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We present a new model of “Stealth Dark Matter”: a composite baryonic scalar of an SU(ND)
strongly-coupled theory with even ND ≥ 4. All mass scales are technically natural, and dark
matter stability is automatic without imposing an additional discrete or global symmetry. Con-
stituent fermions transform in vector-like representations of the electroweak group that permit
both electroweak-breaking and electroweak-preserving mass terms. This gives a tunable coupling of
stealth dark matter to the Higgs boson independent of the dark matter mass itself. We specialize to
SU(4), and investigate the constraints on the model from dark meson decay, electroweak precision
measurements, basic collider limits, and spin-independent direct detection scattering through Higgs
exchange. We exploit our earlier lattice simulations that determined the composite spectrum as well
as the effective Higgs coupling of stealth dark matter in order to place bounds from direct detection,
excluding constituent fermions with dominantly electroweak-breaking masses. A lower bound on the

dark baryon mass mB
>∼ 300 GeV is obtained from the indirect requirement that the lightest dark

meson not be observable at LEP II. We briefly survey some intriguing properties of stealth dark
matter that are worthy of future study, including: collider studies of dark meson production and
decay; indirect detection signals from annihilation; relic abundance estimates for both symmetric
and asymmetric mechanisms; and direct detection through electromagnetic polarizability, a detailed
study of which will appear in a companion paper.

PACS numbers: 12.60.-i, 95.35.+d, 11.15.Ha

I. INTRODUCTION

Composite dark matter, made up of electroweak-
charged constituents provides a straightforward mech-
anism for obtaining viable electrically-neutral particle
dark matter that can yield the correct cosmological abun-
dance while surviving direct and indirect detection search
limits, e.g., [1–3]. In this paradigm, the dark sector con-
sists of fermions that transform under the electroweak
group and a new, strongly-coupled non-Abelian dark
force. This was considered long ago in the context of
technicolor theories, where the strong dynamics was do-
ing double-duty to both break electroweak symmetry and
provide a dark matter candidate [4–7].

In this paper, electroweak symmetry breaking is ac-
complished through the weakly-coupled Standard Model

∗ Present address: Higgs Centre for Theoretical Physics, School of
Physics & Astronomy, The University of Edinburgh, EH9 3FD,
UK

Higgs mechanism, while the new strongly-coupled sector
is reserved solely for providing a viable dark matter can-
didate. This dark sector is not easy to detect in dark
matter detection experiments or in collider experiments,
and so we give it the name “Stealth Dark Matter”. Ear-
lier work in this direction includes [4–28], and except for
[29–36], was often limited by the inability to perturba-
tively calculate the spectrum and form factors due to
strong coupling.

The proposed dark matter candidate is a scalar baryon
of SU(ND), and hence ND must be even.1 We take the
dark fermions to be in vector-like representations of the
electroweak group. Hence, the constituent dark fermions
can acquire bare mass terms (fermion masses that do
not require electroweak symmetry breaking) while also
permitting Yukawa interactions that marry dark fermion

1 Fermionic baryons arising from odd ND were considered in

Ref. [31] where the limit M >∼ 10 TeV was found to avoid the
direct detection constraints from the magnetic dipole interaction.



electroweak doublets with singlets. This yields a theory
in which dark matter couples to the Higgs boson in a tun-
able way that is essentially independent of the dark mat-
ter mass itself. This is somewhat analogous to dark sec-
tor models with a dark U(1) portal (e.g., [37–41]), where
the coupling to the Standard Model is tunable through
an otherwise arbitrary parameter – the kinetic mixing
between the dark U(1) and hypercharge.

The existence of both electroweak-preserving and
electroweak-breaking masses for the dark fermions pro-
vides two main benefits. First, given that the Higgs bo-
son couples electroweak doublets with singlets, the global
flavor symmetries of the dark fermions can be completely
broken to just dark baryon number. All mesons can
decay through an electroweak process (e.g., electrically
charged mesons through W exchange) or through the
usual chiral anomaly (e.g., the lightest neutral meson).
Ensuring that these particles decay before big-bang nu-
cleosynthesis sets a weak lower bound on the Higgs inter-
action strength. (This is in contrast with [20, 42] where
additional interactions were required to ensure mesons
decay, e.g., through higher dimensional operators). The
second reason is related to the orientation of the chiral
condensate after the dark force confines. Large vector-
like masses for the dark fermions ensure that the conden-
sate can be aligned toward the electroweak-preserving
direction, and thus the dark sector leads to only small
corrections to electroweak precision measurements. We
estimate the size of these corrections in this paper.

There are many appealing features of an electroweak-
neutral composite dark matter candidate made up from
fermions transforming under the electroweak group, in-
cluding:

• All of the dimensionful scales are technically nat-
ural, since they arise from fermion masses (vector-
like and electroweak breaking) and the confinement
of a strong-coupled dark force.

• Dark matter stability is an automatic consequence
of dark baryon number conservation. No addi-
tional global discrete or continuous symmetries are
required. For ND ≥ 3, operators involving dark
baryon decay are necessarily dimension-6 or higher,
and thus safe from GUT-scale or Planck-scale sup-
pressed violations of dark baryon number.

• There are no dimension-4 interactions of the com-
posite dark matter particle with the Standard
Model except with the Higgs boson. The direct
detection scattering cross section is thus automat-
ically suppressed compared with a generic elemen-
tary WIMP candidate.

• Higher dimensional interactions of the dark mat-
ter with the Standard Model are suppressed, in the
nonrelativistic limit, by several powers of the dark
matter mass. For a composite scalar, the lead-
ing operators are charge radius (at dimension-6)
and polarizability (at dimension-7). The impact

of these (and other) operators on the dark matter
scattering cross section in direct detection experi-
ments has been studied in [9–11, 16, 43–50].

• Interactions of the dark baryon through the neu-
tral weak current, the charge radius interaction, as
well as the contributions to the electroweak pre-
cision T parameter, are simultaneously eliminated
if the fermion interactions obey a global custodial
SU(2) symmetry. Additionally, as we will see, dark
matter electric neutrality also follows from custo-
dial SU(2). To simplify our analysis, here we will
primarily study the subset of stealth dark matter
parameter space in which the custodial SU(2) is
preserved. (This simplification is very familiar from
composite Higgs theories, e.g. [51]).

• The abundance of a strongly-coupled dark scalar
baryon could arise through several mechanisms:
an asymmetric abundance (such as through elec-
troweak sphalerons [6, 8] or other mechanisms [52]),

when the mass is not too large <∼ few TeV, or a sym-
metric abundance, when the mass is large (perhaps
∼ O(100) TeV) [20, 53, 54].

We focus mainly on a confining SU(4) gauge theory
dark sector with dark fermions transforming non-trivially
under the electroweak group. We apply our recent re-
sults [33] using lattice simulations for the spectrum and
effective Higgs interaction for SU(4). As emphasized in
[31, 33], this theory is well suited for lattice calculations
since we are not interested in the chiral limit of vanish-
ing dark fermion masses. Indeed, lattice simulations can
efficiently simulate the parameter region where the dark
fermion masses are comparable to the confinement scale,
exactly where the perturbative estimates are least useful.

