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Abstract

In the alignment limit of a multi-doublet Higgs sector, one of the Higgs mass eigenstates
aligns with the direction of the scalar field vacuum expectation values, and its couplings
approach those of the Standard Model (SM) Higgs boson. We consider CP-conserving
Two-Higgs-Doublet Models (2HDMs) of Type I and Type II near the alignment limit in
which the lighter of the two CP-even Higgs bosons, h, is the SM-like state observed at
125 GeV. In particular, we focus on the 2HDM parameter regime where the coupling
of h to gauge bosons approaches that of the SM. We review the theoretical structure
and analyze the phenomenological implications of the regime of alignment limit without
decoupling, in which the other Higgs scalar masses are not significantly larger than mh

and thus do not decouple from the effective theory at the electroweak scale. For the nu-
merical analysis, we perform scans of the 2HDM parameter space employing the software
packages 2HDMC and Lilith, taking into account all relevant pre-LHC constraints, the
latest constraints from the measurements of the 125 GeV Higgs signal at the LHC, as well
as the most recent limits coming from searches for heavy Higgs-like states. We contrast
these results with the alignment limit achieved via the decoupling of heavier scalar states,
where h is the only light Higgs scalar. Implications for Run 2 at the LHC, including
expectations for observing the other scalar states, are also discussed.
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1 Introduction

The minimal version of the Standard Model (SM) contains one complex Higgs doublet,
resulting in one physical neutral CP-even Higgs boson after electroweak symmetry breaking.
The discovery [1,2] of a new particle with mass of about 125 GeV [3] and properties that match
very well those expected for a SM Higgs boson was a real triumph of Run 1 of the LHC. Fits of
the Higgs couplings performed by ATLAS [4] and CMS [5] show no significant deviations from
SM expectations. (A combined global fit of the Higgs couplings based on the Run 1 results was
performed by some of us in [6].) However, one has to keep in mind that the present precisions
on the Higgs couplings are, roughly, of the order of tens of percent, so substantial deviations are
still possible. Indeed, the SM is not necessarily the ultimate theoretical structure responsible for
electroweak symmetry breaking, and theories that go beyond the SM, such as supersymmetry,
typically require an extended Higgs sector [7–10]. Hence, the challenge for Run 2 of the LHC,
and other future collider programs, is to determine whether the observed state is the SM Higgs
boson, or whether it is part of a non-minimal Higgs sector of a more fundamental theory.

In this paper, we take Two-Higgs-Doublet Models (2HDMs) of Type I and Type II [11]
as the prototypes for studying the effects of an extended Higgs sector. Our focus will be on
a particularly interesting limit of these models, namely the case in which one of the neutral
Higgs mass eigenstates is approximately aligned with the direction of the scalar field vacuum
expectation values. In this case, the coupling to gauge bosons of the Higgs boson observed
at the LHC tends towards the SM limit, CV → 1.1 This so-called alignment limit is most
easily attained in the decoupling limit [12], where all the other non-SM-like Higgs scalars of
the model are heavy. However, the alignment limit of the 2HDM can also be achieved in a
parameter regime in which one or more of the non-SM-like Higgs scalars are light (and in some
cases very light). This region of alignment without decoupling is a primary focus of this paper.

An extensive review of the status of 2HDMs of Type I and Type II was given in [13, 14].
Interpretations of the recently discovered Higgs boson at 125 GeV in the context of the 2HDMs
were also studied in [15–21]. The possibility of alignment without decoupling was first noted in
[12] and further clarified in [22,23]. Previous studies of alignment without decoupling scenarios
in the light of the LHC Higgs results were conducted in [24–26]. The specific case of additional
light Higgs states in 2HDMs with mass below ∼ 125/2 GeV was studied in [27].

Considering experimental as well as theoretical uncertainties, the expected precision for
coupling measurements at the LHC after collecting 300 fb−1 of data is about 4–6% for the
coupling to gauge bosons, and of the level of 6–13% for the couplings to fermions [28]. The
precision improves by roughly a factor of 2 for at the high-luminosity run of the LHC with
3000 fb−1. At a future e+e− international linear collider (ILC) with

√
s = 250 GeV to 1 TeV,

one may measure the couplings to fermions at the percent level, and the coupling to gauge
bosons at the sub-percent level. A detailed discussion of the prospects of various future colliders
can be found in [28].

We take this envisaged ∼ 1% accuracy on CV as the starting point for the numerical analysis
of the alignment case. Concretely, we investigate the parameter spaces of the 2HDMs of Type I
and Type II assuming that the observed 125 GeV state is the h, the lighter of the two CP-even

1We use the notation of coupling scale factors, or reduced couplings, employed in [6]: CV (V = W,Z) for
the coupling to gauge bosons, CU,D for the couplings to up-type and down-type fermions and Cγ,g for the
loop-induced couplings to photons and gluons.
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Higgs bosons in these models, and imposing that Ch
V > 0.99 (note that |CV | ≤ 1 in any model

whose Higgs sector consists of only doublets and/or singlets). The case of the heavier CP-even
H being the state at 125 GeV will be discussed in a separate paper [29].

Taking into account all relevant theoretical and phenomenological constraints, including the
signal strengths of the observed Higgs boson, as well as the most recent limits from the non-
observation of any other Higgs-like states, we then analyse the phenomenological consequences
of this scenario. In particular, we study the variations in the couplings to fermions and in the
triple-Higgs couplings that are possible as a function of the amount of alignment when the other
Higgs states are light, and contrast this to what happens in the decoupling regime. Moreover,
we study the prospects to discover the additional Higgs states when they are light.

The public tools used in this study include 2HDMC [30] for computing couplings and decay
widths and for testing theoretical constraints within the 2HDM context, Lilith 1.1.2 [31] for
evaluating the Higgs signal strength constraints, and SusHi-1.3.0 [32] and VBFNLO-2.6.3 [33]
for computing production cross sections at the LHC.

The paper is organised as follows. In Section 2 we first review the theoretical structure of
the 2HDM. A softly-broken discrete Z2-symmetric scalar potential is introduced using a basis of
scalar doublet fields (called the Z2-basis) in which a the symmetry is manifest. The Higgs basis
is then introduced, which provides an elegant framework for exhibiting the alignment limit. We
then provide a comprehensive discussion of the Higgs couplings in the alignment regime. In
Section 3, we explain the setup of the numerical analysis and the tools used. The results are
presented in Section 4. Section 5 contains our conclusions. In Appendix A, detailed formulae
relating the quartic coefficients of the Higgs potential in the Z2-basis to those of the Higgs
basis are given. Some useful analytical expressions regarding the trilinear Higgs self-couplings
in terms of physical Higgs masses are collected in Appendix B.

2 CP-conserving 2HDM of Types I and II

In this section, we review the theoretical structure of the two-Higgs doublet model. Compre-
hensive reviews of the model can also be found in, e.g., [12,23,34,35]. In order to avoid tree-level
Higgs-mediated flavor changing neutral currents (FCNCs), we shall impose a Type-I or II struc-
ture on the Higgs-fermion interactions. This structure can be naturally implemented [36,37] by
imposing a discrete Z2 symmetry on the dimension-four terms of the Higgs Lagrangian. This
discrete symmetry is softly-broken by mass terms that appear in the Higgs scalar potential.
Nevertheless, the absence of tree-level Higgs-mediated FCNCs is maintained, and FCNC effects
generated at one loop are all small enough to be consistent with phenomenological constraints
over a significant fraction of the 2HDM parameter space [38–41].

Even with the imposition of the softly-broken discrete Z2 symmetry mentioned above, new
CP-violating phenomena in the Higgs sector are still possible, either explicitly due to a physical
complex phase that cannot be removed from the scalar potential parameters or spontaneously
due to a CP-violating vacuum state. To simplify the analysis in this paper, we shall assume
that these CP-violating effects are absent, in which case one can choose a basis of scalar doublet
Higgs fields such that all scalar potential parameters and the two neutral Higgs field vacuum
expectation values are simultaneously real. Moreover, we assume that only the neutral Higgs
fields acquire non-zero vacuum expectation values, i.e. the scalar potential does not admit the
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possibility of stable charge-breaking minima [42,43].
We first exhibit the Higgs scalar potential, the corresponding Higgs scalar spectrum and the

Higgs-fermion interactions subject to the restrictions discussed above. Motivated by the Higgs
data, we then examine the conditions that yield an approximately SM-like Higgs boson.

2.1 Higgs scalar potential

Let Φ1 and Φ2 denote two complex Y = 1, SU(2)L doublet scalar fields. The most general
gauge invariant renormalizable scalar potential is given by

V = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 − [m2
12Φ†1Φ2 + h.c.] + 1

2
λ1(Φ†1Φ1)2 + 1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2)

+λ4(Φ†1Φ2)(Φ†2Φ1) +
{

1
2
λ5(Φ†1Φ2)2 +

[
λ6(Φ†1Φ1) + λ7(Φ†2Φ2)

]
Φ†1Φ2 + h.c.

}
. (1)

In general, m2
12, λ5, λ6 and λ7 can be complex. As noted above, to avoid tree-level Higgs-

mediated FCNCs, we impose a softly-broken discrete Z2 symmetry, Φ1 → +Φ1 and Φ2 → −Φ2

on the quartic terms of Eq. (1), which implies that λ6 = λ7 = 0, whereas m2
12 6= 0 is allowed.

In this basis of scalar doublet fields (denoted as the Z2-basis), the discrete Z2 symmetry of
the quartic terms of Eq. (1) is manifest. Furthermore, we assume that the scalar fields can be
rephased such that m2

12 and λ5 are both real. The resulting scalar potential is then explicitly
CP-conserving.

The scalar fields will develop non-zero vacuum expectation values if the Higgs mass matrix
m2
ij has at least one negative eigenvalue. We assume that the parameters of the scalar potential

are chosen such that the minimum of the scalar potential respects the U(1)EM gauge symmetry.
Then, the scalar field vacuum expectations values are of the form

〈Φ1〉 =
1√
2

(
0
v1

)
, 〈Φ2〉 =

1√
2

(
0
v2

)
. (2)

As noted in Appendix B of Ref. [12], if |m2
12| ≥ λ5|v1||v2|, then the vacuum is CP-conserving

and the vacuum expectation values v1 and v2 can be chosen to be non-negative without loss of
generality. In this case, the corresponding potential minimum conditions are:2

m2
11 = m2

12tβ − 1
2
v2
(
λ1c

2
β + λ345s

2
β

)
, (3)

m2
22 = m2

12t
−1
β − 1

2
v2
(
λ2s

2
β + λ345c

2
β

)
, (4)

where we have defined:

λ345 ≡ λ3 + λ4 + λ5 , tβ ≡ tan β ≡ v2

v1

, (5)

where 0 ≤ β ≤ 1
2
π, and

v2 ≡ v2
1 + v2

2 =
4m2

W

g2
= (246 GeV)2 . (6)

2Here and in the following, we use the shorthand notation cβ ≡ cosβ, sβ ≡ sinβ, cα ≡ cosα, sα ≡ sinα,
c2β ≡ cos 2β, s2β ≡ sin 2β, cβ−α ≡ cos(β − α), sβ−α ≡ sin(β − α), etc.
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Of the original eight scalar degrees of freedom, three Goldstone bosons (G± and G) are
absorbed (“eaten”) by the W± and Z. The remaining five physical Higgs particles are: two
CP-even scalars (h and H, with mh ≤ mH), one CP-odd scalar (A) and a charged Higgs pair
(H±). The resulting squared-masses for the CP-odd and charged Higgs states are

m2
A = m 2 − λ5v

2 , (7)

m2
H± = m2

A + 1
2
v2(λ5 − λ4) , (8)

where

m 2 ≡ 2m2
12

s2β

. (9)

The two neutral CP-even Higgs states mix according to the following squared-mass matrix:

M2 ≡

(
λ1v

2c2
β + (m2

A + λ5v
2)s2

β

[
λ345v

2 − (m2
A + λ5v

2)]sβcβ[
λ345v

2 − (m2
A + λ5v

2)
]
sβcβ λ2v

2s2
β + (m2

A + λ5v
2)c2

β

)
. (10)

Defining the physical mass eigenstates

H = (
√

2Re Φ0
1 − v1)cα + (

√
2Re Φ0

2 − v2)sα , (11)

h = −(
√

2Re Φ0
1 − v1)sα + (

√
2Re Φ0

2 − v2)cα , (12)

the masses and mixing angle α are found from the diagonalization process(
m2
H 0

0 m2
h

)
=

(
cα sα
−sα cα

)(
M2

11 M2
12

M2
12 M2

22

)(
cα −sα
sα cα

)

=

(
M2

11c
2
α + 2M2

12cαsα +M2
22s

2
α M2

12(c2
α − s2

α) + (M2
22 −M2

11)sαcα

M2
12(c2

α − s2
α) + (M2

22 −M2
11)sαcα M2

11s
2
α − 2M2

12cαsα +M2
22c

2
α

)
. (13)

Note that the two equations, Tr M2 = m2
H + m2

h and det M2 = m2
Hm

2
h, yield the following

result:

|M2
12| =

√
(m2

H −M2
11)(M2

11 −m2
h) =

√
(M2

22 −m2
h)(M2

11 −m2
h) . (14)

Explicitly, the squared-masses of the neutral CP-even Higgs bosons are given by

m2
H,h = 1

2

[
M2

11 +M2
22 ±∆

]
, (15)

where mh ≤ mH and the non-negative quantity ∆ is defined by

∆ ≡
√

(M2
11 −M2

22)2 + 4(M2
12)2 . (16)

The mixing angle α, which is defined modulo π, is evaluated by setting the off-diagonal
elements of the CP-even scalar squared-mass matrix given in Eq. (13) to zero. It is often
convenient to restrict the range of the mixing angle to |α| ≤ 1

2
π. In this case, cα is non-negative

and is given by

cα =

√
∆ +M2

11 −M2
22

2∆
=

√
M2

11 −m2
h

m2
H −m2

h

, (17)
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and the sign of sα is given by the sign of M2
12. Explicitly, we have

sα =

√
2M2

12√
∆(∆ +M2

11 −M2
22)

= sgn(M2
12)

√
m2
H −M2

11

m2
H −m2

h

. (18)

In deriving Eqs. (17) and (18), we have assumed that mh 6= mH . The case of mh = mH is
singular; in this case, the angle α is undefined since any two linearly independent combinations
of h and H can serve as the physical states. In the rest of this paper, we shall not consider this
mass-degenerate case further.

