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Abstract

The minimal supersymmetric standard model leads to precise predictions of the properties of

the light Higgs boson degrees of freedom that depend on only a few relevant supersymmetry

breaking parameters. In particular, there is an upper bound on the mass of the lightest neutral

Higgs boson, which for a supersymmetric spectrum of the order of a TeV is barely above the one

of the Higgs resonance recently observed at the LHC. This bound can be raised by considering

a heavier supersymmetric spectrum, relaxing the tension between theory and experiment. In a

previous article, we studied the predictions for the lightest CP-even Higgs mass for large values

of the scalar-top and heavy Higgs boson masses. In this article we perform a similar analysis,

considering also the case of a CP-odd Higgs boson mass mA of the order of the weak scale. We

perform the calculation using effective theory techniques, considering a two-Higgs doublet model

and a Standard Model-like theory and resumming the large logarithmic corrections that appear

at scales above and below mA, respectively. We calculate the mass and couplings of the lightest

CP-even Higgs boson and compare our results with the ones obtained by other methods.
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I. INTRODUCTION

Since the discovery of the Higgs boson at the LHC in 2012 [1, 2], both the ATLAS and

CMS experiments have made increasingly precise measurements of its mass Mh, mainly in

the h → ZZ, γγ decay channels. Using ' 5 fb−1 of data at
√
s = 7 TeV and ' 20 fb−1 of

data at
√
s = 8 TeV, the ATLAS and CMS experiments have measured [3, 4]

ATLAS: Mh = 125.36± 0.37± 0.18 GeV , (1)

CMS: Mh = 125.02 +0.26
−0.27

+0.14
−0.15 GeV , (2)

where the quoted uncertainties are statistical and systematic, respectively. The result from a

recent combination of the measurements from ATLAS and CMS is Mh = 125.09±0.21±0.11

GeV [5].

Low-energy supersymmetry (SUSY) is a highly predictive framework that can accomodate

the observed Higgs mass and Standard Model (SM)-like properties in a variety of models [6].

These models contain at least an extra Higgs doublet and the observed Higgs boson is usually

identified with the lightest CP-even state h, with properties that deviate from the SM one

depending on the mixing with the other neutral scalar states in the theory. In the minimal

supersymmetric extension of the Standard Model (MSSM), the Higgs sector reduces at tree-

level to a type II two Higgs doublet model (THDM), with the mass of the lightest CP-even

Higgs boson bounded to be smaller than the neutral gauge boson mass MZ .

This tree-level result, however, is modified by SUSY-breaking effects, receiving large

radiative corrections from heavy top-squarks (stops). In the case of heavy supersymmetric

particles and non-standard Higgs bosons, the Higgs boson mass may be determined as a

function of the stop masses and their mixings, depending only weakly on other SUSY-

breaking parameters. Models with heavy supersymmetric particles are motivated by the

absence of any significant deviations of flavor or precision measurement observables with

respect to the SM predictions. Hence, a precise computation of the Higgs mass as a function

of the stop mass parameters is of significant interest.

There has been much activity in the computation of the Higgs mass in the MSSM in the

past. The Higgs mass has been calculated by performing fixed-order perturbative calcula-

tions in the MSSM, as well as in effective theory analyses, in which the dominant logarithmic

dependence has been resummed by renormalization group (RG) methods. For supersym-

2



metric particle masses of the order of the weak scale, an accurate prediction of the Higgs

mass may be obtained by computing the radiative effects diagrammatically up to a fixed

order in perturbation theory [7–12]. Alternatively, the dominant radiative corrections at a

given order in perturbation theory may be obtained from effective potential methods, using

derivatives of the effective potential V (H1, H2), for values of the Higgs field equal to their

vacuum expectation values 〈H1〉 = v1, 〈H2〉 = v2 [13–16]. These fixed order calculations

have been now carried out up to partial three-loop order [17–20].

On the other hand, for heavy supersymmetric particles, the effective field theory approach

may be implemented by integrating out MSSM particles, considering the induced thresholds

to the relevant couplings and running them down to the electroweak scale, evaluating the

effective potential approximation of the Higgs mass, and, after approprate corrections, the

pole mass [21–25]. It is clear that for low values of the supersymmetric particle masses, where

the logarithmic corrections are similar in size to the non-logarithmic ones, the fixed-order

calculations are expected to lead to the most accurate values. For very heavy supersymmetric

particles, the logarithmic corrections become very large, the fixed-order perturbation theory

breaks down, and the RG approach leads to an appropriate resummation of the leading

logarithmic corrections. In this case, the effective field theory methods may lead to a more

accurate determination of the Higgs mass.

In a previous work [26], we used EFT calculations to compute the mass of the lightest

CP-even Higgs boson in the MSSM, in the case of heavy stops and non-standard Higgs

bosons. A similar approach was also taken recently in Refs. [27, 28]. We studied the cases of

light and heavy charginos and neutralinos, which can lead to relevant radiative corrections

to the lightest CP-even Higgs mass. Furthermore, we provided an analytical approximation

for the relevant three- and four-loop corrections to the Higgs mass that revealed a large

cancellation between the dominant and subdominant leading-log contributions, leading to a

large difference between our computations and the previous partial three-loop calculations

discussed above.

In this article, we perform a similar study for the case of a small CP-odd Higgs mass,

characterizing a light non-standard Higgs boson spectrum. In this case, the theory below

the stop mass scale is a THDM, with the possibility of additional charginos and neutralinos,

depending on the choice of the gaugino and Higgsino mass parameters; see Fig. 1. This

approach was first detailed in Ref. [29]. The presence of two CP-even Higgs bosons at low
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FIG. 1. Examples of hierarchies of scales examined in Ref. [26] (left), and in this paper (middle,

right).

energies leads to mixing effects in the CP-even Higgs sector that affect the predicted lightest

CP-even Higgs boson mass and couplings, and therefore modify the Higgs physics at high

energy colliders.

This article is organized as follows: in section II we describe the properties of the low

energy effective theory, the THDM. In section III we describe the constraints on this generic

framework when we assume the presence of a softly broken supersymmetric theory. In

section IV we study the numerical predictions for the Higgs boson masses and mixing angles.

In section VI we describe the approach to the alignment limit and the comparison with the

values predicted in the hMSSM approach. We reserve Section VII for our conclusions.

II. TWO-HIGGS DOUBLET MODEL

The most general scalar potential with two complex SU(2)L doublet Higgs fields Φ1,Φ2,

each carrying hypercharge Y = 1, is [29]

V = m2
1Φ†1Φ1 +m2

2Φ†2Φ2 − (m2
12Φ†1Φ2 + h.c.) +

λ1

2
(Φ†1Φ1)2 +

λ2

2
(Φ†2Φ2)2

+ λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+

{
λ5

2
(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + h.c.

}
.