The organization of the paper is as follows. In Sec. II
we discuss the assumptions and requirements to con-
struct our stealth dark matter model. In Sec. III we detail
the dark fermion interactions and masses. In addition,
we write the electroweak currents in terms of the dark
fermion mass eigenstates of the theory, detailed in Ap-
pendix A. Until this point, the discussion of the model is
general. In Sec. IV, we simplify the parameter space for
phenomenological and calculational purposes, applying
a global custodial SU(2) symmetry and taking the ap-
proximately symmetric dark fermion mass matrix limit.
Then in Sec. V we discuss the light non-singlet mesons in
the theory, in particular their decay rates and constraints
from non-observation at LEP II. In Sec. VI we discuss
the stealth dark matter contributions to the S parameter,
and demonstrate the parametric suppression that hap-
pens in several regimes. In Sec. VII we obtain the Higgs
boson coupling to the dark fermions. Then in Sec. VIII
we apply our previous model-independent results on the
SU(4) spectrum and effective Higgs coupling to stealth
dark matter. We obtain the bounds on the parameter
space from the non-observation of a spin-independent di-
rect detection signal at LUX. We briefly discuss the relic
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abundance of stealth dark matter in Sec. IX. Finally we
conclude with a discussion in Sec. X.

II. CONSTRUCTING A VIABLE MODEL

A. Basic assumptions

We assume that the dark matter candidate is a com-
posite particle of a non-Abelian, confining gauge the-
ory based on the group SU(ND) with Nf flavors of
fermions transforming in the fundamental representation.
The number Nf is restricted by only the condition of
confinement. For reasons outlined in the introduction
(abundance, detectability), the dark fermions carry elec-
troweak charges. Our model includes a tunable Higgs
“portal” coupling between the dark sector and the Stan-
dard Model via dimension-4 Higgs couplings.2 We do not
consider QCD-colored dark fermions since with ND 6= 3,
dark baryons would not generally be color singlets.3

B. Requirements

We require dark matter stability to be automatic, aris-
ing from a global symmetry. This motivates consider-
ing the dark baryon of the non-Abelian dark sector to
be the dark matter [4–6]. In the presence of GUT-scale
or Planck-scale suppressed operators, the stability of the
dark baryon should be sufficient to avoid cosmological
constraints.

The requirement of a sufficiently preserved acciden-
tal baryon number disfavors a dark SU(2) group. First,
there is no automatic baryon number in SU(2) because
there is no fundamental distinction between mesons and
baryons. Imposing a global U(1) baryon number is pos-
sible (e.g. see [16]) but in addition baryon number vio-
lating dimension-5 Planck-suppressed operators such as
fdarkfdarkH

†H/MPl must be absent, where fdark is the
dark fermion. (Otherwise, the dark SU(2) baryon would
decay on a timescale much shorter than the age of the
Universe.)

For ND ≥ 3, operators involving dark baryon de-
cay are necessarily dimension-6 or higher, and thus safe
from GUT-scale or Planck-scale suppressed violations
of dark baryon number. SU(ND) with odd ND is a
perfectly interesting theory, having been studied be-
fore for ND = 3 by our collaboration [31]. There it
was found that a fermionic dark baryon has a magnetic

2 Other portals, such as a dark gauged U(1) group that kinetically
mixes with hypercharge, are neither present nor required here.

3 The obvious exception, when ND = Nc = 3, is discussed in
[31, 55], which is not a focus for us due to the baryons being
fermions. Construction of QCD-singlet dark baryons with ND =
6, 12, 18, ... may be possible, but we do not study this possibility
further here.

dipole interaction that leads to a significant contribu-
tion to spin-independent scattering. Constraints from
the XENON100 experiment were satisfied only when the
dark matter mass M >∼ 10 TeV [31]. This strong con-
straint on the mass scale implies the model is difficult to
test at near-future colliders.

The magnetic dipole interaction (and other higher di-
mensional operators that require spin) are absent when
the dark baryon is a scalar. We are thus naturally led
to SU(ND) with even ND ≥ 4, for which the otherwise
strong constraints from direct detection are weakened,
lowering the scales of interest into a regime that can be
probed by colliders and other detection strategies.

We assume the dark fermions have masses Mf on the
order of the SU(ND) confinement scale ΛD. If the masses
were much smaller, the dark sector would contain light
pseudo-Goldstone pions that transform under the elec-
troweak group, which are strongly constrained by col-
lider experiments. A dark sector with purely vector-
like fermion masses has approximately stable electrically-
charged mesons due to dark flavor symmetries. Con-
versely, a dark sector with purely electroweak breaking
fermion masses has a dark matter candidate that is ruled
out by spin-independent direct detection through single
Higgs exchange. (For example, quirky dark matter [16]
is now completely ruled out by Higgs exchange, given
the direct detection bounds from LUX [3] combined with
the relatively light Higgs mass [56, 57].) Fermions with
both vector-like and (small) electroweak breaking contri-
butions to their masses can avoid both problems.

We require the lightest dark baryon to be electrically
neutral. We also require Higgs couplings at dimension-4
to pairs of dark fermions. These two requirements im-
pose restrictions on the electroweak charges of the dark
fermions.

One solution is familiar from old technicolor theories
(e.g. [58, 59]): requiring the dark fermion charges to

roughly satisfy |Y | <∼ |T3| where T3 is the SU(2)L isospin.
Choosing doublets (|T3| = 1/2 under SU(2)L) then gives
a finite number of discrete possibilities.

A simple model that satisfies all of these requirements
is shown in Table I. The electric charges of the dark
fermions in the broken electroweak phase are Q = ±1/2,
ensuring all hadrons have integer electric charges. So long
as the lightest Q = 1/2 and Q = −1/2 dark fermions are
close in mass, the lightest baryon will be a scalar and elec-
trically neutral. Finally, with the assignments shown in
Table I, all gauge (and global) anomalies vanish, which is
automatic with fermions that transform under vector-like
representations of the SU(ND) and electroweak groups.

III. DARK FERMION INTERACTIONS AND
MASSES

The fermions Fu,di transform under a global U(4) ×
U(4) flavor symmetry with [SU(2)×U(1)]4 surviving af-
ter the weak gauging of the electroweak symmetry. From
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Field SU(ND) (SU(2)L, Y ) Q

F1 =

(
Fu

1

F d
1

)
N (2, 0)

(
+1/2

−1/2

)

F2 =

(
Fu

2

F d
2

)
N (2, 0)

(
+1/2

−1/2

)
Fu

3 N (1,+1/2) +1/2

F d
3 N (1,−1/2) −1/2

Fu
4 N (1,+1/2) +1/2

F d
4 N (1,−1/2) −1/2

TABLE I. Dark fermion particle content of the stealth dark
matter model. All fields are two-component (Weyl) spinors.
SU(2)L refers to the Standard Model electroweak gauge
group, and Y is the hypercharge. In the broken phase of
the electroweak theory, the dark fermions have the electric
charge Q = T3 + Y as shown.

this large global symmetry, one SU(2) (diagonal) sub-
group will be identified with SU(2)L, one U(1) subgroup
will be identified with U(1)Y , and one U(1) will be iden-
tified with dark baryon number. The total fermionic con-
tent of the model is therefore 8 Weyl fermions that pair
up to become 4 Dirac fermions in the fundamental or
anti-fundamental representation of SU(ND) with electric
charges of Q ≡ T3,L + Y = ±1/2. We use the notation
where the superscript u or d (as in Fu, F d and later ψu,
ψd, Ψu, Ψd) denotes a fermion with electric charge of
Q = 1/2 or Q = −1/2 respectively.

The fermion kinetic terms in the Lagrangian are given
by

L ⊃
∑

i=1,2

iF †i σ̄
µDi,µFi+

∑

i=3,4;j=u,d

iF ji
†
σ̄µDj

i,µF
j
i , (1)

where the covariant derivatives are

D1,µ ≡ ∂µ − igW a
µσ

a/2− igDGbµtb (2)

D2,µ ≡ ∂µ − igW a
µσ

a/2 + igDG
b
µt
b∗ (3)

Dj
3,µ ≡ ∂µ − ig′Y jBµ − igDGbµtb (4)

Dj
4,µ ≡ ∂µ − ig′Y jBµ + igDG

b
µt
b∗ (5)

with the interactions among the electroweak group and
the new SU(ND). Here Y u = 1/2, Y d = −1/2 and tb

are the representation matrices for the fundamental of
SU(ND).

