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ABSTRACT

There exist candidates for the negative-parity states Λc,b(1/2
−, 3/2−) consisting

of an isospin-zero, spin-zero light diquark [ud] with one unit of orbital angular
momentum with respect to a c, b quark. However, there exists only one candi-
date for the orbital excitations of the Σc(1/2

+) and Σ∗
c(3/2

+), and none for the
orbital excitations of Σb(1/2

+) or Σ∗
b(3/2

+). We extend a previous discussion of
odd-parity Λc,b states and explore some patterns of the odd-parity Σc,b baryons
consisting of a light isospin-one nonstrange diquark (uu, ud, dd) in a state of
L = 1 with respect to the spin-1/2 heavy quark (c, b).

PACS codes: 12.39.Hg,12.39.Jh,14.20.Lq,14.20.Mr

I Introduction

We have used simple quark-model arguments in previous work [1–3] to predict the masses
of some of the lowest-lying baryons containing a single c or b quark. While these pre-
dictions generally dealt with states with no orbital excitations, the negative-parity states
Λc,b(1/2

−, 3/2−) consisting of an isospin-zero, spin-zero light diquark [ud] with one unit of
orbital angular momentum with respect to a c, b quark were discussed briefly. However, the
orbital excitations of the Σc,b(1/2

+) and Σ∗
c,b(3/2

+) were not treated. Here we have labeled
states with total angular momentum J ; the superscripts denote their parity.

In this paper we extend our previous discussion of odd-parity ΛQ states, and explore
some patterns of those odd-parity Σc,b baryons consisting of a light isospin-one nonstrange
diquark (uu, ud, dd) in a state of L = 1 with respect to the spin-1/2 heavy quark Q = (c, b).
This investigation is timely as a result of the demonstrated capabilities of hadron colliders
in studying heavy-hadron spectra (see, e.g., Refs. [4,5].) A comprehensive study of masses
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Table I: Candidates for ΛQ having ground-state light diquark and heavy quark Q with
relative orbital angular momentum L = 1.

JP Λc Λb

Mass (MeV) Γ (MeV) Mass (MeV) Γ (MeV)
1/2− 2592.25±0.28 2.6±0.6 5912.1±0.4 < 0.66
3/2− 2628.11±0.19 < 0.97 5919.73±0.32 < 0.63

of baryons containing heavy quarks was published several years ago [6], but without the
detail which might help identify which of several Σc,b(J

P ) is being observed.
In Section II we introduce basis notation for the P-wave states of ΛQ and ΣQ. We

then estimate the energy cost of a P-wave excitation in a heavy-quark baryon by reference
to existing data (Sec. III), and work out spin-dependent splitting of states in the limit
where the quark Q is much heavier than the diquark (Sec. IV). We make some remarks
on production and decay systematics in Sec. V and conclude in Sec. VI. An Appendix
contains details of angular momentum calculations.

II Basis states

As in Ref. [6], we limit our discussion to states in which a light diquark remains in its ground
state, and is orbitally excited with respect to the heavy quark Q. Internal excitation of the
light diquark seems to require more energy. The lowest-lying negative-parity Λ baryons [7],
Λ(1405, 1/2−) and Λ(1520, 3/2−), may be regarded as P-wave excitations of an isospin-zero,
spin-zero diquark [ud] with respect to the heavier strange quark. The lowest P-wave Λ state
in which the [ud] must be internally excited is Λ(1830, 5/2−). Here states are labeled by
their masses in MeV.§

Quantum chromodynamics (QCD) implies that the light diquark in a ΛQ (Q = c, b) will
be [ud] in a state of zero spin and isospin, while that in a ΣQ will be (uu, ud, dd) in a state
of unit spin and isospin. The diquark spin Sd = 0 or 1 is then coupled to the heavy quark
spin SQ = 1/2 and the orbital angular momentum L = 1 to a total angular momentum J .

There are two convenient bases in which to evaluate the product Sd ⊗ SQ ⊗ L. In the
first (L–S coupling) we couple Sd and SQ to a total spin S and then couple S and L to J .
In the second (j–j coupling, appropriate in the large-mQ limit [9]), we couple Sd and L to
a total light-quark angular momentum j and then couple j and SQ to J . We shall tabulate
states in both bases and give the transformation between them.

