq. (5) is not the only pos-
sible weight function f (Φ) that could be used in phase-

space integrals of T̂-odd differential rates. This choice
confines, experimentally, to counting events in regions of
phase space. Moreover, the adjunction of any T̂-even fac-
tor in the ‘sign’ argument besides the antisymmetric con-
traction ǫµνρσ aµbνcρdσ would obviously yield other po-

tentially interesting observables. Using a basis of T̂-odd
functions on Φ, it is also possible to decompose the T̂-
odd–CP-odd differential rate in moments (see Refs. [41–
43] about the method of moments). As in Ref. [28],
a binning of the phase space could also be defined and
a chi-squared test carried out to assess local departures
from zero in the T̂-odd–CP-odd piece of the differential
rate. This would correspond to choosing, for the f (Φ)s,
a set of characteristic functions that evaluate to 1 in one
bin and vanish elsewhere. At least three categories of
f (Φ) functions can thus be used to describe the T̂-odd–
CP-odd piece of the differential decay rate:

− ‘sign’ functions defining a signed partition of the phase
space,

− a T̂-odd basis on Φ providing a decomposition in mo-
ments,

− characteristic functions defining a phase-space bin-
ning.

To avoid dilutions in the integral of Eq. (4), the functions

chosen should ideally change sign wherever the T̂-odd–
CP-odd piece of the differential decay rate itself changes
sign. The bins’ boundaries should also be placed there.

The question of what set of f (Φ) functions would yield
the best sensitivity to CP violation is non trivial and de-
pends on the process at hand. Actually, when the form of
the differential decay rate is known with confidence, one
may rely on an unbinned likelihood fit to the data for ex-
tracting CP-violating parameters. Such amplitude analy-

ses have notably been carried out for several B meson de-
cays: e.g., for B0

s → K+K−K+K−, dominated by a φφ
intermediate state [29], or for B0 → K+K−K+π−, dom-
inated by a φK∗0 resonant intermediate state [27, 31].

Trustworthy parametrizations also make it possible to
determine the asymmetries relevant in the study of the
CP-odd phases that might appear in perturbative pro-
cesses like h → ℓ+ℓ− ℓ′+ℓ′−, or e+e− → h ℓ+ℓ− [39, 44–
48]. Observables of optimal statistical significance can
then also be determined [49].

In the hadronic decays of heavy mesons however, the
parametrization provided by a resonance model is only
phenomenological and, although it may capture accu-
rately enough the main features of the studied process,
new sources of CP violation may only be observable
in finer details. Using tests of CP violation that have
a limited reliance upon the process dynamics and its
parametrization is therefore desirable.

II. SPINLESS FOUR-BODY DECAYS

Four-body decays involving only spinless particles are
simple examples of processes in which four independent
four-vectors can be measured. In these cases, T̂ is equiv-
alent to P and there is actually one single independent
antisymmetric ǫµνρσ contraction which involves the ex-

ternal particles’ four-momenta. All T̂-odd functions of
the phase space are built upon it.

In the following, we will focus on this simple case and
investigate how to define appropriate signed partitions
(or binnings) of the phase space. For concreteness, we
will often refer to the specific D0 → K+K−π+π− de-
cay. Its differential rate, as well as the one of the corre-
sponding CP-conjugate process, has recently been mea-
sured with an impressive accuracy by the LHCb Collab-
oration [28]. Note we will only consider time-integrated
quantities while the LHCb Collaboration also recorded
the time dependence of the decay rate.

A. Phase-space parametrization

Hadronic multibody decays often receive contributions
of various topologies. The ones so far measured in
D0 → K+K−π+π− are displayed in Table I. A given res-
onance structure would be most appropriately described
with a parametrization of the phase space that includes
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Intermediate states Br ×104