(3)

We assume CP-conservation and for simplicity, will take the coefficients m2
12, λ5, λ6, and

λ7 to be real. At the minimum of the scalar potential, the Higgs fields acquire vacuum
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expectation values

〈Φi〉 =
1√
2

0

vi

 , (4)

and we can parameterize them by writing

Φi =

 φ+
i

1√
2
(vi + φ0

i + ia0
i )

 , (5)

where φ+
i is complex and φ0

i , a
0
i are real. We choose the vi to be real and non-negative, with

the usual relations

v =
√
v2

1 + v2
2 ' 246 GeV , tβ ≡ tan β = v2/v1 . (6)

After electroweak symmetry breaking (EWSB), five physical Higgs bosons remain in the

spectrum: two CP-even, charged H±, two CP-even, neutral h,H, and one CP-odd, neutral

A. Minimizing the scalar potential, we can eliminate m2
1,m

2
2, and we have the following

expressions for the squared masses of A and H±:

m2
A = m2

12 −
1

2
v2(2λ5 + λ6t

−1
β + λ7tβ) , (7)

m2
H± = m2

A +
1

2
v2(λ5 − λ4) . (8)

The squared mass matrix for the CP-even, neutral Higgs bosons in the {Φ1,Φ2} basis is

M2 =

M2
11 M2

12

M2
12 M2

22

 = m2
A

 s2
β −sβcβ

−sβcβ c2
β

+ v2

f11 f12

f12 f22

 , (9)

where sβ = sin β, cβ = cos β. Throughout this paper, we will employ similar shorthand

sθ = sin θ, cθ = cos θ, tθ = tan θ for a generic angle θ. The fij are

f11 = λ1c
2
β + 2λ6cβsβ + λ5s

2
β , (10)

f12 = (λ3 + λ4)cβsβ + λ6c
2
β + λ7s

2
β , (11)

f22 = λ2s
2
β + 2λ7cβsβ + λ5c

2
β . (12)

Diagonalizing this matrix, the masses of the physical CP-even, neutral Higgs bosons are

given by

m2
H,h =

1

2

(
TrM2 ±

√
(TrM2)2 − 4 detM2

)
=

1

2

(
M2

11 +M2
22 ± δm2

)
,

δm2 =

√(
M2

11 −M2
12

)2
+ 4
(
M2

12

)2
,

(13)
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where the mixing angle α for the neutral CP-even states is

cα =

√
δm2 +M2

11 −M2
22

2δm2
, sα =

√
2M2

12√
δm2(δm2 +M2

11 −M2
22)

,H
h

 =

 cα sα

−sα cα

Φ1

Φ2

 ,

(14)

and the mixing angle is defined in the range −π/2 ≤ α ≤ 0.

We can also rotate to the Higgs basis {H1, H2} [30],H1

H2

 =

 cβ sβ

−sβ cβ

Φ1

Φ2

 , (15)

where only one of the scalars receives a vev, 〈H1〉 = v/
√

2. In the Higgs basis, the CP-even

mass matrix takes a similar form,

M2
H = m2

A

0 0

0 1

+ v2

g11 g12

g12 g22

 , (16)

where

g11 = λ1c
4
β + λ2s

4
β + 2(λ3 + λ4 + λ5)s2

βc
2
β + 4λ6c

3
βsβ + 4λ7s

3
βcβ , (17)

g12 = cβsβ(λ2s
2
β − λ1c

2
β + (λ3 + λ4 + λ5)c2β) + 3(λ7 − λ6)s2

βc
2
β + λ6c

4
β − λ7s

4
β , (18)

g22 = (λ1 + λ2)c2
βs

2
β − 2(λ3 + λ4)s2

βc
2
β + λ5(s4

β + c4
β) + (λ7 − λ6)s2βc2β , (19)

and it follows that in this basis the mixing angle is β − α, namelyH
h

 =

cβ−α −sβ−α
sβ−α cβ−α

H1

H2

 . (20)

When the mixing cβ−α is small, this basis is convenient since the lightest CP-even Higgs

tree-level couplings are identified with the SM Higgs ones. More generally, the Lagrangian

describing the coupling of the Higgs bosons to the top and bottom quarks at scales below

MS may be parametrized in the following way

L = (hb + δhb) b̄RΦi,∗
1 Q

i
L + εij (ht + δht) t̄RQ

i
LΦj

2 + ∆hbb̄RQ
i
LΦi∗

2 + εij∆htt̄RQ
i
LΦj

1 +h.c. (21)

From here it follows that the bottom and quark running masses are given by

mb =
hbv√

2
cβ

(
1 +

δhb
hb

+
∆hbtβ
hb

)
, (22)

mt =
htv√

2
sβ

(
1 +

δht
ht

+
∆ht
httβ

)
. (23)
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with the relevant couplings evaluated at the weak scale. Observe that while the corrections

to the bottom coupling are loop-suppressed, they are enhanced at moderate or large values

of tβ and therefore they may take values of order one in this regime. On the contrary, the

corrections to the top coupling are suppressed by both loop and tβ factors and therefore

tend to be small.

At tree level, the MSSM Yukawa couplings are related to the SM Yukawa couplings by

yt = htsβ, yb = hbcβ, yτ = hτcβ . (24)

From Eqs. (22–23), it follows that these couplings are modified at one-loop order at MS in

the following forms [31, 32],

ht =
yt
sβ

1

1 + δt + ∆t

, (25)

hb =
yb
cβ

1

1 + δb + ∆b

, (26)

hτ =
yτ
cβ

1

1 + δτ + ∆τ

, (27)

where δi = δhi/hi are the terms without factors of tβ, and ∆t = (∆ht t
−1
b )/ht [∆b =

(∆hb tb)/hb,∆τ = (∆hτ tb)/hτ ] are tβ suppressed [enhanced] terms:

δt
κ

= −8

3
g2

3mg̃At I(mt̃1 ,mt̃2 ,mg̃)− h2
bµ

2 I(mb̃1
,mb̃2

, µ)− 2

9
g2
YM1AtI(mt̃1 ,mt̃2 ,M1) , (28)

tβ∆t

κ
=

8

3
g2

3mg̃µ I(mt̃1 ,mt̃2 ,mg̃) + h2
bµAb I(mb̃1

,mb̃2
, µ)

− g2
2M2µ

{[
c2
bI(mb̃1

,M2, µ) + s2
bI(mb̃2

,M2, µ)
]

+
1

2

[
c2
t I(mt̃1 ,M2, µ) + s2

t I(mt̃2 ,M2, µ)
]}

+
1

3
g2
YM1µ

{
2

3
I(mt̃1 ,mt̃2 ,M1) +

1

2

[
c2
t I(mt̃1 ,M1, µ) + s2

t I(mt̃2 ,M1, µ)
]

− 2
[
s2
t I(mt̃1 ,M1, µ) + c2

t I(mt̃2 ,M1, µ)
]}

, (29)

δb
κ

= −8

3
g2

3mg̃Ab I(mb̃1
,mb̃2

,mg̃)− h2
tµ

2 I(mt̃1 ,mt̃2 , µ) +
1

9
g2
YM1Ab I(mb̃1

,mb̃2
,M1) , (30)

∆b

κ tβ
=

8

3
g2

3mg̃µ I(mb̃1
,mb̃2

,mg̃) + h2
tµAt I(mt̃1 ,mt̃2 , µ)

− g2
2M2µ

{[
c2
t I(mt̃1 ,M2, µ) + s2

t I(mt̃2 ,M2, µ)
]

+
1

2

[
c2
bI(mb̃1

,M2, µ) + s2
bI(mb̃2

,M2, µ)
]}

− 1

3
g2
YM1µ

{
1

3
I(mb̃1

,mb̃2
,M1) +

1

2

[
c2
bI(mb̃1

,M1, µ) + s2
bI(mb̃2

,M1, µ)
]

+
[
s2
bI(mb̃1

,M1, µ) + c2
bI(mb̃2

,M1, µ)
]}

, (31)
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δτ
κ

= g2
YM1AτI(mτ̃1 ,mτ̃2 ,M1) , (32)

∆τ

κ tβ
= −g2

2M2µ

{
I(mν̃τ ,M2, µ) +

1

2

[
c2
τI(mτ̃1 ,M2, µ) + s2

τI(mτ̃2 ,M2, µ)
]}

− g2
YM1µ

{
I(mτ̃1 ,mτ̃2 ,M1)− 1

2

[
c2
τI(mτ̃1 ,M1, µ) + s2

τI(mτ̃2 ,M1, µ)
]

+
[
s2
τI(mτ̃1 ,M1, µ) + c2

τI(mτ̃2 ,M1, µ)
]}

. (33)

In the above expressions, κ = (1/16π2) is a loop factor, At (Ab,τ ) are the trilinear couplings

of the stops to the Higgs field Φ2 (Φ1), mf̃ are the sfermion eigenstate masses, M1,2 are the

hypercharge and weak gaugino masses, mg̃ is the gluino mass and µ is the Higgsino mass

parameter. The parameters st, sb, sτ (ct, cb, cτ ) are the sines (cosines) of the stop, sbottom,

and stau mixing angles, and the function I(a, b, c) is defined as

I(a, b, c) =
a2b2 log(a2/b2) + b2c2 log(b2/c2) + a2c2 log(c2/a2)