A L–S coupling

For ΛQ with an isospin-zero diquark with Sd = 0, the total quark spin S is necessarily 1/2.
Coupling this to the orbital angular momentum L = 1, one obtains states of JP = 1/2−

and 3/2−. Candidates for these states in charm and bottom sectors [7] are summarized in
Table I.

§For an extensive discussion regarding baryons as bound states of a quark and diquark, see Ref. [8] and
references therein.
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We will anticipate a result of Sec. IV by noting that the fine-structure splitting between
the two Λb states is less than 1/4 that between the two Λc states. This splitting should
scale as mc/mb ≃ 1/3, so the agreement is at best qualitative.

For ΣQ the only current candidate for a P-wave baryon is Σc(2800) [7], whose spin and
parity have not yet been determined. Ref. [6] assigns it to JP = 1/2− or 3/2− (possibly
both, overlapping in mass). In L–S coupling, the light Sd = 1 diquark and heavy SQ = 1/2
quark can form states with S = 1/2 and 3/2. Coupling S = 1/2 to L = 1 gives states
with J = 1/2, 3/2, while coupling S = 3/2 to L = 1 gives states with J = 1/2, 3/2, 5/2.
There are thus five ΣQ states with L = 1 and odd parity (under the assumption that the
diquark remains in its ground state). We shall introduce the notation 2S+1PJ to describe
these states as 2P1/2,

2P3/2,
4P1/2,

4P3/2,
4P5/2, respectively.

The spin-dependent potential may be written [6]

VSD = a1LLL · SSSd + a2LLL · SSSQ + b[−SSSd · SSSQ + (SSSd · rrr)(SSSQ · rrr)/r2] + cSSSd · SSSQ , (1)

where the first two terms are spin-orbit forces, the third is a tensor force, and the last
describes hyperfine splitting. In the L–S basis, the two J = 1/2 states and the two J = 3/2
states are unmixed only if a1 = a2. Otherwise they are eigenstates of 2 × 2 matrices MJ

given in the basis [2PJ ,
4PJ ] by

M1/2 =

[

1
3
a2 − 4

3
a1

√
2
3
(a2 − a1)√

2
3
(a2 − a1) −5

3
a1 − 5

6
a2

]

+ b

[

0 0
0 −3

2

]

+ c

[

−1 0
0 1

2

]

, (2)

M3/2 =

[

2
3
a1 − 1

6
a2

√
5
3
(a2 − a1)√

5
3
(a2 − a1) −2

3
a1 − 1

3
a2

]

+ b

[

0 0
0 6

5

]

+ c

[

−1 0
0 1

2

]

, (3)

M5/2 = a1 +
1

2
a2 −

3

10
b+

1

2
c . (4)

Details of this calculation are given in Appendix A.

B j–j coupling

When mQ is much larger than the diquark mass, the terms a2, b, and c in (1) all behave as
1/mQ and their expectation values are suppressed in comparison with that of the a1 term.
Thus it makes sense to expand in a basis in which LLL · SSSd is diagonal, treating the other
terms in VSD as perturbations. Defining jjj = LLL+ SSSd and squaring, one finds

〈LLL · SSSd〉 =
1

2
[j(j + 1)− L(L+ 1)− Sd(Sd + 1)] = (−2,−1, 1) for j = (0, 1, 2) . (5)

To lowest order in 1/mQ, the five lowest negative-parity ΣQ states are displaced by−2a1 (J =
1/2), − a1 (J = 1/2), − a1 (J = 3/2), a1 (J = 3/2), and a1 (J = 5/2) from their spin-
weighted average. The expansion of these states in terms of L–S eigenstates is

|J =
1

2
, j = 0〉 =

√

1

3
|2P1/2〉+

√

2

3
|4P1/2〉 , (6)

|J =
1

2
, j = 1〉 =

√

2

3
|2P1/2〉 −

√

1

3
|4P1/2〉 , (7)
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|J =
3

2
, j = 1〉 =

√

1

6
|2P3/2〉+

√

5

6
|4P3/2〉 , (8)

|J =
3

2
, j = 2〉 =

√

5

6
|2P3/2〉 −

√

1

6
|4P3/2〉 , (9)

|J =
5

2
, j = 2〉 = |4P5/2〉 . (10)

This allows us to evaluate the matrix elements of all the terms in the spin-dependent
potential (1) to lowest order in perturbation theory by using the unperturbed eigenfunctions
of the first term. The resultant energy shifts are