(φρ0)S , φ → K+K−, ρ0 → π+π− 9.3 ± 1.2

D 0.83 ± 0.23

(K∗0K
∗0

)S, K∗0 → K±π∓ 1.48 ± 0.30

φ(π+π−)S , φ → K+K− 2.50 ± 0.33

(K−π+)P (K+π−)S 2.6 ± 0.5

K+
1 K

−, K+
1 → K∗0π+ 1.8 ± 0.5

K−
1 K

+, K−
1 → K

∗0
π− 0.22 ± 0.12

K+
1 K

−, K+
1 → ρ0K+ 1.14 ± 0.26

K−
1 K

+, K−
1 → ρ0K− 1.46 ± 0.25

K∗(1410)+K−, K∗(1410)+ → K∗0π+ 1.02 ± 0.26

K∗(1410)−K+, K∗(1410)− → K
∗0
π− 1.14 ± 0.25

TABLE I. The different measured contributions [50] to
Br(D0 → K+K−π+π−) = (24.3 ± 1.2) × 10−4 as listed
by the Particle Data Group [51], the corresponding decay
topologies—or resonance structures—, and branching frac-
tions. The S, P , and D indices indicate the partial waves
in which the particle pairs are produced.

0

1

2

3

4

φ
θa

θb

FIG. 1. Parametrization of the phase space of a 0 → 1 2 3 4
four-body decay privileging the (1 2) and (3 4) subsystems.
The momenta of the final-state particle pairs are pictured in
their joint rest frames.

the invariant masses in which resonances occur. Such a
description would likely be the most sensitive to the inter-
ferences between the several partial-wave contributions
to that topology. On the contrary, the effects of the res-
onances occurring in other invariant masses would be di-
luted. Therefore, at this point already, the parametriza-
tion of the four-body phase space challenges our aim at
a description independent of the process dynamics.

One may first consider the partial wave decomposition
of the dominant resonant intermediate state. Let us here
focus on the 0 → a b → (1 2) (3 4) topology found in the
φρ0 resonant contribution that accounts for about 40%
of the D0 → K+K−π+π− branching fraction. Repeating
the analysis that follows for different parametrizations
would be required to obtain better sensitivities to other
decay topologies. A (1 4) (2 3) pairing would for instance

allow to better probe CP violation involving a K∗0K
∗0

resonant intermediate state in the D0 → K+K−π+π−

decay.
The standard Cabibbo-Maksymowicz parametriza-

tion [52] of the phase space Φ can be adopted to describe
a four-body decay of 0 → a b → (1 2) (3 4) topology. It
is based on two invariant masses m2

a and m2
b (which be-

come constants in the narrow width approximation) and
three angles (see Fig. 1). In the a and b subsystems’ rest
frames, the orientations of the final-state particles’ mo-
menta are respectively characterized by θa and θb, com-
prised in the [0, π] interval. The relative orientation of
the planes formed by the two pairs of momenta is mea-
sured by φ ∈ [−π, π]. Note that θa and θb are T̂-even

while φ is T̂-odd (and P-odd). The whole φ dependence

of a differential distribution of definite T̂ transformation
properties can thus be obtained from the [0, π] interval.
The angle φ also determines the sign of the triple product:

ǫµνρσ pµ
1 pν

2 pρ
3 pσ

4 =
1

8
mamb

√
λ(m2

0, m2
a, m2

b) sθa sθb sφ .

where λ(x2, y2, z2) ≡ (x+y +z)(x+y −z)(x−y +z)(x−
y − z) is the usual Källén function, and m1,2,3,4 have
been neglected. We will occasionally use shorthands like
cφ ≡ cos φ, s2θ ≡ sin2 θ, s2θ ≡ sin(2θ).

B. Differential decay rates

For a decay to four spinless particles forming two in-
termediates states of angular momentum ja, jb, the am-
plitude can be expressed in terms of spherical harmonics.
With a spinless initial state, the two intermediate states
have equal helicities λ. We can therefore write

M = 4π
∑

ja,jb,λ

Aja,jb

λ (m2
a, m2

b) Y λ
ja

(θa, φ) Y λ
jb

(θb, 0)∗

with |λ| ≤ min(ja, jb), and partial-wave amplitudes

Aja,jb

λ of mass-dimension −1. General expression for n-
body phase spaces and arbitrary spins can be derived
from Refs. [53–55]. Our normalization is chosen such
that the squared amplitude integrated over the θa,b and
φ angles takes the form

∫
d cθa

2

d cθb

2

dφ

2π
|M|2 =

∑

ja,jb,λ

|Aja,jb

λ (m2
a, m2

b)|2.