2.2 SM-limit in the Higgs basis

The scalar potential given in Eq. (1) is expressed in the Z2-basis of scalar doublet fields in
which the Z2 discrete symmetry of the quartic terms is manifest. It will prove convenient to
re-express the scalar doublet fields in the Higgs basis [44,45], defined by

H1 =

(
H+

1

H0
1

)
≡ Φ1cβ + Φ2sβ , H2 =

(
H+

2

H0
2

)
≡ −Φ1sβ + Φ2cβ , (19)

so that 〈H0
1 〉 = v/

√
2 and 〈H0

2 〉 = 0. The scalar doublet H1 possesses SM tree-level couplings
to all the SM particles. Therefore, if one of the CP-even neutral Higgs mass eigenstates is
SM-like, then it must be approximately aligned with the real part of the neutral field H0

1 .
The scalar potential, when expressed in terms of the doublet fields, H1 and H2, has the

same form as Eq. (1),

V = Y1H
†
1H1 + Y2H

†
2H2 + Y3[H†1H2 + h.c.] + 1

2
Z1(H†1H1)2 + 1

2
Z2(H†2H2)2 + Z3(H†1H1)(H†2H2)

+Z4(H†1H2)(H†2H1) +
{

1
2
Z5(H†1H2)2 +

[
Z6(H†1H1) + Z7(H†2H2)

]
H†1H2 + h.c.

}
, (20)

where the Yi are real linear combinations of the m2
ij and the Zi are real linear combinations of

the λi. In particular, since λ6 = λ7 = 0, we have [45,46]3

Z1 ≡ λ1c
4
β + λ2s

4
β + 1

2
λ345s

2
2β , (21)

Z2 ≡ λ1s
4
β + λ2c

4
β + 1

2
λ345s

2
2β , (22)

Zi ≡ 1
4
s2

2β

[
λ1 + λ2 − 2λ345

]
+ λi , (for i = 3, 4 or 5) , (23)

Z6 ≡ −1
2
s2β

[
λ1c

2
β − λ2s

2
β − λ345c2β

]
, (24)

Z7 ≡ −1
2
s2β

[
λ1s

2
β − λ2c

2
β + λ345c2β

]
. (25)

Since there are five nonzero λi and seven nonzero Zi, there must be two relations. The following
two identities are satisfied if β 6= 0, 1

4
π, 1

2
π [46]:4

Z2 = Z1 + 2(Z6 + Z7) cot 2β , (26)

Z345 = Z1 + 2Z6 cot 2β − (Z6 − Z7) tan 2β , (27)

3To make contact with the notation of Ref. [12], λ ≡ Z1, λV ≡ Z2, λT ≡ Z3 + Z4 − Z5, λF ≡ Z5 − Z4,

λA ≡ Z1 − Z5, λ̂ ≡ −Z6 and λU ≡ −Z7.
4For β = 0, 1

2π, the Z2-basis and the Higgs basis coincide, in which case Z6 = Z7 = 0 and Z1, Z2, Z345 are
independent quantities. For β = 1

4π, the two relations are Z1 = Z2 and Z6 = Z7, and Z345 is an independent
quantity.
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where Z345 ≡ Z3 + Z4 + Z5. One can invert the expressions given in Eqs. (21)–(25), subject to
the relations given by Eqs. (26) and (27). The results are given in Appendix A.

The squared mass parameters Yi are given by

Y1 = m2
11c

2
β +m2

22s
2
β −m2

12s2β , (28)

Y2 = m2
11s

2
β +m2

22c
2
β +m2

12s2β , (29)

Y3 = 1
2
(m2

22 −m2
11)s2β −m2

12c2β . (30)

Y1 and Y3 are fixed by the scalar potential minimum conditions,

Y1 = −1
2
Z1v

2 , Y3 = −1
2
Z6v

2 . (31)

Using Eqs. (9) and (31), we can express m 2 in terms of Y2, Z1 and Z6,

m 2 = Y2 + 1
2
Z1v

2 + Z6v
2 cot 2β . (32)

The masses of H± and A are given by

m2
H± = Y2 + 1

2
Z3v

2 , (33)

m2
A = Y2 + 1

2
(Z3 + Z4 − Z5)v2 . (34)

It is straightforward to compute the CP-even Higgs squared-mass matrix in the Higgs ba-
sis [44, 47],

M2
H =

(
Z1v

2 Z6v
2

Z6v
2 m2

A + Z5v
2

)
. (35)

From Eq. (35), one can immediately derive the conditions that yield a SM-like Higgs boson.
Since 〈H0

1 〉 = v/
√

2 and 〈H0
2 〉 = 0, the couplings of H1 are precisely those of the Standard

Model. Thus a SM-like Higgs boson exists if
√

2 Re H0
1 − v is an approximate mass eigenstate.

That is, the mixing of H0
1 and H0

2 is subdominant, which implies that either |Z6| � 1 and/or
m2
A+Z5v

2 � Z1v
2, Z6v

2. Moreover, if in addition Z1v
2 < m2

A+Z5v
2, then h is SM-like, whereas

if Z1v
2 > m2

A + Z5v
2, then H is SM-like. In both cases, the squared-mass of the SM-like Higgs

boson is approximately equal to Z1v
2.

The physical mass eigenstates are identified from Eq. (11), (12) and (19) as

H = (
√

2ReH0
1 − v)cβ−α −

√
2ReH0

2sβ−α , (36)

h = (
√

2ReH0
1 − v)sβ−α +

√
2ReH0

2cβ−α . (37)

Then, Eqs. (15) and (16) yield

m2
H,h = 1

2

[
m2
A + (Z1 + Z5)v2 ±∆H

]
, (38)

where

∆H ≡
√[

m2
A + (Z5 − Z1)v2

]2
+ 4Z2

6v
4 . (39)

In addition, Eq. (14) yields

|Z6|v2 =
√(

m2
H − Z1v2)(Z1v2 −m2

h

)
. (40)
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Comparing Eqs. (11) and (12) with Eqs. (36) and (37), we identify the corresponding mixing
angle by α − β, which is defined modulo π. Diagonalizing the squared mass matrix, Eq. (35),
it is straightforward to derive the following expressions:

Z1v
2 = m2

hs
2
β−α +m2

Hc
2
β−α , (41)

Z6v
2 = (m2

h −m2
H)sβ−αcβ−α , (42)

m2
A + Z5v

2 = m2
Hs

2
β−α +m2

hc
2
β−α . (43)

It follows that

m2
h =

(
Z1 + Z6

cβ−α
sβ−α

)
v2 , (44)

m2
H = m2

A +

(
Z5 − Z6

cβ−α
sβ−α

)
v2 . (45)

Note that Eq. (42) implies that5

Z6sβ−αcβ−α ≤ 0 . (46)

One can also derive expressions for cβ−α and sβ−α either directly from Eqs. (41) and (42) or
by using Eqs. (17) and (18) with α replaced by α− β. Using Eq. (46), the sign of the product
sβ−αcβ−α is fixed by the sign of Z6. However, since β − α is defined only modulo π, we are
free to choose a convention where either cβ−α or sβ−α is always non-negative.6 In a convention
where sβ−α is non-negative (this is a convenient choice when the h is SM-like),

cβ−α = − sgn(Z6)

√
Z1v2 −m2

h

m2
H −m2

h

=
−Z6v

2√
(m2

H −m2
h)(m

2
H − Z1v2)

, (47)

where we have used Eq. (40) to obtain the second form for cβ−α in Eq. (47).
Finally, we record the following useful formula that is easily obtained from Eqs. (7) and

(A.10),7

m 2 = m2
A + Z5v

2 + 1
2
(Z6 − Z7)v2 tan 2β . (48)

Combining Eq. (48) with Eqs. (42) and (43) yields

Z7v
2 = (m2

h −m2
H)sβ−αcβ−α + 2 cot 2β

[
m2
Hs

2
β−α +m2

hc
2
β−α −m 2

]
. (49)

Using Eqs. (26) and (27), one can likewise obtain expressions for Z2v
2 and Z345v

2 in terms of
m2
h, m

2
H , and m 2. However, these expressions are not particularly illuminating, so we do not

write them out explicitly here.

5Having established a convention where 0 ≤ β ≤ 1
2π, we are no longer free to redefine the Higgs basis field

H2 → −H2. Consequently, the sign of Z6 is meaningful in this convention.
6Such a convention, if adopted, would replace the convention employed in Eq. (17) in which cα is taken to

be non-negative.
7In Eq. (48), the term in the expression for m 2 that is proportional to (Z6−Z7)v2 tan 2β is never greater than

O(v2) for all values of β, since Eqs. (24) and (25) imply that (Z6−Z7) tan 2β = − 1
2s

2
2β(λ1−λ2−2λ345) <∼ O(1).
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2.3 Higgs couplings and the alignment limit

As noted in the previous subsection, the Higgs basis field H1 behaves precisely as the
Standard Model Higgs boson. Thus, if one of the neutral CP-even Higgs mass eigenstates is
approximately aligned with

√
2 ReH0

1 − v, then its properties will approximately coincide with
those of the SM Higgs boson. Thus, we shall define the alignment limit as the limit in which the
one of the two neutral CP-even Higgs mass eigenstates aligns with the direction of the scalar
field vacuum expectation values. Defined in this way, it is clear that the alignment limit is
independent of the choice of basis for the two Higgs doublet fields. Nevertheless, the alignment
limit is most clearly exhibited in the Higgs basis. In light of Eqs. (36) and (37), the alignment
limit corresponds either to the limit of cβ−α → 0 if h is identified as the SM-like Higgs boson,
or to the limit of sβ−α → 0 if H is identified as the SM-like Higgs boson.

Consider first the case of a SM-like h, with mh ≈ 125 GeV. In this case, Z1v
2 < m2

A +Z5v
2,

|cβ−α| � 1, and m2
h ≈ Z1v

2. It follows from Eq. (47) that the alignment limit can be achieved
in two ways: (i) Z6 → 0 or (ii) mH � v. The case of mH � v (or equivalently Y2 � v) is
called the decoupling limit in the literature.8 In this case, one finds that mH ∼ mA ∼ mH± , so
one can integrate out the heavy scalar states below the scale of mH . The effective Higgs theory
below the scale mH is a theory with one Higgs doublet and corresponds to the Higgs sector of
the Standard Model. Thus not surprisingly, h is a SM-like Higgs boson. However, it is possible
to achieve the alignment limit even if the masses of all scalar states are similar in magnitude
in the limit of Z6 → 0. This is the case of alignment without decoupling and the main focus of
this study. Finally, if both |Z6| � 1 and mH � mh are satisfied, the alignment is even more
pronounced; when relevant we shall denote this case as the double decoupling limit.