∆M(J =
1

2
, j = 0) = −2a1 − b , (11)

∆M(J =
1

2
, j = 1) = −a1 −

1

2
a2 −

1

2
b− 1

2
c , (12)

∆M(J =
3

2
, j = 1) = −a1 +

1

4
a2 + b+

1

4
c , (13)

∆M(J =
3

2
, j = 2) = a1 −

3

4
a2 +

1

5
b− 3

4
c , (14)

∆M(J =
5

2
, j = 2) = a1 +

1

2
a2 −

3

10
b+

1

2
c . (15)

(16)

This expresses five mass shifts in terms of four parameters. One linear relation among them
is the vanishing of their spin-weighted sum:

∑

J

(2J + 1)∆M(J) = 0 . (17)

However, a2 and c always occur in the combination a2 + c, so that the five mass shifts are
expressed in terms of the three free parameters a1, a2 + c, and b. Hence the masses satisfy
one additional linear relation besides Eq. (17). This is found to be

10M(1/2, 0)− 15M(1/2, 1) + 8M(3/2, 2)− 3M(5/2, 2) = 0 , (18)

where the first number refers to J and the second to j. The mass M(3/2, 1) does not ap-
pear. We shall return to this topic when discussing numerical predictions for fine-structure
splittings in Sec. IV.

III Energy cost of a P-wave excitation

One can estimate the cost of a P-wave excitation in baryons with one heavy quark by
comparing the masses of ground-state ΛQ(J

P = 1/2+) baryons with those of the spin-
weighted averaged masses m̄(ΛQ) of the P-wave ΛQ(J

P = 1/2−, 3/2−) baryons. The mass
difference between ΛQ(J

P = 1/2−) and ΛQ(J
P = 3/2−) is due to the LLL · SSSQ spin-orbit

interaction, which is mathematically analogous to the SSS(ud) ·SSSQ color hyperfine interaction
responsible for Σ∗ −Σ splitting. Therefore m̄(ΛQ) = [m(ΛQ, 1/2

−) + 2m(ΛQ, 3/2
−)]/3. We

shall assume that this m̄(ΛQ) −m(ΛQ) splitting, denoted by ∆EPS, is a function only of
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Table II: Input masses, values of ∆EPS, and diquark-Q reduced masses for baryons con-
taining a single heavy quark Q.

Baryon mass ∆EPS Reduced mass µ (MeV)
States JP = 1/2+ m̄(ΛQ) (MeV) µ(ΛQ) µ(ΣQ)
Λ 1115.7 1481.4 365.7 278.6 318.9
Λc 2286.5 2616.2 329.7 431.8 536.8
Λb 5619.5 5917.2 297.7 518.3 677.6

the reduced mass of the Q–diquark system. For that purpose we need both diquark and Q
masses.

The effective light isoscalar diquark mass in a Λ is

m[ud] = mΛ −ms = 577.7MeV , (19)

where we have taken mΛ from Ref. [7] and used ms = 538 MeV from a fit to light-quark
baryon spectra [3, 11]. (Subsequently we shall use masses from Ref. [7] unless stated oth-
erwise.) The corresponding light isovector diquark mass, ignoring small isospin splittings,
is

m(uu) = m(ud) = m(dd) =
mΣ + 2mΣ∗

3
−ms = 782.8 MeV . (20)

The spin-averaged diquark mass is [m[ud] + 3m(uu)]/4 = 731.5 MeV, close to 2mu = 2md =
726 MeV in Refs. [3, 11]. The difference of a few MeV may be regarded as an estimate of
systematic error in our approach.

The heavy quark masses may be estimated using the difference between ΛQ and isoscalar
diquark masses:

mc = mΛc
−mΛ +ms = 1708.8 MeV , mb = mΛb

−mΛ +ms = 5041.8 MeV . (21)

These are within a couple of MeV of values estimated in Ref. [3] by a slightly different
method.

We summarize results in Table II, and plot values of ∆EPS as a function of diquark-Q
reduced mass µ in Fig. 1. Also shown are reduced masses for the corresponding ΣQ states.
We shall use these to estimate values of ∆EPS for ΣQ states by linear extrapolation from
those for Λc and Λb states.

¶

The dashed line in Fig. 1 shows just one possible extrapolation of the sparse information
provided by the ΛQ states. The predictions for the values of ∆EPS for the ΣQ states must
thus be taken with some care. Using these, however, we obtain the results shown in Table
III.