In the ja = 1 = jb case relevant for the φρ0 intermedi-
ate state of D0 → K+K−π+π−, one can define the linear
polarization amplitudes

A0 ≡ A1,1
0 , A‖,⊥ ≡ 1√

2

(
A1,1

+1 ± A1,1
−1

)
,

where, for conciseness, we omitted the m2
a,b dependences.

The amplitude then writes

1

3
M = A0 cθa cθb +

A‖√
2

sθa sθb cφ − i
A⊥√

2
sθa sθb sφ

where the last term is T̂ odd because of its sφ depen-
dence. Its factor of i respects the phase conventions of
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Eq. (1). Denoting by Ā0,‖,⊥ the linear polarization am-
plitudes of the CP-conjugate process, the corresponding
differential decay rate can be decomposed, as described
before, in four pieces of definite T̂ and CP transformation
properties:

2m0

9

dΓ

dΦ

∣∣∣∣
T̂-even

CP-even

=
|A0|2 + |Ā0|2

2
c2θa c2θb

+
|A‖|2 + |Ā‖|2

4
s2θa s2θb c2φ

+
|A⊥|2 + |Ā⊥|2

4
s2θa s2θb s2φ

+
Re{A0A∗

‖ + Ā0Ā∗
‖}

4
√

2
s2θa s2θb cφ ,

2m0

9

dΓ

dΦ

∣∣∣∣
T̂-odd

CP-even

=
Im{A⊥A∗

0 + Ā⊥Ā∗
0}

4
√

2
s2θa s2θb sφ

+
Im{A⊥A∗

‖ + Ā⊥Ā∗
‖}

4
s2θa s2θb s2φ ,

2m0

9

dΓ

dΦ

∣∣∣∣
T̂-even

CP-odd

=
|A0|2 − |Ā0|2

2
c2θa c2θb

+
|A‖|2 − |Ā‖|2

4
s2θa s2θb c2φ

+
|A⊥|2 − |Ā⊥|2

4
s2θa s2θb s2φ

+
Re{A0A∗

‖ − Ā0Ā∗
‖}

4
√

2
s2θa s2θb cφ ,

2m0

9

dΓ

dΦ

∣∣∣∣
T̂-odd

CP-odd

=
Im{A⊥A∗

0 − Ā⊥Ā∗
0}

4
√

2
s2θa s2θb sφ

+
Im{A⊥A∗

‖ − Ā⊥Ā∗
‖}

4
s2θa s2θb s2φ ,

where

dΦ ≡
√

λ(m2
0, m2

a, m2
b)

8πm2
0

√
λ(m2

a, m2
1, m2

2)

8πm2
a√

λ(m2
b , m2

3, m2
4)

8πm2
b

d cθa

2

d cθb

2

dφ

2π

dm2
a

2π

dm2
b

2π
.

The linear polarization amplitudes may receive different
contributions each having a CP-even phase δi

X and a CP-
odd phase ϕi

X :

AX(m2
a, m2

b) ≡
∑

i

ai
X(m2

a, m2
b) ei[δi

X(m2
a,m2

b)+ϕi
X ]

for real-valued ai
X , δi

X , ϕi
X and X = 0, ‖, or ⊥. The

corresponding CP-conjugate quantities are then given by

ĀX ≡ ∑
i ai

X ei[δi
X−ϕi

X ], so that

Re{AXA∗
Y ± ĀXĀ∗

Y }/2

= ±
∑

i,j

ai
Xaj

Y
cos
sin (δi

X − δj
Y ) cos

sin (ϕi
X − ϕj

Y ),

Im{AXA∗
Y ± ĀXĀ∗

Y }/2

= +
∑

i,j

ai
Xaj

Y
sin
cos(δ

i
X − δj

Y ) cos
sin (ϕi

X − ϕj
Y ).

In this specific example, again, the different pieces of the
partial rate exhibit the sensitivities to the CP-even and
-odd phases described earlier.