For completeness we note that in the case of a SM-like H we have Z1v
2 > m2

A + Z5v
2,

|sβ−α| � 1 and m2
H ≈ Z1v

2. Here, it is more convenient to employ a convention where cβ−α is
non-negative. One can then use Eqs. (40), (46) and (47) to obtain an expression for sβ−α. In
a convention where cβ−α is non-negative,

sβ−α = − sgn(Z6)

√
m2
H − Z1v2

m2
H −m2

h

=
−Z6v

2√
(m2

H −m2
h)(Z1v2 −m2

h)
. (50)

Taking mH ≈ 125 GeV, there is no decoupling limit as in the case of a SM-like h. However,
the alignment limit without decoupling can be achieved in the limit of Z6 → 0. This case will
be discussed in detail in [29].

We now turn to the tree-level Higgs couplings. Denoting the SM Higgs boson by hSM, the
coupling of the CP-even Higgs bosons to V V (where V = W± or Z) normalized to the hSMV V
coupling is given by

Ch
V = sβ−α , CH

V = cβ−α . (51)

As expected, if h is a SM-like Higgs boson then Ch
V ≈ 1 in the alignment limit, whereas if H is

a SM-like Higgs boson then CH
V ≈ 1 in the alignment limit.

8More precisely, we are assuming that m2
H � |Z6|v2. Since Z6 is a dimensionless coefficient in the Higgs

basis scalar potential, we are implicitly assuming that Z6 cannot get too large without spoiling perturbativity
and/or unitarity. One might roughly expect |Z6| <∼ 4π, in which case mH � v provides a reasonable indication
of the domain of the decoupling limit.
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Table 1: Four possible Z2 charge assignments that forbid tree-level Higgs-mediated FCNC
effects in the 2HDM [48].

Φ1 Φ2 tR bR τR tL, bL, νL, eL
Type I + − − − − +
Type II + − − + + +
Type X (lepton specific) + − − − + +
Type Y (flipped) + − − + − +

Next, we consider the Higgs boson couplings to fermions. The most general renormalizable
Yukawa couplings of the two Higgs doublets to a single generation of up and down-type quarks
and leptons (using third generation notation) is given by

−LYuk = Y1
b bRΦi ∗

1 Q
i
L+Y2

b bRΦi ∗
2 Q

i
L+Y1

τ τRΦi ∗
1 L

i
L+Y2

τ τRΦi ∗
2 L

i
L+εij

[
Y1
t tRQ

i
LΦj

1+Y2
t tRQ

i
LΦj

2

]
+h.c. ,
(52)

where ε12 = −ε21 = 1, ε11 = ε22 = 0, QL = (tL , bL) and LL = (νL , eL) are the doublet
left handed quark and lepton fields and tR, bR and eR are the singlet right-handed quark and
lepton fields. However, if all terms in Eq. (52) are present, then tree-level Higgs-mediated
FCNCs would be present, in conflict with experimental constraints. To avoid tree-level Higgs-
mediated FCNCs, we extend the discrete Z2 symmetry to the Higgs-fermion Lagrangian. There
are four possible choices for the transformation properties of the fermions with respect to Z2,
which we exhibit in Table 1.

For simplicity, we shall assume in this paper that the pattern of the Higgs couplings to down-
type quarks and leptons is the same. This leaves two possible choices for the Higgs-fermion
couplings [11]:

Type I: Y1
t = Y1

b = Y1
τ = 0 , (53)

Type II: Y1
t = Y2

b = Y2
τ = 0 . (54)

In particular, the pattern of fermion couplings to the neutral Higgs bosons in the Type I and
Type II models is exhibited in Table 2.

In the strict alignment limit, the fermion couplings to the SM-like Higgs boson should
approach their Standard Model values. To see this explicitly, we note the identities,

cosα

sin β
= sβ−α + cot βcβ−α , (55)

− sinα

cos β
= sβ−α − tan βcβ−α , (56)

sinα

sin β
= cβ−α − cot βsβ−α , (57)

cosα

cos β
= cβ−α + tan βsβ−α . (58)

If h is the SM-like Higgs boson, then in the limit of cβ−α → 0, the fermion couplings of h ap-
proach their Standard Model values. However, if tan β � 1, then the alignment limit is realized

9



Table 2: Tree-level vector boson couplings CV (V = W,Z) and fermionic couplings CF normal-
ized to their SM values for the two scalars h,H and the pseudoscalar A in Type I and Type II
Two-Higgs-doublet models.

Type I and II Type I Type II
Higgs V V up quarks down quarks up quarks down quarks

and leptons and leptons
h sin(β − α) cosα/ sin β cosα/ sin β cosα/ sin β −sinα/ cos β
H cos(β − α) sinα/ sin β sinα/ sin β sinα/ sin β cosα/ cos β
A 0 cot β − cot β cot β tan β

in the Type-II Yukawa couplings to down-type fermions only if |cβ−α| tan β � 1. That is, if
|cβ−α| � 1 but |cβ−α| tan β ∼ O(1), then the hV V couplings and the htt̄ couplings are SM-like
whereas the hbb̄ and hτ+τ− couplings deviate from their Standard Model values. Thus the
approach to the alignment limit is delayed when tan β � 1. We denote this phenomenon as the
delayed alignment limit. Similar considerations apply if cot β � 1; however, this region of pa-
rameter space is disfavored as the corresponding htt̄ coupling quickly becomes non-perturbative
if cot β is too large.

Finally, we examine the trilinear Higgs self-couplings. Using the results of Ref. [12] (see also
Ref. [47]), the three-Higgs vertex Feynman rules (including the corresponding symmetry factor
for identical particles but excluding an overall factor of i) are given by:

ghAA = −v
[
(Z3 + Z4 − Z5)sβ−α + Z7cβ−α

]
, (59)

gHAA = −v
[
(Z3 + Z4 − Z5)cβ−α − Z7sβ−α

]
, (60)

ghHH = −3v
[
Z1sβ−αc

2
β−α + Z345sβ−α

(
1
3
− c2

β−α
)

+ Z6cβ−α(1− 3s2
β−α) + Z7s

2
β−αcβ−α

]
, (61)

gHhh = −3v
[
Z1cβ−αs

2
β−α + Z345cβ−α

(
1
3
− s2

β−α
)
− Z6sβ−α(1− 3c2

β−α)− Z7c
2
β−αsβ−α

]
, (62)

ghhh = −3v
[
Z1s

3
β−α + Z345sβ−αc

2
β−α + 3Z6cβ−αs

2
β−α + Z7c

3
β−α
]
, (63)

gHHH = −3v
[
Z1c

3
β−α + Z345cβ−αs

2
β−α − 3Z6sβ−αc

2
β−α − Z7s

3
β−α
]
, (64)

ghH+H− = −v
[
Z3sβ−α + Z7cβ−α

]
, (65)

gHH+H− = −v
[
Z3cβ−α − Z7sβ−α

]
. (66)

The trilinear Higgs couplings expressed in terms of the physical Higgs masses are given in
Appendix B.

Consider the alignment limit, cβ−α → 0, where h is SM-like. Then Eqs. (44) and (63) yield,9

ghhh = gSM
hhh

[
1 +

2Z6

Z1

cβ−α +

(
Z345

Z1

− 2Z2
6

Z2
1

− 3

2

)
c2
β−α +O(c3

β−α)

]
, (67)

where the self-coupling of the SM Higgs boson is given by

gSM
hhh = −3m2

h

v
. (68)

9Eq. (67) is obtained in the convention where sβ−α is non-negative, i.e. sβ−α is close to 1.
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Note that in the alignment limit, m2
h ≈ Z1v

2 [cf. Eq. (41)], which implies that Z1 ≈ 0.26.
It is convenient to make use of Eq. (47) [in a convention where sβ−α ≥ 0] to write

cβ−α = −ηZ6 , (69)

where

η ≡ v2√
(m2

H −m2
h)(m

2
H − Z1v2)

=


O(1) , for m2

H ∼ O(v2),

O
(
v2

m2
H

)
� 1 , in the decoupling limit.

(70)

Inserting Eq. (69) in Eq. (67) yields

ghhh = gSM
hhh

{
1 +

[(
Z345 − 3

2
Z1

)
η2 − 2η

]
Z2

6

Z1

+O(η3Z3
6) +O(η2Z4

6)

}
. (71)

In the decoupling limit (where η � 1),

ghhh = gSM
hhh

{
1− 2ηZ2

6

Z1

+O(η2Z2
6)

}
. (72)

It follows that ghhh is always suppressed with respect to the SM in the decoupling limit.10 This
behavior is confirmed in our numerical analysis. In contrast, in the alignment limit without
decoupling, |Z6| is significantly smaller than 1 and η ∼ O(1). It is now convenient to use
Eq. (27) to eliminate Z345,

ghhh = gSM
hhh

{
1 +

[(
Z7 tan 2β − 1

2
Z1

)
η2 − 2η

]
Z2

6

Z1

+ (2 cot 2β − tan 2β)η2Z
3
6

Z1

+O(Z3
6)

}
, (73)

where the term above designated by O(Z3
6) contains no potential enhancements in the limit

of s2β → 0 or c2β → 0. Given that η ∼ O(1) in the alignment limit without decoupling, the
form of Eq. (73) suggests two ways in which ghhh can be enhanced with respect to the SM. For
example if tan β ∼ 1, then one must satisfy (Z7 − Z6)η tan 2β >∼ 2 + 1

2
Z1η. Alternatively, if

tan β � 1, then one must satisfy Z6η cot 2β >∼ 1 + 1
4
Z1η (the latter inequality requires Z6 < 0,

since cot 2β < 0 when 1
4
π < β < 1

2
π). In both cases, ghhh > gSM

hhh is possible even when |Z6|
and |Z7| are significantly smaller than 1. Indeed, both of the above alternatives correspond to
Z345 � Z1 and ηZ345 � 1 in Eq. (71).

As a second example, consider the hAA coupling given in Eq. (59) [or Eq. (B.6)]. Using
Eq. (27), we find that in the alignment limit,

ghAA = −1

v

{
m2
h − 2Z5v

2 − (Z6 − Z7)v2 tan 2β + 2Z6v
2 cot 2β +O(cβ−α)

}
= −1

v

{
m2
h − 2λ5v

2 + 2Z6v
2 cot 2β +O(cβ−α)

}
, (74)

10In the double decoupling limit where η � 1 and |Z6| � 1, Eq. (72) shows that the deviation of ghhh from
the corresponding SM value is highly suppressed.
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A similar computation yields the Hhh coupling given in Eq. (62) [or Eq. (B.9)],

gHhh =
1

v

{
3Z6v

2 −
[
m2
h − 4Z6v

2 cot 2β + 2(Z6 − Z7)v2 tan 2β
]
cβ−α +O(c2

β−α)

}
. (75)

In the alignment limit without decoupling, the O(1) terms in Eqs. (74) and (75) that are
proportional to Z6 should be regarded as terms of O(cβ−α) [cf. Eqs. (69) and (70)]. That
is, the decoupling limit [with Z6 ∼ O(1)] and the alignment limit without decoupling can be
distinguished in the trilinear Higgs couplings. Indeed, the Hhh coupling is suppressed in the
alignment limit without decoupling, whereas it can be of O(v) in the decoupling limit. All
the other trilinear Higgs self-couplings can be analyzed in the alignment limit following the
procedure outlined above.

Last but not least, it is noteworthy that

ghH+H− = −v
[
Z3 +O(cβ−α)

]
, (76)

approaches a finite nonzero value in the alignment limit, with or without decoupling. This
is relevant for the analysis of the one-loop process h → γγ, which has a contribution that is
mediated by a H± loop. In the decoupling limit, the charged Higgs loop amplitude is suppressed
by a factor of O(v2/m2

H±) relative to the W± and the top quark loop contributions. But, in the
alignment limit without decoupling, the charged Higgs loop is parametrically of the same order
as the corresponding SM loop contributions, thereby leading to a shift of the h → γγ decay
rate from its SM value. This is in stark contrast to the behavior of tree-level Higgs couplings,
which approach their SM values in the alignment limit with or without decoupling. That is,
the loop-corrected Higgs couplings to SM particles approach their SM values in the decoupling
limit, but can yield deviations in the alignment limit without decoupling due to internal loops
involving light non-SM-like Higgs states.