(a2 − b2)(b2 − c2)(a2 − c2)
. (34)

We will assume that the masses mg̃ = mb̃i
= mt̃i = mτ̃i = mν̃i = MS (such that s2

X =

c2
X = 1/2 with X = t, b, τ). We will consider the two scenarios M2 = M1 = µ = MS

and M2 = M1 = µ = 200 GeV. With these choices, the above expressions contain the

dominant contributions to the threshold corrections, which also include all terms necessary

for consistency with our threshold corrections to the quartic couplings. [27]

Strictly speaking, below MS, the couplings ∆ht,b and ht,b + δht,b evolve in slightly differ-

ent ways. However, since the dominant contribution from QCD in the RG evolution of the

couplings is the same, and the couplings ∆ht,b are already loop-suppressed, we shall approx-

imate the ratios ∆t,b as constants below MS and concentrate only on the RG evolution of

the top and bottom-quark couplings to the fields Hu and Hd, respectively. We expect this

approximation to have a negligible impact on the Higgs boson masses.

Using the above expressions, one can easily prove that the couplings of the light phys-

ical Higgs boson h to top and bottom quarks and vector gauge bosons are given by (see,

e.g. Ref. [33])

ghtt =

[(
sβ−α +

cβ−α
tβ

)
− ∆t

1 + δt + ∆t

(
tβ cβ−α
s2
β

)]
gSM
htt ,

ghbb =

[
(sβ−α − cβ−α tβ) +

∆b

1 + δb + ∆b

(
tβ cβ−α
s2
β

)]
gSM
hbb ,

ghV V = sβ−α g
SM
hV V ,

(35)
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where gSM
htt , g

SM
hbb and gSM

hV V denote the SM couplings of top quarks, bottom quarks and weak

gauge bosons to the Higgs. One observes that in the regime of moderate or large values of

tβ and small values of cβ−α, the bottom coupling can get sizable departures from the SM

value, while the top and vector gauge boson couplings tend to be close to their SM values.

Similarly, for the heavy Higgs boson H, one obtains

gHtt =

[(
−sβ−α

tβ
+ cβ−α

)
+

∆t

1 + δt + ∆t

(
tβ sβ−α
s2
β

)]
gSM
htt ,

gHbb =

[
(sβ−α tβ + cβ−α)− ∆b

1 + δb + ∆b

(
tβ sβ−α
s2
β

)]
gSM
hbb ,

gHV V = cβ−α g
SM
hV V .

(36)

Hence, one observes that for small values of cβ−α the coupling gHbb of the heavy CP-even

Higgs to bottom quarks is affected by loop corrections and can become sizable at large values

of tβ. The top-quark coupling to the heavy Higgs instead remains suppressed by either loop

or tβ factors.

For completeness, we stress that there is a close connection between the coupling of the

heavy CP-even Higgs and of the CP-odd Higgs to top and bottom quarks. These CP-odd

Higgs boson couplings are given by

gAtt =

[
1

tβ
− tβ ∆t

(1 + δt + ∆t)s2
β

]
gSM
htt

gAbb =

[
tβ −

tβ ∆b

(1 + δb + ∆b)s2
β

]
gSM
hbb

(37)

III. THE MSSM HIGGS SECTOR

The MSSM Higgs potential for the two Higgs doublets HD, HU with respective hyper-

charges Y = −1, 1 is

VH =
1

8
(g2

2 + g2
Y )(|HD|2 − |HU |2)2 +

1

2
g2

2|H
†
DHU |2 + |µ|2(|HD|2 + |HU |2)

+m2
11|HD|2 +m2

22|HU |2 +m2
12(HD ·HU + h.c.) , (38)

where HD · HU = εabH
a
DH

b
U . These originate from the D-terms in the superpotential and

the soft supersymmetry-breaking terms. To recover the form of the THDM potential in Eq.

9



(3), let m2
k = m2

kk + |µ|2 for k ∈ {1, 2} and m2
12 = Bµ, with the following relations between

the fields,

Φ1 = −iσ2H
∗
D , Φ2 = HU . (39)

The terms in Eq. (38) become

|H†DHU |2 → |Φ1|2|Φ2|2 − (Φ†1Φ2)(Φ†2Φ1) , HD ·HU → −Φ†1Φ2 , (40)

and we have the following tree-level relations for the quartic couplings:

λ1 = λ2 =
1

4
(g2

2 + g2
Y ) , (41)

λ3 =
1

4
(g2

2 − g2
Y ) , (42)

λ4 = −1

2
g2

2 , (43)

λ5 = λ6 = λ7 = 0 , (44)

where the notation for the above couplings is shorthand for λMSSM
i (MS).

The one-loop threshold corrections to λk(MS) in the MSSM from box and triangle dia-

grams are tabulated in, e.g. Ref. [29]:

∆
(1)
th λ1 = −κ

2
h4
t µ̂

4 + 6κh4
bÂ

2
b

(
1− Â2

b

12

)
+ 2κh4

τ Â
2
τ

(
1− Â2

τ

12

)
+ κ

g2
2 + g2

Y

4

[
3h2

t µ̂
2 − 3h2

bÂ
2
b − h2

τ Â
2
τ

]
, (45)

∆
(1)
th λ2 = 6κh4

t Â
2
t

(
1− Â2

t

12

)
− κ

2
h4
b µ̂

4 − κ

6
h4
τ µ̂

4

− κg
2
2 + g2

Y

4

[
3h2

t Â
2
t − 3h2

b µ̂
2 − h2

τ µ̂
2
]
, (46)

∆
(1)
th λ3 =

κ

6
µ̂2
[
3h4

t (3− Â2
t ) + 3h4

b(3− Â2
b) + h4

τ (3− Â2
τ )
]

+
κ

2
h2
th

2
b

[
3(Ât + Âb)

2 − (µ̂2 − ÂtÂb)2 − 6µ̂2
]

(47)

− κ

2

g2
2 − g2

Y

4

[
3h2

t (Â
2
t − µ̂2) + 3h2

b(Â
2
b − µ̂2) + h2

τ (Â
2
τ − µ̂2)

]
, (48)

∆
(1)
th λ4 =

κ

6
µ̂2
[
3h4

t (3− Â2
t ) + 3h4

b(3− Â2
b) + h4

τ (3− Â2
τ )
]

− κ

2
h2
th

2
b

[
3(Ât + Âb)

2 − (µ̂2 − ÂtÂb)2 − 6µ̂2
]

+
κ

2

g2
2

2

[
3h2

t (Â
2
t − µ̂2) + 3h2

b(Â
2
b − µ̂2) + h2

τ (Â
2
τ − µ̂2)

]
, (49)

∆
(1)
th λ5 = −κ

6
µ̂2
[
3h4

t Â
2
t + 3h4

bÂ
2
b + h4

τ Â
2
τ

]
, (50)
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∆
(1)
th λ6 =

κ

6
µ̂
[
3h4

t µ̂
2Ât + 3h4

bÂb(Â
2
b − 6) + h4

τ Âτ (Â
2
τ − 6)

]
, (51)

∆
(1)
th λ7 =

κ

6
µ̂
[
3h4

t Ât(Â
2
t − 6) + 3h4

b µ̂
2Âb + h4

τ µ̂
2Âτ

]
, (52)

where Âi = Ai/MS, µ̂ = µ/MS, the Yukawas ht,b,τ are given in Eqs. (25−33), and all

parameters are in the MS scheme.1

In addition, there are self-energy corrections to the Higgs bosons which, after redefinition

of the Higgs fields, give rise to 1-loop corrections to the quartic couplings,

∆
(1)
Φ λ1 = −κ

6

g2
2 + g2

Y

2

[
3h2

t µ̂
2 + 3h2

bÂ
2
b + h2

τ Â
2
τ

]
, (53)