C. Beyond the most common observables

Interestingly, with a single resonant intermediate state
having ja = 1 = jb, the total rate asymmetry based on
the integral of Eq. (3) vanishes when the A0 coefficient
receives contributions of identical phases, or one single
contribution. (The terms involving other linear polariza-
tion amplitudes vanish upon phase-space integration.) In
such a case, only could a differential rate study provide
information about CP violation.

Without assumption about the presence of identical
phases, the most common up-down integrated asymme-
try based on the sign of the triple product

∫
dΦ sign{ sφ } dΓ

dΦ

∣∣∣∣
T̂-odd

CP-odd

also vanishes in this simple case. This illustrates—in an
extreme way—that phase-space integration may result in
losses of sensitivity to CP-violating phases. A non-trivial
phase-space dependent T̂-even factor in the T̂-odd–CP-
odd differential rate can make it change sign where the
triple product does not.

Such dilutions can obviously be overcome when a trust-
worthy parametrization of the differential rate is known.
Taking seriously the simplified parametrization of the
D0 decay presented above, the bare examination of the
differential rates indicates that more information about
CP-odd and -even phases is contained in the piece-wise
integrals of Table II upon which asymmetries could be
constructed.

However, as already stressed, the parametrization of
heavy mesons’ hadronic decays is only phenomenologi-
cal and may miss some fine interference details that have
the potential of revealing new sources of CP violation.
We would therefore wish to adopt a more systematic ap-
proach that does not rely on strong theoretical assump-
tions about the process dynamics.

D. A first look at the data

This point can be made more concrete using the re-
cent experimental study of the D0 → K+K−π+π− de-
cay. The LHCb Collaboration displays in Ref. [28] the
measured mπ+π− , mK+K− , cos θπ, cos θK and φ distri-
butions for both D0 and D̄0 as well as sin φ > 0 and
sin φ < 0. This allows for the marginalized differential
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FIG. 2. Decomposition of the measured D → K+K−π+π− differential rate into components of definite T̂ and CP transformation
properties, projected onto the φ angle and mKK invariant mass. The uncertainties on the LHCb data points in Fig. 3(e-f) and

Fig. 2(c-d) of Ref. [28] have been assumed equal to
√
N + 8 and uncorrelated.

distributions of definite T̂ and CP properties to be de-
rived. The left panel of Fig. 2 for instance shows those
differential distributions projected onto the φ angle (i.e.,
marginalized over the four other phase-space variables).

The respective c2φ and s2φ dependences of the T̂-even–
CP-even and T̂-odd–CP-even differential rates expected
from a dominant φρ0 contribution are clearly visible
while the T̂-even–CP–odd and T̂-odd–CP-odd distribu-
tions are roughly compatible with zero.

An oscillatory pattern can however be distinguished
in the T̂-odd–CP-odd differential rate. The An ≡
∫
dΦ sign{sin nφ} dΓ

dΦ

∣∣T̂-odd

CP-odd
asymmetries (see Table III)

notably point at the presence of a sizable sin 8φ con-
tribution: the A8 departure from zero is of about 2.6
standard deviations (2.0 standard deviations for A2 and

A13). If genuine, this rapid oscillatory behavior would
indicate the presence of a CP-violating phase difference
but would not have contributed to the asymmetries that
could be expected from a simple φρ0 parametrization.
Whether any resonance model considered as providing
a fair description of that process would have included a
contribution oscillating so rapidly is also unclear.

E. Even more angular asymmetries

Clearly, one way in which the presence of CP-violating
phases could be probed without relying on a full descrip-
tion of the dynamics of the process studied would be to
evaluate systematically a wider range of triple-product
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∫
dΦ sign{ cθa cθb cφ } dΓ

dΦ

∣∣∣
T̂-even

CP-even
= +

2
√

2

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
0 a

j

‖ cos(δi
0 − δ

j

‖) cos(ϕi
0 − ϕ

j

‖)

∫
dΦ sign{ cθa cθb sφ } dΓ

dΦ

∣∣∣
T̂-odd

CP-even
= +

2
√

2

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
⊥ a

j
0 sin(δi

⊥ − δ
j
0) cos(ϕi

⊥ − ϕ
j
0)

