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Abstract

We present a minimal renormalizable non-supersymmetric SO(10) grand unified model

with a symmetry breaking sector consisting of Higgs fields in the 54H +126H +10H represen-

tations. This model admits a single intermediate scale associated with Pati-Salam symmetry

along with a discrete parity. Spontaneous symmetry breaking, the unification of gauge

couplings and proton lifetime estimates are studied in detail in this framework. Including

threshold corrections self-consistently, obtained from a full analysis of the Higgs potential,

we show that the model is compatible with the current experimental bound on proton life-

time. The model generally predicts an upper bound of few times 1035 yrs for proton lifetime,

which is not too far from the present Super-Kamiokande limit of τp & 1.29× 1034 yrs. With

the help of a Pecci-Quinn symmetry and the resulting axion, the model provides a suitable

dark matter candidate while also solving the strong CP problem. The intermediate scale,

MI ≈ (1013 − 1014) GeV which is also the B − L scale, is of the right order for the right-

handed neutrino mass which enables a successful description of light neutrino masses and

oscillations. The Yukawa sector of the model consists of only two matrices in family space

and leads to a predictive scenario for quark and lepton masses and mixings. The branching

ratios for proton decay are calculable with the leading modes being p→ e+π0 and p→ νπ+.

Even though the model predicts no new physics within the reach of LHC, the next generation

proton decay detectors and axion search experiments have the capability to pass verdict on

this minimal scenario.
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1 Introduction

The desire to achieve true unification of the strong, weak and electromagnetic forces under

one simple non-abelian gauge group gave birth to the idea of Grand Unified Theories (GUTs)

[1, 2, 3, 4]. The absence of an abelian factor in such unified theories readily quantizes elec-

tric charges, an observational feature left unexplained in the Standard Model (SM), which has

served as one of the primary motivations of GUTs [3]. Yet, the initially introduced minimal

SU(5) model fails to unify the three gauge couplings [5]. The SU(3)-color and SU(2)-weak

gauge couplings meet around 1016 GeV while the U(1)-hypercharge gauge coupling meets SU(2)

gauge coupling at a much lower energy scale of 1013 GeV, which is too low to comply with the

experimental limits on proton lifetime. Of course, such an issue is absent in a low energy su-

persymmtric (SUSY) SU(5) GUT where the three gauge couplings merge to a common value

around 2× 1016 GeV1 [5].

The discovery of a Standard Model-like Higgs boson became the crowning event of the first

run of LHC [6]. The triumph of SM and the absence of any compelling evidence (such as signals

for new particles or exotic phenomena) of physics beyond SM in the LHC data, are making a

large portion of the physics community rethink about the next step in the field. Supersymmetry

(SUSY), one of the most elegant and successful solutions of the hierarchy problem [7] along

with the WIMP (Weakly Interacting Massive Particle) scenario for dark matter, has been the

most widely studied candidate of physics beyond SM at the TeV scale. Even though there is

absolutely no reason to abandon the hopes of finding the necessary traces of new physics to

solve such issues in the second run of LHC, one should also entertain the possibility that the

hierarchy problem may simply be “solved” by fine-tuning. There exists a variety of approaches

to justify such fine-tuning [8, 9]. One might invoke the anthropic principle, which has been much

talked about in the field of cosmology [10] as the observed value of the cosmological constant

Λ poses an unsolved naturalness problem of larger magnitude [11]. If one considers a universe

with domains which can have different values of some of the underlying parameters like the

Higgs boson mass, it has been argued that the observed values of the masses are reasonably

typical of the anthropically allowed ranges [12]. One can look for answers in the much more

debatable idea of infinite number of universes (multiverse) continuously created by quantum

fluctuations and we happen to live in a very unlikely one [13]. In string theory landscape picture,

our universe might be just one example out of 10500 possible solutions [14]. Or the “hierarchy

problem” may very well be an artificially created one in quantum field theories which necessarily

require regularization of infinities. Despite the philosophical point of view one might adopt, the

lack of hard evidence of new physics sparked the revival of a class of BSMs (Beyond Standard

Models) known as non-SUSY Grand Unified Theories, which ignores the hierarchy problem while

1In supersymmetry GUTs, the rate for proton decay Γ(p→ νK+) arising from color triplet Higgsino exchange
has to comply with experimental limits, which is a non-trivial task for SUSY GUT model building.
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trying to remain consistent with all the phenomenological constraints and predicting their own

experimental signatures [8, 15, 16, 17, 18, 19, 9, 20].

SO(10) grand unified theory [21] is undoubtedly the best motivated candidate in the above-

mentioned class of models. Instead of taking help from supersymmetry to unify all the three

gauge couplings, it relies on the fact that the rank-5 SO(10) group can accommodate one or

more intermediate scales between the unified scale and the weak scale [22, 23, 24, 25, 26, 27, 28].

As the gauge group structure changes (for example, U(1) is usually embedded in SU(2)R) above

the intermediate scale, so does the running of the gauge couplings, allowing for the possibility

of unification of all three gauge couplings. The fact that SO(10) GUT is naturally free of

anomalies [21] and that it unifies one generation of fermions (both leptons and quarks) into a

16-dimensional spinorial representation (16F ) only enhance the beauty of the model. This is due

to the fact that the SO(10) symmetry includes quark-lepton symmetry (SU(4)C) [2] and the

left-right symmetry (SU(2)L×SU(2)R) [29]. Unlike SU(5), the 16F representation also includes

a right-handed neutrino and provides an appealing explanation of small neutrino masses and

oscillations through the seesaw mechanism [30, 31]. This setup has all the ingredients to explain

the observed baryon asymmetry of the universe either by leptogenesis [32, 33] or by B − L

violating decays of new scalar states [34, 35].

Our goal in this paper is to construct the most minimal non-supersymmetric SO(10) model.

We shall be guided by simplicity and minimality, while being consistent with proton lifetime

bound [36, 37], staying in agreement with the fermion masses and mixings [18], providing axion as

a suitable candidate for dark matter while solving the strong CP problem [38]. The model should

be able to address the issue of the instability of the electroweak vacuum2 with SM singlet(s)

and other particles lying inside the Higgs sector of the model. Inflation might be generated by

a gravitationally coupled SM singlet(s) outside the model, or SM singlet(s) already present in

the model may do the trick.

Search for such a minimal, yet realistic, unified model is highly non-trivial as the constraints

provided by phenomenology are quiet demanding. After going through the process of selecting

the Higgs sector, we end up with a symmetry breaking pattern:

SO(10)
54H−−→ SU(4)C × SU(2)L × SU(2)R ×D

126H−−−→ SU(3)C × SU(2)L × U(1)Y
10H−−→ SU(3)C × U(1)em.

2The study of the stability of the SM eletroweak vacuum has shown that for a Higgs mass of 125.5± 0.5 GeV
the Higgs quartic coupling of SM becomes negative around (1010 − 1011) GeV energy scale [39] , indicating that
we might be living in a metastable universe. The electroweak vacuum can be stabilized by the threshold effect of
a single scalar with vacuum expectation value close to the instability energy scale [40, 41]. Such a scalar arises
naturally in our framework as a remnant of the PQ symmetry breaking.
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From the viewpoint of minimal Higgs sector, this symmetry breaking chain is the simplest,

employing a single real 54H , a complex 126H and a complex 10H . Even though earlier works

[26, 27, 28, 42] may have prematurely sentenced this model as an unrealistic candidate for its

failure to provide a high enough energy scale of gauge coupling unification to be compatible

with proton lifetime limits, we decided to analyze the model more carefully before passing out

the final verdict. Our detailed analysis of the model included the threshold corrections coming

from the scalar and gauge boson sectors with complete mass spectrum. We also include effects

of introducing the PQ-symmetry and its breaking by a singlet scalar, requiring compatibility

with realistic and predictable Yukawa sector, and fine-tuning the hierarchy issue in the Higgs

doublet sector.

We find from an explicit computation of the Higgs boson masses obtained by analyzing the

Higgs potential of the model for the first time, that indeed compatibility with proton lifetime

can be achieved. Rather than assuming the heavy Higgs bosons to have masses spread over an

order of magnitude either way from the intermediate or GUT scale that has been employed tra-

ditionally, we chose the fundamental couplings of the Higgs potential to vary within a reasonable

range, which provides more stringent constraints.

The outline of the paper is as follows. In Sec. 2, we present the model with its symmery

breaking sector and using minimal fine-tune condition - also known as extended survival hypoth-

esis - we determine the energy scale of the various Higgs multiplets. The evolution of the gauge

couplings using one-loop and two-loop renormalization group equations have been discussed in

the Sec. 3 while the issue of one-loop threshold corrections due to the randomness of the scalar

masses has been addressed in the Sec 4. In Sec. 5, we discuss the most important prediction of

any GUT, namely proton decay and its lifetime. In Sec. 6, we perform a detailed analysis of

the Higgs potential and the kinetic part of the Lagrangian to determine the scalar and gauge

boson mass spectrum, while in Sec. 7 we analyze the Yukawa sector of the Lagrangian. Sec. 8

is dedicated to some technical details of the procedures that have been carried out to generate

the benchmark points of the model given in Sec. 9. In Sec. 10, we study the proton decay

branching ratios in the model and in Sec. 11, we study the issues of axion as the dark matter

candidate in various cosmological scenarios. Finally in Sec. 12 we conclude.

2 The Model

In this section we present our logic for choosing the symmetry breaking sector and describe

qualitatively the emergence of an intermediate scale. After establishing the symmetry breaking

pattern, we determine the energy scales associated with each Higgs multiplet in such a way that

the arrangement is in agreement with phenomenological constraints.

4



2.1 Choice of the Higgs sector

The representations of the Higgs bosons primarily dictate the breaking of any higher gauge

symmetry group down to lower ones [43]. Various low dimensional scalar representations -

10H , 16H , 45H , 54H , 120H , 126H , 144H , 210H -plets - have been used to break the SO(10) group.

Depending on the choice of the Higgs, it is possible to find multiple distinct breaking chains

all of which end up in the SM symmetry. In this work, we are guided by the philosophy of

minimality while staying within the perimeter of phenomenological constraints. As minimal

non-supersymmtric SU(5) (with no light exotics) corresponds to a proton lifetime which has

been already ruled out by Super-Komiakande [36], between the two maximal subgroup of SO(10)

that contains SM, namely SU(5) × U(1)X and SU(4)C × SU(2)L × SU(2)R, the latter one is

preferred in the breaking chain.

A simple choice of Higgs sector consisting 45H + 16H tends to break SO(10) to SU(5).

Alternative breaking channels fail to possess a gauge hierarchy at tree level in which SU(2)L ×
SU(2)R×U(1) or SU(4)C makes an appearance resulting in a tachyonic mass spectrum [44, 45,

46]. The same comment holds for the Higgs system consisting of 45H +126H . Recently quantum

salvation of these type of models has been shown by assuming that loop level contribution to

the Higgs masses surpass the tree level ones [47]. In a series of papers, the details of these

type of models were discussed [16]. While interesting, we view such models as not the very

minimal, at least in the technical sense, since loop corrections are essential to stabilize the tree

level potential.

The next choice is naturally 54H + 16H . But the absence of any non-trivial cross-coupling

between 54H and 16H promotes the global symmetry to SO(10)×SO(10) in this case. 54H breaks

one of them down to Pati-Salam (PS) symmetry with D-parity3 (SU(4)C×SU(2)L×SU(2)R×D)

while 16H breaks the other SO(10) to SU(5) corresponding to a larger symmetry breaking which

leaves an unwanted extra massless Goldstone boson in the
{

(3, 2, 1
6) + h.c.

}
representation of

the SM gauge symmetry.4

In contrast, Higgs sector consisting a real 54H and a complex 126H along with a complex 10H

3D-parity is a discrete symmetry residing in the SO(10) group which behaves similar to parity (P ) or charge
conjugation (C) operator, at least in the case of fermions (for example, D(4, 1, 2)PS = (4, 2, 1)PS or simply
q → qC). For the scalar sector, the effect of D-parity is a little different from C or P . For example, both 54H

and 210H lead to the maximal little groups being the Pati-Salam group, as both possess a Pati-Salam singlet
(1, 1, 1)PS . Yet the singlet in 54H is “D-even”, D(1, 1, 1)PS = (1, 1, 1)PS , in contrast to the singlet in 210H which
is “D-odd”, D(1, 1, 1)PS = −(1, 1, 1)PS . So, if one breaks SO(10) with the vacuum expectation value (vev) of
54H , D-parity is intact and one ends up getting gL = gR at the energy scale associated with right-handed gauge
boson (W±R ), unlike the case of breaking initiated by the vev of 210H . As this discrete symmetry was used for
the first time to decouple the Parity and SU(2)R breaking scales, it earned the name “D-parity” [48].