∆
(1)
Φ λ2 = −κ

6

g2
2 + g2

Y

2

[
3h2

t Â
2
t + 3h2

b µ̂
2 + h2

τ µ̂
2
]
, (54)

∆
(1)
Φ λ3 = −κ

6

g2
2 − g2

Y

4

[
3h2

t (Â
2
t + µ̂2) + 3h2

b(Â
2
b + µ̂2) + h2

τ (Â
2
τ + µ̂2)

]
, (55)

∆
(1)
Φ λ4 =

κ

6

g2
2

2

[
3h2

t (Â
2
t + µ̂2) + 3h2

b(Â
2
b + µ̂2) + h2

τ (Â
2
τ + µ̂2)

]
, (56)

∆
(1)
Φ λ5 = ∆

(1)
Φ λ6 = ∆

(1)
Φ λ7 = 0 . (57)

We extend these corrections with additional two-loop h4
tg

2
3 terms, which can be extracted

from the corrections to λ in the mA ∼MS case, [26]

∆
(h4t g

2
3)

th λ = 16κ2h4
t s

4
βg

2
3

{
− 2X̂t +

1

3
X̂3
t −

1

12
X̂4
t

}
, (58)

and these are matched to the quartic couplings in Eq. (17) by picking out the terms pro-

portional to (c4
β, s

4
β, c

2
βs

2
β, c

3
βsβ, s

3
βcβ) for (λ1, λ2, λ345 ≡ λ3 + λ4 + λ5, λ6, λ7), respectively,

∆
(h4t g

2
3)

th λ1 = −4

3
κ2h4

tg
2
3µ̂

4 , (59)

∆
(h4t g

2
3)

th λ2 = 16κ2h4
tg

2
3

(
− 2Ât +

1

3
Â3
t −

1

12
Â4
t

)
, (60)

∆
(h4t g

2
3)

th λ345 = 4κ2h4
tg

2
3Âtµ̂

2
(

1− 1

2
Ât

)
, (61)

∆
(h4t g

2
3)

th λ6 =
4

3
κ2h4

tg
2
3µ̂

3
(
− 1 + Ât

)
, (62)

∆
(h4t g

2
3)

th λ7 = 4κ2h4
tg

2
3µ̂
(

2− Â2
t +

1

3
Â3
t

)
. (63)

Note that there is an asymmetry ∆
(h4t g

2
3)

th λ when X̂t → −X̂t; however, this is subdominant to

the asymmetric contribution from the ht threshold in Eq. (28), which leads to log-enhanced

corrections to the quartic couplings at the two-loop level.

1 We have not included the small threshold corrections to the quartic couplings from electroweakinos, which

involve only gY , g2, λ. They are listed in Ref. [34], and we estimate they lower mh by about 0.5 GeV.
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IV. RG EVOLUTION AND DIAGONALIZING THE HIGGS MASS MATRIX

From the low energy effective theory point of view, the tree-level values of the quartic

couplings, as well as the threshold corrections enumerated above, should be defined with the

gauge and Yukawa couplings at the stop mass scale. More precisely, these values define the

boundary conditions for the RG evolution of the quartic couplings as well as the Yukawa

couplings from the scale MS down to the scale of the CP-odd Higgs boson mA.

It is clear that if the scale mA is of the order of the weak scale, the CP-even mass matrix

elements, Eq. (9), may be computed by evolving all quartic couplings down to the weak

scale. The CP-even Higgs masses may then calculated by diagonalizing the mass matrix at

the weak scale and adding the proper corrections converting the running masses at the weak

scale to the pole masses.

On the other hand, if the CP-odd Higgs boson mass is much larger than the weak scale,

decoupling of the heavy Higgs bosons should be achieved, and the mixing between the non-

standard and standard CP-even Higgs boson, cα−β, should go to zero as 1/m2
A. Therefore,

for a heavy supersymmetric spectrum, the effective theory is just the SM below the scale mA.

The lightest CP-even Higgs mass computed in this case should reduce to the one previously

computed in Ref. [26].

Both limits may be appropriately recovered by evolving the quartic couplings up to the

scale mA and computing the matrix elements at that scale in the Higgs basis. At scales

below mA we simply evolve the (1, 1) matrix element by the full two-loop SM RG evolution

of the quartic coupling up to the weak scale. On the other hand, the corrections of the

off-diagonal elements coming from the evolution from mA to the weak scale become relevant

only for large values of mA, for which cα−β becomes small and therefore irrelevant from the

phenomenological point of view. Consequently, we consider the evolution of this matrix

element from mA to the weak scale by resumming the dominant top-induced corrections at

the one-loop level. For similar reasons, for large values of mA, the radiative corrections to

the (2, 2) matrix element coming from the running between mA and the weak scale, which

depend logarithmically on the CP-odd Higgs mass, become small compared with the tree-

level value, which depend quadratically on this mass. For low values of mA < 500 GeV and

tβ > 4, we have checked that our results for the Higgs boson masses (mixing angles) differ

by less than 0.5 GeV (1%) from the ones that would be obtained by evolving all quartic

12



Observable Value

SU(3)c MS gauge coupling (5 flavours) αs(MZ) = 0.1184± 0.0007

Fermi constant from muon decay V = (
√

2GF )−1/2 = 246.21971± 0.00006 GeV

Top quark pole mass Mt = 173.34± 0.76± 0.3 GeV

W boson pole mass MW = 80.384± 0.014 GeV

Z boson pole mass MZ = 91.1876± 0.0021 GeV

Higgs pole mass Mh = 125.09± 0.21± 0.11 GeV

TABLE I. SM observables, collected in Table 2 of [36].

couplings until the weak scale. For larger values of mA and lower values of tβ, however,

the effects of decoupling of the heavy Higgs bosons become relevant and for mA � 1 TeV,

the lightest CP-even Higgs boson mass can become significantly different from the one that

would be obtained without decoupling the heavy Higgs bosons.

As a starting point for the evolution of the quartic couplings, one specifies the SM values

of the gauge couplings and Yukawa couplings at some scale. We work in the third-generation

approximation, so six couplings g3, g2, g1, yt, yb, yτ are relevant. We use the low energy pa-

rameters gi, yj at the scale of the top-quark pole mass Mt, which are extracted from the SM

observables in Table I, and have values given in Table II.2 These couplings, along with an

initial value3 [36, 38–47] of λ ∼ 0.25, are evolved to the intermediate scale mA using three-

loop SM RG equations for g3, g2, g1, yt, λ and two-loop SM RG equations for yb, yτ . There

are additional loop contributions to g1, g2, yt, λ from electroweakinos if µ,M1,M2 < mA. [48]

Due to its weak couplings, we have only included the dominant one-loop log-enhanced con-

tributions from RG running using tree-level gauge couplings of the electroweakinos to the

Higgs bosons.

Above the scale mA, the effective theory is the THDM, and two-loop type II THDM RG

equations are employed in the running between mA and MS. These are listed in Appendix A,

and can also be found in Ref. [49]. As above, we have included one-loop contributions to

the running of g1, g2, ht, λk from electroweakinos if mA < µ,M1,M2 < MS. We note that

for perturbative consistency of the RG running, three-loop RG equations should be used;

2 Unlike in Refs. [26, 28], we use the NNLO value of yt(Mt) instead of the NNLO+N3LO QCD value because

we use three-loop SM RG equations below mA, but only two-loop THDM RG equations above mA.
3 We have checked that the final values for Mh do not have a strong dependence on the initial condition

for λ(Mt) if it is chosen to correspond to a value of mh(Mt) = λv2 ∼ 100–150 GeV.
13



however, these are not known for the THDM. Also, inclusion of the three-loop order RG

equations in the SM running has a small effect, and we expect the same holds for the THDM.