¶We assume here that the state Λ(JP = 1/2+) is Λ(1405), which probably has some distortion of the
mass due to coupled-channel effects to K̄N . This could influence the Λ point in Fig. 1. The JP values of
Λb(5912) and Λb(5920) are assumed to be 1/2− and 3/2−, respectively.
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Figure 1: Dependence of P–S splitting parameter ∆EPS on diquark-Q reduced mass µ.
Diamonds denote experimental ΛQ points; crosses denote interpolated or extrapolated ΣQ

points.

Table III: Parameters leading to estimates of spin-averaged masses M̄ for P-wave excitations
of a light I = S = 1 diquark with respect to a heavy quark Q. Here M0Q ≡ [M(ΣQ) +
2M(Σ∗

Q)/3.

Heavy M(ΣQ) M(Σ∗
Q) M0Q ∆EPS M̄

quark Q (MeV) (MeV) (MeV) (MeV) (MeV)
c 2453.4 2518.1 2496.5 290.9 2787.4
b 5814.3 5833.8 5827.3 238.8 6066.1
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Table IV: Masses of lowest-lying negative-parity Σc and Σb baryons in the model of Ref. [6].

J M(Σc) (MeV) M(Σb) (MeV)
1/2 2713, 2799 6095, 6101
3/2 2773, 2798 6087, 6096
5/2 2789 6084

IV Fine and hyperfine structure

We return to the question of fine and hyperfine structure based on Eqs. (11–18). First of
all, the hyperfine term c is expected to be negligible, as it results from a short-distance
interaction whose matrix elements between P-wave states should be very small. Second, we
have some idea of the magnitude of a2 as a term a2〈LLL ·SQSQSQ〉 is responsible for the splittings
between Λc(2592, 1/2

−) and Λc(2628, 3/2
−), and between Λb(5912, 1/2

−) and Λb(5920, 3/2
1)

(see Table I):

a2 =
2

3
[M(ΛQ, 3/2

−)−M(ΛQ, 1/2
−)] =











76.3 (Λ)
23.9 (Λc)
5.1 (Λb)











. (22)

These quantities scale roughly as inverse heavy quark mass, though a2 for b baryons as
evaluated using the masses in Table I is a bit smaller than mb

c/m
b
b times a2 for charmed

baryons.
There are many ways to make use of Eqs. (11–18), but we shall mention just two. First,

we can take the difference of two masses of states with the same j to obtain two linear
combinations of a2 and b:

M(3/2, 1)−M(1/2, 1) =
3

4
a2 +

3

2
b , (23)

M(5/2, 2)−M(3/2, 2) =
5

4
a2 −

1

2
b. (24)

This allows one to extract a2 and b, given splittings of the levels with the same j. Given
the masses for j = 1 and j = 2, one can use the sum rule (18) to solve for M(1/2, 0) and
compare with observation. If the entire parameter space is mapped out for Σc states, one
can use the scaling relations

a1(b) = a1(c) , a2(b) = (mb
c/m

b
b)a2(c) , b(b) = (mb

c/m
b
b)b(c) , (25)

where the superscript refers to an effective quark mass in a baryon, to predict the splittings
for Σb states.

A second use of Eqs. (11-18) is to check the consistency of masses quoted in Ref. [6] with
the perturbative expressions. Two masses are quoted for J = 1/2 and two for J = 3/2, as
summarized in Table IV.

In Ref. [6] it is not clear to which j a state with given J = 1/2 or J = 3/2 corre-
sponds. However, one can use the sum rule (18) to predict M(3/2, 2) given either choice
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Table V: Masses of P-wave cs̄ mesons.

State (J, j) Mass (MeV)
D∗

s0(2317) (0,1/2) 2317.7
Ds1(2460) (1,1/2) 2459.5
Ds1(2536) (1,3/2) 2535.1
D∗

s2(2573) (2,3/2) 2571.9

for [M(1/2, 0),M(1/2, 1)]. For Σc states, choosing [2713,2799] MeV one finds M(3/2, 2) =
2903 MeV, while [2799,2713] MeV yields M(3/2, 2) = 2634 MeV. Neither mass corre-
sponds to one of the two choices in Table IV. A similar exercise for Σb states predicts
M(3/2, 2) = 6102 or 6083 MeV, closer to the predictions [6096,6087] MeV of Ref. [6].