4It will be interesting to study quantum salvation of such a model. We note, however, that generating large
Majorana neutrino masses in this case would require introduction of new SO(10) singlet fermions, which would
make the model not so minimal.
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has all the properties that one needs to build a successful and predictive non-supersymmetric

minimal SO(10) GUT. In this case the symmetry breaking pattern is as shown in Fig. 1.

Figure 1: SO(10) symmetry breaking pattern with a Higgs sector consisting of 54H+126H+10H .

In this breaking chain,

(i) A real 54H breaks the SO(10) symmetry to the Pati-Salam symmetry with D-parity.

(ii) A complex 126H breaks the Pati-Salam symmetry to the Standard Model.

(iii) A complex 10H is used to perform the electroweak scale breaking.

Even though a real 10H is good enough to break the last stage of symmetry, a complex 10H

has been used here as the complex version is needed along with the complex 126H to reproduce

realistic fermion masses as argued in Ref. [8]. The decomposition of the Higgs fields under the

Pati-Salam (PS) group (SU(4)C × SU(2)L × SU(2)R), the Standard Model group (SU(3)C ×
SU(2)L × U(1)Y ) and SU(5)× U(1)X are given in the Table 1.

2.2 Associated Energy Scales

In general, there are five possible energy scales associated with the left-right decomposition

of any SO(10) model, namely: (i) MU for SO(10)→ SU(4)C × SU(2)L × SU(2)R, (ii) MC for

SU(4)C → SU(3)C ×U(1)B−L, (iii) MR for SU(2)R → U(1)R, (iv) M ′R for U(1)R×U(1)B−L →
U(1)Y and (v) MW for SU(2)L ×U(1)Y → U(1)em [46]. In this minimal model, all three scales

besides MU and MW merge together and we will call the energy scale MC = MR = M ′R ≡ MI ,

the intermediate scale. The presence of only one intermediate scale (MI) in between unified

scale (MU ) and the eletroweak scale (MW ) makes the model highly constrained and predictive.

Extended Survival Hypothesis: To ascertain the energy scales of all the Higgs multiplets, we

evoke the philosophy known as “Extended Survival Hypothesis”. This is an extension of Georgi’s
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“Survival Hypothesis” for fermions [49] which states “the representation that is invariant of the

gauge group do acquire super-large mass”. It was later extended to include scalar particles by the

hypothesis: “Higgs acquire the maximum mass compatible with the symmetry breaking.”[50,

51]. Here we will employ a more relaxed version of the hypothesis by stating that “Higgs

multiplets remain at the maximum energy scale compatible with the symmetry breaking and

phenomenological constraints.” This is essentially a hypothesis of minimal fine-tuning.

According to this hypothesis, all the components of the 54H remain at the unification scale,

MU . The 126H decomposes as Σ1(6, 1, 1)PS ⊕ Σ2(10, 3, 1)PS ⊕ Σ3(10, 1, 3)PS ⊕ Σ4(15, 2, 2)PS

under PS symmetry. As the PS symmetry is broken at the intermediate scale MI by the vacuum

expectation value of
〈
Σ3(10, 1, 3)PS

〉
, all the components of Σ3(10, 1, 3)PS must remain at MI .

Due to the D-parity, the Σ2(10, 3, 1)PS multiplet also remains at MI . To reproduce all the

realistic fermion masses and mixings, the Σ4(15, 2, 2)PS needs to stay at the intermediate scale

MI . This is due to the fact that if Σ4(15, 2, 2)PS lives at the unification scale, the induced

electroweak vev of Σ4(15, 2, 2)PS will get suppressed by the square of the ratio of intermediate

scale and unification scale. In general such a small induced vev fails to correct the mass relations

generated by only one complex 10H Higgs [52]. These bad mass relations include VCKM = 1

and mu : mc : mt = md : ms : mb = me : mµ : mτ . These wrong relations can be appropriately

modified if the induced vev’s are in the right order. Induced vev of order mb is needed for

Σ4(15, 2, 2)PS and a suppression of (MI/MU)2 ∼ 10−4 will be insufficient. Hence the need for

Σ4(15, 2, 2)PS being at MI . As 126H and 54H have only one non-trivial cross coupling, the

Σ1(6, 1, 1)PS multiplet does not have enough freedom to be at the unification energy scale MU

and will be brought down to MI . This is a consequence of explicit Higgs potential analysis. In

short, the whole 126H has to be at the intermediate scale, MI .

The weak scale breaking in this model is achieved by a complex 10H . So, only one of the

doublets of SM needs to be at the weak scale. The other doublet needs to stay at the intermediate

scale for the same reason as Σ4(15, 2, 2)PS . The rest of the multiplets (the color triplets) from

10H will acquire masses of the order of the unification scale MU .

3 Running of gauge couplings using two loop Renormalization

Group Equations

In general, the three gauge couplings of the SM do not coincide at a single point when

extrapolated using the SM renormalization group equation to high energy. But if a specific

GUT, like the one under study, requires some Higgs bosons and gauge bosons other than the

SM ones at a scale below MU and the newly introduced bosons have substantial effects on the

beta functions, then it might be possible to assign suitable masses to these bosons and achieve

unification of couplings. After specifying the Higgs sector of the model and the symmetry
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SO(10) SU(4)C × SU(2)L × SU(2)R SU(3)C × SU(2)L ×U(1)Y SU(5)×U(1)X Scale

10

HT (6, 1, 1)
T1(3, 1,−1

3) (5,−2) MU

T2(3, 1,+1
3) (5,+2) MU

HD(1, 2, 2)
H1(1, 2,−1

2) (5,−2) MW

H2(1, 2,+1
2) (5,+2) MI

54

ζ1(1, 3, 3)

ζ11(1, 3− 1) (15,−4) MU

ζ12(1, 3, 0) (24, 0) MU

ζ13(1, 3,+1) (15,+4) MU

ζ2(6, 2, 2)

ζ21(3, 2,−5
6) (24, 0) MU

ζ22(3, 2,+1
6) (15,−4) MU

ζ23(3, 2,−1
6) (15,−4) MU

ζ24(3, 2,+5
6) (24, 0) MU

ζ3(20′, 1, 1)

ζ31(6, 1,+2
3) (15,+4) MU

ζ32(6, 1,−2
3) (15,−4) MU

ζ33(8, 1, 0) (24, 0) MU

ζ0(1, 1, 1) ζ00(1, 1, 0) (24, 0) MU

126

Σ1(6, 1, 1)
Σ11(3, 1,−1

3) (45,−2) MU

Σ12(3, 1,+1
3) (5,+2) MU

Σ2(10, 3, 1)

Σ21(1, 3,−1) (15,−6) MI

Σ22(3, 3,−1
3) (45,−2) MI

Σ23(6, 3,+1
3) (50,+2) MI

Σ3(10, 1, 3)

Σ31(1, 1, 0) (1,+10) MI

Σ32(1, 1,+1) (10,+6) MI

Σ33(1, 1,+2) (50,+2) MI

Σ34(3, 1,+4
3) (10,+6) MI

Σ35(3, 1,+1
3) (50,+2) MI

Σ36(3, 1,−2
3) (45,−2) MI

Σ37(6, 1,−4
3) (50,+2) MI

Σ38(6, 1,−1
3) (45,−2) MI

Σ39(6, 1,+2
3) (15,−6) MI

Σ4(15, 2, 2)

Σ41(1, 2,−1
2) (5,+2) MI

Σ42(1, 2,+1
2) (45,−2) MI

Σ43(3, 2,+7
6) (50,+2) MI

Σ44(3, 2,+1
6) (10,+6) MI

Σ45(3, 2,−1
6) (15,−6) MI

Σ46(3, 2,−7
6) (45,−2) MI

Σ47(8, 2,−1
2) (50,+2) MI

Σ48(8, 2,+1
2) (45,−2) MI

Table 1: Decomposition of the scalar representations with respect to various SO(10) subgroups.
The “scale” indicates expectation based on extended survival hypothesis. The Higgs multiplets
in red (or bold) are the massless Goldstone bosons which are absorbed by the corresponding
gauge bosons.
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breaking pattern, one needs to run the couplings of the gauge groups with the appropriate beta

functions and determine the status of the unification of the model under study.

The two-loop renormalization group equations (RGE) for the gauge couplings can be written

as:
dα−1

i (µ)

d lnµ
= − ai

2π
−
∑
j

bij

8π2α−1
j (µ)

(1)

where i, j indices refer to different subgroups of the unified gauge group at the energy scale µ

and

α−1
i =

4π

g2
i

. (2)

The β-function up to two-loop order is given by [53]

β(g) = µ
dg

dµ
= − g3

(4π)2

{
11

3
C2(G)− 4

3
κS2(F )− 1

6
ηS2(S)

}
− g5

(4π)4

{
34

3
[C2(G)]2 − κ

[
4C2(F ) +

20

3
C2(G)

]
S2(F )

−
[
2C2(S) +

1

3
C2(G)

]
ηS2(S)

}
. (3)

Here S2 and C2 denote the Dynkin indices of the representations with the appropriate multiplic-

ity factors (one has to be careful about whether the representation is complex or real) and the

quadratic Casimir of a given representation. κ = 1, 1
2 for Dirac and Weyl fermions and η = 1, 2

for real and complex scalar fields. G, F and S stand for gauge multiplets, fermions and scalars.

From the β-function expression we get,

ai = −11

3
C2(Gi) +

4

3
κS2(Fi) +

1

6
ηS2(Si) (4)

bij = −34

3
[C2(Gi)]

2 δij + κ

[
4C2(Fj) +

20

3
δijC2(Gi)

]
S2(Fi)

+η

[
2C2(Sj) +

1

3
δijC2(Gi)

]
S2(Si). (5)

The one-loop and two-loop β-function coefficients for the Standard Model (valid for MW ≤ µ ≤
MI), and the Pati-Salam symmetry group with D-parity (valid for MI ≤ µ ≤MU ) are found to

be

aSM =


−7

−19
6

41
10

 ; bSM =


−26 9

2
11
10

12 35
6

9
10

44
5

27
10

199
50

 ; (6)
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aPS =


1

26
3

26
3

 ; bPS =


1209

2
249
2

249
2

1245
2

779
3 48

1245
2 48 779

3

 . (7)

Here we have used the intermediate scale scalar spectrum of Table 1, along with the intermediate

gauge symmetry SU(4)C × SU(2)L × SU(2)R ×D.

The appropriate matching conditions for two-loop RGE, when a simple gauge group G spon-

taneously breaks down into subgroups Gi’s, is given by [54]

1

αi(µ)
=

1

αG(µ)
− λi(µ)

12π
, (8)

where

λi(µ) =

λGi︷ ︸︸ ︷
(CG − Ci)−21

λVi︷ ︸︸ ︷
Tr

(
t2iV ln

MV

µ

)
+Tr

(
t2iSPGB ln

MS

µ

)
︸ ︷︷ ︸

λSi

+8 Tr

(
t2iF ln

MF

µ

)
︸ ︷︷ ︸

λFi

. (9)

Here V , F and S denote respectively vector, fermion and scalar particles that are integrated

out at the matching scale µ; CG and Ci denote the quadratic Casimir invariants of the groups G
and Gi; ti{V,F,S}’s are the generators of the lower symmetry Gi for the representations in which

the heavy {Gauge bosons, fermions, scalar bosons} appear; PGB is a projection operator which

projects out all the Goldstone bosons.

Equipped with all these RGE’s and matching conditions given above, it becomes straight-

forward to determine the intermediate scale MI and the unification scale MU for our model.

Let us first find out these scales completely ignoring the threshold corrections stemming from

the gauge bosons and unknown masses of the Higgs particles. In this scenario, we assume that

all the Higgs and gauge boson masses are degenerate with masses equal to either MI or MU as

dictated by the extended survival hypothesis. For the group U(1)Y the appropriate matching

condition is given by

1

α1Y (µ)
=

3

5

(
1

α2R(µ)
− C2R

12π

)
+

2

5

(
1

α4C(µ)
− C4C

12π

)
. (10)
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Figure 2: Running of gauge couplings without threshold corrections using two-loop RGE. Pati-
Salam symmetry with D parity is assumed as the intermediate scale. The dotted vertical lines
correspond to the intermediate scale and the unification scale.