The vector-like mass terms allowed by the gauge sym-
metries are

L ⊃M12εijF
i
1F

j
2 −Mu

34F
u
3 F

d
4 +Md

34F
d
3 F

u
4 + h.c., (6)

where ε12 ≡ εud = −1 = −ε12 and the relative minus
signs between the mass terms have been chosen for later
convenience. The mass term M12 explicitly breaks an
[SU(2) × U(1)]2 global symmetry down to the diagonal
SU(2)diag × U(1) where the SU(2)diag is identified with

SU(2)L. The mass terms Mu,d
34 explicitly break the re-

maining [SU(2)×U(1)]2 down to U(1)×U(1) where one
of the U(1)’s is identified with U(1)Y . (In the special case
when Mu

34 = Md
34, the global symmetry is enhanced to

SU(2)×U(1), where the global SU(2) acts as a custodial
symmetry.) Thus, after weakly gauging the electroweak
symmetry and writing arbitrary vector-like mass terms,
the unbroken flavor symmetry is U(1)× U(1).

Electroweak symmetry breaking mass terms arise from
coupling to the Higgs field H that we take to be in the
(2,+1/2) representation. They are given by

L ⊃ yu14εijF
i
1H

jF d4 + yd14F1 ·H†Fu4
− yd23εijF

i
2H

jF d3 − yu23F2 ·H†Fu3 + h.c. , (7)

where again the relative minus signs are chosen for later
convenience. After electroweak symmetry breaking, H =
(0 v/

√
2)T , with v ' 246 GeV. Replacing the Higgs

field by its VEV in Eq. (7), we obtain mass terms for the
fermions, in 2-component notation,

L ⊃ −(Fu1 Fu3 )Mu

(
F d2
F d4

)
− (F d1 F d3 )Md

(
Fu2
Fu4

)

+ h.c. , (8)

with the mass matrices given by

Mu ≡
(

M12 yu14v/
√

2

yu23v/
√

2 Mu
34

)
(9)

Md ≡ −
(

M12 yd14v/
√

2

yd23v/
√

2 Md
34

)
. (10)

These Yukawa couplings break the remaining U(1) ×
U(1) flavor symmetry to U(1)D dark baryon number.
The mass matrices Mu and Md correspond to the masses
of two sets of fermions with electric charge Q = +1/2
and Q = −1/2 respectively, in the fundamental repre-
sentation of SU(ND). The two biunitary mass matrices
can be diagonalized by four independent rotation angles

(
Mu

1 0

0 Mu
2

)
= R(θu1 )−1MuR(θu2 ) (11)

(
Md

1 0

0 Md
2

)
= R(θd1)−1MdR(θd2) , (12)

where the rotation matrices are defined by

R(θji ) ≡
(

cos θji − sin θji
sin θji cos θji

)
. (13)
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The 2-component mass eigenstate spinors are thus
(
ψu1
ψu2

)
= R(θu1 )

(
Fu1
Fu3

)
(14)

(
ψd1
ψd2

)
= R(θu2 )

(
F d2
F d4

)
(15)

(
χd1
χd2

)
= iR(θd1)

(
F d1
F d3

)
(16)

(
χu1
χu2

)
= iR(θd2)

(
Fu2
Fu4

)
, (17)

where the extra phase in Eqs. (16),(17) ensures the Q =
−1/2 fermions will have positive mass eigenvalues.

The Lagrangian for the fermion mass eigenstates be-
comes

L ⊃ −
2∑

i=1

(
Mu
i ψ

u
i ψ

d
i +Md

i χ
d
iχ

u
i + h.c.

)
(18)

where the mass eigenvalues are Mu
1,2 for Q = 1/2, and the

distinction between fermions ψ and χ allows us to write
the Q = −1/2 fermion masses as Md

1,2. The Dirac spinor
mass eigenstates are constructed from the 2-component
Weyl spinor mass eigenstates in the usual way,

Ψu
i ≡

(
ψui
ψdi
†

)
i = 1, 2 (19)

Ψd
i ≡

(
χdi
χui
†

)
i = 1, 2 (20)

giving the Dirac fermion masses

L ⊃ −
2∑

i=1

(
Mu
i Ψ

u

i Ψu
i +Md

i Ψ
d

iΨ
d
i

)
. (21)

The fermion masses themselves are obtained from a
straightforward diagonalization of the mass matrices,

Mu
1,2 =

M12 +Mu
34

2
∓
[(

M12 −Mu
34

2

)2

+
yu14y

u
23v

2

2

]1/2

,

(22)
with mixing angles

tan 2θu1 =
2
√

2v(M12y
u
23 +Mu

34y
u
14)

2M2
12 − 2(Mu

34)2 + (yu14v)2 − (yu23v)2
(23)

tan 2θu2 =
2
√

2v(M12y
u
14 +Mu

34y
u
23)

2M2
12 − 2(Mu

34)2 − (yu14v)2 + (yu23v)2
, (24)

with identical expressions for Md
1,2 and tan 2θd1,2 with the

replacement u↔ d everywhere.
It is important to note that the electroweak currents

(jµ+, jµ−, jµ3 , jµY ) play an important role in the upcom-
ing phenomenological discussions. Due to the extended
expressions for these quantities in terms of our Dirac
spinors, we have relegated a detailed derivation of the
electroweak currents to Appendix A.

IV. SIMPLIFICATIONS

Our main interest is the more specialized case where
the lightest Q = +1/2 and Q = −1/2 fermions are degen-
erate in mass to a very good approximation. This leads
to a neutral scalar baryon with a vanishing charge radius.
While there are several ways this could be accomplished,
we can simply impose a custodial SU(2) global symme-
try on the Lagrangian. In order to simplify notation, we
define cji ≡ cos θji , s

j
i ≡ sin θji and PL,R = (1 ∓ γ5)/2.

In the custodial SU(2) symmetric theory, cui = cdi and
sui = sdi .

A. Custodial SU(2)

An exact custodial SU(2) symmetry implies the masses
and interactions are symmetric with respect to the inter-
change u ↔ d. This means the Lagrangian parameters
satisfy

yu14 = yd14 ≡ y14, yu23 = yd23 ≡ y23, (25)

Mu
34 = Md

34≡M34 .

Defining the overall vector-like mass scale M and differ-
ence ∆ to be

M ≡ M12 +M34

2
∆ ≡

∣∣∣∣
M12 −M34

2

∣∣∣∣ , (26)

the dark fermion mass eigenvalues are

M1,2 = M ∓
√

∆2 +
y14y23v2

2
. (27)

We assume ∆ < M , such that fermion masses remain
positive, to avoid further fermion field rephasings. No u
or d labels are necessary, since custodial SU(2) symmetry
implies that there is one pair of Dirac fermions with elec-
tric charge Q = (+1/2,−1/2) with mass M1 (the lightest
pair), as well as a second pair of Dirac fermions with elec-
tric charge Q = (+1/2,−1/2) with mass M2 (the heavier
pair). The spectrum is illustrated in Fig. 1.

In the limit y14, y23 → 0, the fermions acquire
purely vector-like masses, and thus the chiral conden-
sate of the dark force is aligned to a purely electroweak-
preserving direction. In order that the chiral conden-
sate’s electroweak-preserving orientation is not signifi-
cantly disrupted, we consider small electroweak breaking
masses, y14v, y23v �M .

This leaves two distinct regimes for the spectrum, de-
pending on the relative sizes of

√
y14y23v and ∆.