We can progress further if we use an estimate of the parameter a1 from the charmed-
strange meson sector. One must view this estimate with some caution as it involves the
mesons called by the Particle Data Group [7] D∗

s0(2317) and Ds1(2460), which turned out
to be lighter than expected. (For a discussion of this point with further references, see [12].
The masses of these states may be governed in part by chiral dynamics lying outside the
predictive power of a spin-dependent potential [13]). We shall assume, as we did for the ΣQ

baryons, that the mass eigenstates are those with definite j composed of the orbital angular
momentum L and the light-quark degrees of freedom (here, the strange quark spin). The
masses of states with definite total angular momentum J and light-quark total angular
momentum j are summarized in Table V.

Repeating the steps in which one expands around eigenstates of j (details are given in
the Appendix), one finds the following expressions for the meson masses M(J, j):

M(0, 1/2) = M̄ − a1 − a2 − b+
1

4
c , (26)

M(1, 1/2) = M̄ − a1 +
1

3
a2 +

1

3
b− 1

12
c , (27)

M(1, 3/2) = M̄ +
1

2
a1 −

5

6
a2 +

1

6
b− 5

12
c , (28)

M(2, 3/2) = M̄ +
1

2
a1 +

1

2
a2 −

1

10
b+

1

4
c . (29)

The parameters which reproduce the masses in Table V are

M̄(cs̄) = 2513.4 MeV , a1(cs̄) = 89.4 MeV , a2(cs̄) = 40.7 MeV , b(cs̄) = 65.6 MeV ,
(30)

where we have neglected the hyperfine term for reasons mentioned earlier.
We can now relate a1(cs̄) to the terms a1 describing the coefficients of LLL ·SSSd in Σc and

Σb, which we assume to be equal:

a1 = (mm
s /m(uu))a1(cs̄) = (483 MeV/783 MeV)89.4 MeV = 55.1 MeV . (31)

Here we have used the effective mass mm
s = 483 MeV of a strange quark in a meson [3],

and the mass of the I = S = 1 light diquark calculated in Eq. (20).
Knowing M̄ , a1, and a2 for both Σc and Σb P-wave excitations, all we are missing is

the tensor coefficient b. We can plot predicted masses as functions of b and see if one or
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Figure 2: Masses of P-wave Σc states as functions of tensor force parameter b.

more solutions exist with b scaling as the inverse of the heavy quark mass. The relevant
expressions, for masses M(J, j) in MeV, are

Σc : M(1/2, 0) = 2677.1− b , (32)

M(1/2, 1) = 2720.3− 1

2
b , (33)

M(3/2, 1) = 2738.2 + b , (34)

M(3/2, 2) = 2824.6 +
1

5
b , (35)

M(5/2, 2) = 2854.5− 3

10
b ; (36)

Σb : M(1/2, 0) = 5955.8− b , (37)

M(1/2, 1) = 6008.4− 1

2
b , (38)

M(3/2, 1) = 6012.2 + b , (39)

M(3/2, 2) = 6117.4 +
1

5
b , (40)

M(5/2, 2) = 6123.8− 3

10
b . (41)

The results are plotted as a function of the tensor parameter b in Figs. 2 and 3. For moderate
values of b, there is a clear separation between the three lowest massesM(1/2, 0),M(1/2, 1),
M(3/2, 1) and the two highest masses M(3/2, 2) and M(5/2, 2). These are, coincidentally,
the states most likely to be relatively narrow and hence easier to observe, as we shall see
in the next Section.

Calculations of excited Σc masses have been made in lattice QCD. Predictions were
presented in [14,15], based on operators that obey an SU(3) symmetry of u, d, c quarks and
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Figure 3: Masses of P-wave Σb states as functions of tensor force parameter b.

an SU(2) of spin, combined into an SU(6) of which the L = 1 baryons belong to a 70-plet
with SU(3) × SU(2) decomposition (1,2)+(8,2)+(8,4)+(10,2). The additional J = 1/2 and
J = 3/2 levels in [14, 15] are related to spin-zero light-diquark excitations, which have not
been considered in our case.