As input at µ = MZ , we use

α−1
1Y = 3/5 α−1

em(1− sin2 θ); α−1
2L = α−1

em sin2 θ;

MZ = 91.1876 GeV; α−1
em = 127.940;

sin2 θ = 0.23126; α−1
3c = 0.1185. (11)

By solving the two-loop RGE numerically, one obtains the intermediate scale to be 4.62 ×
1013 GeV and the unification scale to be 1.22× 1015 GeV. Such a unification scale is obviously

ruled out by the current bound on proton lifetime, τp(p→ e+π0) > 1.29×1034 yrs which requires

MU & (5 ∼ 7)× 1015 GeV [36]. It is this feature that has made the model less studied. But as

we show in the next section, threshold corrections arising from the scalar sector at MI and MU

can nicely rectify the situation and make the model consistent and still testable.

4 Threshold corrections

A fundamental limitation of all GUTs is the lack of underlying physics required to predict the

masses of Higgs bosons and thus the threshold corrections associated with them. To improve the

situation somewhat, one can always go through the tedious process of writing down the whole
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Lagrangian for the SO(10) model and then derive the scalar particle mass spectrum in terms of

the couplings and vev’s of the SO(10) Lagrangian. In such a scenario, the couplings and vev’s

are only constrained by the phenomenology and perturbitivity arguments.

Even though the scale of the physics, masses of the gauge bosons and the Higgs bosons

should be around the same order of energy, nothing dictates that they should all be exactly

the same. On a stronger note, one can say that even though some of them can be degenerate,

it is unlikely that all of them are. And this distribution of masses and vev’s generates the

threshold corrections. This becomes a very important factor for Higgs bosons belonging to a

large representation such as 126H . The predictions of the model derived while ignoring the

threshold corrections becomes unreliable.

Here we proceed to take account of these corrections and study the resulting modification of

the values of MI and MU . At first we include the threshold corrections in a very generic manner.

At this stage, we assume that all the Higgs masses are independent and they are selected in a

completely random manner. The only constraint that we put on the Higgs masses is due to the

extended survival hypothesis. We kept the ratio, R of Higgs boson mass and the corresponding

gauge boson masses to be between R = {1/10, 1/20, 1/33} and R = 2. While ignoring any relations

between the scalar masses, this analysis gives us the maximum threshold correction to the energy

scales in terms of the spread of the distribution of scalar masses.

Defining the Pati-Salam Scale MPS

Low energy experimental data fixes the initial points for the running of the gauge couplings

while demand of unification puts a couple of constraints on the evolution. These determine two

unique scales of the model. Let us consider the running of the three gauge couplings up to a

scale Λi which is higher than the heaviest component of 126H but lighter than any component

of 54H . For such a situation we have:

α−1
3C(MZ) = α−1

4C(Λi) +
a3C

2π
ln

[
Λi
MZ

]
−
λi3C
12π

;

α−1
2L (MZ) = α−1

2L (Λi) +
a2L

2π
ln

[
Λi
MZ

]
−
λi2L
12π

;

α−1
1Y (MZ) =

3

5
α−1

2R(Λi) +
2

5
α−1

4C(Λi) +
a1y

2π
ln

[
Λi
MZ

]
−
λi1Y
12π

. (12)
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With the notation ηaj = ln
Mj

Ma
; j being any Higgs multiplet and a = i, u being intermediate scale

(MI) or unification scale (MU ) respectively:

λiS3C = ηiΣ11
+ ηiΣ12

+ 3ηiΣ22
+ 15ηiΣ23

+ ηiΣ34
+ ηiΣ35

+ 5ηiΣ37
+ 5ηiΣ38

+ 5ηiΣ39

+2ηiΣ43
+ 2ηiΣ44

+ 2ηiΣ45
+ 2ηiΣ46

+ 12ηiΣ47
+ 12ηiΣ48

;

λiS2L = ηiH2
+ 4ηiΣ21

+ 12ηiΣ22
+ 24ηiΣ23

+ ηiΣ41
+ ηiΣ42

+ 3ηiΣ43
+ 3ηiΣ44

+ 3ηiΣ45

+3ηiΣ46
+ 8ηiΣ47

+ 8ηiΣ48
;

λiS1Y =
1

5

(
3ηiH2

+ 2ηiΣ11
+ 2ηiΣ12

+ 18ηiΣ21
+ 6ηiΣ22

+ 12ηiΣ23
+ 24ηiΣ33

+ 32ηiΣ34
+ 2ηiΣ35

+64ηiΣ37
+ 4ηiΣ38

+ 16ηiΣ39
+ 3ηiΣ41

+ 3ηiΣ42
+ 49ηiΣ43

+ ηiΣ44
+ ηiΣ45

+ 49ηiΣ46

+24ηiΣ47
+ 24ηiΣ48

)
;

λiV3C = ηiPSV ; λiV2L = 0; λiV1Y =
8

5
ηiPSV +

6

5
ηiWR

; λiG3C = 1; λiG2L = 0; λiG1Y =
14

5
. (13)

Here PSV is the Pati-Salam gauge boson(3, 1,−2
3) and WR is the right-handed W±R (1, 1,−1).

The coefficients of the η’s are the Dynkin indices of the representations of the respective gauge

group together with the multiplicity factors. For the case of hypercharge GUT-compatible

normalization has been used. Along with Eq. (13) we find the following equation:

(
5α−1

1Y − 3α−1
2L − 2α−1

3C

)
(MZ) =

1

2π

{
−2 + ln

M44
PS

M44
Z

}
(14)

where

MPS =

(
M21
PSVM

21
WR

M6
Σ22

M15
Σ23

MΣ38M
2
Σ44

M2
Σ45

M4
Σ47

M4
Σ48

MΣ21M
4
Σ33

M5
Σ34

M9
Σ37

MΣ39M
6
Σ43

M6
Σ46

)1/44

. (15)

Here MPSV is the mass of the Pati-Salam gauge boson(3, 1,−2
3) and MWR

is the mass of right-

handed W±R (1, 1,−1). Eq. (14) completely determines the “Pati-Salam Scale (MPS)” in terms of

low energy experimental data, which will be the intermediate scale unless otherwise mentioned.

Using one-loop RGE, we find the intermediate scale (Pati-Salam scale) to be:

M1−loop
PS = MZ e

Cps
44 = 5.33× 1013 GeV

where

Cps = 2π
(
5α−1

1Y (MZ)− 3α−1
2L (MZ)− 2α−1

3C(MZ)
)

+ 2

and we have used the data given in Eq. (11). To reduce the error coming from the fact that this

definition does not use two-loop RGE running, we can run the SM gauge couplings at two-loop

level up to the energy ≈ 1012 GeV. In that case, we find that MPS = 4.67× 1013 GeV which is
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very close to the value obtained by using two-loop RGE running up to unification scale.

Analytically it is tricky to define the Pati-Salam/intermediate scale at the two-loop level.

Nevertheless, as the scales should not depend on the threshold corrections, one can evolve the

couplings at two-loop level assuming all the scalar and gauge bosons to be degenerate at the

respective scales. In that case, the unification constraint and low energy data fix the scale to

be MPS = 4.62 × 1013 GeV. This indicates an important fact that, if we consider two-loop

RGE up to an energy scale ≈ 1012 GeV and then analyze the rest of the evolution (up to the

unification scale) at one-loop level, the error introduced should not change the result drastically.

The two-loop effects cannot accumulate a large amount of corrections in the process of running

by only three orders of magnitude in energy scale from (1012 − 1015) GeV.

Defining the unification scale MU

After defining the PS Scale, we can forget about the threshold corrections at the intermediate

scale and use the new-found PS scale for any calculation needed for determining the unification

scale. So, starting from the Pati-Salam scale we can write a new set of RGE for the couplings at

an energy scale Λu higher than the energy scale corresponding to all the scalar particle masses

as:

α−1
4C(MPS) = α−1

U (Λu) +
a4C

2π
ln

[
Λu
MPS

]
−
λu4C
12π

;

α−1
2L (MPS) = α−1

U (Λu) +
a2L

2π
ln

[
Λu
MPS

]
−
λu2L
12π

;

α−1
2R(MPS) = α−1

U (Λu) +
a2R

2π
ln

[
Λu
MPS

]
−
λu2R
12π

. (16)

Here

λuS4C = 2ηHT
+ 8ηζ3 ; λuS2L = 6ηζ1 ; λuS2R = 6ηζ1 ;

λuV4C = 4ηuV ; λuG4C = 4; λuV2L = 6ηuV ; λuG2L = 6; λuV2R = 64ηuV ; λuG2R = 6 (17)

where the notation uV corresponds to the leptoquark gauge boson at the unification scale (MU ).

Using these equations, we find:

α−1
4C(MPS)− α−1

2L (MPS) =
1

6π

{
1− ln

M23
U

M23
PS

}
(18)

where

MU =

(
M21
uVMHT

M4
ζ3

M3
ζ1

) 1
23

. (19)
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Just like the Pati-Salam scale, we can define a unification scale (MU ) completely fixed by

the Pati-Salam scale:

M1−loop
U = MPS e

Cu
23 = 2.4× 1015 GeV (20)

where

Cu = 1− 6π (α4C(MPS)− α2L(MPS)) .

Similarly to the Pati-Salam scale, if one runs SM gauge couplings at two-loop level to an

energy scale of 1012 GeV, the unification scale becomes MU = 1.36×1015 GeV. And at two-loop

level we find M2−loop
U = 1.22× 1015 GeV. Again, this small discrepancy in MU is due to the fact

that the latter one is a two-loop gauge coupling evolution up to the unification scale while the

previous one is two-loop level up to an energy level of 1012 GeV.

Threshold corrections at the unification scale

After defining the scales and finding out the scales of all the Higgs bosons (given in Table 1),

it is straightforward to calculate analytically the threshold corrections for the one-loop running

of the gauge couplings [55]. Numerically it is possible to improve the process, by using two-loop

RGE (Eq. (1)) and one-loop threshold correction formulas given in Eqs. (8), (13), (17).

It is obvious that the masses of the gauge bosons will depend on the randomness adopted

for the heavy Higgs masses due to the unification constraints given by Eqs. (14), (18). Guided

by the extended survival hypothesis, we decided to allow the ratio of the mass of each Higgs

boson to the corresponding gauge boson mass to be between R = {1/10, 1/20, 1/33} and 2, with

R =
MHiggs boson

Corresponding gauge boson mass
. We study three cases where R-1 = 10, 20 and 33. The

upper limit of 2 comes from the fact that we do not want to risk the perturbitivity of the model.

For a random sample of Higgs masses lying within the pre-selected range, one finds out the

one-loop threshold corrections. Then using two-loop RGE for running of the gauge couplings

and the unification constraints one determines the masses of the gauge bosons. Using the newly

obtained gauge boson masses as updated scales, one repeats the process. After a few itera-

tions, one ends up with a two-loop RGE of gauge couplings with one-loop threshold corrections

with intermediate scale and unification scale at the corresponding gauge boson masses. Fig.

3 is a sample of such running of gauge couplings using two loop RGE and one loop threshold

corrections.

To find out the pattern of the Higgs boson masses allowed by the current experimental

bound, one needs to find out the proton lifetime in terms of the masses of the leptoquark gauge

boson and the unified gauge coupling.
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Figure 3: Running of gauge couplings with one-loop threshold corrections using two-loop RGE.
This sample point corresponds to a case where some of the Higgs masses are taken to be two
times the corresponding gauge boson mass determined without the threshold corrections and
the others are one tenth of the scale. Special attention was given to the color triplet masses, so
that they are heavier than 1013 GeV. In this extreme scenario, the mass of the leptoquark gauge
boson (the one responsible of proton decay) is maximized. Then the scales were updated with
an iteration process so that the scales correspond to the masses of the respective gauge bosons.

5 Proton Lifetime

Gauge mediated proton decay: In non-supersymmetric GUTs, the primary mode of

proton decay is p→ e+π0. This gauge induced d = 6 operator predicts a proton lifetime of the

order of τp ≈ M4
(X,Y )/(g4m5

p), where M(X,Y ) is the mass of the leptoquark (known as X,Y gauge

boson), g2 ≈ 4π

35
is the coupling at unification energy and mp is the mass of the proton.