B. Approximately symmetric mass matrices

A second simplification, useful to analytically and nu-
merically evaluate our results, is to take y14 ' y23. The
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2  d

2

 d
1 u

1

M

Mu,d
2

Mu,d
1

Q =
1

2
Q = �1

2

±
p
�2 + y14y23v2/2

FIG. 1. Illustration of the fermion mass spectra considered
in the paper. Four Dirac fermions (Ψu

1 , Ψd
1, Ψu

2 , Ψd
2) have

masses (Mu
1 , Md

1 , Mu
2 , Md

2 ). The u (d) fermions have electric
charge Q = +1/2 (Q = −1/2); we assume an exact custodial
SU(2) global symmetry that ensures each Q = +1/2 fermion
is accompanied by a Q = −1/2 fermion with equal mass as
shown in the figure. If ∆ � √y14y23v (∆ � √y14y23v) the
mass splitting is dominated by electroweak breaking (preserv-
ing) masses that we call the Linear (Quadratic) Case. See the
text for details.

mass matrices Eqs. (9,10) are approximately symmetric.
Specifically, we can write

y14 = y + εy , y23 = y − εy , |εy| � |y| . (28)

and expand in powers of εy. For example, the dark
fermion masses become simply

M1,2 = M ∓
√

∆2 +
y2v2

2
. (29)

to leading order in O(εy).

The distinct regimes are thus yv � ∆ and yv � ∆. In
the Linear Case yv � ∆, electroweak symmetry break-
ing is (dominantly) responsible for the mass splitting be-

tween Ψu,d
1 and Ψu,d

2 . In the Quadratic Case yv � ∆,
the splitting is dominantly attributed to the vector-like
mass splitting ∆. As we shall see, the primary distinction
between these two cases is in the Higgs coupling to the
fermion mass eigenstates: proportional to y for the Lin-
ear Case and y2 for the Quadratic Case, hence the case
names. A similar observation was also found in Ref. [60].

From this point forward unless noted otherwise, we as-
sume the fermion mass parameters satisfy an exact cus-
todial SU(2) and the mass matrices are approximately
symmetric.

V. LIGHT NON-SINGLET MESON
PHENOMENOLOGY

Theories with new fermions that transform under
vector-like representations of the electroweak group
generically have enlarged global flavor symmetries that
can prevent decay of the lightest non-singlet mesons and
baryons. In the case of dark baryons, this is a feature,
providing the rationale for the stability of the lightest
dark baryon of the theory.

In the case of the lightest non-singlet mesons, this can
be problematic, since some of these mesons carry electric
charge.4 Stable integer charged mesons are strongly con-
strained from collider searches as well as cosmology. One
solution is to postulate additional higher dimensional op-
erators that connect a dark fermion pair with a Standard
Model fermion pair [20, 42]. This must be carefully done
to avoid also writing operators that violate the approx-
imate global symmetries protecting the stability of the
dark matter. In the stealth dark matter model, however,
electroweak symmetry breaking can provide the source
of global flavor symmetry breaking, leading to the de-
cay of the lightest charged mesons. (We will not dis-
cuss the lightest neutral mesons, but they are generically
more difficult to produce in colliders, and they will decay
through essentially the same mechanism as we describe
for the charged mesons.)

The lightest electrically charged mesons are composed

dominantly of the dark fermion pairs Π+ = (Ψd
1Ψu

1 ) and
Π− = (Ψu

1Ψd
1). We can estimate the lightest meson life-

time by generalizing pion decay of QCD to our model.
The relevant matrix element is (see, e.g., [61])

〈0|jµ±,axial|Π±〉 = ifΠp
µ , (30)

where fΠ is the “pion decay constant” associated with the
dark force in this paper. The axial part of the electroweak
current can be read off from the electroweak currents
given in Eqs. (A5),(A6)

jµ+,axial ⊃ caxialΨu
1γ

µγ5Ψd
1 (31)

where

caxial =
cu1c

d
1 − cu2cd2√

2
(32)

and jµ−,axial is identical upon u ↔ d. In the custodial

limit, Eq. (25), the axial coefficient is

caxial =
(y2

14 − y2
23)v2

√
2(8M2 + (y14 − y23)2v2)(8∆2 + (y14 + y23)2v2)

.

(33)

4 We use the term “lightest mesons” and not “pions” since the
would-be global symmetry that protects pion masses is com-
pletely broken by the dark fermion vector-like masses. Never-
theless, we use the symbol Π to denote the corresponding fields.
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Some insight can be gained using approximately symmet-
ric mass matrices, Eq. (28). We then obtain

caxial =
εyyv

2

2M
√

2∆2 + y2v2
(34)

' εyv

2M
×
{

1 Linear Case

yv/(
√

2∆) Quadratic Case.

The decay width can be obtained from pion decay of
QCD by replacing Vud in the Standard Model with caxial

for the dark mesons. Since the charged dark mesons of
this model are much heavier than the QCD pions, there
are many possible decay modes. For a general decay into
a Standard Model doublet (f f ′), assuming mf � mf ′ ,
the decay width is

Γ(Π+ → ff
′
) =

G2
F

4π
f2

Πm
2
fmΠc

2
axial

(
1−

m2
f

m2
Π

)
.(35)

If mΠ > mt +mb, the dominant decay mode is expected
to be Π+ → tb, otherwise Π+ → τ+ντ and Π+ → s̄c,
with branching ratios of roughly 70% and 30% respec-
tively. Note that the decay width has several enhance-
ment factors relative to the QCD pion decay width

Γ(Π+ → ff
′
)

Γ(π → µ+νµ)
' c2axial

|Vud|2
(
fΠ

fπ

)2(
mf

mµ

)2(
mΠ

mπ

)
(36)

where for simplicity we have neglected kinematic suppres-
sion. As an example, if fΠ ' mΠ ' v, we find the lightest
charged dark mesons decay faster than QCD charged pi-
ons so long as caxial

>∼ 10−8. This is easy to satisfy with
small Yukawa couplings and dark fermion masses at or
beyond the electroweak scale.

We can now make some comments about existing col-
lider constraints on non-singlet mesons. The lightest
charged mesons Π± can be pair produced in particle
colliders through the Drell-Yan process, and will decay
through annihilation of the constituent fermions into a
W boson. Because the Drell-Yan production is mediated
by a photon and the mesons have unit electric charge, the
production cross-section is substantial, leading to robust
bounds from LEP-II. For charged states near the LEP-II
energy threshold, the dominant decay mode is expected
to be Π+ → τ+ντ as noted above. Reinterpreting the
LEP-II bound from the pair production of supersymmet-
ric partners to the tau (with the stau decaying into a tau

and a nearly massless gravitino), we find mΠ
>∼ 86.6 GeV

[62–66]. Stronger bounds from the LHC may be possible,
although existing searches do not yet give any significant
constraints on the charged mesons [20]; we briefly high-
light the signals in the discussion.

Using our lattice results from Ref. [33], we can trans-
late the experimental bound on the mass of the pseu-
doscalar meson into a bound on the baryon mass,
mB > 245, 265, 320 GeV when the ratio of the pseu-
doscalar mass to the vector meson mass is mΠ/mV =
0.77, 0.70, 0.55.

VI. CONTRIBUTIONS TO ELECTROWEAK
PRECISION OBSERVABLES

Stealth dark matter contains dark fermions that ac-
quire electroweak symmetry breaking contributions to
their masses. Consequently, there are contributions to
the electroweak precision observables of the Standard
Model, generally characterized by S and T [67, 68]. In
the custodial SU(2) limit, Eq. (25), the contribution to
T vanishes. There is a contribution to S, controllable
through the relative size of the electroweak breaking and
electroweak preserving masses of the dark fermions.