Before concluding this section, we examine a second theoretical distinction between the
decoupling limit and alignment limit without decoupling. The SM Higgs sector is famously
unnatural [49, 50]. In particular, a fine tuning of the Higgs sector squared-mass parameter
is required in order to explain the observed value of the vacuum expectation value (vev),
v ≈ 246 GeV. The 2HDM generically requires two separate and independent fine tunings. In
addition to identifying v ≈ 246 GeV, which fixes the values of Y1 and Y3 in Eq. (31), one must
also perform a second fine-tuning to fix the squared-mass parameter Y2 to be of O(v2). Thus,
the regime of the decoupling limit (where Y2 � v2) is less fine-tuned than the general 2HDM,
since the natural value for Y2 is the ultraviolet cutoff of the theory beyond which new physics
presumably enters. As long as the heavier Higgs scalars (whose squared masses are of order
Y2) are sufficiently massive, then h will be SM-like.11

In contrast, in the case of alignment without decoupling (or in the double decoupling limit),
we have |Z6| � 1, which is a finely-tuned region of the 2HDM parameter space (beyond the
two tunings discussed above) unless we can demonstrate that Z6 = 0 is a consequence of an
enhanced symmetry of the theory. The possibility of a natural implementation of alignment

11In general, m2
H � |Z6|v2 is sufficient to guarantee SM-like h couplings. However, in the 2HDM with

Type-II Yukawa coupling and tanβ > 1, a SM-like h coupling to down-type quarks and leptons requires
m2
H � |Z6|v2 tanβ, leading to the phenomenon of delayed decoupling [12, 51–53] at large tanβ. This is a

special case of delayed alignment introduced below Eq. (58).

12



has been previously treated in [54]. In the absence of Higgs–fermion Yukawa couplings, it
is sufficient to consider the symmetry properties of the scalar potential. Note that we have
already imposed a softly-broken Z2 symmetry, which yields λ6 = λ7 = 0 in the original basis.
In addition, we observe that Z6 = Z7 = 0 [which also implies that Y3 = 0 in light of Eq. (31)]
corresponds to an exact Z2 symmetry in the Higgs basis.

The conditions Z6 = Z7 = 0 can be implemented in three ways. If s2β = 0, then only
one of the two Higgs fields acquires a non-zero vev. This means that our original basis and
the Higgs basis coincide (in a convention where H1 denotes the Higgs field with the non-zero
vev), in which case the original Z2 symmetry is unbroken. If λ6 = λ7 = 0 and s2βc2β 6= 0,
then setting Z6 = Z7 = 0 in Eqs. (24) and (25) yields λ1 = λ2 = λ345. Such a scalar potential
exhibits a softly-broken CP3 symmetry, one of the three possible generalized CP symmetries
that can be imposed on the 2HDM [55].12 Finally, if the scalar potential exhibits an exact
CP2 symmetry, or equivalently there is a basis in which the Z2 discrete symmetry (Φ1 → +Φ1,
Φ2 → −Φ2) and a second Z2 interchange symmetry (Φ1 ←→ Φ2) coexist [45,55], then it follows
that λ6 = λ7 = 0, λ1 = λ2 (with λ5 real), m2

11 = m2
22 and m2

12 = 0. In this case, Eqs. (3) and
(4) yield tan β = 1.13 The latter can be maintained when the CP2 symmetry is softly broken
such that m2

12 6= 0. Using Eqs. (24) and (25) then yields Z6 = Z7 = 0. Thus, in the absence
of the Higgs-fermion Yukawa couplings, Z6 = 0 is a consequence of an enhanced symmetry of
the scalar potential, in which case the regime of alignment without decoupling and the double
decoupling regime are both natural in the sense of ’t Hooft [56].

If we now include the Higgs-fermion Yukawa coupling, we can still maintain the symmetry
of the scalar potential in special cases. If the Z2 symmetry transformation is defined in the
Higgs basis such that H2 is odd (i.e. H2 → −H2) and H1 and all fermion and vector fields are
even, then the resulting model corresponds a Type-I 2HDM with s2β = 0, which we recognize
as the inert 2HDM [57, 58]. Indeed, if we perturb the inert 2HDM by taking Z6 and Z7 small,
then either h or H will be approximately SM-like. In the case of s2β 6= 0, we would need to
extend the (softly-broken) CP3 or CP2 symmetry of the scalar potential to the Higgs-fermion
Yukawa sector. As shown in [59], no phenomenologically acceptable CP2-symmetric model
exists. A unique softly-broken CP3-symmetric 2HDM does exist with an acceptable fermion
mass spectrum; however this model does not appear to be phenomenologically viable due to
insufficient CP-violation and potentially large FCNC effects [59]. Hence, for generic choices of
the 2HDM parameters, the regime of alignment without decoupling and the double decoupling
regime must be regarded as more finely tuned than the generic 2HDM.

3 Setup of the numerical analysis

In this section, we give details on the numerical procedure. In particular, we describe
the scan of the 2HDM parameter space and the different constraints coming from theoretical

12If m2
12 = 0 in Eq. (1) in addition to λ6 = λ7 = 0, then the Z2 discrete symmetry (Φ1 → +Φ1, Φ2 → −Φ2)

is exact. In this case, Z6 = Z7 = 0 implies that λ1 = λ2 = λ345 and m2
11 = m2

22 [the latter via Eq. (30)], and
corresponds to an exact CP3 symmetry of the scalar potential. This restriction of scalar potential parameters
has also been obtained in [54].

13Here we assume that λ1 6= λ345; otherwise, the CP2 symmetry is promoted to the CP3 symmetry previously
considered.
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requirements, signal strengths of the observed 125 GeV Higgs state, flavor physics and direct
searches for extra Higgs states.

Imposing a softly broken Z2 symmetry (Φ1 → +Φ1, Φ2 → −Φ2) on the scalar potential
given in Eq. (1) which sets λ6 = λ7 = 0, the free parameters of the 2HDM scalar potential
can be chosen to be the four physical Higgs masses mh,mH ,mH± ,mA, the mass term m2

12, the
ratio of the two Higgs vacuum expectation values tan β and the mixing angle α of the CP-even
Higgs squared-mass matrix. In this study, we choose the following ranges for the scan,

α ∈ [ −π/2, π/2], tan β ∈ [0.5, 60], m2
12 ∈ [−(2000 GeV)2, (2000 GeV)2],

mH± ∈ [m∗, 2000 GeV], mA ∈ [5 GeV, 2000 GeV], (77)

where m∗ is a lower bound on the charged Higgs mass originating either from the LEP direct
searches [60] or constraints from B-physics; mainly from the Z → bb̄ (Rb), εK ,∆mBs , B → Xsγ
and B → τν constraints [38–41]. In principle both h and H can have the same properties as
the SM Higgs and thus serve as possible candidates for the observed SM-like Higgs state. In
this paper, we consider mh ≡ 125.5 GeV14, taking

mH ∈ [129.5 GeV, 2000 GeV], (78)

As mentioned in Section 2.1, the degenerate case mh ≈ mH is not considered in this study.
Instead, we require a 4 GeV mass splitting between h and H in order to avoid H contamination
of the h signal. Since we are primarily interested in the case that the electroweak gauge
bosons acquire most of their masses from only one of the Higgs basis doublet fields, we impose
sβ−α ≥ 0.99, which translates into |cβ−α| . 0.14. This implies that we are allowing at most a
1% deviation from Ch

V = 1. This should be compared with the expected ultimate precision for
CV of about 2–4% at the high-luminosity LHC, and about 0.2–0.5% at the ILC [23,28].

We perform a flat random scan over this parameter space using the public code 2HDMC [30]
for a precise state-of-the-art computation of the couplings and decay widths of the various
Higgs states. Only points satisfying stability of the scalar potential [cf. Eq. (A.17)], coupling
perturbativity and tree-level S-matrix unitarity are retained. We also require the S, T , and U
Peskin-Takeuchi parameters [61] to be compatible with their corresponding values derived from
electroweak precision observables [62]. These constraints are also checked by means of 2HDMC.

Next we impose constraints from the non-observation of Higgs states other than the one at
125 GeV. From the LEP direct searches for light Higgs states, we consider the cross-section
upper limits on e+e− → Zh/H and e+e− → Ah/H from [63] and [64] respectively. For very light
A below 9.5 GeV, the limits from Upsilon decays [65] are important, for which we follow the
implementation in NMSSMTools 4.6.0 [66]. Moreover, we consider the limits from CMS on light
pseudo scalars decaying into µ+µ− [67] in the mass range mA = 5.5–9 and 11.5–14 GeV, which
are relevant in particular in Type II models. The limits from LHC searches for additional heavy
Higgs states are also taken into account. These include the model-independent limits from the
searches for H → ZZ(∗) → 4` from ATLAS [68] and CMS [69] and for H → ZZ(∗) → 2`2ν
from CMS [70]. However, these limits are easily evaded in our study where it is the h that
has Ch

V = sβ−α > 0.99, while HV V couplings behave as cβ−α and |cβ−α| ≤ 0.14. (This also

14Having performed the parameter scans before the publication of [3] which reports a central value of the
Higgs mass of 125.09 GeV, we use 125.5 GeV as the observed Higgs mass in this analysis.
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holds true in view of the Moriond 2015 update of the Higgs data [71].) More important are the
limits from H,A→ ττ searches in gluon-fusion or associated production with a pair of b quarks
from ATLAS [72] and CMS [73]. These are particularly relevant in the large tan β region
of the Type II models where a significant enhancement of the down-type fermion coupling
to the neutral Higgs states occurs. Finally, the limits derived from the pseudoscalar search
A → Zh, h → bb̄ from ATLAS [74] and CMS [75] are imposed. (Limits from other searches,
like for A → Zγ [76] or hh → bb̄bb̄ [77], have no effect on the results; the very recent CMS
limits on A → ZH and H → ZA [78] are not taken into account but will be commented
upon in Section 4.4.) To evaluate all these constraints, production of the H and A via gluon-
gluon fusion (ggF) and via associated production with a pair of bottom quarks (bbH,bbA) are
computed at NNLO QCD15 accuracy using SusHi-1.3.0 [32], while the vector-boson fusion
(VBF) mode for the H is computed at NLO with VBFNLO-2.6.3 [33].

Signal strengths constraints coming from the precise measurements of the properties of the
125 GeV state are taken into account by means of Lilith 1.1.2 [31]. We require each point
of the analysis to be allowed at the 95% confidence level (CL). The CL is derived from the
log-likelihood ratio

∆(−2 lnL)(P) = −2 lnL(P/2̂HDM), (79)

where L is the likelihood constructed by Lilith using up-to-date signal strength measurements,

P represents the set of parameters of the tested point and 2̂HDM the best-fit point of the
model. The Lilith database 15.04 is used for this analysis. It contains all the latest Higgs
signal strengths measurements from ATLAS [4, 79–87] and CMS [5, 69, 88–94] as of April 2015
and a combined DØ and CDF result [95].

4 Results

4.1 Parameters

Let us start by reviewing the relevant parameter space. Figure 1 shows the crucial relation
between |Z6|, |cβ−α| and mH , illustrating the different ways alignment can occur with and
without decoupling.16 As expected, |Z6| exhibits a clear dependence on theH–hmass difference,
see Eq. (42), and steeply drops towards zero in the limit |cβ−α| → 0, i.e. when the h becomes
purely SM-like. When mH is of the order of 1 TeV, one needs to be extremely close to sβ−α = 1
to have small |Z6|, for instance |Z6| ≈ 10−3 requires |cβ−α| ≈ 6 × 10−5 for mH = 1 TeV,
while for lighter H the departure of sβ−α from 1 can be more important, for instance the same
|Z6| ≈ 10−3 value requires |cβ−α| ≈ 2 × 10−3 for mH = 200 GeV. It is in principle always

15The NNLO corrections for ggF are only computed for the top quark loop, as those for the bottom quark
loop are very small.

16In this and subsequent figures, we give 3d information on a 2d plot by means of a color code in the third
dimension. To this end, we must chose a definite plotting order. Ordering the points from high to low values in
the third dimension, as done for log10 |Z6| in Fig. 1, means that the highest values are plotted first and lower
and lower values are plotted on top of them. As a consequence, regions with low values may (partly) cover
regions with high values. The opposite is of course true for the ordering from low to high values. To avoid
a proliferation of plots, in each figure we show only one ordering, trying to choose the one that gives most
information. The figures with inverted plotting order are available upon request.
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Figure 1: |cβ−α| versus mH in Type I (left) and Type II (right) with log10 |Z6| color code. Points
are ordered from high to low log10 |Z6| values.

possible to obtain arbitrarily small values of |Z6| if one pushes sβ−α arbitrarily close to 1. For
the purpose of the numerical analysis, we limit ourselves to |cβ−α| ≥ 10−5; we have checked that
this captures well all features relevant for the |cβ−α| → 0 limit. Interestingly, as mH becomes
larger, we observe that the decoupling limit sets a stronger upper limit on |cβ−α| than the one
set in the numerical scan (|cβ−α| . 0.14). Observing a heavy mH & 850 GeV at the LHC would
provide a better-than-1% indirect determination of the h-coupling to electroweak gauge bosons
in the framework of these scenarios.