The lattice calculations were performed at a pion mass of 400 MeV (so no chiral extrap-
olation) and a single lattice spacing (not extrapolated to continuum), yielding a calculated
Λc mass 149 MeV above its experimental value. Subtracting 149 MeV from mass values of
Ref. [14] (Fig. 3), one obtains the values, labeled by mass in MeV and total spin [16]:

Octet: (2794,1/2), (2799,1/2), (2875,3/2), (2884,3/2), and (2873,5/2),

Decuplet: (2964,1/2) and (2978,3/2),

where the octet and decuplet assignments are only approximate.
Even considering that the lattice predictions are expected to be more reliable for mass

splittings than for absolute masses, this pattern is very far from that in Fig. 2 for any value
of the parameter b. It will be interesting to compare experimental values with these two
sets of predictions.

V Production and decay systematics

In the absence of further dynamical guidance, we may assume that the cross section for
production of a state with total angular momentum J is proportional to its statistical
weight (2J + 1). The highest-spin states are thus most likely to be produced under such
a hypothesis. To progress further one might have to take account of how the I = J = 1
diquark is excited with respect to the heavy quark Q. However, there is an additional
circumstance favoring ΣQ states with higher spin.

For the P-wave D mesons [9], the D∗∗ states with light-quark total angular momentum
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Table VI: Values of final light-quark spin accessible in decays of P-wave charmed mesons.

J j L = 0 L = 2
0 1/2 1/2 3/2, 5/2
1 1/2 1/2 3/2, 5/2
1 3/2 3/2 1/2, 3/2, 5/2, 7/2
2 3/2 3/2 1/2, 3/2, 5/2, 7/2

Table VII: Values of final light-quark spin accessible in decays of P-wave baryons with one
heavy quark.

J j L = 0 L = 2
1/2 0 0 2
1/2 1 1 1, 2, 3
3/2 1 1 1, 2, 3
3/2 2 2 0, 1, 2, 3, 4
5/2 2 2 0, 1, 2, 3, 4

j = 1/2 are allowed to decay to Dπ and/or D∗π only via S waves, while those with j = 3/2
can decay to Dπ and/or D∗π only via D waves, and hence are relatively narrow. This
situation is illustrated in Table VI, which lists the final light-quark spins accessible when
combining j with the orbital angular momentum L of pseudoscalar meson emission. In
decays to Dπ or D∗π the final light-quark total spin is 1/2, so j = 1/2 states decay to
Dπ or D∗π only via S waves, while j = 3/2 states decay to Dπ or D∗π only via D waves.
The D∗∗ states with j = 3/2 D1(2420) and D∗

2(2460) [7] are thus the ones which have been
firmly identified, while those with j = 1/2, being relatively broader, still have not been
pinned down. In the cs̄ case, the j = 1/2 states would have been broad except that they lie
below the corresponding open charm thresholds and thus must decay via isospin violation
or electromagnetically.

In the case of P-wave ΣQ states, a similar hierarchy holds, illustrated in Table VII. The
light-quark spin in a ΛQ is zero, so the state (J, j) = (1/2, 0) can decay to ΛQπ in an S
wave, while (3/2, 2) and (5/2, 2) can decay to ΛQπ in a D wave. The light-quark spin in
a ΣQ or Σ∗

Q is 1, so (1/2,1) and (3/2,1) can decay to Σ(∗)π in both partial waves, while

(3/2,2) and (5/2,2) can decay to Σ(∗)π only in a D wave. Consequently, as the main decay
modes of (3/2,2) and (5/2,2) need to be in D waves, these will be the narrow states, and
hence the more easily observed of the five predicted ones. We thus expect that the Σc state
by the BaBar Collaboration at 2846 ± 8 ± 10 MeV [17] is a candidate for the (5/2,2) or
(3/2,2) state. However, it is not seen by Belle [18], who see an isotriplet of states near 2800
MeV decaying to Λcπ.
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VI Conclusions

We have suggested some ways to look for P-wave excitations of Σc and Σb baryons, con-
centrating on those levels in which the light diquark in the ground state baryons with
I = J = 1 acquires one unit of orbital angular momentum with respect to the heavy quark
Q = (c, b). In this limit there are five expected P-wave ΣQ states: two with total spin
J = 1/2, two with J = 3/2, and one with J = 5/2. In the heavy-quark limit one can treat
Q as a spectator and discuss the total light-quark angular momentum jjj = LLL + SSSd, where
Sd = 1 is the spin of the diquark, so j = 0, 1, 2. We have estimated masses as a function of
one unknown parameter b describing tensor forces. For modest values of b, the states with
(J, j) = (3/2, 2) and (5/2,2) lie highest, and these are also the ones we expect are most
likely to be detected first. They lie somewhat above 2800 MeV for charm and 6100 MeV
for beauty.
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Appendix: Angular momentum state construction