The S parameter is defined in terms of momentum
derivatives of current-current correlators [67, 68],

S ≡ 16πΠ′3Y (0) (37)

=
d

dq2

[
16π

3

(
gµν − qµqν

q2

)
Xµν(q2)

]

q2=0

Xµν(q2) ≡
∫
d4x e−iqx〈jµ3 (x)jνY (0)〉, (38)

where the currents jµ3 (x) and jνY (x) for the stealth dark
matter model are defined in Eqs. (A7) and (A8). Af-
ter some algebra and identifications of symmetric con-
tractions, these definitions of the currents in terms of
4-component fermion fields lead to the current-current
correlator. In the custodial limit, we obtain

2〈jµ3 (x)jνY (0)〉 = c21s
2
1

(
11GµνLL + 22GµνLL − 12GµνLL − 21GµνLL

)

+ c22s
2
2

(
11GµνRR + 22GµνRR − 12GµνRR − 21GµνRR

)

+ c21s
2
2

(
11GµνLR + 22GµνRL

)
+ c22s

2
1

(
11GµνRL + 22GµνLR

)

− c1c2s1s2

(
12GµνLR + 12GµνRL + 21GµνLR + 21GµνRL

)
, (39)

where the connected contributions to the correlation
functions are given by

ijGµνAB ≡ 〈Ψ̄u
i γ

µPAΨu
j Ψ̄u

j γ
νPBΨu

i 〉
∣∣
connected

. (40)

Here, A,B = L,R and the flavor indices i, j = 1, 2, where
it is understood that the flavors labeled 2 have larger
fermion masses than the flavors labeled 1. Since the u, d
flavors have the same mass, the u and d labels are inter-
changeable (i.e. everything is written in terms of the u
flavors).

We can obtain expressions for the mixing angle coeffi-
cients. Like the case of light meson decay, if we consider
an approximately symmetric mass matrix, with Yukawa
couplings given by Eq. (28), all of the mixing angle coef-
ficients are approximately equal to each other, differing
only at first order in εy, i.e.,

c21s
2
1 ' c22s2

2 ' c21s2
2 ' c22s2

1 ' c1c2s1s2

=
1

4

y2v2

y2v2 + 2∆2
[1 +O(εy) . . .]

' 1

4
×
{

1 Linear Case

y2v2/(2∆2) Quadratic Case.
(41)
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In the Linear Case, the mixing angles are approximately
equal c1 ' s1 ' c2 ' s2 ' 1/

√
2. In the Quadratic

Case, all of the contributions to the S parameter are
suppressed by (yv/∆)2. To calculate the S parameter in
general requires lattice methods, paying close attention
to the heavy-light splitting of the fermions, M2−M1. To
a first approximation we expect that in the limit of small
mass splitting, M2 −M1 �M ,

GµνAB ≡ 11GµνAB ' 22GµνAB ' 12GµνAB ' 21GµνAB . (42)

This gives for the current–current correlator

2〈jµ3 (x)jνY (0)〉 '
[
c21s

2
2 + c22s

2
1 − 2c1c2s1s2

]
GµνLR

' ε2yv
2

2M2
GµνLR, (43)

where all of the GLL and GRR contributions self-cancel.
Hence, we see that the contribution to the S parameter
is suppressed as M � v or εy � 1, as expected.

VII. FERMION COUPLINGS TO THE HIGGS
BOSON

In terms of the gauge-eigenstate fields, the interactions
of the Higgs boson with the dark-sector fermions are, in
matrix notation,

L ⊃ − h√
2

(Fu1 Fu3 )

(
0 yu14

yu23 0

)(
F d2
F d4

)

+
h√
2

(F d1 F d3 )

(
0 yd14

yd23 0

)(
Fu2
Fu4

)

+ h.c. . (44)

These matrices are not simultaneously diagonalizable
with the mass matrices, Eqs. (9),(10). This means that
the Higgs boson in general has off-diagonal, “dark flavor-
changing” interactions with the mass eigenstate fields.
Explicitly, we find in terms of the mixing angles

L ⊃ h√
2

(
Ψ
u

1 Ψ
u

2

)(
cu1s

u
2 y

u
14 + su1c

u
2 y

u
23 cu1c

u
2 y

u
14 − su1su2 yu23

cu1c
u
2 y

u
23 − su1su2 yu14 − su1cu2 yu14 − cu1su2 yu23

)(
Ψu

1

Ψu
2

)
+ (u↔ d) . (45)

In the custodial SU(2) limit, we can drop the u and d labels since the Higgs coupling matrix is identical for both
sets of fields. If we further take the limit of an approximately symmetric mass matrix, Eq. (28), the Higgs couplings
simplify to

L ⊃ yh

M2 −M1

(
Ψ1 Ψ2

)[(
yv −

√
2∆

−
√

2∆ −yv

)
+O(εy)

](
Ψ1

Ψ2

)
. (46)

We observe both diagonal and off-diagonal Higgs cou-
plings to the fermions. The off-diagonal dark flavor-
changing interactions vanish in the limit ∆ → 0 and
εy → 0. In this limit an enhanced flavor symmetry among
the fermions is restored, and the analogue of the GIM
mechanism forbids such interactions at tree-level. The
off-diagonal Higgs couplings lead to an inelastic scatter-
ing cross section when a single Higgs is exchanged. This
is highly suppressed unless the mass difference M2 −M1

is near the (non-relativistic) kinetic energy of the dark
matter in galaxy. Two off-diagonal Higgs couplings can
be combined in a loop involving one heavier dark fermion
and double Higgs exchange, but this is suppressed by the
square of the Higgs couplings times a loop factor, as well
as by the mass of the heavier fermions.

The single Higgs coupling to the lightest fermions is
finally

L ⊃ yΨhΨ1Ψ1 (47)

where

yΨ =
y2v

M2 −M1
+O(εy)

'





y√
2

Linear Case

y2v

2∆
Quadratic Case.

(48)

(Note also that the single Higgs coupling to the heaviest
fermions Ψ2 is identical up to an overall sign.) Depend-
ing on the relative size of yv and ∆, the Higgs boson cou-
ples linearly or quadratically proportional to the Yukawa
coupling y. The additional suppression of yv/∆ in the
Quadratic Case will imply that spin independent scat-
tering through single Higgs exchange can be significantly
weaker when the mass difference between the lightest and
heaviest fermions is dominated by the electroweak pre-
serving mass ∆.
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VIII. DIRECT DETECTION BOUNDS FROM
HIGGS EXCHANGE

In a previous paper [33], we set up a framework for
the study of direct-detection bounds on scalar baryonic
dark matter candidates through Higgs exchange, and we
presented detailed numerical results for an SU(4) gauge
group. Our notation in this section closely follows [33].
The model-independent result was expressed in terms of
the effective Higgs coupling to the baryon

gB =
mB

v
αf

(B)
f . (49)

The first factor, the baryon mass mB (divided by the
electroweak VEV), as well as the third factor

f
(B)
f =

〈B|M1Ψ1Ψ1|B〉
mB

=
M1

mB

∂mB

∂M1

are extracted from our lattice results [33]. The second
factor

α ≡ v

M1

∂M1(h)

∂ h

∣∣∣∣
h=v

'





yv√
2M1

Linear Case

(yv)2

2M1∆
Quadratic Case

(50)
provides the effective coupling of the Higgs boson to the
fermions (multiplied by v/M1), and we have evaluated
the derivative for the two cases in our model.