The range of mA is also interesting. In principle mA can be above or below mh,H , and
even mA < mh/2 is possible and consistent with the data [27]. However, once mH is fixed,
the allowed range of mA is limited (and vice versa) as illustrated in Fig. 2. We see that
in both Type I and Type II, if the scalar H is heavy and decoupled, the same is true for
the pseudoscalar A. Conversely, if mH is light, say below 600 GeV, also mA must be below
about 800 GeV. Furthermore, it appears that for |cβ−α| <∼ 10−3 (or, equivalently, small |Z6|)
mH < mA is favored. This can be understood from Eq. (43) [or Eq. (45)]: since the m2

hc
2
β−α

(or Z6cβ−α/sβ−α) term therein is always quite small, the mass ordering between mH and mA is
largely determined by the sign of Z5. The value of Z5, in turn, is driven by λ5 [cf. Eq. (A.13)],
which according to our numerical analysis tends to be negative for small cβ−α.

A strong interrelation is also found between mA, mH and mH± as illustrated in Fig. 3. The
two panels show mH versus mA with color-coding according to mH± , with the ordering going
from high (blue) to low (red) mH± values. While the correlation of mH± with mH and mA is
somewhat different in Type I and Type II, in both models a light charged Higgs below 500–
600 GeV requires that the H and A also be not too heavy, with masses below about 800 GeV.
When inverting the plotting order of mH± (not shown), we find that for any given mH± there
is a lower limit on mH and mA: for mH± ∼ 1 TeV, also mH,A are of that order. In turn, when
mH and mA are in the non-decoupling regime, mH± cannot be much heavier. The absence of
points in a triangular region at low mA and mH in Type II (but not for Type I) is due to the
fact that in the Type II model B-physics requires mH± >∼ 300 GeV and at low mA the precision
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Figure 2: mH versus mA in Type I (left) and Type II (right) with the color code indicating
the value of log10 |cβ−α|. Points are ordered from high to low log10 |cβ−α|. The dashed lines are
isolines of Z5=4 (upper line), 0 (middle line) and −4 (lower line) for |cβ−α| = 0.015 (varying
|cβ−α| from 0 to 0.14 has no visible effect on them).

Figure 3: mH versus mA in Type I (left) and Type II (right) with the color code indicating the
value of mH± . Points are ordered from high to low mH± .

electroweak T parameter constraint would be violated if mH differs very much from mH± .17

4.2 Couplings

The next question to address is what variations in the couplings of the 125.5 GeV state are
still possible in the limit of approximate alignment where Ch

V ≈ 1. In particular, recall that
in the scan we impose sβ−α > 0.99 with mh = 125.5 GeV, without requiring however that the
other couplings of the h be very SM-like. To answer this question, we first show in Fig. 4 the

17Very recently, the analysis of Misiak and collaborators [96] has improved the charged Higgs mass bound in
the Type II 2HDM to mH± >∼ 480 GeV at 95% CL. We have not implemented this stricter bound in our scans.
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Figure 4: |cβ−α| versus Ch
F in Type I (left) and |cβ−α| versus Ch

U in Type II (right) with mH

color code. Points are ordered from low to high mH . The points with Ch
U ≈ 1 and |cβ−α| > 0.03

are the points for which Ch
D ≈ −1, i.e. the opposite-sign Yukawa coupling points, see Fig. 5.

Figure 5: |cβ−α| versus Ch
D in Type II with mH color code for the full Ch

D range (left) and
zooming on the Ch

D > 0 region (right). Points are ordered from low to high mH .

dependence of the reduced couplings to (up-type) fermions, see Table 2, Ch
F ≡ Ch

U = Ch
D in

Type I (Ch
U in Type II) on |cβ−α|. The mass of the heavier scalar H is shown as a color code.

We see that when mH is light, for only 1% deviation from unity in Ch
V , Ch

U can deviate as
much as about 10% (20%) from unity in Type I (Type II). Inverting the plotting order of mH

(not shown), it is interesting to note that these deviations are largest for mH ≈ 700–800 GeV
while slightly more constrained for lighter mH . On the other hand, in the decoupling limit
the deviations in Ch

U are more constrained, with a maximum of 5% for mH & 1.2 TeV in both
Type I and Type II. It is also interesting to observe how quickly alignment leads to SM-like
couplings: for |cβ−α| <∼ 10−2 the deviations in Ch

U are limited to just a few percent no matter
the value of mH .

The situation is quite different for the coupling to down-type fermions, Ch
D, in Type II, see
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Fig. 5. First of all, the possible deviations are larger than for Ch
U , with Ch

D ranging from about
0.70 to 1.15 even for |cβ−α| ∼ 10−2. Indeed, this is an example of the delayed alignment limit
discussed below Eq. (58); one needs |cβ−α| as low as about 3 × 10−4 to have Ch

D within 2% of
unity. This drives the whole phenomenology of the scenario: as we will see, sizable deviations
of Ch

D from 1 lead to possible large deviations in the signal strengths even for quite small |cβ−α|.
Inverting the plotting order of mH (not shown), we note, however, that for any given |cβ−α|
of a few times 10−3 or smaller, Ch

D is limited to be closer to 1 when mH is small than in the
decoupling case with large mH .

Moreover, Ch
D = 1 is not possible unless |cβ−α| is very small (again a few times 10−3 or

smaller). In particular, large positive deviations of Ch
D & 1.12 would indicate mH . 750 GeV.

On the contrary, Ch
D values which are substantially smaller than 1 can be achieved in both

the decoupling and non-decoupling regimes except for a small island of points located around
Ch
D ≈ 0.8 and |cβ−α| ≈ 0.1 that is achieved only for mH . 400 GeV. Thus, a discovery of a

light H state in association with a measured value of Ch
D ∼ 0.8 would give an indirect way to

probe sub-percent deviation of Ch
V in this Type II scenario.

Finally, for light mH the sign of Ch
D relative to Ch

V and Ch
U can be opposite to the corre-

sponding SM value. This is realized for not so small values of |cβ−α| ≥ 0.035, i.e. not in the
deep alignment limit, for 230 GeV ≤ mH ≤ 665 GeV, mA . 650 GeV and 0.08 ≤ |Z6| ≤ 0.92.
For the points in this region, the up-type coupling is very close to 1, corresponding to the few
isolated points observed in the right panel of Fig. 4. As discussed in [53], the eventual LHC
Run 2 precision will allow one to either confirm or eliminate the opposite-sign coupling possibil-
ity using precise signal rate measurements of the h in a few channels. Should the opposite-sign
coupling be confirmed, one would expect to also see A signals (plus perhaps H signals) in the
above mass range, thereby providing a confirmation of this scenario. (The cross sections for A
and H signals will be discussed in Section 4.4.)

The tan β dependence of the fermion couplings of h is shown in Fig. 6. We see that large
tan β leads to Ch

F very close to 1 in Type I and Ch
U very close to 1 in Type II. However in Type II,

at large tan β, small cβ−α is not enough to drive Ch
D → 1: the approach to SM-like coupling

is delayed, as discussed in Section 2 in the text below Table 2. Note also that the opposite-
sign Ch

D solution in Type II requires tan β & 10 and Ch
V ∼ 0.9994 (which is experimentally

indistinguishable from exact alignment).
The loop-induced coupling to photons, Ch

γ , is presented in Fig. 7. Even at very small cβ−α,
Ch
γ can deviate substantially from 1. This is due to the charged-Higgs contribution to the hγγ

coupling. This contribution can be large with either sign, positive or negative, in Type I, while
in Type II large contributions are always negative and suppress Ch

γ [53]. Note in particular the
Type II points with Ch

γ ∼ 0.95 associated with the opposite-sign Ch
D cases for which the charged

Higgs loop contribution does not decouple and always leads to a suppression. Regarding the
loop-induced coupling to gluons, in the Type I model, Ch

g , is equal to Ch
F (up to NLO), the

dependence of which on |cβ−α| was presented in Fig. 4. In the case of Type II, Ch
g and Ch

U

are very similar despite the difference between up and down-type couplings, this being due to
the fact that the b-loop contribution to Ch

g is rather small. The one exception in the case of
Type II arises for the opposite-sign scenarios for which the b-loop contribution changes sign
and interferes constructively with the t-loop contribution. For these latter cases, Ch

g is always
enhanced, Ch

g ∼ 1.06 [53].
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Figure 6: Fermionic couplings versus tan β in Type I (upper panel) and Type II (lower panels)
with |cβ−α| color code. Points are ordered from high to low |cβ−α|.

Figure 7: |cβ−α| versus Ch
γ in Type I (left) and Type II (right) with mH color code. Points are

ordered from low to high mH .
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Figure 8: |cβ−α| versus the reduced triple Higgs coupling Chhh in Type I (left) and Type II
(right) with mH color code. Points are ordered from high to low mH values.

While the exceedingly small deviations in Ch
V that we consider here will most likely not be

directly accessible at the LHC, precision measurements of the other couplings together with
a measurement of, or a limit on, mH,A can be used for consistency checks and for eventually
pinning down the model. Of special interest in this context is also the triple Higgs coupling.
The dependence of Chhh ≡ ghhh/g

SM
hhh on cβ−α and mH is shown in Fig. 8. It is quite striking

that large values of Chhh > 1 (up to Chhh ≈ 1.7 in Type I and up to Chhh ≈ 1.5 in Type II)
can be achieved in the non-decoupling regime, roughly mH . 600 GeV, for |cβ−α| values of
the order of 0.1, whereas for heavier mH , Chhh is always suppressed as compared to its SM
prediction. These features were explained in the discussion below Eq. (67).18 Note also that
for mH ∼ 1 TeV, Chhh approaches the SM limit of 1 as |cβ−α| decreases more slowly than is the
case for lighter mH ; substantial deviations Chhh < 1 are possible as long as |cβ−α| is roughly
greater than a few times 10−2. This comes from the (2Z6/Z1)cβ−α term in Eq. (67): since, in
the convention where sβ−α ≥ 0, Z6cβ−α is always negative, cf. Eq. (46), and since Z6 can be
sizable when mH ∼ 1 TeV, see Fig. 1, this can lead to a suppression as extreme as Chhh ≈ 0.1.
(For mH � 1 TeV the deviations are smaller in part because the possible range of cβ−α is
limited as seen in Fig. 1.) For very light mH , on the other hand, Z6 is much smaller and hence
the deviations with Chhh < 1 are more limited. For mH . 250 GeV we find Chhh ≈ 0.80–1.40
in Type I and Chhh ≈ 0.90–1.35 in Type II. This is at the limit of what can be measured, as
the expected precision is about 50% at the high-luminosity options of the LHC and the ILC
with 500 GeV, and about 10–20% at a 1–3 TeV e+e− linear collider with polarised beams [28].

The relation between the triple Higgs coupling gHhh, |cβ−α| and mH is presented in Fig. 9.
In Type I, large values of gHhh can be achieved in the non-decoupling regime for |cβ−α| of the
order 10−1. This is also true in Type II, though the range of gHhh is somewhat smaller. We
observe moreover that for given |cβ−α| . 10−1, the achievable Hhh coupling grows with mH .
Nonetheless, as will be shown in Section 4.4, the H → hh decay is mostly relevant below the
tt̄ threshold. Moreover, in the exact alignment limit, the Hhh coupling vanishes.

18This cannot be seen directly in Fig. 8, but we verified that points with mH > 630 GeV never have Chhh > 1.
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Figure 9: |cβ−α| versus the triple Higgs coupling gHhh in Type I (left) and Type II (right) with
mH color code. Points are ordered from high to low mH values.

Figure 10: Signal strengths in Type I for the 125.5 GeV state, for gg → h → γγ (left) and
gg → h → ZZ∗ (right) with mH color code. Points are ordered from low to high mH values.
Points with µhgg(ZZ

∗) < 0.92 are ones for which h→ AA decays are present, so that the total
h width is increased, which suppresses this particular channel’s rate.

4.3 Signal strengths

The variations in the couplings to fermions discussed above have direct consequences for
the signal strengths of the SM-like Higgs boson. Since the results depend a lot on the fermion
coupling structure, we examine this separately for Type I and Type II.