L–S coupling

In the L–S basis, the terms proportional to b and c in the spin-dependent potential (1) are
diagonal. We start by showing that the tensor force term can be written in terms of the
total spin SSS = SSSd + SSSQ:

S12

2
≡ 〈(3SSS · rrr)(3SSS · rrr)/r2 − SSS2〉 = 〈6(SSSd · rrr)(SSSQ · rrr)/r2 − 2SSSd · SSSQ〉 , (42)

which can be evaluated using an identity from Ref. [10]:

〈ninj〉 −
1

3
δij = a[LiLj + LjLi −

2

3
δijL(L+ 1)] , a = −1/[(2L− 1)(2L+ 3)] . (43)

In the present case for L = 1, we have

〈S12〉 = −6

5
〈[LiLj + LjLi −

4

3
δij ]SiSj〉 . (44)

The product LiLjSiSj is just (LLL · SSS)2, while use of the commutation relations [Li, Lj] =
iǫijkLk and [Si, Sj] = iǫijkSk yields LjLiSiSj = (LLL · SSS)2 +LLL · SSS. Consequently, we have

〈S12〉 = −6

5
[〈2(LLL · SSS)2 + LLL · SSS〉 − 4

3
S(S + 1)] . (45)

The expectation values of LLL · SSS may be evaluated, of course, by squaring the identity
JJJ = LLL+ SSS:

〈LLL · SSS〉 = 1

2
[J(J + 1)− L(L+ 1)− S(S + 1)] . (46)
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Table VIII: Expectation values of LLL · SSS and tensor term S12 for P-wave ΣQ baryons in the
L–S-coupling basis states.

State 〈LLL · SSS〉 〈S12〉
2P1/2 –1 0
2P3/2

1
2

0
4P1/2 –5

2
–6

4P3/2 –1 24
5

4P5/2
3
2

–6
5

The values of 〈LLL · SSS〉 and 〈S12〉 are shown in Table VIII.
The matrix elements of LLL · SSSd and LLL · SSSQ may be evaluated by explicit construction of

states with a given J3 as linear combinations of states |Sd3, SQ3, L3〉 where Sd3+SQ3+L3 =
J3. By angular momentum invariance, it suffices to use a single J3 for each matrix element.
An operator LLL · SSSi, where i = d,Q, may be expressed as

LLL · SSSi = L3Si3 +
1

2
[L+Si− + L−Si+] , (47)

and the usual rules for raising and lowering third components of angular momenta apply.
The relevant basis states are

|2P1/2, J3 =
1

2
〉 =

√
2

3
|1,−1

2
, 0〉 − 1

3
|0, 1

2
, 0〉 −

√
2

3
|0,−1

2
, 1〉+ 2

3
|−1,

1

2
, 1〉 , (48)

|4P1/2, J3 =
1

2
〉 =

1√
2
|1, 1

2
,−1〉 − 1

3
|1,−1

2
, 0〉 −

√
2

3
|0, 1

2
, 0〉+ 1

3
|0,−1

2
, 1〉+ 1

3
√
2
|−1,

1

2
, 1〉 ,(49)

|2P3/2, J3 =
3

2
〉 =

√

2

3
|1,−1

2
, 1〉 −

√

1

3
|0, 1

2
, 1〉 , (50)

|4P3/2, J3 =
3

2
〉 =

√

3

5
|1, 1

2
, 0〉 −

√

2

15
|1,−1

2
, 1〉 − 2√

15
|0, 1

2
, 1〉 , (51)

|4P5/2, J3 =
5

2
〉 = |1, 1

2
, 1〉 . (52)

The matrix elements of LLL · SSSi (i = d,Q) in the basis [2PJ ,
4 PJ ] are then found to be

〈LLL · SSSd〉J=1/2 =

[

−4
3

−
√
2
3

−
√
2
3

−5
3

]

, 〈LLL · SSSQ〉J=1/2 =

[

1
3

√
2
3√

2
3

−5
6

]

, (53)

〈LLL · SSSd〉J=3/2 =

[

2
3

−
√
5
3

−
√
5
3

−2
3

]

, 〈LLL · SSSQ〉J=3/2 =

[

−1
6

√
5
3√

5
3

−1
3

]

, (54)

while the matrix elements for J = 5/2 are

〈LLL · SSSd〉J=5/2 = 1 , 〈LLL · SSSQ〉J=5/2 =
1

2
. (55)

The sums of the matrix elements for LLL · SSSd and LLL · SSSQ reproduce those of LLL · SSS quoted in
Table VIII.
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Table IX: Expectation values of LLL · SSS and tensor term S12 for P-wave cs̄ mesons in the
L–S-coupling basis states.