Given the dark fermion mass parameters M1 and ∆,
combined with the dark baryon mass and the coupling

f
(B)
f as determined in [33], we can in principle calculate

a bound on the Higgs couplings to stealth dark matter,
which could provide useful input into more precise cal-
culations for electroweak precision tests and dark matter
abundance. However, we currently only know the “bare”
fermion mass parameters in units of the lattice spacing.
We therefore characterize the fermion mass using the ra-
tio of pseudoscalar to vector meson masses mΠ/mV as a
proxy. We can construct a regularization-independent
parameter, the effective Yukawa coupling yeff , that is
closely related to the model parameters:

yeff ≡





y
mB√
2M1

Linear Case

y
mB√
2∆M1

Quadratic Case.
(51)

The α parameter is therefore

α '





yeff
v

mB
Linear Case

y2
eff

v2

m2
B

Quadratic Case.
(52)

Recasting our previous constraints in α-mB space into
yeff -mB space, we can identify the region of parameter
space that remains viable. The constraints for the Lin-
ear Case are shown in Fig. 2 and the Quadratic Case

in Fig. 3. In the top two plots for the respective fig-
ures, the region above the LUX bounds represents the
excluded parameter space for the model at a given dark
matter mass (mB) and effective Yukawa coupling (yeff).
The figures show a clear qualitative trend in how the
predictions change as a function of dark matter mass.
In particular, the cross-section is independent of mB for
the Linear Case and inversely proportional to mB in the
Quadratic Case. The bottom plots in Figs. 2,3 shows the
maximum yeff allowed for a given dark matter mass. By
increasing the splitting ∆ between the vector-like mass
terms, significantly more yeff parameter space becomes
available.

IX. ABUNDANCE

We now provide a brief discussion of the relic abun-
dance of stealth dark matter. In the regime where the
dark fermions have masses comparable to the confine-
ment scale of the dark force, calculating the relic abun-
dance is an intrinsically strongly-coupled calculation.
Unfortunately, this calculational difficulty is not easily
overcome with lattice simulations, due to the different
initial and final states. Nevertheless, it is straightforward
to see that the relic abundance can match the cosmolog-
ical abundance through at least two distinct mechanisms
that lead to two different mass scales for stealth dark
matter. In this section we discuss obtaining the abun-
dance of stealth dark matter through thermal freezeout,
leading to a symmetric abundance of dark baryons and
anti-baryons. Separately, we consider the possibility of
an asymmetric abundance generated through electroweak
sphalerons.

A. Symmetric Abundance

In the early universe at temperatures well above the
confinement scale of the SU(4) dark gauge force, the dark
fermions are in thermal equilibrium with the thermal
bath through their electroweak interactions. As the uni-
verse cools to temperatures below the confinement scale,
the degrees of freedom change from dark fermions and
gluons into the dark baryons and mesons of the low en-
ergy description. Some of the dark mesons carry electric
charge, and so the dark mesons remain in thermal equi-
librium with the Standard Model quarks, leptons, and
gauge fields. Since the dark baryons are strongly cou-
pled to the dark mesons, they also are kept in thermal
equilibrium. As the temperature of the universe falls well
below the mass of the dark baryons, they annihilate into
dark mesons that subsequently thermalize and decay (or
decay then thermalize) into Standard Model particles.
The symmetric abundance of dark baryons is therefore
determined by the annihilation rate of dark baryons into
dark mesons.

The annihilation of dark baryons to dark mesons is
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FIG. 2. Constraints on the stealth dark matter model in
the Linear Case of the model. The top and middle figures
show the predicted values for the smallest and largest fermion
mass explored in our simulations (corresponding to the pseu-
doscalar to vector mass ratio mΠ/mV = 0.55, 0.77) as well
as LUX bounds. Various yeff values are plotted on the fig-
ure, where yeff ≈ ymB/M1 in this case. The dark grey re-
gion is excluded by the LEP constraints on charged dark
mesons. The bottom figure displays the maximum yeff al-
lowed for a given dark matter mass. Each of the green curves
represents a different fermion mass in the lattice calculation,
mΠ/mV = 0.55, 0.7, 0.77 from top to bottom, and the bottom
red curve is the result in the heavy fermion limit.

a strongly coupled process. We expect B∗B → Π Π,
B∗B → 3 Π, and B∗B → 4 Π, (and to possibly more
mesons if kinematically allowed) to occur, but we do not
know the dominant annihilation channel. If the 2-to-2
process B∗B → Π Π dominates, one approach is to use
partial wave unitarity to estimate the thermally averaged
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FIG. 3. Same as Fig. 2 but for the Quadratic Case of the
model. In this case, yeff ≈ ymB/

√
M1∆.

annihilation rate [53, 69],

〈σv〉 ∼ 4π〈v−1〉
m2
B

, (53)

where 〈v−1〉 ' 2.5 at freezeout [69]. Matching this cross
section to the required thermal relic abundance yields
mB ∼ 100 TeV. An alternative approach is to use naive
dimensional analysis [70–72], which appears to lead to a
larger dark matter mass.

If the 2-to-3 or 2-to-4 processes dominate instead, the
additional phase space and kinematic suppression low-
ers the annihilation rate, and therefore lowers the scalar
baryon mass needed to obtain the cosmological abun-
dance. For recent work that has considered the ther-
mal relic abundance in multibody processes, see [25, 28].
Suffice it to say a symmetric thermal abundance of dark
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baryons will match the cosmological abundance for a rela-
tively large baryon mass that is of order tens to hundreds
of TeV.

B. Asymmetric Abundance

Early work on technibaryons demonstrated that
strongly-coupled dark matter could arise from an asym-
metric abundance [4–8]. The main ingredient to obtain
the correct cosmological abundance involved the elec-
troweak sphaleron – the non-perturbative solution at
finite temperature that allows for transitions between
vacua with different5 B + L numbers.6 In the early uni-
verse, at temperatures much larger than the electroweak
scale, electroweak sphalerons are expected to violate one
accidental global symmetry, B + L+D number, leaving
B − L and B − D numbers unaffected [7, 8, 16]. Here
D number is proportional to the dark baryon number,
with some appropriate normalization (for examples, see
[7, 16]).

Given a baryogenesis mechanism, the electroweak
sphalerons redistribute baryon number into lepton num-
ber and dark baryon number. As the universe cools,
the mass of the technibaryon becomes larger than the
temperature of the Universe. Eventually, the universe
cools to the point where electroweak sphalerons “freeze
out” and can no longer continue exchanging B, D, and
L numbers. The residual abundance of dark baryons is
ρ ∼ mBnB where the number density is proportional to
exp[−mB/Tsph], where Tsph is the temperature at which
sphaleron interactions shut off.

If the baryon and dark baryon number densities are
comparable, the would-be overabundance of dark matter
(from mB � mnucleon) is compensated by the Boltzmann
suppression. Very roughly, mB ∼ 1-2 TeV is the natural
mass scale that matches the cosmological abundance of
dark matter [6]. A crucial component of the early tech-
nibaryon papers [4–6] is that the technifermions were in
a purely chiral representation of the electroweak group,
like the fermions of the Standard Model.

In stealth dark matter, given an early baryogenesis
mechanism (or other analogous mechanism to generate
an asymmetry in a globally conserved quantity [8, 74–
80]), it is possible that electroweak sphalerons could also
lead to the correct relic abundance of dark baryons con-
sistent with cosmology.

There is one critical difference from the early techni-
color models (as well as the quirky dark matter model):
The dark fermions in stealth dark matter have both

5 In this section, B refers to baryon number and is to not be con-
fused with the field defined earlier

6 In addition, an asymmetric abundance could be generated
through other mechanisms, see Ref. [73], in which case the mass
scales and parameters depend on the details of the particular
mechanism.

vector-like and electroweak symmetry breaking masses.
This leads to a suppression of the effectiveness of the elec-
troweak sphalerons by a factor of α, c.f. Eq. (50), leading
to a somewhat smaller stealth baryon mass to obtain
the correct relic abundance compared with a technicolor
model (all other parameters equal). A more quantitative
estimate is complicated by several factors:

• Determining how the electroweak sphaleron redis-
tributes the conserved global charges in the pres-
ence of fermions that acquire both electroweak pre-
serving and electroweak breaking masses. To the
best of our knowledge, this calculation has never
been done.