Let us start with Type I. Figure 10 shows the signal strengths for gluon-gluon fusion and
decay into γγ (µhgg(γγ), left panel), and decay into ZZ∗ (µhgg(ZZ

∗), right panel). Recalling
that Ch

F varies between 0.87 and 1.11 in Type I and comparing with Fig. 7, it is clear that
the variation in µhgg(γγ) comes to a large extent from the charged Higgs contribution to the γγ
loop. Even for |cβ−α| → 0, large deviations from 1 can occur due to a sizable charged Higgs
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Figure 11: Signal strength for gg → h→ ZZ∗ in Type I for the 125.5 GeV state with Ch
F (left)

and tan β (right) color code. Points are ordered from low to high Ch
F and tan β values.

contribution or the presence of a light pseudoscalar mA < mh/2 that increases the SM-like
Higgs total width. On the other hand, in the decoupling limit, the charged Higgs loop is small
and Ch

γ is largely determined by the relative size of the top and bottom loops compared to the
W loop (which enters with opposite sign). On the contrary, Ch

g is solely determined by the
size of the t and b loop contributions. One finds numerically that the hγγ coupling is more
suppressed than the hgg coupling is enhanced, so that µhgg(γγ) . 1 in the decoupling regime.

In contrast, µhgg(ZZ
∗) shows less variation, µhgg(ZZ

∗) = [0.92, 1.04] if the h → AA decay
channel is closed, with small excursions around 1 allowed in the decoupling limit. It also exhibits
a less distinct dependence on mH compared to µhgg(γγ). The reason is that µhgg(ZZ

∗) is driven
by Ch

F and tan β, as illustrated in Fig. 11. The dependence on Ch
F is clear as larger (smaller)

Ch
F leads to larger (smaller) cross section for gg → h. The dependence on tan β results from an

interplay between the top (which drives the gg → h cross section) and bottom (which drives
the total h width) Yukawa couplings both given by Ch

F = sβ−α + cβ−α/tβ. The scattered points
with suppressed µhgg(ZZ

∗) are those where the h→ AA decay mode is open and increases the
total width. An analogous picture emerges for the VBF-induced hττ signal strengths, since
µhVBF(ττ) = µhgg(ZZ

∗) in Type I.
In Type II, we find that the situation is quite different. Here, the signal strengths are driven

by both the top quark coupling, which impacts Ch
g , and by the bottom Yukawa coupling Ch

D,
which also enters Ch

g and, often of greatest importance, determines the h → bb̄ decay width.
In Fig. 12 we therefore show the signal strengths µhgg(γγ), µhgg(ZZ

∗) and µhVBF(ττ) in Type II
comparing the dependence on mH (left panels) to the dependence on |Ch

D| (right panels). Note
that the mH dependence of the signal strengths reflects the mH dependence of Ch

D in Fig. 5. As
a consequence, µhgg(γγ) and µhgg(ZZ

∗) can be enhanced in the decoupling regime, with values
going as high as 1.4–1.5 (mainly due to suppression of the total h width), to be compared to the
current model-independent 95% CL limits of µhgg(γγ) ∈ [0.76, 1.69] and µhgg(ZZ

∗) ∈ [0.71, 1.80].
Suppression is also possible, reaching a level of 0.7 for low mH if |cβ−α| > 0.01 but limited
to 0.9 for large mH & 1250 GeV. For all mH , the amount of possible suppression decreases
systematically with decreasing |cβ−α|. For µhVBF(ττ) the behaviour is exactly opposite. For
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Figure 12: Signal strengths in Type II for the 125.5 GeV state with mH (left) and |Ch
D| color

code. Points are ordered from low to high mH and |Ch
D| values.
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Figure 13: Correlations of signal strengths in Type I, on the left illustrating the dependence
on mH , on the right illustrating the dependence in |cβ−α|. Points are ordered from low to high
mH values (left) and high to low |cβ−α| values (right).

completeness we note that the horizontal bar at |cβ−α| ∼ 10−1 is the Ch
D < 0 region, and

the scattered points are those where the h → AA decay is open. Finally note that as |cβ−α|
decreases, the signal strengths in Type II converge to 1 much more slowly than in Type I.
This is a consequence of the delayed alignment of Ch

D to 1 in Type II when tan β is large. An
additional effect arises in µhgg(γγ) due to the charged Higgs loop contribution to the h → γγ
amplitude. In particular, there exists an intermediate range of charged Higgs masses19 for which
ghH+H− ∼ −2m2

H±/v [cf. Eq. (B.12)], which yields a constant non-decoupling contribution that
suppresses the h→ γγ amplitude [53] (see also [97,98]). Indeed, even for values of |cβ−α| as low
as 10−4, this signal strength does not converge to 1 until mH (and thus mH±) is above about
1 TeV.

Putting everything together we find quite distinct correlations of signal strengths in both
Type I and Type II that depend on whether the additional Higgs states are decoupled or

19In this intermediate mass region, the charged Higgs mass is given by Eq. (33), where Y2 ∼ O(v2) and Z3 >∼ 1
such that the upper bound of Z3 is constrained by its unitarity bound.
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Figure 14: Correlations of signal strengths in Type II, on the left illustrating the dependence
on mH , on the right illustrating the dependence in |cβ−α|. Points are ordered from low to high
mH values (left) and high to low |cβ−α| values (right).
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not. This is illustrated in Fig. 13 for Type I and in Fig. 14 for Type II. In both figures,
the panels on the left show the dependence on mH while the panels on the right show the
dependence on |cβ−α| for the non-decoupling regime with mH ≤ 600 GeV. We note that there
are definite combinations of signal strengths that cannot be reached in the decoupling regime.
A measurement of such values would be a very strong motivation to look for additional light
Higgs states. In turn, when the masses of additional light Higgs states are measured, signal
strength correlations as shown in Figs. 13 and 14 can help pin down the model. Furthermore,
for mH ≤ 600 GeV even in the apparent alignment limit |cβ−α| → 0 there can be deviations in
the signal strengths from unity that cannot be mimicked by decoupling.

Examples for Type I are the suppression of both µhgg(γγ) and µhgg(ZZ
∗), or the combination

µhgg(γγ) > 1 with µhgg(ZZ
∗) ≈ 1. The former case is also present in Type II for light mH ,

while the latter does not occur at all in Type II. More concretely, in the decoupling regime
of Type II, µhgg(γγ) ≈ µhgg(ZZ

∗), whereas for light mH one can have µhgg(γγ) < µhgg(ZZ
∗)

even if |cβ−α| is very small (comparing Fig 14, top row, left vs. right). Another example
is the simultaneous suppression or enhancement of µhgg(γγ) and µhVBF(γγ) in Type I, that is
not possible in the decoupling regime (cf. Fig 13, bottom left). In Type II, one can have
a simultaneous enhancement, up to 1.45 of µhgg(γγ) and µhVBF(γγ) in the decoupling regime,
but simultaneous suppression is limited to ∼ 0.9–0.95 (cf. Fig 14, middle left); simultaneous
suppression to a level of ∼ 0.8 is however possible in the alignment limit for mH <∼ 300 GeV,
i.e. well away from the decoupling regime. Precise enough signal strength measurements could
therefore provide strong hints that we are in the alignment without decoupling regime of a
2HDM even if no additional Higgs states are discovered at that time.

4.4 Cross sections for H and A production

Let us now turn to the prospects of discovering the additional neutral states. The two
largest production modes at the LHC are gluon fusion, gg → X, and the associated production
with a pair of b-quarks, bb̄X, with X = A,H. The correlations of the gg → X and bb̄X cross
sections at the 13 TeV LHC in the non-decoupling regime mH ≤ 600 GeV are shown in Fig. 15
for the Type I model and in Fig. 16 for the Type II model. We show the points that pass all
present constraints (in beige) and highlight those that have a very SM-like 125 GeV Higgs state
by constraining all the following signal strengths to be within 5% or 2% of their SM values,
respectively, denoted as SM±5% (red) and SM±2% (dark red):

µhgg(γγ), µhgg(ZZ
∗), µhgg(ττ), µhV BF (γγ), µhV BF (ZZ∗), µhV BF (ττ), µhV H(bb̄), µhtt̄(bb̄) . (80)

We start the discussion with production of A in Type I, shown in the left panel of Fig. 15.
There is a strong correlation between the two production modes, gluon fusion and bb̄ associated
production, which stems from the fact that the relevant couplings are the same up to a sign:
CA
U = −CA

D = cot β. The larger spread in σ(bb̄A) observed for σ(gg → A) > 10−2 pb comes
from the fact that for mA . 400 GeV the bb̄A cross section grows faster with decreasing mA

than that of gg → A. Therefore, along a line of fixed σ(gg → A) in the plot, a point with
higher σ(bb̄A) has a smaller mA. Note also that there is an interference of the top and bottom
loop diagrams in gg → A which changes sign depending on mA. Overall, however, σ(gg → A)
is always at least two orders of magnitude larger than σ(bb̄A).
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Figure 15: σ(bb̄X) versus σ(gg → X) for X = A (left) and X = H (right) in Type I at the
13 TeV LHC for points satisfying all present constraints (in beige) as well as points for which
the signals strengths from Eq. (80) are within 5% and 2% of the SM predictions (in red and
dark red, respectively). The dashed lines indicate σ(bb̄X) = σ(gg → X).

Figure 16: As Fig. 15 but for Type II.

The points with largest cross sections, σ(bb̄A) ≈ 10 pb and σ(gg → A) ≈ 1000 pb, corre-
spond to the case mA < mh/2 which was studied in detail in [27]. One feature of this region is
that µhgg(γγ) and µhgg(ZZ

∗,WW ∗) always differ from each other by about 10%. Constraining
all h signal strengths of Eq. (80) within 5% of unity therefore eliminates these points. Other
points with high cross sections, but not in the very light pseudoscalar region, would also be
eliminated by the SM±5% or SM±2% requirements. However, in this non-decoupling regime
of mH ≤ 600 GeV, points with sizeable cross sections up to 0.2 pb for σ(bb̄A) and up to about
40 pb for σ(gg → A) still remain even at the SM±2% level. At this same SM±2% level, the
smallest σ(gg → A) is about 0.1 fb.

Regarding production of the scalar H in Type I, shown in the right panel of Fig. 15, the
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correlation is even stronger between σ(bb̄H) and σ(gg → H) since both are driven by the same
fermionic coupling CH

F = sinα/ sin β. Note that, as in the A case, the gluon-fusion cross section
is always larger than that for bb̄ associated production. Sizable cross sections are still allowed
under the SM±2% constraint, which implies that in the non-decoupling regime there is a strong
possibility of detecting a non-SM-like scalar state at the LHC. The structure of CH

F is however
such that the coupling can equally well be very much suppressed, leading to extremely small
cross sections. We will come back to this below.

The corresponding results for Type II are presented in Fig. 16. In contrast to Type I, both
bb̄ associated production and gluon–gluon fusion modes for Type II are in principle important
since either can be dominant in different regions of the parameter space. There is only modest
correlation between the two production modes due to the more complex structure of the Type II
fermionic couplings. For A production, one clearly sees the mA < mh/2 region as the detached
scattered points with very large cross sections. As for Type I, these points disappear under
the SM±5% constraint. Still, even for SM±2%, cross sections as large as σ(bb̄A) ≈ 8 pb and
σ(gg → A) ≈ 20 pb can be achieved (although not simultaneously). For H production a
similar picture emerges, with the cross sections however being a factor of a few smaller than for
A production. The minimal cross sections in this mH < 600 GeV non-decoupling regime for the
A and H are correlated in a way that is very favorable for discovery during Run 2 of the LHC.
For example, if σ(gg → A) takes on its minimum SM±2% value of 10 fb then σ(bb̄A) >∼ 80
fb, whereas if σ(bb̄A) takes on its minimal value of few×10−1 fb then σ(gg → A) ≈ 103 fb.
These cross section levels imply that the A should be discoverable in at least one of the two
production modes even in the extreme alignment limit.

Before considering specific decay channels of A and H, we present in Fig. 17 the gluon-
fusion cross sections in Type I and Type II as functions of mA and mH at the 13 TeV LHC.
Here, the color code shows the dependence on tan β.20 In Type I, the gg → A cross section is
proportional to cot2 β; this explains why it is larger (smaller) at lower (higher) tan β. A cross
section of 1 (0.1) fb is guaranteed for mA as large as ∼ 600 (850) GeV. On the other hand,
the gg → H cross section in Type I is proportional to (CH

F )2 and can take on extremely small
values for mH . 850 GeV. The reason is that, in this region, the reachable values of cβ−α are
high enough such that a cancellation between the two terms of CH

F = (sβ−α − cβ−α/tβ) occurs
and leads to an almost vanishing coupling. In contrast, for mH & 850 GeV, this cancellation is
not possible as the values of cβ−α are forced to be smaller as can be seen in Fig. 1. In Type II,
the A production cross section can be very large in the very low mA region as noted in [27]
and any mass smaller than 1.1 (1.2) TeV gives a gg → A cross section larger than 1 (0.1) fb.
For gg → H, a cross section > 1 (0.1) fb is guaranteed up to mH ≈ 850 GeV (1.2 TeV). From
these considerations the prospects for discovering the additional neutral states look promising
should alignment without decoupling be realized.