To determine the approximate values of the MSSM gauge and Yukawa couplings at the high

scale MS, we run the couplings up to MS setting λk = 0 (k = 1, . . . , 7) in the running; this

has sub-percent level effects on the running of the Yukawas and the gauge couplings. At

MS, we calculate the threshold corrections to the Yukawas according to Eqs. (25−33), and

use these results in the expressions for the MSSM values of the λk in Eqs. (41−57, 59−63).4

With these values of λk(MS), we use the full type II THDM RG equations in the running

back down to mA. The matrix elements of M2
H in Eqs. (16, 17−19) are computed, and the

value of g11 is used as the boundary value for λ(mA) for the SM RG running from mA to

Mt. M2
H is then diagonalized at Mt, and the running masses m2

h,m
2
H and the mixing angle

β − α are computed.

The running mass mh is converted to the pole mass Mh using the SM one-loop formula

as in Ref. [26], in which SM MS running couplings are used,

M2
h = λ(Mt)v

2(Mt) + κ

{
3y2

t (4m
2
t −m2

h)B0(mt,mt,mh)−
9

2
λm2

h

[
2− π√

3
− log

m2
h

Q2

]
− v2

4

[
3g4

2 − 4λg2
2 + 4λ2

]
B0(mW ,mW ,mh) +

1

2
g2

2v
2
[
g2

2 − λ
(

log
m2
W

Q2
− 1
)]

− v2

8

[
3(g2

2 + g2
Y )2 − 4λ(g2

2 + g2
Y ) + 4λ2

]
B0(mZ ,mZ ,mh)

+
1

4
(g2

2 + g2
Y )v2

[
(g2

2 + g2
Y )− λ

(
log

m2
Z

Q2
− 1
)]}∣∣∣∣∣

Q2=M2
t

,

(64)

where B0 is the one-loop Passarino-Veltman integral

B0(m1,m2,m3) = −
∫ 1

0

log
[(1− x)m2

1 + xm2
2 − x(1− x)m2

3

Q2

]
. (65)

We have checked that this gives similar results as the two-loop conversion using parameter

values in the OS scheme, as in Ref. [36]. We have not included contributions from light elec-

troweakinos in the conversion formula, but we expect these contributions to be subdominant

to those from the SM. For low values of mA and tβ and large values of MS, the top Yukawa

yt can deviate sizably from the coupling of the physical Higgs to the top, ghtt in Eq. (35);

however, we checked that the shift in Mh when substituting ghtt for yt in Eq. (64) is less

4 We use tβ(mA) as an input, and run v1 and v2 to MS using two-loop RG equations for the anomalous

dimensions. When calculating the MSSM values at MS , we use tβ(MS) = v2(MS)/v1(MS).
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gi gi(Mt) yj yj(Mt)

g3 1.1666 yt 0.94018

g2 0.64779 yb 0.0156

gY =
√

3/5g1 0.35830 yτ 0.0100

TABLE II. Values of SM parameters at Q = Mt computed in the MS scheme. g2, gY , and yt are

computed at NNLO, and the SU(5) normalization relates g1 to the SM hypercharge coupling gY .

The value of g3 is obtained using 3-loop QCD matching to the SM. We have used the two-loop,

5-flavour MS RG equations in the broken phase from [37] to run mb,mτ from their initial values

mb(mb) = 4.18 GeV,Mτ = 1.777 GeV [50]. For more details, see [36].

than 0.5 GeV. Similarly, in the scenarios we investigated, we expect the difference between

the running mass and the pole mass of the heavy Higgs to be small due to its larger mass

and its reduced coupling of the heavy Higgs to the top quark in Eq. (36).

It is instructive to consider the dominant one-loop contributions to the CP-even Higgs

matrix elements in the Higgs basis. This was discussed in detail in Ref. [33] (for the CP-

violating case see Ref. [35]), in which it was shown that

g11v
2 = m2

Zc
2
2β +

3v2s4
βh

4
t

8π2

[
ln

(
M2

S

m2
t

)
+ X̂2

t

(
1− X̂2

t

12

)]
, (66)

g12v
2 = −s2β

{
m2
Zc2β −

3v2s2
βh

4
t

16π2

[
ln

(
M2

S

m2
t

)
+
X̂t(X̂t + Ŷt)

2
− X̂3

t Ŷt
12

]}
, (67)

where X̂t = Xt/MS, Xt = At − µ/tβ is the stop mixing parameter associated with the

coupling of the SM-like Higgs to the stops, Ŷt = Yt/MS and Yt = At + µtβ.

From the above, the mixing angle cβ−α may be computed,

cβ−α =
−g12v

2√
(m2

H −m2
h)(m

2
H − g11v2)

. (68)

For values of mH larger than the weak scale, one can show that [33]

tβ cβ−α '
−1

m2
H −m2

h

[
m2
h −m2

Zc2β +
3m4

t X̂t(Ŷt − X̂t)

4π2v2

(
1− X̂2

t

6

)]
, (69)

and therefore, all dominant radiative corrections to the mixing angle, which come from the

renormalization of the quartic coupling λ2 at scales above mA, may be absorbed into the

definition of the Higgs mass mh. The remaining terms are proportional to µ̂X̂t tan β, vanish

for maximal mixing X̂2
t = 6, and cannot be absorbed into a redefinition of mh.
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A. The hMSSM scenario

The fact that the dominant corrections to the lightest CP-even Higgs mass and the mixing

parameter have a common origin motivated the authors of Ref. [51] to define the “hMSSM

scenario”, in which one assumes that for a given value of tβ and mA the proper Higgs boson

mass may be obtained by choosing appropriate stop masses and mixings. As discussed

above, the dominant radiative corrections to the Higgs boson mass and the CP-even Higgs

mixing may be absorbed into the definition of the Higgs boson mass mh. More precisely, in

the hMSSM scenario, only radiative corrections to the quartic coupling λ2 are considered,

namely λ1 = −λ345 = M2
Z/v

2, λ2 = M2
Z/v

2 +∆M2
22/(v

2s2
β) and λ6 = λ7 = 0. One can easily

show that, in order to achieve the proper Higgs pole mass Mh, the radiative corrections must

be given by

∆M2
22 =

M2
h(m2

A +M2
Z −M2

h)−m2
AM

2
Zc

2
2β

M2
Zc

2
β +m2

As
2
β −M2

h

. (70)

The heavy CP-even Higgs mass is given by

m2
H =

(M2
A +M2

Z −M2
h)(M2

Zc
2
β +M2

As
2
β)−M2

AM
2
Zc

2
2β

M2
Zc

2
β +M2

As
2
β −M2

h

. (71)

Once these expressions are considered, the CP-even Higgs mixing angle is given by

α = − arctan

(
(M2

Z +m2
A)cβsβ

M2
Zc

2
β +m2

As
2
β −M2

h

)
. (72)

It is straightforward to show that, for values of mA larger than the weak scale, the mixing

angle in this approximation agrees with the one presented in Eq. (69), in which the last term

inside the bracket is neglected.

From Eq. (69), one can then identify the main difference between our approach and the

hMSSM approximation. For low values of µ̂, the main difference is associated with the

radiative corrections to the quartic couplings λ1 and λ345. For moderate values of tβ, the

main logarithmic corrections to these couplings are governed by weak couplings, and hence

are small compared to the dominant corrections absorbed into mh.

On the other hand, for sizable values of µ̂ and moderate values of tβ, the last term

in Eq. (69) may become relevant and therefore we expect the hMSSM scenario to fail to

accurately describe the Higgs phenomenology in this case. The difference will be maximal

for sizable values of µ̂ and X̂t away from the maximal mixing value. Beyond the difference
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associated with the µ-induced radiative corrections, the hMSSM works under the assumption

that one can always choose the supersymmetry breaking parameters so that the proper Higgs

mass is obtained. As we shall show, this is not always possible: for low values of mA and

tβ, there are regions of parameter space for which obtaining the right Higgs mass would

demand pushing the supersymmetric particle masses close or above the Planck scale, where

the effective low energy supersymmetry description is no longer valid.