We have calculated the rates for proton decay using a more detailed version of the lifetime

formula which includes the relevant hadronic matrix elements of operators and also renormal-

ization effect of the operator in going from GUT energy scale to µ = 1 GeV. The proton lifetime

formula in SO(10) models is [56, 57, 58, 17]:

τP =

π
4

mpα
2
U

f2
π

|αH |2R2
L(1 + F +D)2

A2
SR

(
1

M2
(X,Y )

+
1

M2
(X′,Y ′)

)2

+
4A2

SL

M4
(X,Y )

−1

(21)

where RL = 1.36 is the two-loop long-range running effect on the effective proton decay operator

[59], αH ' −0.01GeV 3 [60] denotes the relevant hadronic matrix element defined by αHu
p
L(~k) ≡
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εαβγ 〈0| dαRu
β
Ru

γ
L |p(~k)〉, D = 0.8 and F = 0.47 are chiral Lagrangian parameters [60], fπ =

130.7 MeV is the pion decay constant and gG is the gauge coupling constant at the unification

scale. M(X,Y ) and M(X′,Y ′) are the masses of the corresponding gauge bosons, (X,Y )(3, 2,+5/6)

and (X ′, Y ′)(3, 2,−1/6). ASL(R) is the short-range left-handed (right-handed) renormalization

factors of the proton decay operator corresponding to the running from the scale µ = MU to

MZ , passing through the intermediate scale MI and given by [61, 62, 63, 64]

ASL(R) =
n∏
i=1

MZ≤msc<MU∏
sc

[
αi(msc+1)

αi(msc)

] γL(R)(sc)i

ai(msc+1 −msc)

where

γL(MZ) =

{
23

20
,
9

4
, 2

}
; γR(MZ) =

{
11

20
,
9

4
, 2

}
; γL/R(MPS) =

{
15

4
,
9

4
,
9

4

}
.

And ai’s are the one-loop beta-function coefficients given in Eqs (6) -(7) and the relevant scales

(sc) are MU ,MPS ,MZ (sc = 1, 2, 3).

As the SO(10) model under scrutiny has a realistic and predictive Yukawa sector, the fermion

masses and mixings can be determined by some fitting algorithm [18, 9]. After one gets the

explicit numerical values for the fermion masses and mixings, it is trivial to determine the

branching ratios of various proton decay channels. The issue will be discussed in details in Sec.

10 after we analyze the Yukawa sector of the model.

Higgs boson mediated proton decay: The Higgs boson induced d = 6 proton decay

operator has the potential to play a vital role in the proton lifetime determination if certain scalar

color triplets T (3, 1,−1/3) become light enough. As mentioned earlier, not all the dangerous

Higgs color triplets are at the unification scale. A couple of them slide down to the intermediate

scale due to the fact that the 54 and 126 plet of SO(10) have only one non-trivial cross coupling

which is fine-tuned to keep the (15, 2, 2)PS at the intermediate scale.

In general, Higgs boson induced d = 6 operators are suppressed by the first generation

Yukawa couplings.(τp ≈ m4
T/|YuYd|2m5

p) [58]. As, in the SM, (YuYd) ≈ 10−10, in all cases we took a

conservative lower limit and kept all the Higgs color triplet T (3, 1,−1/3) mass, mT > 1013 GeV,

so that they do not contribute significantly to proton decay.

Proton lifetime and threshold corrections: Proton lifetime is very sensitive to the mass

of the leptoquark gauge boson which in turn depends on the randomness adopted for the heavy

Higgs masses. After we find out the masses of the gauge bosons and the unified gauge coupling

using one-loop threshold corrections and two-loop RGE running of the gauge couplings, we can

use Eq. (21) to determine proton lifetime.
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From our numerical analysis, we find that one can maximize proton lifetime by maximizing

the masses of the following Higgs bosons: Σ21,Σ22,Σ23,Σ33,Σ34,Σ41,Σ42,Σ43, Σ44, Σ45, Σ46,

H2, ζ11, ζ12, ζ13 and by minimizing: T1, T2,Σ11,Σ12,Σ35,Σ37,Σ38,Σ39,Σ47,Σ48, ζ31, ζ32, ζ33. In

such a maximal/minimal arrangement, the proton lifetime can go as large as:

τmax = 1.45× 1035 yrs; R-1 = 10,

τmax = 9.85× 1035 yrs; R-1 = 20,

τmax = 3.91× 1036 yrs; R-1 = 33.

(22)

We have plotted in Fig. 4 proton lifetime as a function of the intermediate scale MI which

has been picked up as the mass of the PS gauge boson with random distribution of Higgs boson

masses. The Higgs boson masses were randomly chosen among the corresponding scale and the

extreme (minimum and maximum) values. All the black points correspond to phenomenologi-

cally viable points, while the orange points are excluded due to the proton lifetime experimental

bound. The maximum proton lifetime in each case is marked by a larger black point. The points

above the current lifetime limit (τp = 1.29× 1034yrs), yet orange in the scatter plot (in Fig. 4)

are due to the fact that those points corresponds to cases where at least one of the Higgs color

triplets becomes lighter than the conservative lower limit of 1013 GeV on their masses.

6 The 54H + 126H Higgs Model for SO(10) symmetry breaking

In this section we analyze the breaking of SO(10) symmetry down to the SM. We consider

SO(10) model with Higgs sector including a real 54H (a rank two symmetric tensor, denoted

by Φij), a complex 126H (a rank five totally antisymmteric tensor, denoted by Σijklm) and a

complex 10H (a vector representation, denoted by φi). Being non-supersymmetric, the model

inherits a couple of crucial deficiencies, namely failure to address the hierarchy issue and the

lack of an automatic dark matter candidate. As the hierarchy problem is one of “naturalness”,

in this model we invoke fine-tuning to bring the Higgs doublet to the weak scale and fulfill the

phenomenological constraints. The loss of the dark matter candidate can be easily remedied

by introducing an additional Pecci-Quinn (PQ) U(1)PQ symmetry to the SO(10) framework.

It should be stressed that in this upgraded framework, along with the dark matter candidate,

one simultaneously solves the strong CP problem - the absence of CP violation in the strong

interaction sector.

The assigned PQ-charges of the various fields in the model are as follows:

16F → e−iα16F ; 10H → e−2iα10H ; 126H → e2iα126H ; SH → e−4iαSH . (23)

As 〈126H〉 can only break a linear combination of the U(1)X and U(1)PQ, one singlet (SH)
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(a) R−1 = 10 (b) R−1 = 20

(c) R−1 = 33

Figure 4: Proton lifetime (τp) as a function of the intermediate scale MI for different levels of
threshold corrections. The ratio of the mass of each Higgs boson to the corresponding gauge bo-
son mass is kept in betweenR = {1/10, 1/20, 1/33} andR = 2, withR =

MHiggs boson

Corresponding gauge boson mass .
All the black points are phenomenologically viable ones. Orange points either go through gauge
boson mediated proton decay with a lifetime shorter than the experimental limit (1.29×1034 yrs),
or they correspond to scenarios where at least one of the color triplet Higgs boson acquires a
mass less than 1013 GeV. From a conservative point of view, we decided to exclude points with
light color triplet masses as they tend to contribute to proton decay at a dangerous level.
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Higgs has been introduced to break the other linear combination so that only one U(1)Y is left

unbroken above the weak scale [65]. With the newly introduced singlet field one can write the

general potential for the model SO(10)× U(1)PQ as

V = V (Φ,Σ) + V (Φ,Σ, φ) + V (S) (24)

where

V (φ,Σ) = −µ
2

2
ΦijΦij +

c

3
ΦijΦjkΦki +

a

4
ΦijΦijΦklΦkl +

b

2
ΦijΦjkΦklΦli −

ν2

2 · 5!
ΣijklmΣ∗ijklm

+
λ0

2!25!2
ΣijklmΣ∗ijklmΣnopqrΣ

∗
nopqr +

λ2

4!2
ΣijklmΣ∗ijklnΣopqrmΣ∗opqrn

+
λ4

3!22!2
ΣijklmΣ∗ijknoΣpqrlmΣ∗pqrno +

λ′4
3!2

ΣijklmΣ∗ijknoΣpqrlnΣ∗pqrmo

+
α

2!5!
ΦijΦijΣpqrlmΣ∗pqrlm +

β

3!
ΦijΦklΣmnoikΣ

∗
mnojl,

V (Φ,Σ, φ) = −ξ2
0φiφ

∗
i + ξ1φiφ

∗
iφjφ

∗
j + ξ2φiφiφ

∗
jφ
∗
j + ξ3Φi,jφiφ

∗
j +

γ1

4!
ΣijklmΣ∗ijklnφmφ

∗
n

+
γ2

4!
ΣijklmΣ∗ijklnφnφ

∗
m +

η0

2
ΦijΦijφkφ

∗
k +

η1

(3!)2 (2!)2 ΣijklmΣ∗ijkpqΣ
∗
lmpqnφn

+
η∗1

(3!)2 (2!)2 Σ∗ijklmΣijkpqΣlmpqnφ
∗
n + η2ΦijΦikφjφ

∗
k +

η3

4!
ΣijklmΣijklnφmφn

+
η∗3
4!

Σ∗ijklmΣ∗ijklnφ
∗
mφ
∗
n,

V (S) = −µ2
sSS

∗ + χ1 (SS∗)2 + χ2ΣijklmΣ∗ijklmSS
∗ + χ3ΦijΦijSS

∗ +
χ4

4!
ΣijklmΣijklnΦijS

+
χ∗4
4!

Σ∗ijklmΣ∗ijklnΦijS
∗ + χ5φiφ

∗
iSS

∗ + χ6φiφiS
∗ + χ∗6φ

∗
iφ
∗
iS.

In the potential, terms like Σ4, (Σ∗)4 are absent due to the PQ symmetry. Notice that the

potential has four complex couplings, namely η1, η3, χ4, χ6. Among them, η3 does not appear in

the minimization condition and the mass spectrum. The other three couplings (η1, χ4, χ6) can

be made real by redefinitions of the fields Σ, S, φ respectively. This results in a vev structure of

the potential (〈V 〉) which is completely devoid of any complex couplings. In short, this means

that we can always find a solution where all the vev’s of the fields are real and we will deal with

such a case.

In the model, the cubic coupling, c of 543
H is imperative for the desired symmetry breaking

scenario. It has been shown in Ref. [43] that if one tries to break SO(10) with a 54H in the

absence of this cubic term, it only breaks it down to either SO(5)× SO(5) or SO(9) .

As the 10H is complex, 126H · 126H · 10H · 10∗H has two linearly independent couplings

(γ1, γ2). In the potential (Eq. (24)), the trivial coupling is the linear sum of the two. So, one

finds that, the mass spectrum of the non-singlet Higgs only depends on the difference of the
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couplings (γ1 − γ2).

The term 126H · 126H · 126H · 10H with the coefficient η1 is important for the fermion mass

fitting, as this is the term which generates the induced vev’s (κu, κd) for the electroweak doublets

contained in the 126H , or more precisely in the (15, 2, 2)PS [52]. If the vev’s of the two complex

doublets in 10H are denoted by vu, vd then

κu,d ∼ η1

(
〈126H〉2

M2
(15,2,2)PS

)
vu,d (25)

6.1 Details of Symmetry Breaking

SO(10) symmetry spontaneously breaks down to SU(4)C ×SU(2)L×SU(2)R×D when the

54H acquires a non-zero vacuum expectation value given by

〈54〉 = diagonal (-2/5, -2/5, -2/5, -2/5, -2/5, -2/5, 3/5, 3/5, 3/5, 3/5)ωs

where ωs ∼ MU . The vev of the SM singlet from 54H is 〈S54〉 = −
√

12

5
ωs. The SU(4)C ×

SU(2)L × SU(2)R × D is broken down to SM model gauge group with the added U(1)PQ′

(unbroken combination of U(1)X ×U(1)PQ) by the vev of 126H , denoted by 〈Σ2,4,6,8,10〉 =
σ

4
√

2
,

or in terms of SM Singlet in 126 as 〈S126〉 =
σ√
2

. Lastly, the singlet SH acquires a vev (denoted

by 〈SS〉 =
vs√

2
) which breaks the extra U(1)PQ′ and we get SM plus an axion at low energy. One

linear combination of the two complex SU(2)L doublets of complex 10H and the two complex

SU(2)L doublets of 126H remains massless at this stage. This linear combination is the field

that acquires a vev and breaks the electroweak symmetry. We will denote the vev’s of the two

complex doublets in the 10H as vu, vd and the two complex doublets in the (15, 2, 2)PS in 126H

get the induced vev’s denoted by κu, κd.