• Determining the precise temperature at which elec-
troweak sphalerons shut off, in the presence of both
the Standard Model and stealth dark matter de-
grees of freedom contributing to the thermal bath.

• The baryogenesis mechanism itself, that determines
the initial B − L and B −D numbers.

Given the exponential suppression of the asymmetric
abundance as the dark baryon mass is increased, it is
clear that the upper bound on the dark baryon mass is
nearly the same as the technibaryon calculation (updated
to the current cosmological parameters), when stealth
dark fermions have vector-like masses comparable to elec-
troweak symmetry breaking masses. (This case is, how-
ever, constrained by the S parameter, see Sec. VI). We
can therefore anticipate that a range of stealth dark mat-
ter masses will be viable, up to about a TeV. More precise
predictions require further detailed investigation that is
beyond the scope of this paper.

X. DISCUSSION

We have presented a concrete model, “stealth dark
matter”, that is a composite baryonic scalar of a new
SU(ND) strongly-coupled confining gauge theory with
dark fermions transforming under the electroweak group.
Though the stealth dark matter model has a wide param-
eter space, we focused on dark fermion masses that re-
spect an exact custodial SU(2). Custodial SU(2) implies
the lightest bosonic baryonic composite is an electrically
neutral scalar (and not a vector or spin-2) of the SU(ND)
dark spectrum, and in addition does not have a charge ra-
dius. This yields an exceptionally “stealthy” dark matter
candidate, with spin-independent direct detection scat-
tering proceeding only through Higgs exchange (studied
in this paper) and the polarizability interaction (stud-
ied in our companion paper [81]). Custodial SU(2) also
allows for stealth dark matter to completely avoid the
constraints from the T parameter. While contributions
to the S parameter are present, they are suppressed by
the ratio of the electroweak symmetry breaking mass-
squared divided by a vector-like mass squared of the dark
fermions. We also verified the lightest non-singlet mesons
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decay rapidly (so long as εy 6= 0), avoiding any cosmolog-
ical issues with stable electrically-charged dark mesons.

Specializing to the case of ND = 4, we then applied
our earlier model-independent lattice results [33] to the
parameters of stealth dark matter, and obtained con-
straints on the effective Higgs interaction. We find that
the present LUX bound is able only to mildly constrain
the Higgs coupling to stealth dark matter for relatively
light dark baryons. Even weaker constraints arise when
the effective Higgs interaction is quadratic in the Yukawa
coupling, which is a natural possibility when the two
pairs of dark fermions are split dominantly by vector-like
masses, i.e., yv � ∆.

While we have considered many aspects of stealth dark
matter, several avenues warrant further investigation:

• Chiral symmetry forbids additive renormalization
of the fermion masses; we have focused on the
regime where the constituent fermion mass is com-
parable to the confinement scale Mf ∼ ΛD,
since this is best-suited for lattice simulations, ex-
actly where analytic estimates are least useful. It
would be interesting to consider a broader range of
fermion masses relative the confinement scale, to
understand the relative scaling of the Higgs inter-
actions.

• A more precise calculation of the S parameter is
possible using lattice simulations for the relevant
correlators. This would allow us to place numer-
ical bounds on the parameters of the theory, that
could be stronger than the bounds from the non-
observation through direct detection.

• We would like to unpack yeff [c.f. Eq. (51)] and
obtain constraints on the Yukawa couplings of the
model. However, this requires translating the
fermion masses from the lattice regularization into
a continuum regularization.

• Dark meson production and decay at the LHC is
ripe for exploration. Dark meson pair production
would proceed through off-shell EW gauge bosons,
qq̄ → Π+Π−, qq̄ → Π0Π0, and qq̄′ → Π±Π0. These
could have spectacular signals at the LHC. Neutral
mesons decay into fermion pairs and dibosons (ex-
plored in other related models in [20, 42, 82, 83]).
For charged dark mesons, with masses in the range
mΠ± ∼ 90−180 GeV, the decay Π+ → τ+ντ domi-
nates, while for masses above this, Π+ → tb̄ is dom-
inant. Charged pion pair production could there-
fore lead to tb̄bt̄ signals with the tb̄ and bt̄ pairs
reconstructing to the same mass. To the best of
our knowledge, this type of resonance search is not
being performed at the LHC.

• More insight into the thermal abundance of stealth
dark matter, perhaps using lattice simulations,
would help narrow the interesting mass range that
matches cosmological data.

• Asymmetric production of stealth dark matter
seems very promising, but has several calculational
obstacles to overcome to arrive at a quantitative
relationship between the abundance and the other
parameters of the theory.

• If stealth dark matter has an asymmetric abun-
dance, there are potential limits from neutron star
lifetimes [84–86] though the precise bounds depend
sensitively on the equation of state of the neutron
stars.

• There are tantalizing signals of a γ-ray excess be-
tween about 1-10 GeV in the galactic center (see
for example [87–91]). A recent analysis [92] sug-
gests that this could arise from dark matter up to
300 GeV. It is intriguing to consider the γ-ray sig-
nal spectrum that could arise from a symmetric
abundance of stealth dark matter with annihila-
tion into a multibody final state [93] with mixtures
of four or more heavy fermions and multi-gauge
bosons (from BB∗ → Π Π . . .→ SM states).

Clearly there are several characteristic signals of
stealth composite dark matter. If the Higgs couplings
to stealth dark matter are significant, this could also
lead to modifications of Higgs properties, and provide
a channel for direct production of the dark baryons at
colliders. On the other hand, if the Higgs couplings are
suppressed, then we find that direct detection proceeds
through the electromagnetic polarizability, which is dis-
cussed in our companion paper [81]. The polarizability
channel is particularly interesting, with a double-photon
exchange interaction which gives a per-nucleon cross sec-
tion expected to scale as Z4/A2 (where Z and A are the
atomic and mass numbers of the target nucleus respec-
tively), favoring larger nuclei over smaller ones.

An unambigious prediction of stealth dark matter is
the rich spectrum of other composite states made from
the constituent dark fermions. The states most likely to
be accessible to collider energies are the dark mesons,
and their production and detection may provide the best
way to investigate the presence of a new strongly-coupled
sector. The excited states of dark matter itself – the
heavier dark baryons – may also provide complementary
evidence of the compositeness of the dark sector, for ex-
ample through emission lines detectable in gamma-ray
telescope experiments. We leave detailed investigations
to future work.

Finally, there are broader model-building questions to
consider. One is the choice of scales Mf ∼ ΛD that has
been the focus of this work. This could arise dynamically.
For example, if there are sufficient flavors in the SU(ND)
gauge theory such that it is approximately conformal at
high energies, then as the theory is run down through the
dark fermion mass scale Mf , the dark fermions integrate
out, and confinement sets in at ΛD ∼ Mf . This is well
known to occur for supersymmetric SU(N) theories in
the conformal window that flow to confining theories once
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the number of flavors drops below Nf < 3N/2 [94]. The
origin of the vector-like masses of the fermions is also
an interesting model-building puzzle. However, just as
SM fermion masses are vector-like below the electroweak
breaking scale, we can imagine dark fermion vector-like
masses could be revealed as arising from dynamics that
breaks the flavor symmetries of our dark fermions at some
higher scale.

XI. ACKNOWLEDGMENTS

We thank S. Chang, O. DeWolfe, and D. B. Kaplan
for many valuable discussions during the course of this
work.

We thank the Lawrence Livermore National Labora-
tory (LLNL) Multiprogrammatic and Institutional Com-
puting program for Grand Challenge allocations and
time on the LLNL BlueGene/Q (rzuseq and vulcan)
supercomputer. We thank LLNL for funding from
LDRD 13-ERD-023 “Illuminating the Dark Universe
with PetaFlops Supercomputing”. Computing support
for this work comes from the LLNL Institutional Com-
puting Grand Challenge program.