We can also examine the Hhh coupling. We define the Feynman rule for the vertex as

igHhh. This is given by [30, 52]

gHhh = −3vsβc
3
β

{
− λ6s

3
αβt
−1
β + sαβcαβ

[
(λ1 − λ345)sαβ + tβ

(
λ6(2cαβ + sαβ)− λ7(2sαβ + cαβ)

)
+ cαβt

2
β(−λ2 + λ345)

]
+ λ7c

3
αβt

3
β

}
− λ345vcα−β ,

(73)

where sαβ ≡ (−sα/cβ) and cαβ ≡ cα/sβ, both of which tend to 1 in the alignment limit.

The above expressions can be compared to the expression given in the hMSSM approxi-

mation [51],

gHhh = −M
2
Z

v

{
2s2αsβ+α − c2αcβ+α + 3

∆M2
22

M2
Z

sα
sβ
c2
α

}
, (74)

which can be recovered from Eq. (73) when the radiative corrections to λ2 alone are con-

sidered. Hence, as with the mixing angle α, we expect the hMSSM to provide a better

approximation to the correct results provided µ̂ is small.

V. NUMERICAL RESULTS

The results of our analysis are presented in Figs. 2, 3, 4 and 5. In Fig. 2 we present

contour plots of the lightest CP-even Higgs mass for mA = 200 GeV in the MS–tβ plane

for small values of stop mixing parameter, X̂t = 0, and for values close to maximal mixing,

X̂t =
√

6. In addition, we compare values of Mh obtained for µ = MS, for which the chargino

and neutralino contributions to the Higgs mass decouple below the scale MS, with the ones

for low values of µ = 200 GeV, for which the corrections to the Higgs mass induced by

RG-evolution effects of charginos and neutralinos become relevant. We see that in order to

obtain the proper value of the Higgs mass at low values of tβ ∼ 2, low values of µ of the

order of the weak scale and large values of MS of the order of the GUT scale are necessary.
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FIG. 2. Contour plots for Mh in the plane tβ,MS with mA = 200 GeV, M1 = M2 = µ,Ab = Aτ =

At. The outer black, dot-dashed lines are contours of Mh = 122, 128 GeV as labelled. The blue,

dashed lines correspond to Mh = 124, 126 GeV, and the central black, solid line to Mh = 125 GeV.

Plots in the top [bottom] row have X̂t = 0 [
√

6], and plots in the left [right] column have µ = MS

[200 GeV].

We also note that for tβ . 1.5, values of Mh = 122 GeV may not be obtained even if the

supersymmetric spectrum is pushed to the GUT scale.

The values of the Higgs mass at mA = 200 GeV are heavily susceptible to Higgs mixing

effects. In contrast, we show in Fig. 3 contour plots of the lightest CP-even Higgs mass for

mA = 300 GeV and similar supersymmetry breaking parameters as in Fig. 2. The qualitative
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FIG. 3. As in Fig. 2, with mA = 300 GeV.

behavior is the same as in the previous case, but the proper Higgs mass is achieved at lower

values of MS. In particular, for low values of µ, values of tβ = 1 no longer demand sparticles

above the GUT scale, a result that is independent of the stop mixing parameter.

It is relevant to show the previous results for values of MS of order of the TeV scale, as

expected if supersymmetry is related to the mechanism of electroweak symmetry breaking.

The results are presented in Figs. 4 and 5, in which the values of MS are restricted to vary

between 1 TeV and 30 TeV. For mA = 200 GeV, it is clear that Mh = 125 GeV cannot

be achieved with values of tβ . 4; similarly, requiring values of MS of the order of 1 TeV

demands large tβ and values of Xt close to the maximal mixing values. As expected, the
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FIG. 4. As in Fig. 2, but with MS restricted to the 1–30 TeV range and modified ranges in tβ.

Shading has been added between the contours for visual clarity.

values of tβ necessary to achieve the proper Higgs mass increase for lower values of mA and

large values of µ, due to mixing and chargino and neutralino effects, respectively.

In Fig. 6, we plot Mh as a function of X̂t to show the effect of mixing in the Higgs mass

matrix at different values of mA, tβ, fixing µ = 200 GeV. The different curves correspond to

choice of MS between 1 and 10 TeV. At low tβ = 5, the effect of mixing for mA = 200 GeV

is pronounced; the value of Mh with mA = 200 GeV is between 2–3 GeV lower than with

mA = 500 GeV, which approximates the decoupling limit. For higher values of tβ = 20, the

difference between the respective curves for the two values of mA falls to less than 0.5 GeV.
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FIG. 5. As in Fig. 3, but with MS restricted to the 1–30 TeV range and modified ranges in tβ.

Shading has been added between the contours for visual clarity.

The logarithmic dependence of Mh on MS is evident in these plots: increasing MS from 1 to

5 TeV increases Mh by approximately 12 GeV, while doubling MS from 5 to 10 TeV yields

a more modest 3–4 GeV change. We also note that the maximum Mh achieved for MS = 1

TeV is Mh ∼ 126.1 GeV in the lower right panel. Within uncertainties, this agrees with

results previously found in the mA = MS case in Ref. [26].

In Fig. 7, we have plotted Mh in the high-scale SUSY scenario, with large tβ = 20. For

MS = 2 TeV, the dashed blue curve, we obtain Mh = 126.5 GeV. Also, in contrast to

the bottom-right panel of Fig. 6, Mh = 125 GeV is no longer achieved for MS = 1 TeV
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FIG. 6. Mh vs. X̂t for mA = [200, 500] GeV in the [left, right] columns, tβ = (2, 20) in the (top,

bottom) rows, Ab = Aτ = MS , and µ = M1 = M2 = 200 GeV. The four curves are for MS values of

1, 2, 5, 10 TeV from bottom to top. The vertical grey dashed line indicates the value at the one-loop

maximal mixing value X̂t =
√

6. The horizontal light grey box is the 1σ band Mh = 125.09± 0.24

GeV.

at maximal mixing without light electroweakinos. We can compare with the recent results

produced by the SusyHD code of Ref. [28]. Our values are . 1 GeV higher than the central

result of Ref. [28]. Part of this discrepancy is attributed to the use of the lower value of

yt(Mt): if we instead use the NNLO + N3LO QCD value yt,N3LO QCD(Mt) = 0.93690, Mh is

lowered by 0.5 GeV. The remaining small difference may be explained by the more complete

calculation of thresholds in the mA ∼MS case of Refs. [26, 28].

VI. COMPARISON TO PREVIOUS RESULTS

In this section, we compare our results with the results obtained in the hMSSM scenario

as well in the FeynHiggs version 2.10.2, in which relevant logarithmic effects to the SM
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FIG. 7. As in Fig. 6, with mA = MS , tβ = 20, Ab = Aτ = MS , and µ = M1 = M2 = MS .

quartic couplings are resummed in order to increase the accuracy of the results at large

values of MS. [53, 54]

In Fig. 8, we present the comparison of our results with the hMSSM approximation for

sizable values of µ̂ = 2 and values of X̂t = −1.5 and X̂t = 2.8, away from maximal mixing,

for which the hMSSM results are expected to show a worse approximation to the correct

results than for low values of µ at moderate or large values of tβ. The results of our compu-

tation for the mixing angle α and the heavy CP-even Higgs mass are presented in the left

and right panels with red dotted lines, while the blue lines represent the relative and abso-

lute differences of these quantities with the ones computed in the hMSSM approximation.

We present our results for MS = 5 TeV, for which the correct values of the Higgs mass,

represented by black solid, dashed and dotted lines, may only be obtained for moderate to

large values of tβ in this region of parameters. Differences in α of the order of 10%–20% are

obtained for moderate values of tβ and values of the heavy CP-even Higgs bosons of the order

of the weak scale. Since the mixing angle controls the coupling of the lightest CP-even Higgs

boson to fermions and gauge bosons, relevant modifications of the Higgs phenomenology are

expected in ths region of parameters. Similarly, the heavy CP-even Higgs boson mass may

be affected by values of a few to 10 GeV in this region of parameters.