In short, the high scale vev’s acquired by the SM singlet contained in the Higgs 54H , 126H

and SH are as follows:

〈S54〉 = −
√

12

5
ωs; 〈S126〉 =

σ√
2

; 〈SS〉 =
vs√

2
. (26)
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In this notation the vacuum expectation value of the potential (V ) becomes:

〈V 〉 =− 6

5
µ2ω2

s +
4

25
cω3

s +
36

25
aω4

s +
42

125
bω4

s −
ν2

2
σ2 + λ0σ

4 +
3

5
αω2

sσ
2 − 3

5
βω2

sσ
2

− µ2
s

2
v2
s +

χ1

4
v4
s +

χ2

4
σ2v2

s +
3

5
χ3ω

2
sv

2
s . (27)

Here the weak scale vev’s are ignored as they are at least 10−8 times smaller than the smallest

vev (namely vs). It is very much possible to keep the electroweak scale vev’s in the equations

and do all the corresponding calculations. At the end of the calculation, one will realize that

the weak scale vev’s will only correspond to the mass splitting of the electroweak multiplets and

that will correspond to an order of 102 GeV. Besides the SM doublet, all other scalar fields will

acquire masses at the order of 1010 GeV or higher. So, for the sake of simplicity, we shall ignore

corrections of order of 102 GeV, which is well justified.

Minimizing 〈V 〉 with respect to the parameters ωs, σ, vs, the following relations can be ob-

tained:

µ2 =
12

5
aω2

s +
14

25
bω2

s +
c

5
ωs +

α

2
σ2 − β

2
σ2 +

χ3

2
v2
s

ν2 =
6

5
αω2

s −
6

5
βω2

s + λ0σ
2χ2

2
vs

µ2
s =χ1vs +

χ2

2
σ2 +

6

5
χ3ω

2
s . (28)

These minimization conditions are used in determining the masses of the various Higgs multiplets

in the next subsection.

6.2 Tree level mass spectrum

One can go ahead and analyze the potential in its full glory (for example, using the methods

described in Ref. [66]) and determine the whole scalar mass spectrum. The gauge boson mass

spectrum is determined by constructing the covariant derivative and then analyzing the kinetic

part of the Lagrangian, as usual.

Gauge boson mass spectrum

One needs to consider the properly normalized fields and analyze the kinetic part of the

Lagrangian to obtain the mass spectrum of all the gauge bosons. In the case of the gauge

bosons, besides the usual leptoquark gauge bosons (X,Y )(3, 2, -5/6), (X ′, Y ′)(3, 2,+1/6) and the

Pati-Salam gauge boson (3, 1, -2/3) and their conjugates, the heavy (1, 1,±1) particle corresponds

to the right handed W±R . One of the (1, 1, 0) corresponds to the Z ′ of the U(1)R and other one

22



to the weak scale Z-boson which remains massless until the electroweak symmetry is broken.

We find these masses to be:

M2
A(3, 2,−5

6
) =g2ω2

s ;

M2
A(3, 2,+

1

6
) =g2(ω2

s + σ2);

M2
A(3, 1,−2

3
) =g2σ2;

M2
A(1, 1,−1) =g2σ2;

M2
A(1, 1, 0) =

 3
√

6
√

6 2

 g2σ2. (29)

Here the quantum numbers listed are under SM group SU(3)C × SU(2)L × U(1)Y . One should

notice that the determinant of the mass matrix for the gauge boson (1, 1, 0) is zero and the

eigenvalues of the matrix are {5, 0}. The zero eigenvalue corresponds to the Z-boson of mass 91

GeV.

Scalar Boson Mass Spectrum

The determination of the scalar mass spectrum is a little bit involved compared to the gauge

boson mass spectrum, mainly due to presence 126H which is represented by a rank-five totally

antisymmetric tensor. But as shown in Ref. [66], one can identify the sub-multiplets inside the

full multiplet in a systematic way and insert the vev’s for the SM singlets to obtain the scalar

mass spectrum.

Going through the straightforward, yet tedious calculation, one gets the following mass

spectrum:

M2(1, 3, 0) =
8

5
bω2

s + cωs;

M2(8, 1, 0) =
2

5
bω2

s − cωs;

M2(3, 3,−1

3
) = 4

(
3λ2 + 3λ4 + 4λ′4

)
σ2;

M2(6, 3,+
1

3
) = 8

(
λ2 + λ4 + 4λ′4

)
σ2;

M2(3, 2,−5

6
) = 0;

M2(3, 1,−2

3
) = 0;

M2(1, 1,−1) = 0
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M2(1, 1,+2) = 8
(
λ2 + λ4 + 4λ′4

)
σ2;

M2(3, 1,+
4

3
) = 4

(
3λ2 + 3λ4 + 4λ′4

)
σ2;

M2(6, 1,−4

3
) = 8
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3
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2βσ
2 2χ4σvs

2χ4σvs 8 (2λ2 + 3λ4 + 2λ′4)σ2

 ;

M2(6, 1,+
2

3
) =

 2
5bω

2
s − cωs + 1

2βσ
2 2χ4σvs

2χ4σvs 8 (2λ2 + 3λ4 + 2λ′4)σ2

 ;

M2(3, 2,+
7

6
) =

 4 (3λ2 + 3λ4 + 4λ′4)σ2 + βω2
s −2

√
2χ4ωsvs

−2
√

2χ4ωsvs 8 (λ2 + λ4 + 2λ′4)σ2 + βω2
s

 ;

M2(8, 2,−1

2
) =

 4 (3λ2 + 3λ4 + 4λ′4)σ2 + βω2
s −2

√
2χ4ωsvs

−2
√

2χ4ωsvs 8 (λ2 + λ4 + 2λ′4)σ2 + βω2
s

 ;

M2(3, 2,+
1

6
) =


8 (2λ2 + 3λ4 + 2λ′4)σ2 + βω2

s 2
√

2χ4ωsvs −2χ4σvs

2
√

2χ4ωsvs βω2
s

1√
2
βσωs

−2χ4σvs
1√
2
βσωs

1
2βσ

2

 ;

M2(3, 1,−1

3
) =


4 (3λ2 + 3λ4 + 4λ′4)σ2 + 4βω2

s 4
√

2χ4ωsvs 0 0 0

4
√

2χ4ωsvs 8 (λ2 + λ4 + 2λ′4)σ2 + 4βω2
s 16

√
2λ′4σ

2 0 4η1σ
2

0 16
√

2λ′4σ
2 8 (λ2 + λ4)σ2 0 4

√
2η1σ

2

0 0 0 A1
√

2χ6vs

0 4η1σ
2 4

√
2η1σ

2
√

2χ6vs B1

 ;

M2(1, 2,−1

2
) =


8 (λ2 + λ4 − 2λ′4)σ2 + βω2

s 2
√

2χ4ωsvs 0 4
√

3η1σ
2

2
√

2χ4ωsvs 4 (3λ2 + 3λ4 + 4λ′4)σ2 + βω2
s 0 0

0 0 A2
√

2χ6vs

4
√

3η1σ
2 0

√
2χ6vs B2

 ;

M2(1, 1, 0) =

 1
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M2(1, 1, 0) = 0

M2(1, 1, 0) = 0 (30)
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Here in the color triplet and SU(2)L doublet matrices, we have defined

A1 =− 2

5
ξ3ωs +

6

5
η0ω

2
s +

4

25
η2ω

2
s + γ1σ

2 +
1

2
χ5v

2
s +m2

B1 =− 2
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2
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25
η2ω

2
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1

2
χ5v
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η0ω

2
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25
η2ω

2
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χ5v
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2
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2
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The mass matrices are spanned in the following bases:

(1, 3,−1)→ {(1, 3,−1)ζ1 , (1, 3,−1)Σ21}

(6, 1,−2/3)→
{

(6, 1,−2/3)ζ3 , (6, 1,−2/3))Σ39

}
(3, 2,+7/6)→

{
(3, 2,+7/6)Σ∗46

, (3, 2,+7/6)Σ43

}
(8, 1,−1/2)→

{
(8, 1,−1/2)Σ∗48

, (8, 1,−1/2)Σ47

}
(3, 2,+1/6)→

{
(3, 2,+1/6)Σ∗45

, (3, 2,+1/6)Σ44 , (3, 2,+1/6)ζ2
}

(3, 1,−1/3)→
{

(3, 1,−1/3)Σ11 , (3, 1,−1/3)Σ∗12
, (3, 1,−1/3)Σ∗35

, (3, 1,−1/3)T1 , (3, 1,−1/3)T ∗2
}

(1, 2,−1/2)→
{

(1, 2,−1/2)Σ41 , (1, 2,−1/2)Σ∗42
, (1, 2,−1/2)H1 , (1, 2,−1/2)H∗2

}
A few remarks are in order about the mass spectrum:

• From the mass spectrum of the Higgs bosons, we find that there are 34 massless states,

which correspond to the broken generators of SO(10) plus the imaginary part of the singlet

(S) which corresponds to the axion. These 33 Goldstone bosons are eaten up by the 33

massive gauge bosons whose mass spectrum is given in Eq. (29).

• From the mass spectrum, it is obvious that Σ22(3, 3,−1/3), Σ38(6, 1,−1/3), Σ42(1, 2,+1/2),

Σ46(3, 2,−7/6), Σ48(8, 2,+1/2) and Σ11(3, 1,−1/3) are degenerate except for the presence of

contribution coming 54H vev (ωs) for the Higgs Σ42,Σ46,Σ48 and Σ11. The degeneracy

comes from the fact that all these Higgs bosons are inside the (45, 2)under SU(5)×U(1)X .

As Σ3(10, 1, 3) acquires a vev, minimization condition removes the ωs contribution from

Σ38 and due to the D-parity, Σ22 is also missing the ωs contribution to its mass.

• Similar arguments apply for masses of Σ23(6, 3,+1/3), Σ33(1, 1,+2), Σ35(3, 1,+1/3),

Σ37(6, 1,−4/3), Σ43(3, 2,+7/6) and Σ47(8, 2,−1/2) where Σ43 and Σ47 are the only ones

having contribution from ωs.

• The rank of the matrix M2(3, 2,+1/6) is two, where the massless eigenstate corresponds

to the Goldstone boson of the theory, which gets eaten up by the (X ′, Y ′) gauge boson.
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The other massless Goldstone bosons from (3, 2,−5/6) are absorbed by the (X,Y ) gauge

boson.

• In the absence of the singlet (SH), most of the mass matrices reduce to diagonal forms,

indicating no mixing between many fields, even though they possess the same gauge quan-

tum numbers. This is again due to the fact that the corresponding SM fields reside in a

different SU(5) multiplet. For example, one of the (8, 2,−1/2) lives in the (50,+2) and a

second one is in the (45,−2) under SU(5) × U(1)X . There is non-trivial mixing in the

mass matrix of (3, 2,+1/6) due to non-trivial quartic coupling β which generates term like

(24, 0)(1,+10)(15,−4)(15,−6) written under SU(5)× U(1)X .

• In the doublet mass matrix only one of the doublets from 126H gets mixed up directly (due

to the coupling η1) with one of the doublets from 10H -plet as they both are from (5,+2)

of SU(5)×U(1)X . Besides this term, the two Higgs doublets in 126H get mixed due to the

presence of the couplings from the singlet-potential (V (S)). Same type of mixing happens

between the two Higgs doublet in 10H . So, all the doublet fields mix with each other. This

property of the doublet mass matrix is of utmost importance to generate realistic fermion

masses.

• One should remember that in SO(10) models without the PQ-symmetry, due to the pres-

ence of the term 126 ·126 ·54 in the Lagrangian, one will end up getting all the off-diagonal

mixing term at the SM level Lagrangian. Even though one gets a well-mixed doublet mass

matrix, in that case one ends up with an extra set of Yukawa couplings and the theory

loses predictivity. The inclusion of the PQ-symmetry gets rid of the extra Yukawa cou-

plings and at the same time, gets rid of the usual mixing terms in the scalar mass spectra.

But, at the end, the couplings in the singlet part of the potential (V (S)), which breaks

the PQ-symmtery, reintroduces those mixing terms in the mass matrices. This makes the

singlet vev important as in the doublet mass matrix it shows up in the off-diagonal terms

and in the Yukawa sector the off diagonal elements cannot be ignored while reproducing

realistic fermion masses and mixings.

• As one of the electroweak doublets and the color antitriplets of 126H live in (5,+2) of

SU(5)×U(1)X and one of the electroweak doublets and color triplets of 10H live in (5, 2),

the mixing term in doublet mass matrix and triplet mass matrix should be the same

(4
√

3η1σ
2). The apparent dissimilarity in the triplet matrix is due to the basis in which

the triplet mass matrix is written. By a simple rotation of the triplet mass matrix one can

show that mixing term is indeed given by 4
√

3η1σ
2 and in that basis, there is no mixing

between the triplet from (50,+2) and triplet from 10H -plet. Besides these ones, other

terms in the doublet and triplet matrices differ in a significant way and fine-tuning the
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doublet determinant to zero does not set the determinant of the triplet mass matrix to

zero. While not unexpected, this condition is crucial for consistent phenomenology.