∫
dΦ sign{ cθa cθb cφ } dΓ

dΦ

∣∣∣
T̂-even

CP-odd
= − 2

√
2

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
0 a

j

‖ sin(δi
0 − δ

j

‖) sin(ϕi
0 − ϕ

j

‖)

∫
dΦ sign{ cθa cθb sφ } dΓ

dΦ

∣∣∣
T̂-odd

CP-odd
= +

2
√

2

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
⊥ a

j
0 cos(δi

⊥ − δ
j
0) sin(ϕi

⊥ − ϕ
j
0)

∫
dΦ sign{ s2φ } dΓ

dΦ

∣∣∣
T̂-odd

CP-even
= +

4

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
⊥ a

j

‖
sin(δi

⊥ − δ
j

‖
) cos(ϕi

⊥ − ϕ
j

‖
)

∫
dΦ sign{ s2φ } dΓ

dΦ

∣∣∣
T̂-even

CP-odd
= − 4

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
⊥ a

j
⊥ sin(δi

⊥ − δ
j
⊥) sin(ϕi

⊥ − ϕ
j
⊥)

∫
dΦ sign{ s2φ } dΓ

dΦ

∣∣∣
T̂-odd

CP-odd
= +

4

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
⊥ a

j

‖ cos(δi
⊥ − δ

j

‖) sin(ϕi
⊥ − ϕ

j

‖)

∫
dΦ sign{ c2φ } dΓ

dΦ

∣∣∣
T̂-even

CP-odd
= − 4

π

∫
dm2

a

2π

dm2
b

2π
N

∑

i,j

a
i
‖ a

j

‖ sin(δi
‖ − δ

j

‖) sin(ϕi
‖ − ϕ

j

‖)

with N ≡ 1

2m0

√
λ(m2

0,m
2
a,m

2
b)

8πm2
0

√
λ(m2

a,m
2
1,m

2
2)

8πm2
a

√
λ(m2

b, m
2
3,m

2
4)

8πm2
b

TABLE II. Piecewise integrals from which information about the CP-conserving and CP-violating phases between different
polarization amplitudes could be extracted, for a 0 → (1 2)(3 4) decay involving spinless particles and proceeding through two
intermediate vector resonances.

n An

1 +58 ± 132

2 −259 ± 132

3 −2 ± 132

4 −134 ± 132

5 −225 ± 132

n An

6 +164 ± 132

7 +101 ± 132

8 +337 ± 132

9 −40 ± 132

10 +41 ± 132

n An

11 +128 ± 132

12 +164 ± 132

13 +268 ± 132

14 −107 ± 132

TABLE III. An ≡
∫

dΦ sign{sin nφ} dΓ
dΦ

∣∣T̂-odd

CP-odd
asymmetries

in the data collected by the LHCb Collaboration on the D0 →
K+K−π+π− decay. The uncertainties on the data points of
Fig. 3(e-f) in Ref. [28] have been assumed equal to

√
N + 8

and uncorrelated.

asymmetries of the form

∫
dΦ sign{fl( cθa ) fm( cθb ) sin nφ} dΓ

dΦ

∣∣∣∣
T̂-odd

CP-odd

for all combinations of reasonably large integers l, m, and
n. In the case of spinless final states forming two pairs of
resonant intermediate states, the natural set of functions
f are products of the various cθ dependences arising in

f0( cθ ) = 1,

f1( cθ ) = cθ ,

f2( cθ ) = 3 c2θ − 1,

f3( cθ ) = cθ (3 c2θ − 1),

f4( cθ ) = cθ (5 c2θ − 3),

f5( cθ ) = 5 c2θ − 1,

f6( cθ ) = 5 c2θ − 3,

f7( cθ ) = cθ (5 c2θ − 1),

f8( cθ ) = cθ (3 c2θ − 1) (5 c2θ − 3),

f9( cθ ) = (3 c2θ − 1) (5 c2θ − 1),

f10( cθ ) = cθ (5 c2θ − 3) (5 c2θ − 1),

· · ·

TABLE IV. Natural set of functions of the θa,b angles for
the systematic construction of asymmetries in 0 → (1 2)(3 4)
decays involving spinless particles.