Let us now turn to specific signatures. Figure 18 presents the cross sections for gg → A→ Y
for Y = γγ, ττ, tt̄ in Types I and II. Note that the y-axis is cut off at 10−7 pb. Although much
lower values of the cross section are possible, we do not show these lower values since they will
certainly not be observable at the LHC. As expected, for the γγ and ττ final states, the cross
sections fall sharply above the tt̄ threshold, with the noticeable exception of the A→ ττ decay

20To avoid a proliferation of plots, we choose to show here only the results for gluon fusion; all corresponding
results for the bb̄ cross section can be provided upon request.
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Figure 17: Cross sections in Type I (left) and Type II (right) for gg → X at the 13 TeV LHC
as functions of mX for X = A (upper row) and X = H (lower row) with tan β color code. In
all four plots, points are ordered from low to high tan β.

in Type II due to the strong constraints from LHC direct searches that exclude points with
large corresponding cross section. For the A→ γγ decay, cross sections of 0.1 fb are reachable
for mA . 470 GeV (mA . 530 GeV) in Type I (II) but not guaranteed. The maximal cross
section is ∼ 30 fb in Type I and ∼ 100 fb in Type II (not considering the mA ≤ mh/2 region).
In both Types I and II, the gg → A→ ττ cross section can be substantially larger. In Type I,
0.1 fb is reachable for mA . 600 GeV, while in Type II mA . 550 GeV guarantees a cross
section larger than 0.1 fb. In both cases, very large cross sections are predicted at low mA. The
gg → A→ tt̄ cross section peaks around 100 pb in both Types I and II and is guaranteed to be
larger than 0.1 fb in Type II for 350 . mA . 600 GeV. These sizable cross sections therefore
provide interesting probes of the extended Higgs sector in the alignment limit.

The corresponding results for the H cross sections are presented in Fig. 19. Sizable values
of σ×BR are possible in both Types I and II but heavily suppressed values are still possible for
most of the cases. Only in Type II, for H → ττ (as well as for H → tt̄), is the corresponding
cross section guaranteed to be larger than 0.1 fb for mH . 460 GeV (mA ≈ 400 GeV). Note that,
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Figure 18: Cross sections times branching ratio in Type I (left) and in Type II (right) for
gg → A → Y at the 13 TeV LHC as functions of mA for Y = γγ (upper panels), Y = ττ
(middle panels) and Y = tt̄ (lower panels) with tan β color code. Points are ordered from low
to high tan β.
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Figure 19: Cross section times branching ratio in Type I (left) and in Type II (right) for
gg → H → Y at the 13 TeV LHC as functions of mH for Y = γγ (upper panels), Y = ττ
(middle panels) and Y = tt̄ (lower panels) with tan β color code. Points are ordered from low
to high tan β.
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Figure 20: Cross sections times branching ratio in Type I (left) and in Type II (right) for
gg → X → Y at the 13 TeV LHC as functions of mX for X, Y = A,Zh (upper panel) and
X, Y = H, hh (lower panel) with tan β color code. Points are ordered from low to high tan β.

for both Types I and II, the cross sections for A/H decays into a muon pair are related to the
A/H → ττ ones through B(A/H → µµ) ≈ (mµ/mτ )

2 × B(A/H → ττ) ≈ B(A/H → ττ)/280.
Non-standard production modes of the SM-like state, through A → Zh and H → hh, are

presented in Fig. 20. While these can be interesting discovery modes for the A and/or H, their
cross sections can also be extremely suppressed. For gg → A → Zh, the tan β dependence,
which follows the dependence of the gg → A cross section shown in Fig. 17, explains a part of
this suppression. Moreover, the AZh coupling is proportional to c2

β−α which is suppressed in
the alignment region. Nevertheless, the gg → A→ Zh cross section can be of the order of 1 pb
for 200 . mA . 350 GeV in both Types I and II. The gg → H → hh cross section, as expected,
attains its maximum below the tt̄ threshold in both Types I and II and can reach about 10 pb
at low tan β. For any mH , the cross section can however also be extremely suppressed.

A comment is in order here on the possible “feed down” (FD) [13, 99] to the production of
the 125 GeV state through the decay of heavier Higgs states, which might distort the Higgs
signal strengths. This issue was approximately addressed in section III.C of [13] by imposing the
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“FDOK” conditions µFD
Zh < 0.3 and µFD

ggFh+bbh < 0.1, which limit the FD contamination of Zh
associated production and of ggF+bbh production to 30% and to 10% respectively, at the cross
section times branching ratio level. Imposing these conditions here would remove the points
with σ13(gg → A)×BR(A→ Zh) & 0.2 pb and σ13(gg → H)×BR(H → hh) & 2 pb in Fig. 20.
This is, however, a maximally conservative constraint for two reasons. Firstly, the amount of
FD is computed without accounting for any reduced acceptance of such events into the 125 GeV
signal as a result of the experimental cuts used to define the gg → h, bbh or Z∗ → Zh channels.
Secondly, it puts individual limits on specific production×decay modes instead of including all
signal strengths in a global fit, which is the approach followed in this paper. Indeed, when
directly adding the contribution of gg → A → Zh to the Zh signal strength in the global fit,
it turns out that only cross sections of σ13(gg → A) × BR(A → Zh) & 1.6 pb are definitely
excluded. This still assumes that the signal acceptance of the experimental analysis is the
same for gg → A → Zh as for gg → Z∗ → Zh, which should however be a reasonable
approximation, as the main difference would be the Zh invariant-mass distribution, which is
not used as a selection criterion in this case. The contribution of H → hh to the h signal
strengths is a more difficult question, as here the acceptances (in each final state considered
in the experimental analyses) will certainly be different from those of single h production. A
detailed study based on event simulation would be necessary to better understand the impact
of FD on the 125 GeV Higgs signal, but this is beyond the scope of this paper.

Finally, if the mass splitting is large enough, A→ ZH, H → ZA, and H → AA decays offer
intriguing possibilities for discovering the extra non-SM-like neutral Higgs states in the regime
of approximate alignment without decoupling. In Fig. 21, the cross sections for gg → A→ ZH,
gg → H → ZA and gg → H → AA are exhibited. Large gg → A → ZH cross sections are
obtained for large mA−mH splitting.21 Looking back at Fig. 2 one sees that, in both Type I and
Type II, the splitting can only be large for mA . 650 GeV. This explains the preponderance of
low mH points with cross sections up to 20 pb for mA . 650 GeV. However, gg → A→ ZH can
also be heavily suppressed; since the AHZ coupling is proportional to sβ−α, this suppression is
a purely kinematical effect.

Turning to the H → ZA and H → AA signatures, we observe a depleted area for mH >
300 GeV and cross sections of the order of 0.1 pb. In this region, tan β = 2–10 and Z5 is small
or negative leading to mH , mA masses for which the H → ZA, AA decays are kinematically
forbidden [cf. Eq. (45)]. In the region below, tan β > 10 and Z5 can be large enough to achieve
mH > mA + mZ and/or mH > 2mA, but nevertheless the cross section is small because of
the tan β dependence of σ(gg → H), see Fig. 17. The distinct branch with gg → H → ZA
and gg → H → AA cross sections larger than about 1 pb, on the other hand, has tan β . 2
and λ5 ≈ 0. Here, the term proportional to sin 2β in Eq. (23) gives a large enough Z5 > 0 so
that the H → ZA and/or H → AA decay is kinematically allowed. The small tan β leads to
a large gg → H production cross section, see again Fig. 17. The CMS collaboration has very
recently published a search for A → ZH and H → ZA [78]. For instance, for mA (mH) of
about 200–600 GeV and very light H (A) below 100 GeV, the 95% CL limit on the relevant
cross section is of the order of 30–50 fb in the ``ττ final state and 20–100 fb in the ``bb̄ final
state. Considering the branching ratios for Z → `` and H → ττ, bb̄ (A → ττ, bb̄), these limits

21A large splitting mA −mH ≈ v can be motivated by the possibility of a strong first order phase transition
in 2HDMs [100].
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Figure 21: Cross sections times branching ratio in Type I (left) and in Type II (right) for Higgs-
to-Higgs signatures at the 13 TeV LHC, in the upper panel gg → A → ZH with mH color
code, and in the middle and lower panels for gg → H → ZA and gg → H → AA, respectively,
with mA color code. Points are ordered from high to low mA or mH .
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just start to touch the highest cross sections in Fig. 21. A detailed phenomenological analysis
of the A→ ZH and H → ZA decays at the LHC was performed in [101].

Last but not least, note that due to the kinematic constraint mH ≥ 2mA and the non trivial
correlation between mH and mA observed in Fig. 2, the H → AA channel is only open for
mH . 700 GeV. In Type I the branch of points with cross sections ranging from about 10−1 pb
to 10 pb is mainly populated by mA ≤ 100 GeV points with relatively low tan β . 10. In
Type II, points with low mA . 250 GeV and tan β . 3 are clearly separated from points with
mA & 150 GeV and larger tan β & 12. This channel thus offers a complementary probe to the
low mA region discussed in [27].

5 Conclusions

While the Higgs measurements at Run 1 show no deviations from the SM, conceptually
there is no reason why the Higgs sector should be minimal. Indeed a non-minimal Higgs sector
is theoretically very attractive and, if confirmed, would shine a new light on the mechanism of
electroweak symmetry breaking dynamics.

In this paper we focused on CP-conserving 2HDMs of Type I and Type II, investigating the
special situation that arises when one of the Higgs mass eigenstates is approximately aligned
with the direction of the scalar field vacuum expectation values. In this case, the W± and Z
gauge bosons dominantly acquire their masses from only one Higgs doublet of the Higgs basis.
Moreover, the coupling of that CP-even Higgs boson to the gauge bosons tends towards the
SM value, CV → 1. While this is automatically the case in the decoupling limit when the
extra non-SM Higgs states are very heavy, such an alignment can also occur when the extra
Higgs states are light, below about 600 GeV. We specifically investigated the phenomenological
consequences of alignment without decoupling and contrasted them to the decoupling case. Two
aspects are interesting in this respect: one being precision measurements of the couplings and
signal strengths of the SM-like Higgs boson at 125 GeV, the other being the ways to discover
the additional Higgs states of the 2HDM when they are light.

In addition to an in-depth theoretical discussion, we performed a detailed numerical analysis
for the case that the SM-like state observed at 125 GeV is the lighter of the two CP-even Higgs
bosons of the 2HDM, h. In this study we allowed for 1% deviation from unity in Ch

V , which
corresponds to the ultimate expected LHC precision at high luminosity. The results can be
summarized as follows:

1. In the alignment limit without decoupling, despite Ch
V being very close to 1, the fermionic

couplings of the 125 GeV Higgs can deviate substantially from the SM values. Concretely,
Ch
U can deviate as much as about 10% (20%) from unity in Type I (Type II), and Ch

D as
much as 30% in Type II.

2. While Ch
U rather quickly approaches 1 with increasing mH and/or cβ−α → 0, the approach

of the bottom Yukawa coupling to its SM value in the alignment limit is delayed in Type II,
with Ch

D ≈ 0.70–1.15 even for |cβ−α| ∼ 10−2. Large values of Ch
D > 1 are associated with

light H,A. Moreover, for 230 GeV . mH . 665 GeV and mA . 650 GeV, there is an
allowed region with Ch

D ≈ −1± 0.2; this “opposite-sign” solution can be tested decisively
at Run 2.
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3. The trilinear hhh coupling can also exhibit large deviations. Large values of Chhh > 1
(up to Chhh ≈ 1.7 in Type I and up to Chhh ≈ 1.5 in Type II) can be achieved in the
non-decoupling regime mH . 600 GeV, for |cβ−α| of the order of 0.1, whereas for heavier
mH , Chhh is always suppressed as compared to its SM prediction. The suppression can
be about 50% for mH of ∼ 1 TeV and much larger for lighter mH .

4. For the ratios µhX(Y ) of the X → h → Y signal rates relative to the SM prediction,
we found distinct correlations of these signal strengths in both Type I and Type II that
depend on whether the additional Higgs states are decoupled or not. In fact, in the regime
of alignment without decoupling, there are characteristic combinations of the µhX(Y ) signal
strengths that cannot be mimicked by the decoupling limit. However, it is of course also
possible that all signal strengths converge to 1 even though the additional Higgs states
are very light.