• The presence of the quartic coupling β ensures a mass contribution from the 〈126H〉 for

the fields from 54H . But such a contribution is missing from the multiplet which resides in

the 24H -plet of SU(5). This can be easily explained under a situation where the 〈126H〉 >
〈54H〉 and the model goes through SU(5). Now that the SM singlet of 54H is in the 24H -

plet (under SU(5)) and the minimization condition removes the contribution from 〈126H〉,
SM muliplet (8, 1, 0) and (1, 3, 0) end up with no mass contribution from 〈126H〉. For the

same reason only (X ′, Y ′) gauge bosons have mass contribution from the 〈126H〉, but not

(X,Y ) gauge bosons.

7 Yukawa sector of the model

The burning question about the search of the minimal Yukawa sector can be addressed

under this minimal SO(10) model with PQ-symmetry. In SO(10) grand unified theory, each

generation of fermions belong to a 16-dimensional spinorial representation, whose masses arise

from the renormalizable Yukawa couplings with Higgs fields (16× 16 = 10 + 126 + 120). In the

minimal model described here, the Yukawa part of the Lagrangian is given as:

L = 16F
(
Y1010H + Y126126H

)
16F (31)

where Y10, Y126 are complex symmetric matrices in the generation space. A complex 10H in

general brings an extra set of Yukawa couplings. But in this case U(1)PQ symmetry forbids

16F 10∗H16F couplings, see Eq. (23). Besides providing a candidate for dark matter while solving

the strong CP problem, the PQ-symmetry also affects the Yukawa sector making it realistic and

predictive [8]. Notice that here, both 10H(φ) and 126H(Σ) are complex in nature and each

of them carries two SU(2)L Higgs doublets. It is assumed that only one linear combination of

these electroweak doublets remains massless before electroweak symmetry breaking and acquires

electroweak vev. This corresponds to the minimal fine-tuning as dictated by extended survival

hypothesis. For such a case, the quark and lepton mass matrices become:

Mu = hvu + fκu; Md = hvd + fκd;

MD
ν = hvu − 3fκu; Ml = hvd − 3fκd;

MM
ν = fσ. (32)

Here, Mu,d,l is the up-type quark, down-type quark and lepton mass matrix, MD
ν is the Dirac

neutrino matrix and MM
ν is the Majorana mass matrix. These expressions can be rewritten in
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a more compact form which is more popular for a fit to masses and mixing angles:

Mu = r(H + sF ); Md = H + F ;

MD
ν = r(H − 3sF ); Ml = H − 3F ;

MM
ν = r−1

R F (33)

where H = hvd, F = fκd are complex symmetric matrices and r = vu/vd, s = κu/(rκd), rR = κd/σ

are dimonsionless parameter.

An ample amount of literature has been devoted to find the best fit values of the parameters

for various general minimal and non-minimal SO(10) Yukawa structures [67, 68, 69, 70, 71, 72,

73, 18, 9, 74]. Then the minimal model described in this work can reproduce a realistic fermion

mass spectrum, if the model has enough freedom to have r ≈ 69 and s ≈ 0.36− 0.04i with some

uncertainty [18]. Here, we can see that s is almost real, exactly what is needed for this model.

At this point, we do realize that a small deviation in the parameter of a delicate χ2 - analysis

used in the fit of fermion masses and mixings has the potential to make the χ2
min shift. Under

such scenario, one can always redo the χ2-analysis and minimize the χ2. Besides adjusting

the input mass matrices (for example, lepton and down-type quark mass matrices Ml,Md), the

process has the potential to change the vev ratios (r, s) as in this minimal model there is no

phase associated with s. Yet as the phase of the s parameter is already small, we do not expect

a large change in the fitting of fermion masses and mixings and we also emphasis the fact that

the model has enough freedom to accommodate such a change.

So, one needs to verify and make sure that the doublet mass matrix has enough freedom

to remain positive-definite and produce the appropriate vev ratios while not leading to light

eigenvalues in the triplet mass matrix.

From the structure of the doublet mass matrix (D), we see that the massless SM Higgs

doublet hSM becomes

hSM = αHHu + βHH
∗
d + αhhu + βhh

∗
d (34)

where Hu and Hd are the up-type and down-type doublet in (15, 2, 2)PS of 126H and hu and hd

are the up-type and down-type doublet living in the complex 10H . For such a case we have

D11αH +D12βH +D14βd = 0;

D12αH +D22βH = 0;

D33αh +D34βh = 0;

D14αH +D34αh +D44βh = 0;

D11D22D33D44 +D2
12D2

34 −D22D33D2
14 −D33D44D2

12 −D11D22D2
34 = 0. (35)
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As r = αh/βh > 0 and D22 > 0, we must have D12 < 0. Similar argument implies D34 < 0. Again

one can show from the above mentioned set of equations that

D11 =
D2

14

D44 − r2D33
− D12

s
> 0 (36)

Now, without any loss of generality, one can take the sign of βh to be positive, then αh > 0

and αH and βH are of the same sign. For the case, αH > 0, if D14 > 0 then only valid solution

lies for

∣∣∣∣ D2
14

D44 − r2D33

∣∣∣∣ < ∣∣∣∣D12

s

∣∣∣∣. In contrast, if D14 < 0, there is no such constraint. Similarly,

for the case αH < 0, the case D14 < 0 gets the added condition. These conditions reduce the

parameter space of the model significantly and need to be considered when one starts the process

of random selection of sample points for the Higgs cubic and quartic couplings.

8 Technical Details

Due to the richness in the mass matrices in the scalar mass spectrum, one fails to come up

with simple mass relations for the Higgs sector. All the couplings coming from the SO(10)-

potential (Eq. (24)) need to be in the perturbative range. So, it is obvious that instead of the

scalar masses, one should start from the couplings and vev’s of the theory and calculate the

mass spectrum of scalars and gauge bosons. Now, for a realistic model one needs to take into

account the unification of the couplings and all the phenomenological constraints imposed by

proton decay, realistic fermion mass spectrum and dark matter abundance.

To produce a sample scalar mass spectrum for the Higgs (10H , 54H , 126H , SH), first the

vev’s were picked to be ωs ∼
(
1015 − 1016

)
GeV, σ ∼

(
1013 − 1014

)
GeV, vs ∼

(
1010 − 1012

)
GeV.

The range of the intermediate scale and unification scale vev’s are decided from the scatter plot

generated before the scalar mass spectrum was determined (see Fig.4). As the singlet vev (vs)

breaks the PQ-symmetry, it corresponds to the axion decay constant fa and the range taken

for vs is compatible with all the axion search experiments and astrophysical bounds. In the

numerical analysis, one also sees that the above-mentioned range for vs is also preferred by the

doublet mass matrix. The dimensionless couplings are chosen randomly in the range of [−1, 1]

with the exception of the coupling b which was chosen from [−2, 2] due to the poor availability

of realistic parameter space in the more restrictive range. The couplings with positive mass

dimensions were chosen either to be close to the corresponding scale or lower than the scale, so

that the potential does not develop any unwanted minimum.

With the scalar masses fixed, the gauge boson masses were determined by the unification

constraints and using the RGE the unified coupling at the unification scale was calculated. This

unified coupling and the pre-assumed vev’s also give the gauge boson masses which generally do

not coincide with the previous ones determined from the unification conditions. To solve this
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an iteration process was used, until the difference between gauge boson masses calculated from

these two methods becomes negligible.

The running of the gauge couplings can be done mainly in three ways:

1. One can run the SM gauge couplings at one-loop level, all the way to the unification scale

while updating the beta function coefficients whenever one encounters a scalar or gauge

boson. The uncertainty coming from the one-loop running can be reduced if we run the

SM gauge couplings at the two-loop level until we introduce the heavy scalar particles.

The full two-loop running for computing the threshold corrections is not done due to the

unknown two-loop connecting formula at the scale of symmetry breaking.

2. One can do a one-loop running of the SM gauge couplings until one hits a energy scale

corresponding to the Pati-Salam gauge boson (3, 1,−2/3). Beyond that energy scale, it is

the gauge couplings of the Pati-Salam model that is considered to be evolving until we

reach a energy scale corresponding to the leptoquark gauge boson (X,Y ). Under such

type of running, unification is achieved after we have crossed the threshold of all the

scalars and gauge multiplets of the theory. This program introduces some uncertainty

due to the mass splittings of the sub-multiplets due to the lower order vev’s. This may

become important due to the vicinity of the intermediate and unification scales. To remedy

the issue, while running the gauge couplings of higher symmetry, we only introduce the

effects of a scalar particle in the beta functions, if that particle completes the multiplet of

the higher symmetry. Finally, the uncertainty coming from the one-loop running can be

reduced if we run the SM gauge couplings at the two-loop level until we introduce the first

heavy scalar particles. Again, the full two-loop running was not done due to the unknown

two-loop connecting formula of symmetry breaking.

3. One can also do a two-loop running where all the threshold correction is dumped in the

intermediate and unification scales. Then one ends up with a discontinuity of the running

of couplings corresponding to the threshold corrections. One should remember that in

this case the scale at which the couplings become unified does not necessarily correspond

to the mass of the leptoquark gauge bosons which mediate proton decay. One can chose

the scale to be the intermediate scale and unification scale determined initially without

any threshold corrections. In the following part of the paper, we picked the vev’s as the

corresponding scales.

The following steps were taken to produce the benchmark points:

• To produce the initial results, a set of random numbers (within a reasonable range) was

generated in the 24-dimensional parameter space. Using the mass spectrum, all the Higgs
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boson masses were calculated and the gauge boson masses were determined by Eqs. (14),

(18). One-loop running of the SM gauge couplings was performed to determine the initial

status of the unification. At this level, strict unification is not achieved and the data

set does not reproduce a realistic fermion mass spectrum. Also the gauge boson masses

do not necessarily correspond to the one calculated from gauge boson mass spectrum.

Each of those points is selected individually and updated so that all the points satisfy the

consistency checks and phenomenological constraints.

• After the initial random choice of parameters, one needs to impose the constraints imposed

by the doublet mass matrix and realistic fermion mass spectrum. One needs to update the

initial parameter values to generate one massless Higgs doublet and keep the vev ratios

fixed to at r ≈ 69, s ≈ 0.36 [18].

• By performing a gauge coupling evolution, the gauge boson masses are updated so that

we achieve SU(2)L and SU(2)R unification at Pati-Salam scale and perfect unification

at the GUT scale. As the vev ωs corresponding to the gauge boson mass and the one

corresponding to scalar masses do not necessary coincide, an iteration process was run to

rectify the situation.

• Due to the iteration process, the vev’s of the theory get updated. As the doublet mass

matrix, which is required to satisfy multiple conditions, is highly sensitive to the vev’s,

one needs to update the parameter space to ensure that availability of the massless Higgs

doublet and keep the vev ratios fixed.

• This update of parameter space requires update of the vev’s by iteration process described

earlier so that gauge boson masses remain consistent. These updates of vev’s and coupling

parameters need to be iterated until the error is within an acceptable limit.

• At every step one also has to keep checking the positive-definiteness of all the eigenvalues

of all mass matrices and pay special attention to the triplet mass matrix so that the lowest

lying color triplet does not become much lighter than 1013 GeV.

9 Results with Benchmark points

In this section we present our procedure to pick a couple of benchmark points. Going through

the procedure and constraints described in the previous section, we can identify sample points

satisfying all the phenomenological constraints which would then become true candidates from

the large parameter space. For that purpose, one can ease the process by including the conditions

required to ensure the stability of the vacuum and positive-definiteness of all the scalar masses

along with the issue of realistic fermion mass spectrum.
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For example: being the only non-trivial coupling of 542 ·126 ·126, β needs to be fine-tuned so

that (15, 2, 2)PS stays in the intermediate scale. The conditions translates as βω2
s ≈ σ2, making

β . σ2/ω2
s ≈ 10−4, while positive-definiteness of the mass matrix of (3, 2,+1/6) says β > 0.