aX [GeV−1] δX ϕX

X = 0 : 1 1 0

‖ : 2 0 0

⊥ : 1 1 0.05

TABLE V. Parameters chosen in the toy simulation of the
D → φρ0 → (K+K−)(π+π−) process.
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spherical harmonics:

l = 1 : cθ ,

2 : 3 c2θ − 1,

3 : cθ (5 c2θ − 3), 5 c2θ − 1,

4 : 35 c4θ − 30 c2θ + 3, cθ (7 c2θ − 3), 7 c2θ − 1,
. . .

The dependences upon sθ have been dropped as they
have no influence on the sign of the associated Legen-
dre polynomials P m

l
. Here, the set of f functions could

therefore be defined as in Table IV, keeping in mind that
another choice would be needed for final states carrying
spin.

F. Invariant mass dependence

Let us still focus on the parametrization of the phase
space privileging the 0 → (1 2)(3 4) type of topology.
Upon phase-space integration, the m2

a,b invariant mass
dependence of the decay rate could also lead to losses of
sensitivity to CP-violating phases. This happens when it
causes the T̂-odd–CP-odd piece of the differential decay
rate to change sign. Guessing where this could happen is
in general difficult. However, when resonances are clearly
identified, one at least knows the real parts of the asso-
ciated propagators

Re

{
1

m2
a − M2 + iΓM

}
=

m2
a − M2

(m2
a − M2)2 + Γ2M2

change sign at the resonances (and could possibly appear
in interferences).

Once again, a glimpse at the LHCb data shows such
a behavior actually occurs in the mKK invariant mass
spectrum, although in the T̂-odd–CP-even piece of the
differential rate which is not directly relevant for the ex-
traction of CP-violating phases (see right panel of Fig. 2).

Therefore, when constructing asymmetries systemati-
cally one may also wish to consider sign{m2

a − M2
i } and

sign{m2
b − M2

j } as weight functions, for the known res-

onances appearing at M2
i,j in the m2

a,b invariant mass
spectra.

G. Binned analyses

Instead of constructing asymmetries, one may rather
adopt the approach of Ref. [28] and bin the phase space.
Care must however be taken in the binning choice.
Putting together in one bin, regions of the phase space
in which the T̂-odd–CP-odd part of the differential rate
changes sign would result in sensitivity losses.

These can be assessed using a toy simulation. We con-
sidered massless kaons and pions and generated event us-
ing MadGraph5 [56] with the following matrix elements

sinnφ sinnφ sinnφ sinnφ
(m2

KK −m2
φ) (m2

ππ −m2
ρ) cos θKK cos θππ

n = 1 : −2.0 0.86 1.2 −2.8

2 : −4.0 0.88 3.4 0.40

3 : 0.20 0.15 −0.014 −1.4

4 : 0.30 −0.014 −0.52 −1.5

5 : 0.30 0.95 −1.2 −0.65

6 : −0.40 0.20 1.0 0.057

7 : −2.0 2.4 2.4 −0.042

8 : −0.70 0.37 1.5 0.27

9 : −0.60 −0.69 0.88 −0.75

10 : 0.60 −2.2 −0.78 1.0

11 : −2.0 0.53 2.1 −0.15

12 : −0.20 −0.092 0.55 −1.7

13 : −1.0 0.30 1.2 0.67

14 : 0.20 1.7 0.30 −0.70

TABLE VI. Departure from zero expressed in standard devi-
ations for a few asymmetries, computed with the simulated
sample of D → φρ0 → (K+K−)(π+π−) decays. Only statis-
tical uncertainties are accounted for.

for the Dρφ, φKK, and ρππ interactions:

Dρφ : ǫµ
ρ ǫν

φ pα
ρ pβ

φ

(
A0 gανgβµ

+A‖

{
gµνgαβ

[
1 −

p2
ρ p2

φ

(pρ · pφ)2

]
− gανgβµ

}

+A⊥ iǫµναβ

)
,

φKK : ǫµ
φ

(
pK+µ − pK−µ

)
,

ρππ : ǫµ
ρ

(
pπ+µ − pπ−µ

)
.