State 〈LLL · SSS〉 〈S12〉
3P0 –2 –4
1P1 0 0
3P1 –1 2
3P2 1 –2

5

j–j coupling

In the limit of very large mQ, the term proportional to a1 in the spin-dependent potential
(1) dominates over the others, which may be treated perturbatively. Thus one can either
work directly with j–j coupling (as in Sec. II or Ref. [9]) or use eigenstates of (53) and
(54) to denote matrix elements of LLL ·SSSd. For J = 1/2 the eigenvalues λ and corresponding
eigenvectors are

λ = −2 : |J = 1/2, j = 0〉 =
√

1

3
|2P1/2〉+

√

2

3
|4P1/2〉 , (56)

λ = −1 : |J = 1/2, j = 1〉 =
√

2

3
|2P1/2〉 −

√

1

3
|4P1/2〉 , (57)

while for J = 3/2 they are

λ = −1 : |J = 3/2, j = 1〉 =
√

1

6
|2P3/2〉+

√

5

6
|4P3/2〉 , (58)

λ = +1 : |J = 3/2, j = 2〉 =
√

5

6
|2P3/2〉 −

√

1

6
|4P3/2〉 . (59)

Note that these states correspond to definite values of j, where jjj = LLL+SSSd. The coefficient
of a1 in the spin-dependent potential for the JP = 5

2

+
state is 1, and it has j = 2.

Details of calculation for P-wave cs̄ mesons

A calculation similar to that in the previous two subsections may be performed for mesons
with one heavy quark. We chose the cs̄ system because there exist candidates for all four
expected levels. As in the case of ΣQ baryons, we find it convenient to work in the j–j
basis in which the analogue of the first term in Eq. (1), namely a1(cs̄)LLL · SSSs, is diagonal.
We first calculate the expectation values of LLL · SSS and the tensor operator S12 in the basis
states 2S+1PJ , with Sd in Eq. (1) everywhere replaced by the spin Ss of the strange quark.
The results are shown in Table IX. The expectation value of the hyperfine term SSSs · SSSQ is
1/4 for the 3P states and –3/4 for the 1P1 state.

Now we construct L–S basis states so as to evaluate the expectation values of LLL ·SSSi (i =
s,Q). We label the states by |Ss3, SQ3, L3〉. We do not need to exhibit the 3P0 state as it
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is pure j = 1/2. The results are

|3P2, J3 = 2〉 = |1
2
,
1

2
, 1〉 , (60)

|3P1, J3 = 1〉 =
1

2
|−1

2
,
1

2
, 1〉+ 1

2
|1
2
,−1

2
, 1〉 − 1√

2
|1
2
,
1

2
, 0〉 , (61)

|1P1, J3 = 1〉 =
1√
2
|1
2
,−1

2
, 1〉 − 1√

2
|−1

2
,
1

2
, 1〉 . (62)

Using Eq. (47), in the basis (1P1,
3 P1), the matrices describing mixing of states are

〈LLL · SSSs〉J=1 =

[

0 1/
√
2

1/
√
2 −1/2

]

, 〈LLL · SSSQ〉J=1 =

[

0 −1/
√
2

−1/
√
2 −1/2

]

(63)

The eigenstates [α, β]T of the first matrix satisfy β/
√
2 = −α for eigenvalue –1 and β =

α/
√
2 for eigenvalue 1/2. The relation between L–S eigenstates and (J, j) eigenstates is

then

|J = 0, j = 1/2〉 = |3P0〉 , (64)

|J = 1, j = 1/2〉 =

√

1

3
|1P1〉 −

√

2

3
|3P1〉 , (65)

|J = 1, j = 3/2〉 =

√

2

3
|1P1〉+

√

1

2
|3P1〉 , (66)

|J = 2, j = 3/2〉 = |3P2〉 . (67)

Using these expressions one can calculate the expectation values of all the operators con-
tributing to the masses of the P-wave cs̄ mesons, with the results shown in the text.
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