Again, from the masses of (1, 3, 0) and (8, 1, 0), we can say that b > 0 for ωs > 0. Besides the

condition described in Eq. (35), the couplings λ2, λ4 and λ′4 also have to maintain the following

constraints among themselves to keep all other mass matrices positive-definite:

3λ2 + 3λ4 + 4λ′4 > 0;

λ2 + λ4 + 4λ′4 > 0;

2λ2 + 3λ4 + 2λ′4 > 0;

λ2 + λ4 > 0;

8(λ2 + λ4 + 2λ′4)σ2 + 4βω2
s > 0;

8(λ2 + λ4 − 2λ′4)σ2 + βω2
s > 0.

After going through the process described before and keeping track of all the consistency

checks and phenomenological constraints, one can produce an ample amount of benchmark

points. One can adopt a one-loop RGE evolution while updating the beta functions as one

arrives at the threshold of each scalar multiplet. Or one can adopt a two-loop RGE evolution

while keeping all the threshold corrections at the corresponding scale. In the next couple of

subsections we present our results for each cases.

Benchmark point using one-loop RGE

For the first case we consider the evolution of gauge couplings using one-loop RGE and

include the effect of a scalar multiplet in the beta coefficients at the threshold energy scale

corresponding to its mass. The benchmark point we select is given in Table 2 and corresponding

mass spectrum is given in Table 3.

For such a sample point, the RGE evolution produces a unification corresponding to a (X,Y )

gauge boson mass compatible with the current proton lifetime. For this benchmark point, the

(X,Y ) gauge bosons have a mass of 7.82 × 1015 GeV. Using Eq. (21) we find out the proton

lifetime to be 5.72×1034 yrs, which is permitted by the current experimental limit, but reachable

in the next upgrade of proton decay detectors. Also the vev ratios are capable of reproducing

fermion mass spectrum as, r = 69, s = 0.36, rR ≈ 10−14 as demanded by the fermion mass fitting

shown in Ref. [18].
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(a)

(b)

Figure 5: (a) Evolution of gauge couplings using one-loop RGE with threshold corrections
determined by the scalar mass spectrum given in Table 3. The unification scale determined
here is compatible with the current experimental limit on proton lifetime. The small black
circles correspond to the various scalar masses changing the β function coefficients and inflicting
changes in the slope of the graphs. The vertical dashed lines correspond to gauge boson masses
that stay at intermediate scale and unification scale. (b) The region where the scalar bosons
show up has been zoomed.
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Parameter Value Parameter Value

b 1.70 a 0.31

λ2 −0.17 λ0 0.90

λ4 0.48 α −0.23

λ′4 0.17 χ1 0.10

β 1.25× 10−5 χ2 0.12

η1 −0.002 χ3 −0.01

η2 0.90 c 9.36× 1015 GeV

χ4 −0.55 ξ3 −3.15× 1014 GeV

χ5 0.32 χ6 −2.67× 1014 GeV

γ1 −0.38 vs 9.36× 1010 GeV

γ2 0.52 σ 8.65× 1014 GeV

η0 −0.15 ωs 1.38× 1016 GeV

Table 2: Sample parameters and vev’s to generate a benchmark point using one-loop RGE. The
initial parameter and the vev values were updated through the iteration processes described in
the text, and the listed values correspond to the final stable point.

Benchmark point using two-loop RGE

After updating the sample point at one-loop level, so that it satisfies all the consistency

checks and phenomenological constraints, one can upgrade the procedure to two-loop level,

while including all the threshold corrections at the corresponding scales. For such a scenario,

the vev’s have been chosen to play the role of scales. The sample point for the two-loop case is

given in Table 4 and the corresponding sample scalar mass spectrum is given in Table 5.

Again for such a sample point, the RGE evolution produces a unification scale corresponding

to a (X,Y ) gauge boson mass compatible with the current proton lifetime. In this benchmark

point, the (X,Y ) gauge boson has a mass of 7.11 × 1015 GeV. Using Eq. (21) we find out the

proton lifetime to be 2.21 × 1034 yrs, which is permitted by the current experimental limit,

but reachable in the next upgrade of proton decay detectors. Also the vev ratios are capable

of reproducing fermion mass sprectrum as, r = 69, s = 0.36, rR ≈ 10−14 as demanded by the

fermion mass fitting shown in Ref. [18].

Even though it is desirable to generate Fig. 5 and Fig. 6 from the same sample point,

numerically that becomes a difficult task. Even if one starts with the same sample point, due

to the updates of parameters and vev coming from the fine-tuning of the doublet mass matrix

and iteration process to reduce the error in determining the gauge boson masses (details are

described in Sec. 8), one ends up with similar, yet not exactly the same sample point. But
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Multiplet Mass [GeV] Multiplet Mass [GeV]

(1, 3, 0) 2.54× 1016 (8, 1, 0) 1.11× 1012

(3, 3,− 1
3
) 2.17× 1014 (6, 3,+ 1

3
) 2.42× 1014

(1, 1,+2) 2.42× 1014 (3, 1,+ 4
3
) 2.17× 1014

(6, 1,− 4
3
) 2.42× 1014 (6, 1,− 1

3
) 2.17× 1014

(1, 3,−1)
2.54× 1016

(6, 1,+ 2
3
)

1.13× 1012

2.91× 1014 2.91× 1014

(3, 2,+ 7
6
)

2.47× 1014

(8, 2,− 1
2
)

2.47× 1014

2.22× 1014 2.22× 1014

(3, 2,+ 1
6
)

4.83× 1013

(1, 2,− 1
2
)

2.23× 1014

2.95× 1014 8.12× 1013

(3, 1,− 1
3
)

2.86× 1014 1.13× 1012

2.37× 1014 ≈ 0

8.22× 1014

(1, 1, 0)

1.66× 1016

6.99× 1013 3.90× 1013

1.28× 1013 2.69× 1010

Table 3: Sample scalar mass spectrum corresponding to the benchmark point generated using
one-loop RGE. The value of the parameters and vev’s used to generate the spectrum is given in
Table 2.

the uncertainty involved in the process only corresponds to error comparable to higher order

loop corrections, and one can claim with enough confidence that final verdict based on such

benchmark points is phenomenologically viable in all aspects.

One can keep repeating the process and generate multiple points which are phenomenolog-

ically viable in all aspects. A scatter plot with such points is shown in the Fig. 7. One major

characteristics of the scatter plot with threshold corrections generated using the scalar boson

mass spectrum is the distribution of the points, which indicates that the intermediate scale (σ)

does not change much even though the scalar masses are generated with random parameters.

This characteristic was missing when the scatter plot was generated with threshold corrections

without considering the mass relationship coming into play from scalar mass spectrum. In the

absence of such relationships, one can pick the scalar masses completely independently and push

the intermediate or unification scale in either direction. But because of the mass relations, due

to the fewer number of parameters in SO(10) Lagrangian, one looses such freedom. Selecting

one scalar mass in such a way that it will raise the scale fixes mass of another scalar which may

tend to lower the scale. Due to the large number of scalar particles in the intermediate scale,

the scale tends not to slide much in either direction. But the value of the gauge couplings at
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Parameter Value Parameter Value

b 1.70 a 0.31

λ2 −0.17 λ0 0.90

λ4 0.49 α −0.23

λ′4 0.17 χ1 0.10

β 1.25× 10−5 χ2 0.12

η1 −0.002 χ3 −0.12

η2 −0.73 c 8.50× 1015 GeV

χ4 −0.60 ξ3 1.83× 1015 GeV

χ5 0.32 χ6 −2.67× 1014 GeV

γ1 −0.38 vs 9.36× 1010 GeV

γ2 0.52 σ 8.56× 1013 GeV

η0 −0.15 ωs 1.25× 1016 GeV

Table 4: Sample parameters and vev’s to generate benchmark point using two-loop RGE. The
initial parameters and the vev’s were updated through the iteration processes described in the
text, and the listed values correspond to the final stable point.

Figure 6: Evolution of gauge couplings using two-loop RGE with threshold corrections. The
unification scale determined here is compatible with the current experimental limit on proton
lifetime. The discontinuity in the running of the gauge couplings is due to the threshold cor-
rections determined using the scalar mass spectrum given in Table 5. The vertical dashed lines
correspond to the intermediate scale and unification scale.
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Multiplet Mass [GeV] Multiplet Mass [GeV]

(1, 3, 0) 2.31× 1016 (8, 1, 0) 1.11× 1012

(3, 3,− 1
3
) 2.18× 1014 (6, 3,+ 1

3
) 2.42× 1014

(1, 1,+2) 2.42× 1014 (3, 1,+ 4
3
) 2.18× 1014

(6, 1,− 4
3
) 2.42× 1014 (6, 1,− 1

3
) 2.18× 1014

(1, 3,−1)
2.31× 1016

(6, 1,+ 2
3
)

1.13× 1012

2.92× 1014 2.92× 1014

(3, 2,+ 7
6
)

2.47× 1014

(8, 2,− 1
2
)

2.47× 1014

2.22× 1014 2.22× 1014

(3, 2,+ 1
6
)

2.96× 1014

(1, 2,− 1
2
)

2.23× 1014

4.38× 1013 8.12× 1013

(3, 1,− 1
3
)

2.83× 1014 1.13× 1012

2.35× 1014 ≈ 0

8.22× 1013

(1, 1, 0)

1.66× 1016

7.06× 1013 3.90× 1013

1.28× 1013 2.69× 1010

Table 5: Sample scalar mass spectrum corresponding to the benchmark point generated using
two-loop RGE. The value of the parameters and vev’s used to generate the spectrum is given in
Table 4.

the scale do vary from sample to sample. Similar stationary properties are absent for the case

of threshold corrections at the unification scale and one is able to raise the scale high enough to

make the proton live long enough to escape the current experimental limit.

Proton lifetime however cannot be raised too much. If one respects the extended survival

hypothesis, the upper bound on proton lifetime in this minimal model becomes a few times

1035 yrs. So there is a good possibility of discovering proton decay at Super-Kamiokande and

the next generation experiments.

If one analyzes the scalar mass spectrum carefully, one realizes the fact that all the scalar

masses have to remain in the vicinity of intermediate scale and unification scale. One can only

introduce extra fine-tuning in the color octet (8, 1, 0) mass and lower it down without spoiling

the whole scenario. This is because its mass is not closely tied to the masses of other scalars

and this color octet field does not mediate proton decay. By doing so, one also raises the

predicted proton lifetime up to 1037 yrs which is beyond the reach of next generation proton

decay detectors. This is not a likely scenario, since it could mean deviating significantly from

the extended survival or equivalently minimal fine-tuning condition.
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Figure 7: Scatter plot for the proton lifetime (τp) vs. 〈126H〉 = σ generated using one-loop RGE.
All the points correspond to proper gauge couplings unification and are compatible with realistic
fermion masses and mixings. Only the black points comply with the current experimental limit
of proton lifetime.

10 Proton decay branching ratios

As the color triplets Higgs in the model are always kept heavier than 1013 GeV, the primary

source of proton decay is due to d = 6 gauge boson mediating effective operators which are given

by [75, 63, 76, 57, 58]

OB−LI = k2
1 εijk εαβ u

C
iaL γ

µ QjαaL eCb L γµ QkβbL;

OB−LII = k2
1 εijk εαβ u

C
iaL γ

µ QjαaL dCkbL γµ LβbL;

OB−LIII = k2
2 εijk εαβ d

C
iaL γ

µ QjβaL u
C
kbL

γµ LαbL;

OB−LIV = k2
2 εijk εαβ d

C
iaL γ

µ QjβaL ν
C
b L

γµ QkαbL. (37)

Here, k1 = gu/(
√

2M(X,Y )) and k2 = gu/(
√

2M(X′,Y ′)), QL = (uL, dL) and LL = (νL, eL). The indices

i, j, k are color indices, a, b are family indices and α, β are SU(2)L indices. The effective operators

in physical basis becomes,

O(eCα , dβ) = c(eCα , dβ) εijk u
C
i L γ

µujL eCαL γµ dkβL;

O(eα, d
C
β ) = c(eα, d

C
β ) εijk u

C
i L γ

µujL dCkβL
γµ eαL;
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Figure 8: Scatter plot for proton lifetime (τp) as a function of the color octet mass (Mφ10)
generated using one-loop RGE. All the points correspond to proper gauge couplings unification
and compatible with realistic fermion masses and mixings. Only the black points comply with
the current experimental limit on proton lifetime. Fine-tuning the octet mass to a lower energy
scale does not create any internal inconsistency or phenomenological issue. But the extra fine-
tuning does mean that one is deviating significantly from the extended survival hypothesis or
equivalently minimal fine-tuning condition. That is why we consider highly fine-tuned octet
mass which corresponds to a high a proton lifetime as not a likely scenario.