The linear polarization amplitude described earlier are
then

A0 =
A0 λ(m2

D,m
2
KK ,m

2
ππ)

12(m2
KK −m2

φ + imφΓφ)(m2
ππ −m2

ρ + imρΓρ)
,

A‖ =
A‖

mKK mππ

m2
D

−m2
KK

−m2
ππ
λ(m2

D,m
2
KK ,m

2
ππ)

6(m2
KK −m2

φ + imφΓφ)(m2
ππ −m2

ρ + imρΓρ)
,

A⊥ =
A⊥ mKKmππ

√
λ(m2

D,m
2
KK ,m

2
ππ)

6(m2
KK −m2

φ + imφΓφ)(m2
ππ −m2

ρ + imρΓρ)
.

where each of the A0 ,‖,⊥ were given both a CP-even and

CP-odd phase: AX = aX ei(δX +ϕX) for X = 0, ‖, ⊥.
These parameters were fixed as in Table V and 40 000
D0 and D̄0 decays generated. The decomposition of the
φ differential distribution obtained is displayed in the left
panel of Fig. 3.

A larger magnitude for a‖ than for a⊥ causes the T̂-
even–CP–even piece of the differential rate to have a dip
at π/2. The non-vanishing difference in CP-conserving

phases δ‖ − δ⊥ sources the sin 2φ dependence of the T̂-
odd–CP-even contribution. No structure is generated in
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FIG. 3. Simulated D → φρ0 → (K+K−)(π+π−) decay and partial rate decomposition in components of definite T̂ and CP
transformation properties as in Eq. (2), projected onto the φ angle and mKK invariant mass. Only statistical uncertainties are
displayed.

the T̂-even–CP-odd distribution while a small difference
in CP-violating phases ϕ‖ − ϕ⊥ allows for a sin 2φ de-

pendence in the T̂-odd–CP-odd differential rate. Due to
limited statistics, the latter is barely visible in Fig. 3. Ad-
ditionally, a sin 2θa sin 2θb sin φ dependence of each piece
of the differential rate is washed out upon integration
over the θa,b angles. One can also notice a sign change

in the T̂-odd–CP-even differential rate projected on the
mKK variable at the mφ = 1.02 GeV resonance (see right
panel of Fig. 3).

Computing∫
dΦ sign

{
fl( cθa ) fm( cθb ) sin nφ

∏

i

(m2
a − M2

i )
∏

j

(m2
b − M2

j )

}
dΓ

dΦ

∣∣∣∣
T̂-odd

CP-odd

(6)

asymmetries as prescribed earlier, one observes the ex-
pected excesses for (l, m; n) = (0, 0; 2) and (1, 1; 1). They
are of 4.0 and 2.8 standard deviations, respectively (see
Table VI, only statistical uncertainties have been ac-
counted for). Using additional sign{m2

KK − m2
φ} and

sign{m2
ππ − m2

ρ} weight functions does not enhance the
excesses’ significance.

The LHCb Collaboration partitioned the phase space
in 32 bins (two bins per kinematic variable) and esti-
mated the combined departure from zero using a chi-
squared test [28]. The separation between the two bins
of the φ variable was set at 1.99 rad (its domain is re-
stricted to the [0, π] interval here) and between −0.28
and +0.28 for cos θKK and cos θππ.

In our simulated sample, a chi-squared test with only
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FIG. 4. The four components of the D → K+K−π+π− differential rate having definite T̂, E∗, and CP transformation properties
that could have been measured with an untagged sample. The uncertainties on the LHCb data points in from Fig. 3(a-d) of

Ref. [28] have been assumed equal to
√
N + 8 and uncorrelated.

two bins of boundary located at π/2 in the in the φ vari-

able gives a departure from zero for the T̂-odd–CP-odd
differential rate equivalent to 3.9 Gaussian standard de-
viations. Once the bins’ boundary is moved to 1.99 rad,
this significance slightly diminishes to 3.7 σ. The loss of
sensitivity is more significant for the only other binning
relevant to this simplified simulation. With two bins in
both the cos θKK and cos θππ directions, the T̂-odd–CP-
odd differential rate departs from zero at the 2.8 σ level
when the bin boundaries are chosen at 0, and at the
1.1 σ level only when they are respectively taken at the
extreme values of −0.28 and +0.28.