This work has been supported by the U. S. Depart-
ment of Energy under Grant Nos. DE-SC0008669 and
DE-SC0009998 (D.S.), DE-SC0010025 (R.C.B., C.R.,
E.W.), DE-FG02-92ER40704 (T.A.), DE-SC0011640
(G.D.K.), DE-FG02-00ER41132 (M.I.B.), and Contracts
DE-AC52-07NA27344 (LLNL), DE-AC02- 06CH11357

(Argonne Leadership Computing Facility), and by the
National Science Foundation under Grant Nos. NSF
PHY11-00905 (G.F.), OCI-0749300 (O.W.). Brookhaven
National Laboratory is supported by the U. S. Depart-
ment of Energy under contract DE-SC0012704. S.N.S
was supported by the Office of Nuclear Physics in the
U. S. Department of Energy’s Office of Science under
Contract DE-AC02-05CH11231.

Appendix A: Weak Currents

We examine the dark fermion contributions to the elec-
troweak currents. In the gauge eigenstate basis, the cur-
rents are

jµ+ = − 1√
2

(
Fu1
†σ̄µF d1 + Fu2

†σ̄µF d2

)
(A1)

jµ− = − 1√
2

(
F d1
†
σ̄µFu1 + F d2

†
σ̄µFu2

)
(A2)

jµ3 = − i
2

∑

i=1,2

(
Fui
†σ̄µFui − F di

†
σ̄µF di

)
(A3)

jµY = − i
2

∑

i=3,4

(
Fui
†σ̄µFui − F di

†
σ̄µF di

)
. (A4)

In the mass eigenstate basis given by Eqs. (14)-(17), the
currents can be rewritten in terms of the 4-component
Dirac fermions defined by Eqs. (19),(20). After some
algebra, one obtains

jµ+ = − 1√
2

[
Ψu

1γ
µ
(
cu1c

d
1PL + cu2c

d
2PR

)
Ψd

1 + Ψu
2γ

µ
(
su1s

d
1PL + su2s

d
2PR

)
Ψd

2

+ Ψu
1γ

µ
(
cu1s

d
1PL + cu2s

d
2PR

)
Ψd

2 + Ψu
2γ

µ
(
su1c

d
1PL + su2c

d
2PR

)
Ψd

1

]
(A5)

jµ− = − 1√
2

[
Ψd

1γ
µ
(
cd1c

u
1PL + cd2c

u
2PR

)
Ψu

1 + Ψd
2γ
µ
(
sd1s

u
1PL + sd2s

u
2PR

)
Ψu

2

+ Ψd
1γ
µ
(
cd1s

u
1PL + cd2s

u
2PR

)
Ψu

2 + Ψd
2γ
µ
(
sd1c

u
1PL + sd2c

u
2PR

)
Ψu

1

]
(A6)

jµ3 =
1

2

[
Ψu

1γ
µ
(
(cu1 )2PL + (cu2 )2PR

)
Ψu

1 + Ψu
2γ

µ
(
(su1 )2PL + (su2 )2PR

)
Ψu

2

−Ψd
1γ
µ
(
(cd1)2PL + (cd2)2PR

)
Ψd

1 −Ψd
2γ
µ
(
(sd1)2PL + (sd2)2PR

)
Ψd

2

+ Ψu
1γ

µ (cu1s
u
1PL + cu2s

u
2PR) Ψu

2 + Ψu
2γ

µ (su1c
u
1PL + su2c

u
2PR) Ψu

1

−Ψd
1γ
µ
(
cd1s

d
1PL + cd2s

d
2PR

)
Ψd

2 −Ψd
2γ
µ
(
sd1c

d
1PL + sd2c

d
2PR

)
Ψd

1

]
(A7)

jµY =
1

2

[
Ψu

1γ
µ
(
(su1 )2PL + (su2 )2PR

)
Ψu

1 + Ψu
2γ

µ
(
(cu1 )2PL + (cu2 )2PR

)
Ψu

2

−Ψd
1γ
µ
(
(sd1)2PL + (sd2)2PR

)
Ψd

1 −Ψd
2γ
µ
(
(cd1)2PL + (cd2)2PR

)
Ψd

2

−Ψu
1γ

µ (cu1s
u
1PL + cu2s

u
2PR) Ψu

2 −Ψu
2γ

µ (su1c
u
1PL + su2c

u
2PR) Ψu

1

+ Ψd
1γ
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(
cd1s

d
1PL + cd2s

d
2PR

)
Ψd

2 + Ψd
2γ
µ
(
sd1c

d
1PL + sd2c

d
2PR

)
Ψd

1

]
, (A8)

where cji ≡ cos θji , s
j
i ≡ sin θji and PL,R = (1 ∓ γ5)/2

are the left- and right-handed projectors. In general, the
dark fermions contribute to both the vector and axial
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currents with strengths given by the mixing angles. It is
easy to verify that the electromagnetic current,

jµem = jµ3 + jµY

=
∑

i=1,2

[
QuΨu

i γ
µΨu

i +QdΨd
i γ
µΨd

i

]
, (A9)

with Qu,d = ±1/2, is consistent with a pure vector cou-
pling of the dark fermions to the photon independent of
mass mixing angles.

Interestingly, if the mass matrices Eqs.(9),(10) are
symmetric, i.e., yu14 = yu23 and yd14 = yd23, then just two
mixing angles are required, i.e., θu1 = θu2 and θd1 = θd2 . In
this case, the mixing angles factor out of the left-right
gamma matrix structure, leaving all of the electroweak
currents to be purely vector (with vanishing axial cur-
rent). This is unlike the Standard Model, where the
SU(2)L currents are purely V − A. The difference be-
tween this model and the Standard Model is the struc-
ture of the dark fermion mass matrices that include both
vector-like and electroweak symmetry breaking masses.

It is also interesting to calculate the neutral current

jµZ = jµ3 − sin2 θW j
µ
em . (A10)

For the neutral baryon state,

〈B|jµZ |B〉 ' (A11)

+
1

4

(
(cu1 )2 + (cu2 )2 − (cd1)2 − (cd2)2

)
〈B|Ψ1γ

µΨ1|B〉

+
1

4

(
−(cu1 )2 + (cu2 )2 + (cd1)2 − (cd2)2

)
〈B|Ψ1γ

µγ5Ψ1|B〉 .

In the limit of zero momentum exchange (Q2 = 0), the
vector form factor 〈B|Ψ1γ

µΨ1|B〉 evaluates to 1, while
the axial-vector form factor 〈B|Ψ1γ

µγ5Ψ1|B〉 for a scalar
baryon vanishes. In the presence of an exact custodial
SU(2) symmetry, which is the focus of this paper, we
have cui = cdi and the Z coupling vanishes identically at
any momentum exchange.

On the other hand, if custodial symmetry is broken,
then the lightest neutral baryon acquires tree-level cou-
plings to the Z boson. To illustrate the size of these
couplings, consider taking the dark fermion mass matri-
ces to be exactly symmetric (y23 = y14) but allowing for
a small, custodial symmetry-violating difference in the
Yukawas, yu = y+ ξ and yd = y− ξ where ξ/y � 1. The
coefficient of the weak neutral vector current becomes

(cu1 )2 + (cu2 )2 − (cd1)2 − (cd2)2 '





2
√

2
ξ

y

∆

yv
Linear Case

ξ

y

(yv)2

∆2
Quadratic Case.

(A12)

Custodial symmetry violation is therefore restricted by
requiring the coupling of the lightest neutral baryon to
the Z boson be small enough to have evaded direct de-
tection. There are several limits in which this can occur:

ξ/y � 1 (any scenario), ∆/(yv) � 1 (Linear Case), or
(yv)/∆ � 1 (Quadratic Case). This suggests that mod-
est custodial symmetry violation is possible but rather
constrained.
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