O(νl, dα, d
C
β ) = c(νl, dα, d

C
β ) εijk u

C
i L γ

µ djαL dCkβL
γµ νlL;

O(νCl , dα, d
C
β ) = c(νCl , dα, d

C
β ) εijk d

C
iβL

γµ ujL νCl L γµ dkαL; (38)

where

c(eCα , dβ) = k2
1

[
V 11

1 V αβ
2 + (V1VUD)1β

(
V2V

†
UD

)α1
]

;

c(eα, d
C
β ) = k2

1V
11

1 V βα
3 + k2

2

(
V4V

†
UD

)β1 (
V1VUDV

†
4 V3

)1α
;

c(νl, dα, d
C
β ) = k2

1 (V1VUD)1α (V3VEN )βl + k2
2V

βα
4

(
V1VUDV

†
4 V3VEN

)1l
;

c(νCl , dα, d
C
β ) = k2

2

[(
V4V

†
UD

)β1 (
U †ENV2

)lα
+ V βα

4

(
U †ENV2V

†
UD

)l1]
;α = β 6= 2. (39)

The mixing matrices are defined as : V1 = U †CU , V2 = E†CD, V3 = D†CE, V4 = D†CD, VUD =

U †D, VEN = E†N and UEN = E†CNC , where U,D,E define the Yukawa coupling diagonalization
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so that

UTCYUU = Y diag
U ; DT

CYDD = Y diag
D ;

ETCYEE = Y diag
E ; NTYNN = Y diag

N . (40)

For the SO(10) model with symmetric Yukawa couplings, the mixing matrices becomes UC =

UKu, DC = DKd and EC = EKe, where Ku,Kd and Ke are diagonal matrices containing three

phases. The proton decay rate into different channels due to the presence of the gauge mediated

d = 6 operators are given by [56, 57]:

Γ(p→ K+ν) =

(
m2
p −m2

K

)2
8πm3

pf
2
π

R2
LA

2
S |α|

2
3∑
i=1

∣∣∣∣ 2mp

3mB
D c

(
νi, d, s

C
)

+

[
1 +

mp

3mB
(D + 3F )

]
c
(
νi, s, d

C
)∣∣∣∣2 ;

Γ
(
p→ π+ν

)
=

mp

8πf2
π

R2
LA

2
S |α|

2 (1 +D + F )
3∑
i=1

∣∣c (νi, d, dC)∣∣2 ;

Γ
(
p→ ηe+

β

)
=

(
m2
p −m2

η

)2
48πm3

pf
2
π

R2
LA

2
S |α|

2 (1 +D − 3F )2
{∣∣c (eβ, dC)∣∣2 +

∣∣c (eCβ , d)∣∣2} ;

Γ
(
p→ K0e+

β

)
=

(
m2
p −m2

K

)2
8πm3

pf
2
π

R2
LA

2
S |α|

2

[
1 +

mp

mB
(D − F )

]2 {∣∣c (eβ, sC)∣∣2 +
∣∣c (eCβ , s)∣∣2} ;

Γ
(
p→ π0e+

β

)
=

mp

16πf2
π

R2
LA

2
S |α|

2 (1 +D + F )2
{∣∣c (eβ, dC)∣∣2 +

∣∣c (eCβ , d)∣∣2} ; (41)

where, νi = νe, νµ, ντ and eβ = e, µ. Here mB is the average baryon mass satisfying mB ≈ mΣ ≈
Λ. As the current (and most probably next generation) proton decay detectors are insensitive

to the flavor of the neutrinos, proton decay rates are calculated by summing over all the flavors.

For similar reason the chirality of the charged lepton is also summed over. Here, AS ≈ 2 is the

average of the left-handed and right-handed short range renormalization factor.

Now if we consider the fermion masses and mixings given in the ref [18], using the vev ratio

parameter values r = 69 and s = 0.36, the proton decay branching ratio due to gauge mediated

d = 6 operator are given in the Table 6.

These branching ratios mainly depend on the ratio of the leptoquark gauge bosons k1/k2 =

M(X′,Y ′)/M(X,Y ). From the gauge boson mass spectrum and the scatter plot (Fig. 9), it is clear that

in this SO(10) model, the branching ratios will not vary much within the phenomenologically

viable parameter space. We see that the dominant modes are p → e+π0 and p → νπ+, with

roughly equal rates.

The proton decay branching ratios given in Table 6 is quite similar to the one given in

Ref. [77] for the case of minimal SO(10) with split supersymmetry. This is mainly due to the

fact that the Yukawa sector is essentially the same (up to renormalization effects) and since
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Process Branching ratio

p→ π0e+ ≈ 47%

p→ π0µ+ ≈ 1.00%

p→ η0e+ ≈ 0.20%

p→ η0µ+ ≈ 0.004%

p→ K0e+ ≈ 0.16%

p→ K0µ+ ≈ 3.62%

p→ π+ν ≈ 48%

p→ K+ν ≈ 0.22%

Table 6: The branching ratio of proton decay by gauge mediated d = 6 operator.

Figure 9: Proton Lifetime(τp) vs ratio of the (k1/k2 − 1)× 105. The plot indicates that the ratio
of k1/k2 = M(X′,Y ′)/M(X,Y ) varies less than 0.02% (0.005%) over the whole (phenomenologically
viable) parameter space.

M(X,Y ) wM(X′,Y ′) was assumed in Ref. [77].

11 Axions as Dark Matter

Introducing a Peccei-Quinn(PQ)-symmetry [38] in non-supersymmetric SO(10) GUTs pro-

vides the perfect framework for the axionic dark matter which simultaneously solves the strong

CP problem. The PQ-symmetry affected the Higgs potential (by removing terms like 1264)
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and also made the Yukawa sector realistic and predictive. Yet, the main contribution of the

PQ-symmetry is to provide axion as dark matter candidate which can explain the entire dark

matter abundance in the universe while also solving the strong CP problem.

The axion in the model is of DFSZ type [78, 79]. While the original DFSZ axion was mainly

composed of a complex singlet field with an admixture of one up-type Higgs doublet and one

down-type Higgs doublet, the axion in this model is mainly composed of the complex singlet

field (SH) with the admixture of two up-type Higgs doublets (Hu from 126H and hu from 10H)

and two down type Higgs doublets (Hd from 126H and hd from 10H).

In the model, the PQ-symmetry is broken by the vev of the singlet SH , and the scale is

quiet independent of the intermediate (Pati-Salam) scale and unification scale. Even though

the choice of vs is mainly guided by the axion phenomenology, in the numerical analysis of the

sample points we found out that the PQ-breaking scale stays around
(
5× 1010 − 1× 1012

)
GeV

without any extra fine-tuning. In that case, the axion mass can be computed using

ma =
z1/2

1 + z

fπmπ

fa
(42)

where z = mu/md and fa is the axion decay constant. For the numerical analysis we took

mπ = 135 MeV and fπ ≈ 130.7 MeV and kept the range of z = 0.35 − 0.60 [80]. Then for

fa = vs, we get ma (8 − 175) µeV, which is compatible with both the laboratory experimental

limit and astrophysical bounds.

PQ-symmetry breaking before or during inflation

The cosmic mass density of axion field today is [81]

Ωah
2 ≈ 0.7

(
fa

1012 GeV

)7/6(Θi

π

)2

, (43)

where h is the present-day Hubble expansion parameter and −π ≥ Θi ≥ π is the initial “mis-

alignment angle”. If the PQ-symmetry is broken before or during inflation, inflation expands

a domain with some value of Θi to a size larger than the present universe. In that case,

Θi can take any value and naturally should not be fine-tuned. Using the experimental limit

Ωah
2 = 0.1199± 0.0027 [82], we can scan the parameter space in the α, fa basis.

As the model allows the axion decay constant as low as 5×1010 GeV and as high as 1012 GeV,

the misalignment angle can take any value beyond 1.26, ie 1.26 <
∣∣Θi

∣∣ < π. We also see that,

for fa smaller than 2.33 × 1011 GeV, axionic dark matter fails to explain the entirety of dark

matter abundance.
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Figure 10: The region in the parameter space where cold ADM saturates the dark matter
abundance.

From the recent Planck data, we find that if we assume that the PQ symmetry is broken

during inflation and it is not restored by the quantum fluctuation of the inflation nor by thermal

fluctuation in the case of a very efficient reheating stage and all of cold dark matter (CDM)

consists of axions produced by the misalignment angle mechanism, the upper bound on the

energy scale of inflation (Hinf ) becomes[83]:

Hinf ≤ 0.87× 107 GeV

(
fa

1011 GeV

)0.408

. (44)

This is due to the fact that the axion which already exists during inflation obtains large quantum

fluctuations and produces isocurvature density perturbations which are stringently constrained

by CMB observation. So, for low axion decay constant, we end up having an upper bound on

the energy scale of inflation as low as 107 GeV.

PQ-symmetry breaking after inflation

Cosmological consequences of axions are different if the PQ-symmetry is broken after in-

flation. Unlike the previous case, universe does not settle into the same minimum when the

axion acquires its mass at the QCD scale and ends up forming topological defects [84]. Now,
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the misalignment axion cold dark matter energy density is given by [85]

Ωa,mish
2 = 2.07

(
fa

1012 GeV

)7/6

(45)

while

Ωah
2 = 2.07(1 + αdec)

(
fa

1012 GeV

)7/6

(46)

where αdec = 0.164 corresponds to the factor introduced due to the decay of topological defects

like axionic strings [85]. Under such consideration, one finds that the Planck data corresponds

to a axion mass ma ≈ 80 µeV and axion decay constant fa ≈ 8 × 1010 GeV [85], which are

perfectly admissible in the GUT under scrutiny.

12 Conclusion

The Standard Model emerged in the early seventies and since then it has been weathered

by all sorts of experiments at various laboratories and colliders. Until now, it has given the

best description of nature. Recent discoveries about dark matter, neutrino masses and mixings

and old questions like charge quantization and baryogenesis demand physics beyond the SM,

yet LHC data up to now has failed to provide any glimpse of such new physics. In the realm of

unification models, the supersymmetric SO(10) GUTs have been studied in depth in the past

decades [86]. The crucial point about SO(10) GUTs is that if we change our current attitude

about fine-tuning, yet keep it at the minimal level by adopting philosophy like extended survival

hypothesis, we realize that even without supersymmetry, SO(10) symmetry has the potential to

be the gauge symmetry of nature on its own right, at least up to the GUT scale (∼ 1016 GeV).

The absence of low energy supersymmetry might be the reality of our universe, taking away

primary motivation to introduce supersymmetry. Thus it becomes mandatory to revisit the

non-supersymmetric version of SO(10) GUTs with a more open attitude.

The purpose of the paper was to search for the minimal non-supersymmetric SO(10) grand

unified model which can withstand the pressure of all the phenomenological constraints. Our aim

was to address all possible issues (except gravity) either explicitly or by showing that the model

has enough flexibility to accommodate the phenomena. We acknowledge that the minimality is

not a universal and uniquely defined concept. In this work, the philosophy of minimality was

applied in the choice Higgs representation and that resulted in a breaking pattern with minimal

number of intermediate scale (namely one) making the model truly minimal and predictive.

Such a minimal model ended up relying on threshold corrections to escape from the wrath of

experimental bounds on proton lifetime. The issue of threshold corrections deserves particular

attention here. On one hand, one should not discard a model without taking into account the
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threshold corrections, on the other hand, one should not expect that threshold corrections can

rescue any model before performing detailed calculation.

The non-SUSY SO(10) GUT presented here managed to unify the gauge couplings at a

scale high enough to comply with the current experimental bound of proton lifetime. The

Yukawa sector of the model provided a realistic description of fermion masses and mixings. The

PQ-phase transition introduced axion as the dark matter candidate that can explain the dark

matter abundance in the universe, while also solving the strong CP problem. Leptogenesis finds

a natural place in SO(10) with seesaw mechanism and the Yukawa sector of the model has the

potential to procure the right amount. Physics of inflation may reside outside the scope of the

model or within the model where one (or more) SM singlets already present may provide the

necessary ingredients.

One should emphasis the claim that the SM spectrum is completed by the recently discovered

light Higgs and LHC should fail to find any other new physics, as the next scale of physics lies

at the energy scale of 1010 GeV. Before getting demoralized one also needs to realize that the

model generally predicts a proton lifetime less than a few times 1035 yrs. So Super-Kamiokande

or next generation proton decay detectors and axion search experiments has the potential to

discover the essential phenomenological proof of the model.
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