In Fig. 9, we present in the upper panels similar results but for X̂t = 2.8 and large values

of MS = 100 TeV for which lower values of tβ ' 4 are required to obtain the correct Higgs

masses. We see that in this case, in the relevant region of parameters, the agreement is

improved compared to the large tβ case, with differences in α of the order of a few percent
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FIG. 8. Difference between hMSSM and effective THDM calculations of α and MH in the plane

tβ,mA for MS = 5 TeV, X̂t = [2.8,−1.5] [top, bottom], µ = M1 = M2 = 2MS , and Ab = Aτ = At.

From the bottom to the top of each plot, the light grey lines (dot-dashed, dashed, and solid)

correspond to Mh = (122, 124, 125, 126, 128) GeV. Red, dashed lines in the plots in the left [right]

column are contours of α [MH ] computed using the effective THDM. Solid and dashed blue lines

in the plots in the left [right] column are contours of (α−αhMSSM)/|α| [MH −MH,hMSSM, in GeV];

dashed lines indicate values halfway between adjacent solid lines.

and differences in mH of the order of a few GeV. In the lower panels, we present results for

lower values of µ̂ and MS = 10 TeV, for which values of tβ ' 5 lead to the proper Higgs

boson masses. We see that due to the smaller values of µ̂ and tβ, the differences with the
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FIG. 9. As in Fig. 8, with MS = 100 TeV, X̂t = 2.8, µ̂ = 2 [top] and MS = 10 TeV, X̂t = 2, µ = 1

TeV [bottom].

hMSSM reduce to values of at most 1%–2% in this case.

A “low-tanβ-high” scenario, in the region of 1 . tβ . 10, 150 GeV . mA . 500 GeV,

has been presented by the LHC Cross Section Working Group [55] with values for a subset

of the MSSM parameters necessary to achieve Mh = 122–128 GeV in FeynHiggs. In this

scenario, a simplified, heavy MSSM spectrum above the scale MS is assumed; other MSSM

parameters are chosen as Af = 2 TeV (f = b, τ, c, s, µ, u, d, e), M3 = MS, M2 = 2 TeV,

µ = 1.5 TeV, and M1 = M2 · 5
3

tan2 θW ∼ 950 GeV fixed by the GUT relation. MOS
S and

XOS
t , the values of the stop masses and mixing parameters in the on-shell scheme used in
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FeynHiggs, are then chosen to achieve Mh in the desired range.

We have used one-loop conversion formulae [15, 26] to change MOS
S , XOS

t in the OS scheme

to MS, X t in the MS scheme, which are the parameters used in our calculation. The maxi-

mum MOS
S value specified is 100 TeV, which is used for points with low mA . 200–250 GeV

and tβ . 1–3. Maximal mixing is chosen for points in the region tβ ≤ 2. In FeynHiggs, this

corresponds to the choice XOS
t = 2MOS

S ; in the MS scheme, the output value of X t should

be close to the maximal mixing value X t,max, for which Mh as a function of Xt achieves its

maximum (e.g., in Fig. 6, X t,max lies close to the one-loop value X
h4t
t,max =

√
6MS). For a

selection of these points, we performed a similar scan and found that the output values of

X t yield Mh(X t) values within 0.5 GeV of the maximal mixing values.

Our results in this scenario are shown in Fig. 10. The top-left panel shows that across the

range of parameter space using the tabulated values of MS and Xt, Mh . 123 GeV using the

effective THDM calculation. In the top-right panel, the discrepancy between our calculated

value of Mh and that of FeynHiggs is clearly exhibited: for much of the parameter space

above tβ ∼ 6.5, our calculation of Mh is about 2 GeV lower. Between tβ ∼ 4–5 (tβ ∼ 2–4),

this disagreement worsens to 3–5 (5–10) GeV. This can also be seen in the lower-right panel

of Fig. 2, where for mA = 200 GeV and lower values of µ = M1 = M2 = 200 GeV, Mh = 122

GeV is not achieved for MS = 100 TeV until tβ ∼ 3. The effective THDM calculation yields

a higher value of the Higgs mixing angle α compared with FeynHiggs, but the two are

in agreement at the level of 5% except for a region mA . 300 GeV and tβ . 6. Below

tβ ∼ 3 and mA ∼ 225 GeV, the fractional difference reaches 10%–12%. The values of the

heavy Higgs mass mH are only significantly discrepant, more than 5 GeV, for low tβ . 2.5,

although for tβ . 1.5, mA . 250 GeV, our calculation of mH is more than 10 GeV lower.

We can estimate how much of the differences in Fig. 10 are due to the use of a different

boundary value for the top Yukawa yt(Mt), for which FeynHiggs uses the 1-loop SM MS

mt running value.5 In Fig. 11, we reproduce the results in Fig. 10, except that we use

yt,NLO(Mt) = 0.95113 as the boundary value for the RG running. In the top-right panel, Mh

in the region above tβ ∼ 5.5 (4.5) now agrees to within 1 (2) GeV; however, discrepancies

larger than 5 (10) GeV still exists for tβ . 3 (2). Likewise, there are modest reductions in

the differences in α and mH across the parameter space. The remaining differences between

5 For consistency at two-loop order, only the one-loop terms involving g3, yt are employed in FeynHiggs

to obtain yt,FH NLO(Mt) = 0.962.
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FIG. 10. Top row: density plots for Mh calculated using the effective THDM [left] and the

difference between the left plot and the calculation of Mh using FeynHiggs, for the low-tanβ-

high scenario [right]. From top to bottom, the (dotted, dashed, solid, dot-dashed) black curves

correspond to differences of −(2, 3, 5, 10) GeV, respectively. Bottom row: The difference in mH

[left] and fractional difference in α [right] calculated using the effective THDM and FeynHiggs.

In the left plot, from the upper right to the lower left, the (dashed, dotted, dotted, dashed, solid,

dot-dashed, dot-dashed) black curves correspond to differences of (2, 1,−1,−2,−5,−10,−15) GeV,

respectively. In the right plot, from top to bottom, the (dotted, dashed, solid, dot-dashed) black

curves correspond to differences of (1, 2, 5, 10)%.

the FeynHiggs results and our results could be explained by the different resummation

method implemented in FeynHiggs in which the THDM effects are ignored.

We turn now to the comparison with the hMSSM in this scenario, shown in Fig. 12. We

use Eqs. (71–72), inserting the value of Mh obtained from the effective THDM calculation.
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FIG. 11. As in Fig. 10, except using the boundary value yt,NLO(Mt) = 0.95113 for the RG evolution.

In the top right plot, from top to bottom, the (dotted, dotted, dashed, solid, dot-dashed) black

curves correspond here to differences of −(1, 2, 3, 5, 10) GeV, respectively.

The fractional difference in α between our calculation and the hMSSM is less than 4%

between the two calculations. Likewise, there is minimal deviation in mH , except in the

small corner of parameter space at tβ ∼ 1, mA . 200 GeV, where the disagreement reaches

the 5% level. As was discussed in Sec. IV A, sizable values of µ are needed for the hMSSM

approximation to break down; however, throughout the parameter space of the low-tanβ-

high scenario, µ� MS. Finally, we note that if instead the value of Mh from FeynHiggs

is used in the hMSSM equations, we see a similar level of disagreement between the hMSSM

and our calculation as in Fig. 10.

We can also test the formulae for the gHhh coupling, Eqs. (73–74), in the low-tan β-high

scenario. In Fig. 13, we show the results of our calculation and the fractional difference
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FIG. 12. Density plots for the difference in mH [left] and the fractional difference in α [right] cal-

culated using the effective THDM and the hMSSM approximation, for the low-tanβ-high scenario.