The multiplication of unnecessary bins also leads to
losses of sensitivity, in this scheme. With 8 bins having
boundaries at π/2 in the φ angle and 0 in the cos θKK,ππ

variables, one for instance obtains an overall departure

from zero of 3.5 standard deviations.

H. Untagged D and B → K
+

K
−

π
+

π
− samples

Although a tagging of the D0 has been carried out
by the LHCb Collaboration in this D0 → K+K−π+π−

decay, the self-conjugate final state could have motivated
an untagged analysis. This is what was actually done in
the study of the B0

s decay to the very same final state [8].
In both cases, the E∗ permutation defined in Sec-

tion I.C sends {K+, K−, π+, π−} to {K−, K+, π−, π+}.
In the parametrization of the phase space adopted thus
far, it therefore acts trivially on the mKK , mππ invari-
ant masses, and on the φ azimuthal angle. The cosines
of the polar angles in the K+K− and π+π− subsystems
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undergo the following transformations:

E∗[cos θK+ ] = cos θK− = − cos θK+ ,

E∗[cos θπ+ ] = cos θπ− = − cos θπ+ .

Practically, the untagged E∗-odd distributions can there-
fore be obtained by multiplying the weights of each
recorded event by 1

2 sign{cos θK+ cos θπ+} and by con-
sidering the absolute values of both cosines as kinematic
variables. The same procedure carried out with the vari-
able φ yields the T̂-odd distributions. Using the LHCb
measurement [28], we display in Fig. 4 the projection onto
the cos θK+ and cos θπ+ variables of the four differential
rates that could have been measured with an untagged
sample of D → K+K−π+π− events.

In its analysis of the B0
s → K+K−π+π− decay [8], the

LHCb Collaboration used a parametrization of the phase
space privileging resonances in the K+π− and K−π+ in-

variant masses. A dominant K∗0K
∗0

intermediate state
motivated this choice. In that parametrization, the per-
mutation E∗ exchanges the cosines of the polar angles
defined in the two subsystem cθa and cθb , as well as
their respective invariant masses ma and mb. Various
E∗-odd asymmetries can therefore be constructed by us-
ing weight functions g(Φ) (see Section I.D) proportional
to either cθa − cθb , or ma−mb. The E∗-odd asymmetries
measured in Ref. [8] were the ones possibly appearing for
Kπ subsystems forming partial waves of ja,b = 0 and 1.
The arguments presented here to motivate the system-
atic use of a wider range of T̂-odd–CP-odd asymmetries
however also apply to T̂-even–E∗-odd–CP-odd ones.

III. CONCLUSIONS

CP violation in K and B decays has so far been
observed mostly through time-independent and time-
integrated rate asymmetries. As multibody decays are

being measured with an ever increasing accuracy, it is
desirable to devote more attention to their rich differen-
tial distributions.

Taking, as an illustrative example, the D0 →
K+K−π+π− decay whose differential distribution has
recently been studied by the LHCb Collaboration [28],
we propose to measure a large set of generalized triple-

product asymmetries. Their choice is guided by the
topology—or resonance structure—of the contribution
under scrutiny, by the spin of the particles involved, and
by the location of the known resonances. An illustration
of the procedure and of the losses of sensitivity that may
occur with a suboptimal partition of the phase-space is
provided using a toy simulation. Such a procedure could
obviously be applied to a wide range of other processes
in which CP violation is searched for in differential dis-
tributions.

In charm decays, a signal of CP violation would clearly
point at new physics. In B decays however, standard-
model CP violation is expected to be visible in some
cases. We did not investigate whether cleaner probes for
physics beyond the standard model could be constructed
from differential observables. Clearly, more theoretical
studies in this direction would be necessary.

Our final point is to emphasize that more experimen-
tal studies are needed in order to devise observables op-
timized for specific processes. With the new data coming
from LHCb and Belle II, such a task is timely.
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