5. A decisive test of the alignment without decoupling scenario would of course be the
observation of the additional Higgs states of the 2HDM in the mass range below about
600 GeV. We delineated the many possibilities for such observations. While there are
no guarantees in the case of the Type I model, in the Type II model there is always a
definite lower bound on the gg → A,H → ττ cross sections at the LHC at any given
mA. For low tan β ∼ 1, this lower bound is still of order 0.1 fb for mA ∼ 500 GeV, a
level that we deem likely to be observable at the LHC during Run 2. For high tan β, the
lower bound is roughly two orders of magnitude higher and only falls below the 0.1 fb
level for mA,H >∼ 1.2 TeV, which is already in the decoupling region. Moreover, while in
Type I gluon-gluon fusion is always dominant for H or A production, in Type II both
bb̄ associated production and gluon-gluon fusion modes are in principle important since
either can be dominant in different regions of the parameter space.

6. Higgs-to-Higgs decays of the non-SM-like states (A → ZH, H → ZA, H → AA) also
open intriguing possibilities for testing the regime of alignment without decoupling, with
cross sections often in the range of 1–10 pb (although they can also be quite suppressed).
Particularly promising are gg → H → ZA and gg → H → AA in Type II for light
pseudoscalars below about 100 GeV; for such a light A, mH can be at most ∼ 650 GeV,
and σ × B values for these channels typically range from 10 fb to 10 pb.

In short, it is possible that the observed 125 GeV Higgs boson appears SM-like due to
the alignment limit of a multi-doublet Higgs sector. The alignment limit does not necessarily
imply that the additional Higgs states of the model are heavy. Indeed, they can be light and
non-decoupled and thus lead to exciting new effects to be probed at Run 2 of the LHC.
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A Scalar potential quartic coefficients in the Z2-basis in

terms of Higgs basis coefficients

In Eqs. (21)–(25), we have provided expressions for the Higgs basis quantities Zi in terms
of the quartic coefficients of the scalar potential λi defined in Eq. (1). In this appendix, we
provide the inverse of Eqs. (21)–(25) by expressing the λi in terms of the Zi.

λ1 = Z1c
4
β + Z2s

4
β + 1

2
Z345s

2
2β − 2s2β(c2

βZ6 + s2
βZ7) , (A.1)

λ2 = Z1s
4
β + Z2c

4
β + 1

2
Z345s

2
2β + 2s2β(s2

βZ6 + c2
βZ7) , (A.2)

λi = Zi + 1
4
s2

2β(Z1 + Z2 − 2Z345) + s2βc2β(Z6 − Z7) , for i = 3, 4, 5 , (A.3)

where Z345 ≡ Z3 + Z4 + Z5. However, these results do not take into account the fact that
λ6 = λ7 = 0, which yields two relations among the Zi. These relations were given in Eqs. (26)
and (27) and are repeated below for the convenience of the reader. Recall that we employ a
convention where 0 ≤ β ≤ 1

2
π. Then, Z2 and Z345 are dependent quantities for β 6= 0, 1

4
π, 1

2
π,

Z2 = Z1 + 2(Z6 + Z7) cot 2β , (A.4)

Z345 = Z1 + 2Z6 cot 2β − (Z6 − Z7) tan 2β , (A.5)

An alternative form of Eq. (A.5) is obtained by combining the results of Eqs. (A.4) and (A.5),
which yields

Z345 = Z2 − 2Z7 cot 2β − (Z6 − Z7) tan 2β . (A.6)

Taking the average of Eqs. (A.5) and (A.6) provides one more useful relation that can be used
as the second condition for the softly-broken Z2 symmetry along with Eq. (A.4),

Z345 = 1
2
(Z1 + Z2) + 2(Z6 − Z7) cot 4β . (A.7)

Using Eqs. (A.4) and (A.7) it follow that if β = 0, 1
2
π then Z6 = Z7 = 0; if β = 1

8
π, 3

8
π then

Z345 = 1
2
(Z1 + Z2); and if β = 1

4
π then Z1 = Z2 and Z6 = Z7.

Consequently, the expressions for the λi in terms of the Zi can be written in numerous
equivalent ways depending on the choice of independent quantities. For example, if β 6= 1

4
π,
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then eliminating Z345 and either Z1 or Z2 yields

λ1 =

{
Z1 − Z6 tan 2β + 1

2
tan2 β tan 2β(Z6 + Z7) , if β 6= 1

2
π ,

Z2 + Z7 tan 2β − 1
2

cot2 β tan 2β(Z6 + Z7) , if β 6= 0 ,
(A.8)

λ2 =

{
Z1 − Z6 tan 2β + 1

2
cot2 β tan 2β(Z6 + Z7) , if β 6= 0 ,

Z2 + Z7 tan 2β − 1
2

tan2 β tan 2β(Z6 + Z7) , if β 6= 1
2
π ,

(A.9)

λi = Zi + 1
2
(Z6 − Z7) tan 2β , for i = 3, 4, 5 . (A.10)

Note that the Z2-basis and the Higgs basis coincide if β = 0 (in which case Φ1 = H1 and
Φ2 = H2) and if β = 1

2
π (in which case Φ1 = H2 and Φ2 = H1). The two alternative forms

given in Eqs. (A.8) and (A.9) are a consequence of the symmetry of Eqs. (A.4)–(A.7) under
the interchanges, Z1 ←→ Z2, Z6 ←→ Z7, β ←→ 1

2
π − β.

The exclusion of β = 1
4
π in Eqs. (A.8)–(A.10) is an artifact of expressing these results in

terms of both Z6 and Z7. Nevertheless, there is no discontinuity, since Z6 = Z7 at β = 1
4
π.

One way to avoid this inconvenience is to eliminate either Z6 or Z7 in favor of Z345. The end
result is

λ1 =

{
Z1(1− 1

2
tan2 β) + 1

2
Z345 tan2 β − 1

2
Z6 tan β(5− tan2 β) , if β 6= 1

2
π ,

Z2(1− 1
2

cot2 β) + 1
2
Z345 cot2 β − 1

2
Z7 cot β(5− cot2 β) , if β 6= 0 ,

, (A.11)

λ2 =

{
Z1(1− 1

2
cot2 β) + 1

2
Z345 cot2 β + 1

2
Z6 cot β(5− cot2 β) , if β 6= 0 ,

Z2(1− 1
2

tan2 β) + 1
2
Z345 tan2 β + 1

2
Z7 tan β(5− tan2 β) , if β 6= 1

2
π ,

, (A.12)

λi =

{
Zi + 1

2
(Z1 − Z345) + Z6 cot 2β , for i = 3, 4, 5 and β 6= 0, 1

2
π ,

Zi + 1
2
(Z2 − Z345)− Z7 cot 2β , for i = 3, 4, 5 and β 6= 0, 1

2
π .

(A.13)

Finally, one may choose to eliminate both Z6 and Z7, using Eqs. (A.4) and (A.7). The end
result is valid for β 6= 1

8
π, 1

4
π, 3

8
π,22

λ1 = 1
2
(Z1 + Z2) +

s2
2β

4c4β

(Z1 + Z2 − 2Z345) +
1

2c2β

(Z1 − Z2) , (A.14)

λ2 = 1
2
(Z1 + Z2) +

s2
2β

4c4β

(Z1 + Z2 − 2Z345)− 1

2c2β

(Z1 − Z2) , (A.15)

λi = Zi −
s2

2β

2c4β

(Z1 + Z2 − 2Z345) , for i = 3, 4, 5 . (A.16)

The conditions for stability of the scalar potential [Eq. (1)] for λ6 = λ7 = 0 were first given
in [57],

λ1 > 0 , λ2 > 0 , λ3 > −
√
λ1λ2 , λ3 + λ4 − |λ5| > −

√
λ1λ2 . (A.17)

Using the results of this Appendix, one can rewrite the stability conditions in terms of the Zi.
The resulting expressions are not especially illuminating, so we will not exhibit them explicitly.

22Eliminating both Z6 and Z7 is not particularly useful in the cases of β = 1
8π, 3

8π, where Z1 + Z2 = 2Z345

and in the case of β = 1
4π, where Z1 = Z2 [cf. Eqs. (A.4) and (A.7)].
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In addition, we note that (under the assumption of λ6 = λ7 = 0) the λi (i = 1, 2, . . . , 5) can
be reconstructed in principle as follows. Assume that cβ−α has been deduced from precision
measurements of the SM-like Higgs boson (assumed to be h), and β is determined via the
properties of the heavier Higgs states. We also assume that all four Higgs masses (mh, mH , mA

and mH±) have been measured. Lastly, we assume that a small deviation in the signal strength
for h → γγ can be attributed to the presence of a charged Higgs loop,23 in which case we can
extract a value for ghH+H− . With all this information in hand, we begin by using Eq. (47) [or
equivalently, Eq. (42)] to obtain Z6. Next, we employ Eqs. (41) and (43) to obtain Z1 and Z5,
and Eqs. (33) and (34) for the squared-mass difference, m2

H± −m2
A to deduce Z4 − Z5, which

together with the previous determination yields a value for Z4. Close to the alignment limit,
we can use ghH+H− to extract Z3 [cf. Eqs. (65) and (76)]. We now have enough information to
evaluate Z345. Finally, we can use Eqs. (A.9) and (A.10) to obtain Z2 and Z7. We now have
all the Zi (for i = 1, 2, . . . 7), which can then be employed with the formulae provided in this
Appendix to obtain the λi (i = 1, 2, . . . , 5).

B Trilinear Higgs self-couplings in terms of physical Higgs

masses

It is convenient to re-express the trilinear Higgs self-couplings in terms of the physical Higgs
masses. First, Eqs. (32) and (34) yield

(Z3 + Z4 − Z5)v2 = 2(m2
A −m 2) + Z1v

2 + 2Z6v
2 cot 2β. (B.1)

Using this result along with Eqs. (41)–(43) and (49), we end up with[
(Z3 + Z4 − Z5)sβ−α + Z7cβ−α

]
v2 =

[
m2
h + 2(m2

A −m 2)
]
sβ−α + 2 cot 2β(m2

h −m 2)cβ−α , (B.2)[
(Z3 + Z4 − Z5)cβ−α − Z7sβ−α

]
v2 =

[
m2
H + 2(m2

A −m 2)
]
cβ−α − 2 cot 2β(m2

H −m 2)sβ−α .(B.3)

Noting that Eqs. (33) and (34) yield m2
A−m2

H± = 1
2
(Z4−Z5)v2, the above results immediately

yield [
Z3sβ−α + Z7cβ−α

]
v2 =

[
m2
h + 2(m2

H± −m 2)
]
sβ−α + 2 cot 2β(m2

h −m 2)cβ−α , (B.4)[
Z3cβ−α − Z7sβ−α

]
v2 =

[
m2
H + 2(m2

H± −m 2)
]
cβ−α − 2 cot 2β(m2

H −m 2)sβ−α . (B.5)

Thus, from Eqs. (59)–(66), we obtain

ghAA = −1

v

{[
m2
h + 2(m2

A −m 2)
]
sβ−α + 2 cot 2β(m2

h −m 2)cβ−α

}
, (B.6)

gHAA = −1

v

{[
m2
H + 2(m2

A −m 2)
]
cβ−α − 2 cot 2β(m2

H −m 2)sβ−α

}
, (B.7)

ghHH =
sβ−α
v

{
2m 2 − 2m2

H −m2
h + 2(3m 2 − 2m2

H −m2
h)(sβ−α cot 2β − cβ−α)cβ−α

}
,(B.8)

23In absence of a clear deviation from the SM in the γγ signal, one would be forced to seek out some measurable
triple Higgs coupling involving no more than a single SM-like Higgs boson to avoid a suppression of the term
that is sensitive to Z3 or Z7 [cf. Eqs. (59)–(66)].
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gHhh = −cβ−α
v

{
4m 2 −m2

H − 2m2
h + 2(3m 2 −m2

H − 2m2
h)(sβ−α cot 2β − cβ−α)cβ−α

}
,(B.9)

ghhh = −3

v

{
m2
hsβ−α + 2(m2

h −m 2)(cβ−α cot 2β + sβ−α)c2
β−α

}
, (B.10)

gHHH = −3

v

{
m2
Hcβ−α − 2(m2

H −m 2)(sβ−α cot 2β − cβ−α)s2
β−α

}
, (B.11)

ghH+H− = −1

v

{[
m2
h + 2(m2

H± −m 2)
]
sβ−α + 2 cot 2β(m2

h −m 2)cβ−α

}
, (B.12)

gHH+H− = −1

v

{[
m2
H + 2(m2

H± −m 2)
]
cβ−α − 2 cot 2β(m2

H −m 2)sβ−α

}
. (B.13)
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