In the left plot, from the upper right to the lower left, the (dashed, dotted, dotted, dashed, solid,

dot-dashed) black curves correspond to differences of (2, 1,−1,−2,−5,−10) GeV, respectively. In

the right plot, from the upper right to the lower left, the (dotted, dashed, solid, dot-dashed) black

curves correspond to differences of (0, 1, 2, 3)%, respectively.

with the hMSSM using the effective THDM value of Mh. Fractional deviations of less than

6%–7% are observed. As above, differences between our calculation and the hMSSM when

the FeynHiggs value of Mh is used reach 30% at low tan β and larger values of mA.

The dominant SM uncertainties come from the inputs yt, αs at Mt. The uncertainty from

αs(Mt) is subdominant as it enters at two-loop order for Mh in both the RG running of

yt, λi and in the threshold contributions. The uncertainty from yt has two sources: one

from the experimental measurement of the top quark pole mass Mt, and the other from the

conversion of Mt to the MS top Yukawa yt(Mt). An estimate of the uncertainty from the

value of Mt can be found in the mA ∼MS case in [26], where it was shown that using the 1σ

high and low values of Mt shift Mh by about 1 GeV. As previously discussed, the use of the

NLO, NNLO, or NNLO+N3LO QCD values of yt(Mt) can shift Mh by 1–2 GeV. There are

also uncertainties from varying the renormalization scale Q2 in the effective potential, from

subleading 2-loop threshold corrections to λk, and from higher-dimensional operators, but

we expect these contributions are subdominant to those from the SM. For a more detailed

discussion of uncertainties, see Ref. [28].
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FIG. 13. Contour plots of λHhh = gHhh/v computed in the THDM [left] and the fractional

difference between λHhh computed in the THDM and the hMSSM [right].

VII. CONCLUSION

In this article, we have computed the mass and couplings of the lightest CP-even Higgs

boson in the MSSM, considering large values of the masses of the scalar quarks, and inter-

mediate values of the CP-odd Higgs mass. We performed these calculations using effective

theory techniques and resumming the large logs appearing above and below the CP-odd

Higgs mass scale. We worked in the Higgs basis and showed that provided the threshold

corrections to the off-diagonal CP-even Higgs mass matrix element are small, all relevant

radiative corrections may be effectively absorbed into the definition of the lightest CP-even

Higgs mass. This situation occurs for moderate or small values of the Higgsino mass pa-

rameter µ and/or of the trilinear stop mass parameter At, and the resulting CP-even Higgs

boson masses are well approximated by the hMSSM scenario. On the other hand, for sizable

values of µ and At, the alignment condition may be realized, in which case our results differ

significantly from those in the hMSSM method.

The Higgs masses computed in our work tend to be lower than the results obtained by

FeynHiggs, which implements a different resummation method, and may differ by a few

GeV or more. The difference may be traced to our use of an effective THDM theory at

scales above mA and also a higher-order computation of the relation between the running

and the on-shell top-quark mass.
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Our calculation of Mh leads to lower bounds on tβ for low values of mA in order to

achieve Mh = 125 GeV: for mA = 200 GeV, we find tβ & 3.4 (2.0) for µ = MS (200 GeV).

These bounds are due to the appearance of large mixing effects that push the lightest CP-

even Higgs mass down and cannot be overcome by the positive contributions to Mh from

both the stop threshold corrections (even with stops as heavy as MGUT) and from radiative

corrections from light charginos and neutralinos. We also note that for values of tβ ∼ 1, a

Landau pole of the top-quark Yukawa coupling may be induced at low values of mA.

Finally, we would like to stress that our work has been restricted to the computation

of the neutral Higgs masses in the MSSM, without taking into account any experimental

constraints beyond the measured value of the Higgs mass. While constraints from precision

measurements, new physics searches, Higgs, dark matter, and flavour physics will lead to

relevant bounds on the values of the free parameters of the theory, in this article we have

focused on the Higgs mass computation for arbitrary values of those parameters. Our results

should be complemented with a careful analysis of the experimental constraints and can also

be used to determine in a more precise way the bounds on the free parameters of the model

coming from those constraints. We reserve this analysis for a future publication.
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Appendix A: Two-loop RGE’s in the Type II THDM

The β-functions for a coupling are

βg(t) =
dg

dt
=
∞∑
n=1

κnβ(n)
g (t) (A1)

where t = logQ with Q the renormalization scale, κ = 1/(4π)2 is the loop factor, and β
(n)
g

is the n-th loop β-function for g. We have extracted these equations from the program

SARAH, version 4.2. [61] Below, we list the two-loop RG equations for the type II THDM

in the third generation approximation. Ng is the number of fermion generations and θX

is the Heaviside function for the mass X. These equations were also listed in Ref. [49],

with which we find minor differences; we use different conventions for three parameters

λ1 = 2λ̃1, λ2 = 2λ̃2, g
2
1 = 5g′2/3, where g′, λ̃1, λ̃2 appear in Ref. [49].

1. Gauge Couplings

Hypercharge coupling g1 in the SU(5) normalization, with g2
Y = 3

5
g2

1:

g−3
1 β(1)

g1
=

1

5
+

4

3
Ng +

2

5
g3

1θµ , (A2)

g−3
1 β(2)

g1
=

44

5
g2

3 +
18

5
g2

2 +
104

25
g2

1 −
17

10
h2
t −

1

2
h2
b −

3

2
h2
τ . (A3)

Weak gauge coupling g2:

g−3
2 β(1)

g2
= −7 +

4

3
Ng +

2

3

[
θµ + 2θM2

]
, (A4)

g−3
2 β(2)

g2
= 12g2

3 + 8g2
2 +

6

5
g2

1 −
3

2
h2
t −

3

2
h2
b −

1

2
h2
τ . (A5)

Strong gauge coupling g3:

g−3
3 β(1)

g3
= −11 +

4

3
Ng , (A6)

g−3
3 β(2)

g3
= −26g2

3 +
9

2
g2

2 +
11

10
g2

1 − 2h2
t − 2h2

b . (A7)
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2. Yukawa Couplings

Top Yukawa ht:

h−1
t β

(1)
ht

= −8g2
3 −

9

4
g2

2 −
17

20
g2

1 +
9

2
h2
t +

1

2
h2
b +

3

2

[
g2

2 +
1

5
g2

1θM1

]
θµ , (A8)

h−1
t β

(2)
ht

= −108g4
3 + 9g2

3g
2
2 +

19

15
g2

3g
2
1 −

21

4
g4

2 −
9

20
g2

2g
2
1 +

1267

600
g4

1

+ g2
3

[
36h2

t +
16

3
h2
b

]
+

3

16
g2

2

[
75h2

t + 11h2
b

]
+

1

240
g2

1

[
1179h2

t − 41h2
b

]
− 12h4

t −
5

2
h2
th

2
b −

5

2
h4
b −

3

4
h2
bh

2
τ − 6h2

tλ2 + 2h2
b

[
− λ3 + λ4

]
+

3

2
λ2

2 + λ2
3 + λ3λ4 + λ2

4 +
3

2
λ2

5 +
3

2
λ2

6 +
9

2
λ2

7 .

(A9)

Bottom Yukawa hb:

h−1
b β

(1)
hb

= −8g2
3 −

9

4
g2

2 −
1

4
g2

1 +
1

2
h2
t +

9

2
h2
b + h2

τ , (A10)

h−1
b β

(2)
hb

= −108g4
3 + 9g2

3g
2
2 +

496

240
g2

3g
2
1 −

21

4
g4

2 −
27

20
g2

2g
2
1 −

113

600
g4

1

+ g2
3

[
16

3
h2
t + 36h2

b

]
+

3

16
g2

2

[
11h2

t + 75h2
b + 10h2

τ

]
− 1

240
g2

1

[
53h2

t − 711h2
b − 450h2

τ

]
− 5

2
h4
t −

5

2
h2
th

2
b − 12h4

b −
9

4
h2
bh

2
τ −

9

4
h4
τ − 2h2

tλ3 + 2h2
tλ4 − 6h2

bλ1

+
3

2
λ2

1 + λ2
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3. Anomalous Dimensions
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4. Quartic Couplings
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